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Abstract. Increasing global demand of vegetable oils and biofuels results in significant oil palm expansion in
southeastern Asia, predominately in Malaysia and Indonesia. The land conversion to oil palm plantations has
posed risks to deforestation (50 % of the oil palm was taken from forest during 1990–2005; Koh and Wilcove,
2008), loss of biodiversity and greenhouse gas emission over the past decades. Quantifying the consequences of
oil palm expansion requires fine-scale and frequently updated datasets of land cover dynamics. Previous studies
focused on total changes for a multi-year interval without identifying the exact time of conversion, causing
uncertainty in the timing of carbon emission estimates from land cover change. Using Advanced Land Observing
Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR), ALOS-2 PALSAR-2 and
Moderate Resolution Imaging Spectroradiometer (MODIS) datasets, we produced an annual oil palm area dataset
(AOPD) at 100 m resolution in Malaysia and Indonesia from 2001 to 2016. We first mapped the oil palm extent
using PALSAR and PALSAR-2 data for 2007–2010 and 2015–2016 and then applied a disturbance and recovery
algorithm (Breaks For Additive Season and Trend – BFAST) to detect land cover change time points using
MODIS data during the years without PALSAR data (2011–2014 and 2001–2006). The new oil palm land cover
maps are assessed to have an accuracy of 86.61 % in the mapping step (2007–2010 and 2015–2016). During the
intervening years when MODIS data are used, 75.74 % of the detected change time matched the timing of actual
conversion using Google Earth and Landsat images. The AOPD revealed spatiotemporal oil palm dynamics every
year and shows that plantations expanded from 2.59 to 6.39×106 ha and from 3.00 to 12.66×106 ha in Malaysia
and Indonesia, respectively (i.e. a net increase of 146.60 % and 322.46 %) between 2001 and 2016. The higher
trends from our dataset are consistent with those from the national inventories, with limited annual average
difference in Malaysia (0.2×106 ha) and Indonesia (−0.17×106 ha). We highlight the capability of combining
multiple-resolution radar and optical satellite datasets in annual plantation mapping to a large extent by using
image classification and statistical boundary-based change detection to achieve long time series. The consistent
characterization of oil palm dynamics can be further used in downstream applications. The annual oil palm
plantation maps from 2001 to 2016 at 100 m resolution are published in the Tagged Image File Format with
georeferencing information (GeoTIFF) at https://doi.org/10.5281/zenodo.3467071 (Xu et al., 2019).
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1 Introduction

The global demand for vegetable oil and its derivative prod-
ucts calls for an increase in palm oil production, leading to
oil palm expansion and intensification in southeastern Asia
(Sayer et al., 2012). According to the Food and Agricul-
ture Organization (FAO), Malaysia and Indonesia account for
81.90 % of the global oil palm fruit production in 2017, an in-
crease of 179.72 % from 2000 to 2017 (see http://faostat.fao.
org, last access: 20 December 2019) that is projected to con-
tinue in the future (Murphy, 2014). The boom of oil palm in-
dustries caused and also raised the deforestation risks (Austin
et al., 2018; Vijay et al., 2018). In Malaysia and Indonesia,
more than 50 % of the oil palm plantations were converted
from forest during 1990–2005 (Koh and Wilcove, 2008),
and industrial plantations dominated by oil palm (72.5 % of
all plantations) caused a ∼ 60 % decrease in peatland forest
from 2007 to 2015 (Miettinen et al., 2016). A series of con-
sequences includes but is not limited to biodiversity decline
(Fitzherbert et al., 2008), peatland loss (Koh et al., 2011) and
carbon emission (Guillaume et al., 2018).

Quantifying the spatiotemporal details of oil palm expan-
sion is important for understanding the deforestation pro-
cess and its impacts on ecosystem services and promotes
progress in environmental governance and policy decisions
(Gibbs et al., 2010; Koh and Wilcove, 2008). However, an-
nual information on the expansion of oil palm plantations is
poorly documented in Malaysia and Indonesia. The statisti-
cal records (e.g. FAO, United States Department of Agricul-
ture – USDA) give neither the detailed spatial distribution nor
the young oil palm trees and smallholder plantations. Many
efforts have been made to characterize the oil palm extent
(Cheng et al., 2018; Gaveau et al., 2016; Miettinen et al.,
2017). For example, the Roundtable on Sustainable Palm Oil
(RSPO), whose members manage one-third of the world’s
oil palm, provided spatial information on oil palm distribu-
tion in Malaysia and Indonesia (Gunarso et al., 2013). The
continuous mapping of oil palm on peatland in 1990, 2000,
2007 and 2010 described the dynamic change of oil palm on
peat during the past 30 years (Miettinen et al., 2012). But
these maps are given for a certain year or several time phases
without capturing the exact time of oil palm changes. Dy-
namic global vegetation models use gross land-use change
and thus require high-resolution grid-cell-based annual oil
palm conversion maps rather than country-level inventories
and bi-decadal land cover maps (Yue et al., 2018a, b). A lack
of continuous change information may cause a wrong inter-
pretation of land cover change time and significant bias in
global carbon dynamic studies (Zhao and Liu, 2014; Zhao et
al., 2009). As a result, oil palm plantation maps at high tem-
poral and spatial resolutions in Malaysia and Indonesia are
urgently needed.

Remote sensing has been used in oil palm monitoring
since the 1990s. Progress has been made in oil palm mapping
and change detection, including (1) data sources from optical

satellite earth observations (Lee et al., 2016; Srestasathiern
and Rakwatin, 2014) to microwave datasets such as the
Phased Array type L-band Synthetic Aperture Radar (PAL-
SAR; Cheng et al., 2018; Dong et al., 2015), (2) spatiotem-
poral resolutions from the regional to national scale (Miet-
tinen et al., 2017) and from single to multi-decadal map-
ping (Gaveau et al., 2016; Miettinen et al., 2016), (3) inter-
pretation methods from manual to semi-automatic and fully
automatic identification (Baklanov et al., 2018; Cheng et
al., 2019; W. Li et al., 2017; Mubin et al., 2019; Ordway
et al., 2019), and (4) products going from oil palm land
cover maps to more detailed datasets on plantation struc-
ture, e.g. tree counting (Li et al., 2019; Cheang et al., 2017)
age, yield estimation (Balasundram et al., 2013; Tan et al.,
2013), etc. A few studies also focused on the continuous oil
palm change detection (Carlson et al., 2013; Gaveau et al.,
2016; Vijay et al., 2018). These studies adopted visual or
semi-automatic interpretation for oil palm plantations, which
is labour-intensive and not appropriate for long-term annual
oil palm plantation monitoring. Automatic identification can
overcome this difficulty by using classification algorithms
based on Landsat and PALSAR and PALSAR-2 data, which
were successfully applied to produce the 2015 land cover
map of insular southeastern Asia with discrimination of oil
palm plantations (Miettinen et al., 2017). So far, however,
the annual dynamics of oil palm plantations (expansion and
shrinkage) remains unquantified for Malaysia and Indonesia.

The annual oil palm mapping in tropical areas such as
insular southeastern Asia is a challenge due to the persis-
tent cloudy conditions (Gong et al., 2013; Yu et al., 2013).
Multi-temporal optical images can help reduce cloud effects
(Yu et al., 2013), but it is still difficult to obtain effective
optical observations in Malaysia and Indonesia (51.88 % of
the region is without annual Landsat images; Fig. S1 in the
Supplement). Microwave remote sensing is not affected by
clouds and is considered to be the most efficient source in
separating forested vegetation and oil palms (Ibharim et al.,
2015; Teng et al., 2015). The long time span of 25 m reso-
lution PALSAR and PALSAR-2 data provides opportunities
for mapping oil palm at high spatiotemporal resolutions. Re-
cently the PALSAR and PALSAR-2 data have been success-
fully used in characterizing oil palm change for the whole
country of Malaysia for 6 years using PALSAR (2007–2010)
and PALSAR-2 (2015–2016; Cheng et al., 2019). However,
the gap years (2011–2014) between PALSAR and PALSAR-
2 hampered continuous tracking of oil palm plantation dy-
namics. One potential way to achieve annual mapping is to
use optical earth observation data, e.g. Landsat images for the
PALSAR gap period (Chen et al., 2018; Shen et al., 2019).
However, this requires abundant Landsat images (> 4; Xu et
al., 2018a) that are not available in the humid tropical regions
and may cause “false changes” and “inter-annual inconsis-
tency” (Broich et al., 2011). Recently, a super-resolution
mapping method (X. Li et al., 2017; Qin et al., 2017; Xu
et al., 2017) was used to reconstruct missing forest cover
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change during 2011–2014 (Zhang et al., 2019) by fusing
the PALSAR and PALSAR-2 and the Moderate Resolution
Imaging Spectroradiometer (MODIS) normalized difference
vegetation index (NDVI) with dense temporal resolution and
phenological information. However, it is difficult to separate
oil palm and natural forest with similar NDVI variation us-
ing such classification-based fusion. A new approach based
on change detection in a given period using time-series ob-
servations (i.e. MODIS NDVI, GIMMS NDVI) was success-
fully applied to fill the years with missing data in develop-
ing a nominal 30 m annual China land-use and land cover
dataset (Xu et al., 2020). This approach takes advantage of
dense observations by detecting break points in a time series
using change-detection algorithms, combined with the pre-
existing knowledge from the mapped years, and thus reduces
the inter-annual inconsistency.

