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Random Matrix Theory Proves that Deep Learning Representations of
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Abstract
This paper shows that deep learning (DL) rep-
resentations of data produced by generative ad-
versarial nets (GANs) are random vectors which
fall within the class of so-called concentrated
random vectors. Further exploiting the fact that
Gram matrices, of the type G = XᵀX with
X = [x1, . . . ,xn] ∈ Rp×n and xi indepen-
dent concentrated random vectors from a mixture
model, behave asymptotically (as n, p→∞) as
if the xi were drawn from a Gaussian mixture,
suggests that DL representations of GAN-data
can be fully described by their first two statistical
moments for a wide range of standard classifiers.
Our theoretical findings are validated by generat-
ing images with the BigGAN model and across
different popular deep representation networks.

1. Introduction
The performance of machine learning methods depends
strongly on the choice of the data representation (or fea-
tures) on which they are applied. This data representation
should ideally contain relevant information about the learn-
ing task in order to achieve learning with simple models and
small amount of samples. Deep neural networks (Rumelhart
et al., 1988) have particularly shown impressive results by
automatically learning representations from raw data (e.g.,
images). However, due to the complex structure of deep
learning models, the characterization of their hidden repre-
sentations is still an open problem (Bengio et al., 2009).

Specifically, quantifying what makes a given deep learning
representation better than another is a fundamental question
in the field of Representation Learning (Bengio et al., 2013).
Relying on (Montavon et al., 2011) a data representation is
said to be good when it is possible to build simple models
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on top of it that are accurate for the given learning problem.
(Montavon et al., 2011) have notably quantified the layer-
wise evolution of the representation in deep networks by
computing the principal components of the Gram matrix
G` = {φ`(xi)ᵀφ`(xj)}ni,j=1 at each layer for n input data
x1, . . . ,xn, where φ`(x) is the representation of x at layer
` of the given DL model, and the number of components
controls the model simplicity. In their study, the impact of
the representation at each layer is quantified through the
prediction error of a linear predictor trained on the principal
subspace of G`.

Pursuing on this idea, given a certain representation model
x 7→ φ(x), we aim in this article at theoretically study-
ing the large dimensional behavior, and in particular
the spectral information (i.e., eigenvalues and dominant
eigenvectors), of the corresponding Gram matrix G =
{φ(xi)ᵀφ(xj)}ni,j=1 in order to determine the information
encoded (i.e., the sufficient statistics) by the representation
model on a set of real data x1, . . . ,xn. Indeed, standard
classification and regression algorithms –along with the last
layer of a neural network (Yeh et al., 2018)– retrieve the
data information directly from functionals or the eigenspec-
trum of G1. To this end, though, one needs a statistical
model for the representations given the distribution of the
raw data (e.g., images) which is generally unknown. Yet,
due to recent advances in generative models since the advent
of Generative Adversarial Nets (Goodfellow et al., 2014), it
is now possible to generate complex data structures by ap-
plying successive Lipschitz operations to Gaussian random
vectors. In particular, GAN-data are used in practice as sub-
stitutes of real data for data augmentation (Antoniou et al.,
2017). On the other hand, the fundamental concentration of
measure phenomenon (Ledoux, 2005) tells us that Lipschitz-
ally transformed Gaussian vectors satisfy a concentration
property. Precisely, defining the class of concentrated vec-
tors x ∈ E through concentration inequalities of f(x), for
any real Lipschitz observation f : E → R, implies that
deep learning representations of GAN-data fall within this
class of random vectors, since the mapping x 7→ φ(x) is
Lipschitz. Thus, GAN-data are concentrated random vec-

1For instance, spectral clustering uses the dominant eigenvec-
tors of G, while support vector machines use functionals (quadratic
forms) involving G.
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tors and thus an appropriate statistical model of realistic
data.

Targeting classification applications by assuming a mixture
of concentrated random vectors model, this article stud-
ies the spectral behavior of Gram matrices G in the large
n, p regime. Precisely, we show that these matrices have
asymptotically (as n, p → ∞ with p/n → c < ∞) the
same first-order behavior as for a Gaussian Mixture Model
(GMM). As a result, by generating images using the Big-
GAN model (Brock et al., 2018) and considering different
commonly used deep representation models, we show that
the spectral behavior of the Gram matrix computed on these
representations is the same as on a GMM model with the
same p-dimensional means and covariances. A surprising
consequence is that, for GAN data, the aforementioned
sufficient statistics to characterize the quality of a given
representation network are only the first and second order
statistics of the representations. This behavior is shown
by simulations to extend beyond random GAN-data to real
images from the Imagenet dataset (Deng et al., 2009).