The objectives of this study are (i) to develop a robust
and consistent approach capable of detecting annual oil palm
changes in southeastern Asia using multiple remote-sensing
datasets based on image classification and break point detec-
tion, (ii) to produce a nominal 100 m annual oil palm area
dataset (AOPD) in Malaysia and Indonesia from 2001 to
2016, and (iii) to quantify the spatial and temporal patterns of
oil palm change dynamics since 2001. Specifically, we devel-
oped the annual oil palm plantation dataset in Malaysia and
Indonesia by using a two-stage method. The first step is ran-
dom forest-based image classification using PALSAR dur-
ing 2007–2010 and PALSAR-2 data during 2015–2016 (the
periods with PALSAR and PALSAR-2 data available). Com-
bined with the oil palm maps produced in the first step during
the years with PALSAR coverage, MODIS NDVI was used
in a change-detection algorithm called Breaks For Additive
Seasonal and Trend (BFAST; Verbesselt et al., 2010a) to fill
the data-gap years (2011–2014) outside the PALSAR years
and extend the oil palm land cover mapping period back to
2001. Oil palm in this study refers to both young and mature
oil palm trees from industrial plantations and smallholders
with the minimum size of 1 ha (oil palm smallholders are de-
fined as 50 ha or less of cultivated land producing palm oil
controlled by smallholder farmers – the definition used by
the RSPO – with an average of 2 ha; World Bank; 2010).

2 Datasets and method

2.1 Study area

Insular southeastern Asia was originally occupied by ever-
green moist tropical forest, which is one of the most bio-
logically diverse terrestrial ecosystems on Earth. The natu-
ral environment, with humid tropical climates and low-lying
topography, is suitable for the oil palm (Elaeis guineensis;
Fitzherbert et al., 2008). Since 1911, when the first commer-
cial oil palm plantation in southeastern Asia was founded
in Sumatra, oil palm plantations expanded rapidly in Suma-
tra and peninsular Malaysia and then spread to Sarawak and

Sabah in Malaysia and Kalimantan in Indonesia (Corley and
Tinker, 2008). Industrial oil palm plantations spurred the
economic sectors in southeastern Asian countries but also
raised concerns on the negative social and environmental im-
pacts (Obidzinski et al., 2012; Sayer et al., 2012). Recently,
oil palm plantation expansion became one of the dominant
drivers of deforestation in Malaysia and Indonesia (Austin et
al., 2018; Gaveau et al., 2016). Thus, we chose as a study area
the whole area of Malaysia and Sumatra and Kalimantan in
Indonesia, which encompass 96 % of the total oil palm pro-
duction in Indonesia (Petrenko et al., 2016). Oil palm plan-
tations in these two countries account for 67.51 % of world’s
total oil palm plantation area (FAOSTAT, 2017), and dra-
matic land cover conversion happened in this region due to
human-induced modifications.

2.2 Overview of the AOPD production

The development of AOPD includes two major stages:
(1) oil palm mapping using PALSAR and PALSAR-2 data
(Sect. 2.3) and (2) change-detection-based oil palm updat-
ing using MODIS NDVI during the gap years in operation
between Advanced Land Observing Satellite (ALOS) and
ALOS-2 (Sect. 2.4). The first stage aimed at producing the
oil palm maps for 2007, 2008, 2009 and 2010 using PALSAR
and 2015 and 2016 using PALSAR-2 datasets. The detailed
procedures include the pre-processing of the original PAL-
SAR and PALSAR-2 data, training sample collection and im-
age classification, and final production of oil palm maps for
the target years after post-processing using ancillary datasets.
In the second stage, we combined oil palm maps produced
in the first stage with MODIS NDVI data. Time series of
MODIS NDVI data and change maps were prepared in the
data preparation step, followed by the break point test using
the change-detection algorithm, BFAST, to detect the change
year (change from other land cover types to oil palm and
the reverse) in the PALSAR and PALSAR-2 missing-data pe-
riod. After the post-processing, we derived the oil palm maps
in these gap years and traced the oil palm distribution back
to 2001. Combining the results from the two stages, we ob-
tained the annual oil palm plantation maps from 2001 to 2016
at 100 m spatial resolution, forming the AOPD. The whole
workflow is shown in Fig. 1.

2.3 Oil palm mapping using PALSAR and PALSAR-2
data

2.3.1 PALSAR and PALSAR-2 product and data
preparation

We used multi-source remote-sensing images to fully cover
the study area; these included images from ALOS PAL-
SAR, ALOS-2 PALSAR-2 and MODIS NDVI. The Landsat
archives were not used because of the low data availability in
this region caused by frequent thick cloud cover (Fig. S1 in
the Supplement).
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Figure 1. Workflow of the annual oil palm mapping procedure. Stage 1 stands for oil palm mapping using PALSAR and PALSAR-2 data,
and Stage 2 stands for change-detection-based oil palm maps updated using MODIS NDVI.

The Japan Aerospace Exploration Agency (JAXA) pro-
vided the 25 m resolution global PALSAR and PALSAR-2
mosaic by mosaicking SAR images of the backscattering co-
efficient (http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/
index.htm, last access: 20 May 2019). Although the product
was compiled at an annual frequency, one product a year is
sufficient to identify the oil palm changes, since oil palm is
a perennial crop without significant phenological variations
in the tropics. To cover the whole study area, 15 patches of
5◦× 5◦ PALSAR and PALSAR-2 grids for 6 years (2007,
2008, 2009 and 2010 from PALSAR; 2015 and 2016 from
PALSAR-2) were used. Since ALOS stopped working in
2011, no data were available between 2011 and 2014 until the
operation of ALOS-2. The product contains data of HH (i.e.
horizontal transmit and horizontal receive) and HV (i.e. hor-
izontal transmit and vertical receive) digital numbers (DNs)
acquired by PALSAR and PALSAR-2 in Fine Beam Dual
(FBD) mode with ortho-rectification and topographic cor-
rection. For PALSAR and PALSAR-2, HH and HV DN val-
ues were converted to normalized backscattering coefficients
(unit: decibel – dB) using the following formula (Rosenqvist
et al., 2007):

σ 0(dB)= 10× log10DN2
+CF, (1)

where CF is a calibration factor (−83.0 dB) in PALSAR and
PALSAR-2 data (Shimada et al., 2009). Two additional lay-

ers, the difference and ratio, were produced by calculating
the ratio and difference from the HH and HV DN of deci-
bels, following

Difference= HH−HV, (2)
Ratio= HH/HV. (3)

Although ALOS PALSAR and ALOS-2 PALSAR-2 have
different satellite microwave sensor properties (e.g. fre-
quency, off-nadir angle), the backscatter signals are relatively
stable for the given period (2007–2010 and 2015–2016), as
seen by comparing the distribution of backscattering values
(HH and HV) of 250 000 randomly generated pixels (us-
ing ArcGIS 10.3) in the study area between different years
(see Fig. S2). The similar findings for the stability of PAL-
SAR and PALSAR-2 data were also given in previous stud-
ies (Cheng et al., 2019; Qin et al., 2017). Meanwhile, the
HH and HV values for oil palm and forest are also shown
in Fig. S3 and indicate the separability between the two land
cover types for both PALSAR and PALSAR-2 data. There-
fore, the consistency between ALOS PALSAR and ALOS-
2 PALSAR-2 allows tracking the oil palm changes in the
study period. One problem of using PALSAR and PALSAR-
2 data, however, is the “salt-and-pepper” noise (Zhang et al.,
2019), which may cause misclassification and false changes
in the subsequent process. Previous studies showed that the
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resampling method reached higher accuracy and better vi-
sual results in oil palm mapping compared to the commonly
used filter method (Cheng et al., 2018). The identification
and area estimation of oil palm plantations have also been
proven to perform better at 100 m resolution (Cheng et al.,
2018). Therefore, we resampled the original 25 m PALSAR
and PALSAR-2 images to 100 m resolution for every year to
reduce salt-and-pepper noise.

2.3.2 Training sample collection and image classification

In this study, a multi-year training sample set (2007–2010,
2015 and 2016) was used to map the oil palm extent in In-
donesia and Malaysia from 2007 to 2016. We used the train-
ing sample set for Malaysia from our previous study (Cheng
et al., 2017) and interpreted the training datasets for Indone-
sia using the same interpretation method. The sample col-
lection was mainly based on the high-resolution (< 1 m) im-
ages from Google Earth with the assistance of PALSAR and
PALSAR-2 images. We first visually interpreted the samples
in 2015 and then manually checked the land cover types be-
fore and after 2015 if change happened. Here we used 636
and 748 polygonal regions of interest (ROIs; 4953–5660 and
7804–8147 pixels) for Malaysia and Indonesia as the train-
ing inputs instead of point sample-based training, since it
achieved better results in regular plantations. Four land cover
types in this training sample set were included: oil palm (ma-
ture and young oil palm – identified by the canopy shape
using very high resolution images from Google Earth), wa-
ter, other vegetation (forest, shrubland and other plantations
such as rubber) and others (impervious, cropland and bare
land). Mixed land cover types were found in “other vegeta-
tion” and “others” because it is difficult to further separate
these types within the categories. The detailed distribution of
training data is presented in Table 1. Other vegetation types
consist of ∼ 52.9 % of the total sample, followed by the oil
palm samples (26.7 %), while “others” and water types only
account for ∼ 20.4 % of the total training samples, which is
consistent with the real land cover distribution.

Thereafter, we used a random forest (RF) classifier in the
image classification step. The HH and HV digital number
of decibels and the derived difference (HH − HV) and ratio
(HH /HV) images were all used as inputs to the RF clas-
sifier to derive the original annual oil palm maps for the 6
years. The MODIS NDVI is not used as input to the RF
model for classification because of the similarity between
tropical forest and oil palm and the low resolution, which
may negate the benefits of our classification based on higher-
spatial-resolution PALSAR data.

2.3.3 Post-processing and oil palm map

Post-processing after the initial results is necessary because
of the limitation in the training set, unavoidable classifica-
tion errors and the difficulty in describing heterogeneous real

land surface. To obtain a reliable oil palm dataset, we adopted
several steps, including mode filtering, terrain filtering, and
intact forest and mangrove filtering in post-processing to im-
prove the final oil palm maps in Stage 1 for 2007, 2008, 2009,
2010, 2015 and 2016.

Mode filtering is used for the very small patches (mainly
single pixels) in the initial results, since it is more likely to
be errors or noise induced by PALSAR and PALSAR-2 data
rather than real oil palm plantations. The topographic fac-
tors such as slope and elevation will cause the confusion of
backscattering signals from satellite sensors, particularly in
area with undulating terrain. Therefore, we applied terrain fil-
tering to reduce the confusion by the topographic factor using
the Shuttle Radar Topography Mission (SRTM) 30 m digi-
tal elevation model (DEM). The altitude threshold of 1000 m
was applied, since the oil palm is mainly distributed in the
lowlands (mostly < 300 m), and regions higher than 1000 m
are not suitable for oil palm cultivation (Austin et al., 2015;
Carlson et al., 2013; Corley and Tinker, 2008). Subsequently,
we used two additional layers, intact forest landscape (IFL)
in 2016 from (Potapov et al., 2008) and the Global Man-
grove Atlas (GMA; available at: http://geodata.grid.unep.ch/
results.php, last access: 15 March 2020) to filter out non-oil
palm areas and reduce the misclassification. The intact for-
est map denotes natural forest ecosystems, without human-
caused disturbances, where oil palm plantations are not sup-
posed to be cultivated. The mangrove swamp area is sub-
sequently flooded by seawater, which is not suitable for oil
palm cultivation due to the significant negative impact on
the fresh fruit bunches and oil production (Henry and Wan,
2012).

Another problem when developing oil palm maps is the
replantation of oil palm trees. Oil palm has a long life cy-
cle of 25 to 30 years. After that, the trees will be cleared
and replaced because of a decrease in palm oil yield (Röll
et al., 2015). However, from the satellite observations, the
land cover type is bare land at the time of oil palm log-
ging, whereas the land-use property remains unchanged as
oil palm plantations when checked before and after oil palm
logging. Given the limitation of satellite observation, we pro-
vided two versions of our oil palm datasets. The first version
is the oil palm datasets after the post-processing mentioned
above. Here replantation is not considered, and this version
includes conversion from other land cover types to oil palm
(oil palm expansion) as well as the opposite (oil palm shrink-
age). In the second version, we assumed that oil palm expan-
sion is a unidirectional activity due to the growing demand of
palm oil. The time-series filtering was conducted by using the
2007 oil palm extent to filter all pixels classified as “non-oil
palm” in the subsequent years. As a result, this version of the
oil palm plantation dataset has shown continuously expand-
ing areas from 2007 to 2016. The second version includes
the impact of oil palm replantation and the thriving oil palm
industry in southeastern Asian countries but ignored any pos-
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Table 1. The distribution of training data (unit: pixel). Malay.: Malaysia. Indon.: Indonesia.

Oil palm Other vegetation Water Others Total

Malay. Indon. Malay. Indon. Malay. Indon. Malay. Indon. Malay. Indon.

2007 1228 2368 2970 3351 570 762 185 1323 4953 7804
2008 1279 1921 2994 3561 570 818 185 1039 5028 7339
2009 1387 2065 3179 3893 570 842 185 1161 5321 7961
2010 1405 2005 3228 3824 570 837 185 1076 5388 7742
2015 1475 2349 3430 4287 570 656 185 1360 5660 8652
2016 1475 2312 3430 4020 570 562 185 1253 5660 8147

sible decrease in oil palm (e.g. abandonment, conversion to
cropland) in some areas.

2.4 Change-detection-based oil palm updating using
MODIS NDVI

2.4.1 MODIS NDVI time series and data preparation

MODIS NDVI is an important index of vegetation condi-
tions and has been widely used in vegetation and land cover
change studies (Clark et al., 2010; Ding et al., 2016; Estel
et al., 2015). NDVI in the recent updated MODIS vegetation
index data (MOD13Q1) collection 6 from 2000 to 2007 and
from 2010 to 2015 (downloaded from https://lpdaac.usgs.
gov/, last access: 20 July 2019) was used to fill the gap years
(2000–2006 and 2011–2014) of PALSAR and PALSAR-2
datasets using change-detection algorithms. The MOD13Q1
product has a spatial resolution of 250 m and is compos-
ited every 16 d. In total, six MODIS tiles with 23 scenes per
year (181 and 138 scenes for the two study periods: 2000–
2007 – P1 – and 2010–2015 – P2) were required to cover
the study area (h27v08, h27v09, h28v08, h28v09, h29v08
and h29v09). All the MODIS images were projected from
its original sinusoidal projection to a geographic grid with a
WGS 1984 spheroid and resized to 100 m to match the res-
olution of the oil palm maps using the nearest-neighbour re-
sampling approach. The pixel quality and reliability layers
in the MOD13Q1 product were used to further exclude the
poor-quality pixels. During the whole study period, 53.64 %
of the observations are of high quality, while 46.36 % are in-
terpolated using spline interpolation. For those pixels with
less than 30 high-quality observations (4.79 % in P1 and
9.64 % in P2 of the total change area), we did not apply the
BFAST algorithm. For the remaining area, 61.67 % (P1) and
58.24 % (P2) of pixels had 12 (∼ 50 % in 23) high-quality
observations annually.

A change map for the microwave data gap period between
PALSAR and PALSAR-2 (2011–2014) was extracted using
the change pixels in 2010 and 2015 oil palm maps with spa-
tial locations and “from–to” types. Here, we assumed that
the change from classification was reliable because of the
high resolution of PALSAR data. We then sought the exact
change year within the intervals in the next step (Sect. 2.4.2)

using temporal NDVI files extracted from each change pixel.
Frequent changes such as two or three shifts during the gap
years were assumed to be of low probability and thus not
considered in this study. For the period during 2001–2006
without PALSAR and PALSAR-2 data and oil palm distribu-
tion in 2000, we assumed a unidirectional expansion of oil
palm, and the oil palm extent in 2007 was used as the poten-
tial change regions in the next step. In total, we derived two
versions of change maps (one with bi-directional change and
the other with only unidirectional oil palm expansion) for the
two periods.