The rest of the paper is organized as follows. In Section 2,
we introduce the notion of concentrated vectors and their
main properties. Our main theoretical results are then pro-
vided in Section 3. In Section 4 we present experimental
results. Section 5 concludes the article.

Notation: In the following, we use the notation from (Good-
fellow et al., 2016). [n] denotes the set {1, . . . , n}. Given
a vector x ∈ Rn, the `2-norm of x is given as ‖x‖2 =∑n
i=1 x

2
i . Given a p×nmatrix M , its Frobenius norm is de-

fined as ‖M‖2F =
∑p
i=1

∑n
j=1 M

2
ij and its spectral norm

as ‖M‖ = sup‖x‖=1 ‖Mx‖. � for the Hadamard product.
An application F : E → F is said to be ‖F‖lip-Lipschitz,
if ∀(x,y) ∈ E2, ‖F(x)− F(y)‖F ≤ ‖F‖lip · ‖x− y‖E
and ‖F‖lip is finite.

2. Basic notions of concentrated vectors
Being the central tool of our study, we start by introducing
the notion of concentrated vectors. While advanced concen-
tration notions have been recently developed in (Louart &
Couillet, 2019) in order to specifically analyze the behavior
of large dimensional sample covariance matrices, for sim-
plicity, we restrict ourselves here to the sufficient so-called
q-exponentially concentrated random vectors.

Definition 2.1 (q-exponential concentration). Given a
normed space (E, ‖ · ‖E) and a real q, a random vector
x ∈ E is said to be q-exponentially concentrated if for any
1-Lipschitz real function f : E → R, there exists C ≥ 0
independent of dim(E) and σ > 0 such that for all t ≥ 0

P {|f(x)− Ef(x)| > t} ≤ C e−(t/σ)
q

(1)

which we denote x ∈ Eq(σ |E, ‖ · ‖E). We simply write

x ∈ Eq(1 |E, ‖·‖E) if the tail parameter σ does not depend
on dim(E), and x ∈ Eq(1) for x a scalar real random
variable.

Therefore, concentrated vectors are defined through the con-
centration of any 1-Lipschitz real scalar “observation”. One
of the most important examples of concentrated vectors are
standard Gaussian vectors. Precisely, we have the following
proposition. See (Ledoux, 2005)) for more examples such
as uniform and Gamma distribution.

Proposition 2.2 (Gaussian vectors (Ledoux, 2005)). Let
d ∈ N and x ∼ N (0, Id). Then x is a 2-exponentially
concentrated vector independently on the dimension d, i.e.
x ∈ E2(1 |Rd, ‖ · ‖).

Concentrated vectors have the interesting property of be-
ing stable by application of Rd → Rp vector-Lipschitz
transformations. Indeed, Lipschitz-ally transformed concen-
trated vectors remain concentrated according to the follow-
ing proposition.

Proposition 2.3 (Lipschitz stability). Let x ∈ Eq(1 |E, ‖ ·
‖E) and G : E → F a Lipschitz application with Lipschitz
constant ‖G‖lip which may depend on dim(F ). Then the
concentration property on x is transferred to G(x), if x ∈
Eq(1 |E, ‖ · ‖E) then

G(x) ∈ Eq(‖G‖lip |F, ‖ · ‖F ). (2)

Note importantly for the following that the Lipschitz con-
stant of the transformation G must be controlled, in order to
constrain the tail parameter of the obtained concentration.

In particular, we have the coming corollary to Proposi-
tion 2.3 of central importance in the following.

Corollary 2.4. Let G1, . . . ,Gn : Rd → Rp a set of n Lip-
schitz applications with Lipschitz constants ‖Gi‖lip. Let
G : Rd×n → Rp×n be defined for each X ∈ Rd×n as
G(X) = [G1(X:,1), . . . ,Gn(X:,n)]. Then,

Z ∈ Eq(1 |Rd×n, ‖ · ‖F )

⇒ G(Z) ∈ Eq
(
sup
i
‖Gi‖lip | Rp×n, ‖ · ‖F

)
.

(3)

Proof. This is a consequence of Proposition 2.3 since the
map G is supi ‖Gi‖lip-Lipschitz with respect to (w.r.t.) the
Frobenius norm. Indeed, for X,H ∈ Rd×n : ‖G(X +
H)−G(X)‖2F ≤

∑n
i=1 ‖Gi‖2lip · ‖H:,i‖2 ≤ supi ‖Gi‖2lip ·

‖H‖2F .