2.4.2 Break point test using change-detection algorithm,
BFAST

Change-detection analysis was conducted in the change pix-
els derived from the last step to identify the exact change
time within the two periods (2011–2014 and 2001–2006)
based on the time series MODIS NDVI from 2010 to 2015
and 2000 to 2007, respectively. Here we aimed to capture
abrupt NDVI changes (break points) in the two given peri-
ods, which are assumed to be caused by the conversion of
the original land cover type to the oil palm cultivation. Many
change-detection algorithms and their derivatives have been
developed in recent years to detect subtle or abrupt changes
in dense time-series satellite profiles (Broich et al., 2011;
Kennedy et al., 2010; Verbesselt et al., 2010b). Most of these
algorithms were applied in forest change monitoring, and all
reach high consistency in detecting significant change (Co-
hen et al., 2017). A recent algorithm, the Bayesian estimator
of abrupt change, seasonal change and trend (BEAST), ag-
gregating the competing models and then the conventional
single best model, performed well in capturing multiple and
subtle phenological changes (Y. Zhao et al., 2019b). Here we
used BFAST to capture the oil palm conversion time within
the two study periods (2011–2014 and 2001–2006).

BFAST has been successfully applied in monitoring forest
disturbance and regrowth and has proved robust with differ-
ent sensors (DeVries et al., 2015; Verbesselt et al., 2012).
Based on the structural change methods, the BFAST algo-
rithm is able to find the structural break point between differ-
ent segments in the observation time series (DeVries et al.,
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2015) and thus can be used to detect the time and number
of abrupt or gradual changes as well as to characterize the
magnitude and direction. The BFAST method decomposes
the time series into trend, seasonality and residual sections
(Verbesselt et al., 2010b). The model can be expressed as

Yt = Tt + St + et (t = 1, . . .,n) , (4)

where Yt is the observed value at time t , Tt is the trend sec-
tion, St is the seasonal section and et is the noise section.

An ordinary least-square-residual-based moving-sum test
(OLS-MOSUM; Zeileis, 2005) was used to test whether
break points occurred in the trend or seasonal components.
Then, the test was conducted to determine the number and
optimal position of the breaks using the Bayesian informa-
tion criterion (BIC) and the minimum of the residual sum of
squares. The trend and seasonal coefficients were then com-
puted using robust regression. A harmonic seasonality model
(with three harmonic terms) was used to describe the season-
ality of the satellite data (Eq. 6; Verbesselt et al., 2010b).
For each piecewise linear model (Tt ) from t∗i to t∗i+1, where
t∗1 , . . ., t

∗
p is the assumed break points which define the p+ 1

segment, Tt can be expressed as follows:

Tt = αi +βi t (i = 1, . . .,p) , (5)

where i is the index of the breaks, and i = 1, . . .,p. αi and
βi are the intercept and slope of the fitted piecewise linear
model.

For the t#1 , . . ., t
#
m seasonal break points, St is the harmonic

model for t#j to t#j+1:

St =

K∑
k=1

αj,k sin
(

2πkt
f
+ δj,k

)
(j = 1, . . .,q) , (6)

where j = 1, . . .q. k is the number of harmonic terms in the
periodic model (default value of 3), αj,k is the amplitude, f
is the frequency and δj,k is the time phase. For the MODIS
NDVI used in this study, the f value was 23 (i.e. 23 obser-
vations of MODIS observations per year; Verbesselt et al.,
2010b). Here, the maximum number of breaks was artifi-
cially set to 1 because of the assumption of one time change
for each period based on prior knowledge from the oil palm
maps. Figure 2a shows two examples of the break point de-
tection of the MODIS NDVI using the BFAST algorithm. In
the first example, no obvious break is detected in the low-
resolution time series, whereas significant change was cap-
tured in the trend section after time-series decomposition in
the second example (Fig. 2b). More details of the BFAST
algorithm are referenced in Verbesselt et al. (2010b, 2012).
To evaluate the validity of using coarse MODIS time series
in oil palm change detection, we visually interpreted an ex-
tra 100 change points based on the PALSAR images from
2007 to 2010 and applied the BFAST algorithms using the
MODIS NDVI. An example of the comparison between the
BFAST-based change results and visual interpretation from

Figure 2. Examples of the break point detection in the MODIS
time series using the BFAST algorithm. (a) The two cases present
when the algorithm is able to detect the break in the NDVI time se-
ries. The NDVI curve is the original 16 d composite MODIS NDVI
time series. The fitted curve is the pre-processed NDVI after cloud
masking and spline interpolation. Trend line shows the fitted trend
for each segment after seasonal-trend decomposition using BFAST.
(b) The seasonal-trend decomposition of the 16 d NDVI time series
using BFAST for the second example. The algorithm decomposes
the time series into three components: trend, seasonality and resid-
uals (et).

PALSAR images was shown in Fig. S4. The break time de-
tected from MODIS NDVI showed the similar conversion
year compared with the microwave satellite images (a total
of 86 % agreement with 62 % matched the same change year
and 24 % within a 1-year interval). Moreover, we did a test
using the subsequent NDVI fragments to replace the original
NDVI fragments after the detected break time and compared
the break results to show the robustness of the algorithm con-
sidering the effect of the oil palm plantation standing age
(Fig. S5).

2.4.3 Updating annual oil palm results

The previous steps generated annual oil palm maps for 6
years (Sect. 2.3) and the oil palm change time in the missing
periods (2011–2014 and 2001–2016; Sect. 2.4.1 and 2.4.2).
In the final step, all these data were combined to update the
continuous oil palm dataset from 2001 to 2016 following Xu
et al. (2020).
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For the gap period from 2011 to 2014, the oil palm updat-
ing was based on the from–to land cover types (L1 andL2) of
the start (t1) and the end years (t2) with the detected change
time (ti). Then L2 was allocated between ti and t2, while L1
was assigned before ti (t1 to ti). For example, if a pixel were
forest in 2010 and oil palm in 2015 with a change year of
2013, then the land cover type would be forest during 2010–
2013 and oil palm during 2014–2015, following the updat-
ing process. The rest of the area without oil palm changes
remained unchanged from 2010 to 2015 (assigned L1). For
the gap period during 2001–2006, the oil palm map in 2007
from PALSAR data was used as the potential change area (as
mentioned in Sect. 2.4.2) without from–to types. Thus the
land cover type between 2001 and change time (ti) was clas-
sified as non-oil palm, and oil palm was assigned to the pe-
riod after ti (ti to t2). Thereafter, the oil palm maps between
2001 to 2016 were updated. Quality maps (Figs. S6 and S7)
were also generated to indicate the availability of valid NDVI
values (i.e. not under cloud cover), the spatial resolution of
the dataset used and the consistency of change time detec-
tion from different break point test approaches in BFAST al-
gorithms (the OLS-MOSUM), the supremum of a set of La-
grange multiplier statistics (SupLM) and BIC test (Zeileis,
2005). The annual oil palm updating process was applied in
both the bi-directional and unidirectional versions, and two
versions of the oil palm datasets (AOPD-bi and AOPD-uni)
were developed.

2.5 Evaluation

Our product of annual oil palm maps, AOPD, was evalu-
ated for three aspects: (1) the independent annual oil palm
sample set for Malaysia (2007, 2008, 2009, 2010, 2015 and
2016) and Indonesia (2010–2016) to evaluate the annual
mapping results for the classified maps using PALSAR and
PALSAR-2 data and gap years using the change-detection
method, (2) a change sample set aimed at assessing the ac-
curacy of detected change years, and (3) comparison with
statistical inventories (e.g. FAO, USDA, Malaysian Palm Oil
Board – MPOB – 2011–2016, Badan Pusat Statistik – BPS-
Statistics Indonesia – 2011–2015, the existing oil palm maps
from Gaveau et al., 2016, and the Landsat-based deforesta-
tion maps – Hansen et al., 2013). FAO and USDA agricul-
tural statistical data provided the harvested area of oil palm
using data collected by official and unofficial outlets. MPOB
is a government agency providing oil palm plantation area in
Malaysia based on the data reported by state agencies, insti-
tutions, private estates and independent smallholders. BPS-
Statistics Indonesia, a non-ministry government agency, pro-
vided statistical data for the public including oil palm plan-
tation area compiled from the quarterly (SKB17-Oil Palm)
and annual (SKB17-Annual) plantation estate survey, cus-
tom documents from the Directorate General of Customs,
and secondary data from the Directorate General of Estate
Crops.