3. Main Results
3.1. GAN data: An Example of Concentrated Vectors

Concentrated random vectors are particularly interesting
from a practical standpoint for real data modeling. In fact,
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unlike simple Gaussian vectors, the former do not suffer
from the constraint of having independent entries which is
quite a restrictive assumption when modeling real data such
as images or their non-linear features (e.g., DL representa-
tions). The other modeling interest of concentrated vectors
lies in their being already present in practice as alternatives
to real data. Indeed, adversarial neural networks (GANs)
have the ability nowadays to generate random realistic data
(for instance realistic images) by applying successive Lips-
chitz operations to standard Gaussian vectors (Goodfellow
et al., 2014).

A GAN architecture involves two networks, a generator
model which maps random Gaussian noise to new plausible
synthetic data and a discriminator model which classifies
real data as real (from the dataset) or fake (for the generated
data). The discriminator is updated directly through a binary
classification problem, whereas the generator is updated
through the discriminator. As such, the two models are
trained alternatively in an adversarial manner, where the
generator seeks to better deceive the discriminator and the
former seeks to better identify the fake data (Goodfellow
et al., 2014).

In particular, once both models are trained (when they reach
a Nash equilibrium), DL representations of GAN-data –and
GAN-data themselves– are schematically constructed in
practice as follows:

Real Data ≈ GAN Data = FN ◦ · · · ◦ F1(z), (4)

where z ∼ N (0, Id), d stands for the input dimension of
the generator model, N the number of layers, and the Fi’s
either Fully Connected Layers, Convolutional Layers, Pool-
ing Layers, Up-sampling Layers and Activation Functions,

Generator

Discriminator

Lipschitz operation

Real / Fake

Representation Network

Lipschitz operation

Concentrated Vectors

Figure 1. Deep learning representations of GAN-data are con-
structed by applying successive Lipschitz operations to Gaussian
vectors, therefore they are concentrated vectors by design, since
Gaussian vectors are concentrated and thanks to the Lipschitz
stability in Proposition 2.3.

Residual Layers or Batch Normalizations. All these opera-
tions happen to be Lipschitz applications. Precisely,

• Fully Connected Layers and Convolutional Layers:
These are affine operations which can be expressed as

Fi(x) = Wix+ bi,

for Wi the weight matrix and bi the bias vector. Here
the Lipschitz constant is the operator norm (the largest sin-
gular value) of the weight matrix Wi, that is ‖Fi‖lip =

supu6=0
‖Wiu‖2
‖u‖2 .

• Pooling Layers and Activation Functions: Most com-
monly used activation functions and pooling operations are

ReLU(x) = max(0,x),

MaxPooling(x) = [max(xS1), . . . ,max(xSq )]
ᵀ,

where Si’s are patches (i.e., subsets of [dim(x)]). These are
at most 1-Lipschitz operations with respect to the Frobenius
norm. Specifically, the maximum absolute sub-gradient of
the ReLU activation function is 1, thus the ReLU operation
has a Lipschitz constant of 1. Similarly, we can show that
the Lipschitz constant of MaxPooling layers is also 1.

• Residual Connections: Residual layers act the following
way

Fi(x) = x+ F (1)
i ◦ · · · ◦ F (`)

i (x),

where the F (j)
i ’s are Fully Connected Layers or Convo-

lutional Layers with Activation Functions, and which are
Lipschitz operations. Thus Fi is a Lipschitz operation with
Lipschitz constant bounded by 1 +

∏`
j=1 ‖F

(j)
i ‖lip.

• Batch Normalization (BN) Layers: They consist in sta-
tistically standardizing (Ioffe & Szegedy, 2015) the vectors
of a small batch B = {xi}bi=1 ⊂ Rd as follows: for each
xk ∈ B

Fi(xk) = diag

(
a√
σ2
B + ε

)
(xk − µB1d) + b

where µB = 1
db

∑b
k=1

∑d
i=1[xk]i, σ2

B =
1
db

∑b
k=1

∑d
i=1([xk]i − µB)

2, a, b ∈ Rd are param-
eters to be learned and diag(v) transforms a vector v to
a diagonal matrix with its diagonal entries being those of
v. Thus BN is a Lipschitz transformation with Lipschitz
constant ‖Fi‖lip = supi | ai√

σ2
B+ε
|.

Therefore, as illustrated in Figure 1, since standard Gaussian
vectors are concentrated vectors as mentioned in Proposi-
tion 2.2 and since the notion of concentrated vectors is sta-
ble by Lipschitz transformations thanks to Proposition 2.3,
GAN-data (and their DL representations) are concentrated
vectors by design given the construction in Equation (4).
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Moreover, in order to generate data belonging to a specific
class, Conditional GANs have been introduced (Mirza &
Osindero, 2014); once again data generated by these models
are concentrated vectors as a consequence of Corollary 2.4.
Indeed, a generator of a Conditional GAN model can be
seen as a set of multiple generators where each generates
data of a specific class conditionally on the class label (e.g.,
BigGAN model (Brock et al., 2018)).