Two sets of annual oil palm samples set were used to val-
idate the mapping results in Malaysia and Indonesia accord-
ing to the sampling protocol of Gong et al. (2013). The in-
dependent annual sample set in Malaysia was from the pre-
vious studies (Cheng et al., 2019, 2017). All pixel-based
samples were randomly produced in an equal-area hexago-
nal grid (95.98 km2 for each grid cell); therefore the distri-
bution of the samples among different land cover types has
minimal bias with the real land cover composition. All the
testing samples were manually checked using high-quality
Google Earth (< 1 m) images in the first round and then
double-checked by the time-series PALSAR images (25 m),
since it is easy to identify the crown of palm trees in the
high-resolution datasets and recognize the regular oil palm
plantations in the microwave satellite datasets. Once the start
and the end of the period of oil palm are determined from
Google Earth images or PALSAR data, the middle years can
be checked by the stable spectral- and backscatter-coefficient
information in the continuous PALSAR images. The annual
sample set contains ∼ 3000 samples with four land cover
types (∼ 16 % were oil palm samples), and it covers the
whole country of Malaysia (see the green points in Fig. 3;
only oil palm samples presented). The second annual In-
donesian sample set was developed following the protocol of
Cheng et al. (2017). This sample set contains 7663 samples
in total (601 were oil palms, and the rest were non-oil palm
types) during 2010 to 2016 (see the blue points in Fig. 3).
The details of the number and spatial distribution of valida-
tion samples are presented in Fig. 3 and Table 2. More infor-
mation on the randomized sampling method can be found in
Cheng et al. (2019, 2017).

The change sample set was developed to evaluate the de-
tected change year by the break point detection analysis.
Time lapses of high-resolution imagery from Google Earth
covering the change period were used to check the change
time detected by the BFAST algorithm. We randomly se-
lected 5000 points (implemented with ArcGIS 10.3 software)
in the change area, but there were only limited samples (370,
25.07 % of the total 1476 oil palm samples) with continu-
ous high-resolution images from Google Earth and cloud-
free Landsat time series. We compared our detected change
years with the actual oil palm conversion time for these test
samples. A confidence interval of±1 years was used consid-
ering uncertainty in visual interpretation of the change time
(Dara et al., 2018). Detailed distribution of the testing sam-
ples can be seen in Fig. 3.

3 Results

3.1 Spatial and temporal characteristics of oil palm
expansion

The annual changes of oil palm plantations from 2001 to
2016 are shown in Fig. 4. The spatial and temporal dynamics
of oil palm changes vary in Malaysia and Indonesia. In the
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Table 2. The distribution of annual validation sample set for Malaysia and Indonesia (unit: pixel).

Malaysia Indonesia

Oil palm Other vegetation Water Others Total Oil palm Not oil palm Total

2007 371 2335 68 74 2848 2010 547 7066 7613
2008 398 2334 71 76 2879 2011 559 7063 7622
2009 418 2335 71 76 2900 2012 568 7068 7636
2010 433 2335 71 76 2915 2013 575 7078 7653
2015 505 2336 75 76 2992 2014 588 7072 7660
2016 505 2334 71 73 2983 2015 594 7073 7667

2016 601 7066 7667

Figure 3. Spatial distribution of oil palm samples in the two val-
idation datasets. The annual sample set contains 2986 (in 2016)
samples in Malaysia, which were interpreted for 2007, 2008, 2009,
2010, 2015 and 2016, and 7667 (in 2016) samples in Indonesia, in-
terpreted from 2010 to 2016. These samples were used to validate
the annual maps developed from PALSAR and PALSAR-2 data.
Of the annual sample set in Malaysia, oil palm samples consist of
16.92 % (505), while the forest, water and others consist of 78.16 %,
2.48 % and 2.44 %, respectively. The Indonesian annual sample set
contains 601 (7.84 %) oil palm samples, and the rest (92.16 %) were
other types. The change sample set includes 370 oil palm samples
which were converted in the interpolated period (2001–2006 and
2011–2014). This sample set, with change year labelled, is used to
assess the change detection result in the gap years.

study area, most oil palm plantations are located in lowland
areas (elevation < 250 m, slope < 2.5◦), and a few are dis-
tributed in gently undulating hills (elevation > 500 m, slope
> 5◦; Fig. S8). The newly developed oil palm has similar el-
evation and slope distribution to that in 2007 (slope: 1.97◦

in 2007 and 1.99◦ in 2016; elevation: 228.98 m in 2007 and
230.10 m in 2016). Specifically, the oil palm plantations are
mostly found in the southwestern coastal regions in penin-
sular Malaysia, northeast of Sumatra and coastal regions in
Borneo (Fig. 4a).

Light colours in Fig. 4 indicate the oil palm changes (ex-
pansion and shrink) in early years, while the dark colours

are the changes in more recent years. Oil palm planta-
tions expanded rapidly during the study period in peninsular
Malaysia and Sumatra and Borneo. In Indonesia, rapid ex-
pansion first occurred in Sumatra and was then surpassed by
Kalimantan (Gunarso et al., 2013; Petrenko et al., 2016). This
can also be observed in our maps, where more changes hap-
pened in earlier years in Sumatra (lighter colours in Fig. 4)
and later in Kalimantan (darker colours). The decrease in oil
palm plantations was also detected (Fig. 4b), although it is
difficult to separate the oil palm replantation after one rota-
tion (i.e. still oil palm in land use) from the permanent oil
palm loss (i.e. change to other land-use types). Compared to
the period before 2007 using change detection in NDVI data,
our data product in the gap period of 2011–2014 would be of
higher quality, since the net changes were constrained by the
oil palm maps in 2010 and 2015 derived from PALSAR and
PALSAR-2 data, respectively.

Figure 5 displays the annual total area of oil palm in
Malaysia and Indonesia from 2001 to 2016, with uncertainty
ranges (shaded area with boundary lines) during 2001–2006
and 2011–2014. This uncertainty range is from the change-
detection step; 9.45 % of the total changes from 2010 to 2015
were not captured in the MODIS NDVI using the BFAST al-
gorithm because of the low resolution, cloud contamination,
the mapping error from the base maps, etc. Assuming that
these missing changes all happened from 2010 to 2011, the
oil palm area of the gap years should follow the trajectory of
the upper boundary line. If all the missing changes happened
in the last year of the period, the oil palm area curve would
be the lower boundary line. Since the distribution of oil palm
in 2001 was unknown, large uncertainty may exist before
2007. Here, the uncertainty range during 2001–2006 was de-
termined based on the data availability of MODIS NDVI and
consistency of change time detection from the quality maps
(Figs. S6 and S7). The oil palm area before 2007 follows
the upper boundary curve if the same breaks were detected
in all three structural change methods (OLS-MOSUM, Su-
pLM, BIC) and there are more than 60 % valid NDVI values
available in this time period. If all the breaks were counted
regardless of the number of valid MODIS NDVI values and
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Figure 4. Year of oil palm change at 100 m resolution in the study
area from 2002 to 2016. (a) Expansion (2002–2016) and (b) shrink-
age (2008–2016). During 2011–2014, the from–to types of the
change pixels were pre-defined in the 2010 and 2015 land cover
maps derived from PALSAR and PALSAR-2 data, respectively.
Therefore, both the expansion and shrinkage year of oil palm were
available in this period using the change-detection method. During
2001–2006, the oil palm distribution of the start year is unknown.
Here we assumed one-way expansion of oil palm before 2007 and
adopted the change-detection algorithms in the 2007 oil palm ex-
tent. Thus, the expansion year was traced back to 2002. The grey
background refers to the study area.

the consistency of change methods, the oil palm area would
be the lower boundary line.

Generally, the net oil palm plantation area shows a
monotonous increasing trend from 2001 to 2016 for
Malaysia (Fig. 5a) and Indonesia (Fig. 5b) in both the
bi-directional (green lines) and unidirectional (blue lines)
versions. During the past 16 years, the net oil palm
area across Malaysia increased from ∼ 2.59×106 ha (2.05–
3.13×106 ha) to 6.39×106 ha, which is a net increase
of 146.60 % (103.99 %–211.71 %). Indonesia has a much
higher increase in oil palm area, from ∼ 3.00×106 ha (1.92–
4.07×106 ha) to 12.66×106 ha (∼ 4 fold). Correspondingly,

the increasing trend in oil palm plantations in Indonesia was
greater than Malaysia (0.573–0.716×106 ha yr−1 compared
to 0.217–0.289×106 ha yr−1 according to our mapping re-
sults), which illustrates the quick expansion of oil palm plan-
tations in Indonesia in recent years. The unidirectional ver-
sion has a higher increase in net area planted with oil palm
in Malaysia and Indonesia (71.71 % and 117.64 %) from
2007 to 2016 than the bi-directional version (46.62 % and
105.37 %). This is because the unidirectional version is tem-
porally filtered based on the assumption of one-way expan-
sion of oil palm plantations, while the bi-directional version
considered the conversion from oil palm to other land cover
types (Sect. 2.3.3).

3.2 Accuracy assessment

The mapping performance of AOPD was evaluated first using
an independent annual oil palm sample set for 2007, 2008,
2009, 2010, 2015 and 2016. The mapping accuracy from the
previously developed datasets over Malaysia (Cheng et al.,
2019) was also compared. The results of the annual accuracy
(F score) with producer accuracy (PA) and user accuracy
(UA) are shown in Tables 3 and 4. PA shows how correctly
the reference samples are classified and indicated the omis-
sion error (1-PA), while UA represents the percentage of the
classes that have been correctly classified and is linked with
commission error (1-UA). The average annual accuracy for
oil palm areas in Malaysia reached 86.22 %, which is 8.27 %
higher than the annual maps from the previous study (Cheng
et al., 2019). The improvement of the oil palm mapping per-
formance is mainly due to the different post-processing (one-
way expansion and bi-directional oil palm change strategies)
and the introduction of the ancillary data (IFL and GMA).
Meanwhile, there is no significant difference in the oil palm
mapping accuracy among the 6 years in Malaysia (all above
85 % with less than 2 % difference; Table 3), indicating the
stability and robustness of AOPD. The evaluation using the
second annual oil palm sample set in Indonesia shows the av-
erage mapping accuracy of 74.20 % and the F score of 0.74
during 2010–2016. The oil palm mapping accuracy was rel-
atively stable during the gap years and the classified years
(higher than 72 % with 3 % fluctuation; Table 4).

Figure 6 shows the direct comparison of the change maps
with the images from Google Earth and Landsat, which docu-
ment the change process. We use time lapse of images when
the annual high-resolution images from Google Earth were
not available. Here time lapse means the images obtained
for intervals of > 1 year. For example, there are no high-
resolution images from Google Earth in 2011, so we used the
2010 images as a substitute in Fig. 6d, and the actual change
time is limited within the period (2010–2013). The first three
selected regions in Sarawak, Malaysia (Fig. 6a and b), and
West Kalimantan, Indonesia (Fig. 6c), represent the typical
process of oil palm change, i.e. the clearance of primary
forest and the replantation of oil palm cultivations. Overall,
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Figure 5. Comparison of the annual oil palm plantation area among FAO and USDA statistics, MPOB records for Malaysia, BPS-Statistics
and oil palm concessions from GFW for Indonesia and our mapping results in (a) Malaysia, (b) Indonesia, and (c) Malaysia and Indonesia
from 2001 to 2016. The blue lines represent the gross gain (unidirectional expansion), while the green lines show the net changes of oil palm
from 2007 to 2016. The shaded area within the two boundary lines is the uncertainty range of the oil palm area. The upper boundary lines
represent the upper limit area of oil palm within the two periods (2011–2014 and 2001–2006), whereas the lower boundary lines are the
lower limit according to our results. Note that during the gap between the two periods, no uncertainty could be derived, which does not mean
that the uncertainty was small.

Table 3. The comparison of the oil palm accuracy between our mapping results and Cheng et al. (2019) for the 6 mapping years in Malaysia.
UA: user’s accuracy. PA: producer’s accuracy.

Year Cheng et al. (2019) Our results

F score UA (%) PA (%) F score UA (%) PA (%)

2007 0.74 78.02 70.63 0.86 93.40 80.05
2008 0.78 82.5 73.83 0.88 93.22 82.91
2009 0.75 79.76 71.13 0.86 92.12 81.10
2010 0.79 80.92 77.02 0.85 93.89 78.06
2015 0.83 80.31 85.25 0.86 92.08 80.59
2016 0.79 78.5 79.13 0.86 87.47 84.36

Table 4. The oil palm accuracy in Indonesia from 2010–2016. UA:
user’s accuracy. PA: producer’s accuracy.

Year Our results

F score UA (%) PA (%)

2010 0.75 69.47 74.95
2011 0.75 70.38 74.83
2012 0.75 71.48 75.05
2013 0.75 72.39 74.79
2014 0.74 72.58 74.28
2015 0.72 68.46 71.83
2016 0.72 69.97 72.33

most of the changes were captured within the range defined
by time lapse of the Google Earth images (see the detected
change years in the highlighted regions; red shapes). Differ-
ent from the first three cases (Fig. 6a–c), Fig. 6d presents an-

other type of oil change, from cropland to oil palm, in North
Sumatra, Indonesia.

Our detected change time is also consistent with the timing
of change interpreted from Google Earth and Landsat im-
ages. The deviation of the detected change years – during
2001–2006 (grey) and 2011–2014 (blue) – from the valida-
tion samples (change sample set) is shown in Fig. 7. Lim-
ited change samples from 2001 to 2006 were collected be-
cause of few high-resolution images being available during
the early years. Overall, an agreement between the detected
and the actual change time was found in 75.74 % of the sam-
ples (two-thirds of the detected change time matched the ac-
tual change time, while one-third was within a 1-year in-
terval). Further, the change time tended to be more accu-
rate during 2011–2014 (78.20 %) compared to 2001–2006
(67.07 %), given the constraints of the from–to type and the
range of exact change area of oil palm from 2011 to 2014.
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Figure 6. Visual comparison of the detected change years with the high-resolution images and medium-resolution Landsat images from
Google Earth. The colour of the first column represents the change-detected time in our results. The red shape highlights the change areas.
Panels (a) and (b) are two selected regions located in Sarawak, Malaysia. The Landsat images in the right indicate that the deforestation
and plantations of oil palm occurred between 2013 and 2015 and 2006 and 2008, respectively, and the change times (2014 and 2008) were
captured in the result maps. Panel (c) is an example of change detected in 2009 in West Kalimantan, Indonesia, where forest type is presented
in the Landsat images in 2007 and oil palm plantations shown in 2009; (d) is a case showing the conversion of cropland to oil palm in North
Sumatra, Indonesia, according to the high-resolution images from Google Earth. The young oil palm trees in the 2013 image indicate that
the conversion may have occurred 1 or 2 years before, which matched the results in our maps (detected change time in 2012).

3.3 Comparison of our results with statistics and other
products

We first compared the oil palm plantation area from our
AOPD product with oil palm harvested area from FAO and
USDA and the oil palm plantation area from MPOB (data
available from 2011 to 2015) and BPS-Statistics Indone-
sia (available from 2011 to 2016; Fig. 5). Note that the
FAO inventory data for Malaysia from 2011 to 2015 and
the USDA statistics from 2011 to 2014 were derived from
MPOB (mainly mature area). The FAO statistics included
both mature and immature oil palm area during 2011–2013
but only mature oil palm area during 2014–2015, resulting in
an abrupt decline in area in the FAO inventory in 2014 (the
orange line in Fig. 5a). Therefore, the areas from FAO inven-
tory should be used with caution due to the lack of reliable
on-field data sources (Ordway et al., 2019).

Compared to FAO and USDA statistics, the annual mean
differences from 2001 to 2016 of our results in Malaysia and
Indonesia are positive and amount to 2.00 and 1.18×106 ha,
respectively. The differences were limited to an average of
0.08×106 ha (FAO) and 0.55×106 ha (USDA) in Malaysia

but were relatively higher in Indonesia (1.88×106 ha com-
pared to FAO and 0.60×106 ha compared to USDA), prob-
ably because of more confusion from other plantations (i.e.
coconuts, rubber and acacia) and/or more smallholder growth
in Indonesia (Lee et al., 2014). There are also small dif-
ferences in oil palm plantation area in comparison with lo-
cal national statistics: MPOB (average annual difference of
0.20×106 ha) and BPS-Statistics Indonesia (−0.17×106 ha).
These differences only consist of 3.14 % and 1.37 % of the
total oil palm plantation area in 2016 in the two countries.

Trends of oil palm expansion in our mapping results (up-
per and lower boundary lines) are also compared with sta-
tistical data (FAO and USDA from 2001 to 2016, MPOB
and BPS-Statistics from 2011 to 2015; Table S1 in the
Supplement). Generally, the overall trends of our map-
ping results (0.758–0.941×106 ha yr−1) are higher than the
FAO (0.561×106 ha yr−1) and USDA (0.630×106 ha yr−1)
records during the past 16 years, with larger discrepancy in
Malaysia (47.07 %–59.40 % higher than FAO and 39.45 %–
53.55 % higher than USGS) than Indonesia (16.84 %–
31.68 % higher than FAO and 5.99 %–22.76 % higher than
USGS). The higher estimation may be induced by the confu-
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Figure 7. Difference between the detected change years using
MODIS NDVI dataset and the exact change years from the refer-
ence dataset (Google Earth and Landsat). Negative values on the x
axis refer to the detected year being earlier than the actual change
year.

sion in other woody plantations such as coconuts and pulp.
Although there is high separability between rubber, wattles
and palms in PALSAR data (Miettinen and Liew, 2011),
the coconuts which belong to palm trees and have a fan-
like shape showed fewer differences with oil palm compared
to other plantations. Another possible reason is the differ-
ence in the oil palm plantation definitions (mature and im-
mature oil palm or only mature oil palm included in FAO
inventory). Compared to FAO and USDA statistics, increas-
ing trends in our mapping results (0.148–0.178×106 ha yr−1)
are more consistent with national statistics from MPOB
(0.160×106 ha yr−1) in Malaysia, which include both the
mature and immature oil palm during 2011–2015. We should
also note that the unidirectional version would have a higher
estimation of oil palm plantation area since the assumption
of one-way growth. The annual increasing rates of oil palm
plantations between our mapping results and other datasets
also showed smaller differences in a recent period (2011–
2015 with national statistics) compared to the whole study
period (2001–2016). For example, the increasing oil palm
expansion rate of 0.534–0.610×106 ha yr−1 during 2011–
2015 in our product is close to the statistical inventory
data, particularly the USDA records (0.536×106 ha yr−1),
while the increasing rate of 0.573–0.674×106 ha yr−1 is rel-
atively higher than the USDA (0.520×106 ha yr−1) and FAO
(0.460×106 ha yr−1) inventory during 2001–2016 in Indone-
sia. This is also consistent with the higher uncertainty in
the early period and higher reliability in recent years. Dur-
ing the study period, the oil palm export price (total ex-
port value / export amount; data source: FAOSTAT) rapidly
increased from 402.67 USD per tonne in 2006 to the peak

(1080.72 USD per tonne) in 2011 (Fig. S9) but subsequently
fell. The crop price is closely related to demand and may fur-
ther impact the oil palm market and production (Turner et al.,
2011). However, although there is a∼ 10 %–20 % slowdown
of the conversion rate, oil palm plantation area continuously
increased after 2011. The land conversion to oil palm may
also be affected by multiple factors such as agricultural rent,
wages and market-mediated effects (such as tax; Furumo and
Aide, 2017; Taheripour et al., 2019), and the relationship be-
tween oil palm expansion and price fluctuation still requires
further exploration.

An industrial oil palm plantation dataset developed by a
previous study (Gaveau et al., 2016; Fig. 8) was also used
to compare our mapping results. The oil palm plantation
in Gaveau’s dataset was visually interpreted using Landsat
datasets in 1973, 1990, 1995, 2000, 2005, 2010 and 2015 in
Borneo. The overall distribution of oil palm extent in Borneo
is similar between our mapping results (the unidirectional
version) and Gaveau’s results (Fig. 8a and b). The differ-
ences were scattered across the whole island, with more oil
palm plantation areas in our results than in Gaveau’s results
in the south of Borneo (Fig. 8c; aggregated to proportional
maps at 5km×5km to zoom in on the difference). Generally,
7.45, 9.23 and 9.86×106 ha of oil palm plantation area was
mapped in AOPD for Borneo during 2010, 2015 and 2016,
which is 23.98 %, 12.61 % and 18.83 % larger than the es-
timates from Gaveau’s dataset. Our higher estimation of oil
palm plantation area is possibly because some of the small-
holder oil palm plantations (1–50 ha in size) are captured in
our results, whereas only industrial plantations were visually
interpreted in Gaveau’s results. Misclassification (commis-
sion errors) in our results may, however, also contribute to
our estimation being higher.

The oil palm concession area for Indonesia and Malaysia
(Sarawak) for 2014 from Global Forest Watch (http://www.
globalforestwatch.org, last access: 20 May 2019) is also
used in the comparison. This dataset indicated the bound-
aries of areas allocated by government to companies for
oil palm plantations. The oil palm concession area in In-
donesia and Malaysia (Sarawak) for 2014 is 12.98×106 ha,
which is slightly higher (8.7 %) than our mapping results
(11.85×106 ha). However, since the concession data were
compiled from various countries and sources (such as gov-
ernments and other organizations) with different quality lev-
els, some locations of the existing concessions may be inac-
curate (Fig. 9a) or omitted (Fig. 9b) compared to our map-
ping results with PALSAR-2 data. Many concessions are
not fully developed (i.e. not planted with oil palm yet), and
the number reached more than half of the total 11×106 ha
(∼ 5.5×106 ha) on the islands of Sumatra and Kalimantan in
2010 (Slette and Wiyono, 2011). Another possible reason for
the differences is the inclusion of very small oil palm planta-
tions in our dataset of less than 50 ha, while most of the oil
palm concessions (81.71 %) were larger than 1000 ha.

www.earth-syst-sci-data.net/12/847/2020/ Earth Syst. Sci. Data, 12, 847–867, 2020

http://www.globalforestwatch.org
http://www.globalforestwatch.org


860 Y. Xu et al.: Annual oil palm plantation maps

Figure 8. Comparison with existing oil palm datasets in Borneo (Gaveau et al., 2016) for 2010, 2015 and 2016. The oil palm maps were
aggregated to proportional maps at 5km× 5km to visualize the difference in the third rows.

Oil palm expansion is one of the major drivers of defor-
estation in the studied region (Austin et al., 2018). There-
fore, the forest area loss map from Hansen et al. (2013) was
overlaid with the AOPD map, and the results are shown for
selected areas in Fig. 10a and c, where the year of oil palm
expansion is roughly coincides with the year of forest clear-
ance. In other cases such as in Fig. 10b, a larger discrep-

ancy was found in the two maps because of different causes.
For example, forest loss is not always caused by oil palm
expansion but timber plantations, logging, fires, and conver-
sion from forest to grassland and agriculture (Austin et al.,
2018; Kamlun et al., 2016). Meanwhile, expansion of oil
palm plantations occurred not only in forest area but also in
non-forest area. In some regions, the oil palm was planted
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Figure 9. Comparison with oil palm concession from Global Forest Watch (GFW) for 2014. The PALSAR-2 images were composited in
RGB format (HH, HV, HV).

after the logging of forest immediately (area filled with same
colour in Fig. 10), but in other regions, areas may first experi-
ence a forest clearance and then become oil palm plantations
several years later (indicated by the patches filled with darker
colour in AOPD than in the forest loss map; Fig. 10). How-
ever, the difference in the spatial resolution (30 m vs 100 m)
may also cause some differences, particularly in smallholder
and newly developed oil palms. According to our result,
28.20 % of total oil palm expansion area overlapped with
Hansen’s forest loss area (5.38 % with the exact same change
time, 15.37 % later than forest loss year and the remaining
7.46 % earlier than the forest loss time). Among the over-
lapped area, 19.16 % of the area has the same change time,
23.67 % in 1-year intervals (may be caused by the time lag
between clearance and cultivation), and 38.11 % of oil palm
expanding areas in AOPD coincide with forest area loss, with
a lag of at least 2 years. These 38.11 % areas may experience
first forest clear-cutting for other applications or are logged
and remained unused for several years and then converted to
oil palm plantations.

4 Discussion

4.1 Uncertainty of AOPD

Mapping annual oil palm plantations using remote-sensing
data in Malaysia and Indonesia is challenging. We devel-
oped the first annual oil palm land cover maps (AOPD) from
2001 to 2016 at 100 m resolution, combining optical and mi-
crowave satellite observations. However, the uncertainties of
AOPD, coming from both mapping and change detection,

should be acknowledged for the future applications of our
dataset. In the mapping procedure, our results showed a good
separation between primary forest and oil palm trees, but
confusion may occur in some impervious area and planta-
tions of other species such as coconuts. As a result, the accu-
racy of the change detection in the second step was also in-
fluenced by the oil palm maps generated from PALSAR and
PALSAR-2 data in the first stage. Although oil palm maps
for the 6 years of PALSAR and PALSAR-2 data reached high
accuracy, at nearly 90 % in Malaysia and ∼ 75 % in Indone-
sia, inaccurate inputs in some pixels may lead to cumulative
errors in the change detection during the PALSAR data gap
years, particularly in Indonesia. The oil palm maps during
2001–2006 without from–to inputs, therefore, have more bi-
ases compared with the results from 2011 to 2014. Uncertain-
ties could also be induced in the change-detection process.
Even though the change pixels during the data gap period
are constrained by the 100 m oil palm maps from PALSAR
before and after that period, the use of moderate-resolution
MODIS data at 250 m may cause the loss of spatial infor-
mation and false identification of the change times. Some
studies suggested that the fusion of low- and high-resolution
satellite data requires high-resolution images at a certain fre-
quency (Zhang et al., 2017). However, when aiming to con-
duct consecutive mapping and changes detection, there will
always be a trade-off between spatial and temporal resolu-
tion (Yin et al., 2018), considering the availability of satel-
lite data such as MODIS and Landsat data (i.e. MODIS has
denser observations but lower spatial resolution than Landsat
data). In addition to the satellite data, the change-detection
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Figure 10. Comparison of oil palm expansion map in this study with the Landsat forest area loss map (Hansen et al., 2013).

algorithm may also bring uncertainties. Because the accu-
racy of the detected change time by BFAST within a time
series is influenced by the signal-to-noise ratio (Verbesselt
et al., 2010b), cloud contamination and low data quality in
some regions from MODIS reduced the amount of valid in-
formation. And the bias may also be found in the gap years
when no break point could be found using BFAST algorithm
and the errors were accumulated to years when switching to
MODIS before and after PALSAR. However, it is difficult to
identify whether the errors originated from the classification
during PALSAR period or the change detection in the gap
period. Further improvement could be the use of algorithms
which combine the different models (i.e. BEAST) rather than
the single best model (K. Zhao et al., 2019). When apply-
ing the change-detection algorithms, we assumed one-time
change in two periods (2001–2007 and 2011–2014). How-
ever, multiple changes may occur in the deforestation area
when the logging activity is applied first and followed by
the replantation of oil palm several years later. More impor-
tantly, oil palm will be cut down and replanted after 20 to
25 years for the next rotation in order to make the maximum
profit. This would cause confusion with the transitions be-
tween oil palm and other land-use types. Therefore, we pro-
vided two versions of AOPD: one is the original results with

bi-directional oil palm area change, and the other is the uni-
directional datasets by assuming that all the oil palm loss is
from rotation and that a loss is followed by a new oil palm
plantation.

Despite of these uncertainties, the AOPD annual oil palm
maps integrated the strengths of microwave (SAR) and op-
tical satellite observations. SAR has the capability to iden-
tify the oil palm from forest regardless of the weather condi-
tions, and MODIS time series has a hyper-temporal density
and long time span. Also, our study gives a good example
of integrating fine and coarse datasets. Instead of directly us-
ing the coarse dataset, the oil palm maps combined the over-
all change information for the whole data gap period from
fine PALSAR and PALSAR-2 data and the detection of ex-
act change year using coarse MODIS data. In recent years,
there is a transition from annual classification to change in-
formation mining in remote-sensing interpretation to reduce
the false changes (Xu et al., 2018b). This method can be used
not only in monitoring global oil palm dynamics but also in
producing annual land cover maps where only discrete high-
resolution observations are available. Since the data scarcity
of successive Landsat imagery is common across the world,
the algorithm described in this study provides an effective
way of combining coarse data to update the annual land
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cover change. Further, inventory compilation and manual vi-
sualization of oil palm change to a large extent would re-
main labour-intensive and time-consuming (Gaveau et al.,
2016; Miettinen et al., 2016; Vijay et al., 2018). Our semi-
automatic algorithm in oil palm mapping may thus help to
establish long-term monitoring for oil palm that can be im-
proved over time with regular validation using ground-based
observation or very high resolution images such as Google
Earth.

4.2 Applications of AOPD

The 100 m annual oil palm maps from AOPD produced in
this study can be used in a number of applications. First of
all, it can be used as cross-validation reference data for other
regional oil palm datasets (e.g. FAO inventory). Second, the
annual data can be further used to quantify the spatiotem-
poral characteristics of oil palm change, estimate the annual
oil palm yields, identify the potential area planted with oil
palm and predict the boundary of oil palm expansion in the
future, and so on. Overlapping the AOPD with forest maps,
peatland maps and other land cover maps can give a clue
to how the oil palm expansion influences different ecosys-
tems and their carbon balance. For example, oil palm expan-
sion is the largest single driver of deforestation in Indonesia,
which contributed to 2.08×106 ha of deforestation (23 %) in
Indonesia from 2001 to 2016 (Austin et al., 2018). The pro-
tected areas were also at long-term risk of deforestation from
oil palm cultivation (Vijay et al., 2018). Previous studies re-
vealed that oil palm directly replaced 3.1×106 ha (27 %) of
peatland in peninsular Malaysia, Sumatra and Borneo from
2007 to 2015 (Miettinen et al., 2016), causing the carbon-
rich tropical peatland to become a strong carbon source (Mi-
ettinen et al., 2017a). AOPD at high spatiotemporal resolu-
tion can also serve as land-use-change-forcing data in the
bookkeeping models (Hansis et al., 2015; Houghton and Nas-
sikas, 2017) and possibly dynamic global vegetation models
(DGVMs; Sitch et al., 2015; provided that those models in-
clude a specific plant functional type – PFT – to represent oil
palm; Fan et al., 2015) to better simulate the carbon emis-
sions and hydrology dynamics. It would improve the carbon
budget greatly in southeastern Asia if DGVMs could sys-
tematically simulate biomass, litter and soil carbon changes
caused by shifts in oil palm plantations, primary forest, peat-
lands and fire using accurate and compatible land-use change
data.

Another vision lies in the sustainable future of oil palm
industry. As the major contributor to the economy that sup-
ports thousands of people in the tropical countries, the de-
veloping oil palm industry has been one of the priorities in
these countries (Mahmud et al., 2010; Sayer et al., 2012).
At the same time, the possible environmental and ecological
consequences of monocultures need to be taken into account
for the sustainable development of oil palm industry. For
example, the Roundtable on Sustainable Palm Oil (RSPO)

was established to formulate the standards for the industrial
oil palm plantations in southeastern Asia, followed by the
foundation of the Africa Palm Oil Initiative. Voluntary zero-
deforestation commitments in the palm oil industry have also
been implemented since 2010 (Focus, 2016). However, the
number of large corporations and the extent to which they
pay real attention to the rights of local populations remain
unknown (Barr and Sayer, 2012).

It is crucial to find a balance between the rural economic
development and environmental protection, especially in the
regions with high-biodiversity primary forest and carbon-
rich peatlands like southeastern Asia. More complete infor-
mation on oil palm plantations (e.g. spatiotemporal changes
of oil palm and its consequences) would help to reduce the
disputes and provide strategies for oil palm’s sustainable de-
velopment. Our annual oil palm maps would thus contribute
to the policy formulation as well as policy evaluation (e.g.
national moratorium on new permits for the oil palm conver-
sion from primary natural forests and peatlands; Busch et al.,
2015).

5 Data availability

The AOPD in Malaysia and Indonesia from 2001 to
2016 at 100 m resolution is available to the public at
https://doi.org/10.5281/zenodo.3467071 (Xu et al., 2019).
The dataset includes a set of GeoTIFF images in the
WGS_1984_World_mercator projected coordinate system. It
can be opened and reprocessed in GIS applications (e.g.
QGIS, ArcGIS) and other opening computing environments
(R, MATLAB, etc.). Value 1 represents oil palm, while
value 0 is a null value. In this study, we used PAL-
SAR and PALSAR-2 and MODIS NDVI datasets to pro-
duce AOPD and SRTM DEM; intact forest landscape (IFL)
and the Global Mangrove Atlas (GMA) were used to fil-
ter the results in the post-processing. The 25 m resolu-
tion PALSAR and PALSAR-2 data provided by the Japan
Aerospace Exploration Agency (JAXA) from 2007 to 2010
and 2015 to 2016 are available at http://www.eorc.jaxa.
jp/ALOS/en/palsar_fnf/data/index.htm (last access: 20 May
2019, Shimada et al., 2014) after entering basic informa-
tion. MODIS vegetation index data (MOD13Q1 NDVI) col-
lection 6 (250 m) from 2000 to 2015 and SRTM DEM
(30 m) were obtained from the Land Processes Distributed
Active Archive Center (https://lpdaac.usgs.gov/, last access:
20 July 2019, Didan, 2019; NASA, 2013). IFL is avail-
able from http://www.intactforests.org/ (last access: 20 May
2019, Potapov et al., 2008), and GMA can be downloaded
from http://geodata.grid.unep.ch/results.php (last access: 15
March 2020, UNEP, 2020).
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6 Conclusions

Combining the optical and microwave satellite observations,
we developed the first annual oil palm maps (AOPD) in
Malaysia and Indonesia from 2001 to 2016 at 100 m res-
olution using the image classification and change-detection
analysis. The dataset reached high accuracy in both annual
classification and change detection. As a result, this dataset
provided insights and details on dynamic oil palm changes
for Malaysia and Indonesia from the perspective of remote
sensing and can serve as a supplement for statistics. Further
applications of the dataset include but are not limited to re-
gional carbon studies, water and agricultural management,
biodiversity and conservation protection, and the sustainable
development of the oil palm industry. The annual updating
method in this study that fully used information from dis-
crete high-resolution data and continuous low-resolution data
is also expected to be applicable in other regions facing data
scarcity.

Supplement. The supplement related to this article is available
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