Yet, in order to ensure that the resulting Lipschitz constant of
the combination of the above operations does not scale with
the network or data size, so to maintain good concentration
behaviors, a careful control of the learned network parame-
ters is needed. This control happens to be already considered
in practice in order to ensure the stability of GANs during
the learning phase, notably to generate realistic and high-
resolution images (Roth et al., 2017; Brock et al., 2018).
The control of the Lipschitz constant of representation net-
works is also needed in practice in order to make them
robust against adversarial examples (Szegedy et al., 2013;
Gulrajani et al., 2017). This control is particularly ensured
through spectral normalization of the affine layers (Brock
et al., 2018), such as Fully Connected Layers, Convolutional
Layers and Batch Normalization. Indeed, spectral normal-
ization (Miyato et al., 2018) consists in applying the oper-
ation W ← W /σ1(W ) to the affine layers at each back-
ward iteration of the back-propagation algorithm, where
σ1(W ) stands for the largest singular value of the weight
matrix W . (Brock et al., 2018), have notably observed that,
without spectral constraints, a subset of the generator layers
grow throughout their GAN training and explode at collapse.
They thus suggested the following spectral normalization
–which happens to be less restrictive than the standard spec-
tral normalization W ←W /σ1(W ) (Miyato et al., 2018)–
to the affine layers:

W ←W − (σ1(W )− σ∗)u1(W )v1(W )ᵀ (5)

where u1(W ) and v1(W ) denote respectively the left and
right largest singular vectors of W , and σ∗ is an hyper-
parameter fixed during training.

To get an insight about the influence of this operation and
to ensure that it controls the Lipschitz constant of the gener-
ator, the following proposition provides the dynamics of a
random walk in the space of parameters along with the spec-
tral normalization in Equation (5). Indeed, since stochastic
gradient descent (SGD) consists in estimating the gradi-
ent of the loss function on randomly selected batches of
data, it can be assimilated to a random walk in the space of
parameters (Antognini & Sohl-Dickstein, 2018).
Proposition 3.1 (Lipschitz constant control). Let σ∗ > 0
and G be a neural network composed of N affine layers,
each one of input dimension di−1 and output dimension
di for i ∈ [N ], with 1-Lipschitz activation functions. As-
sume that the weights of G at layer i+ 1 are initialized as

0 200 400 600 800 1,000
1

2

3

4

5

6

σ∗ = 2

σ∗ = 3

σ∗ = 4

Iterations

L
ar

ge
st

si
ng

ul
ar

va
lu

e
σ
1

Without SN

With SN

Theoretical bound

Figure 2. Behavior of the largest singular value of a weight matrix
in terms of the iterations of a random walk (see proposition 3.1),
without spectral normalization in (blue) and with spectral normal-
ization in (red). The (black) lines correspond to the theoretical
bound

√
σ2
∗ + η2d1d0 for different σ∗’s. We took d0 = d1 = 100

and η = 1/d0.

U([− 1√
di
, 1√

di
]), and consider the following dynamics with

learning rate η:

W ←W − ηE, with Ei,j ∼ N (0, 1)

W ←W −max(0, σ1(W )− σ∗)u1(W )v1(W )ᵀ.

(6)

Then, ∀ε > 0, the Lipschitz constant of G is bounded at
convergence with high probability as:

‖G‖lip ≤
N∏
i=1

(
ε+

√
σ2
∗ + η2didi−1

)
. (7)

Proof. The proof is provided in the supplementary material.

Proposition 3.1 shows that the Lipschitz constant of a neu-
ral network is controlled when trained with the spectral
normalization in Equation (5). In particular, recalling the
notations in Proposition 3.1, in the limit where di → ∞
with di

di−1
→ γi ∈ (0,∞) for all i ∈ [N ] and choosing

the learning rate η = O(d−10 ), the Lipschitz constant of
G is of order O(1) if it has finitely many layers N and σ∗
is constant. Therefore, with this spectral normalization, it
can be assumed that ‖G‖lip = O(1) when dimensions grow.
Figure 2 depicts the behavior of the Lipschitz constant of
a linear layer with and without spectral normalization in
the setting of Proposition 3.1, which confirms the obtained
bound.

3.2. Mixture of Concentrated Vectors

In this section, we assume data to be a mixture of con-
centrated random vectors with controlled O(1) Lipschitz
constant (e.g., DL representations of GAN-data as we dis-
cussed in the previous section). Precisely, let x1, . . . ,xn
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be a set of mutually independent random vectors in Rp.
We suppose that these vectors are distributed as one of k
classes of distribution laws µ1, . . . , µk with distinct means
{m`}k`=1 and “covariances” {C`}k`=1 defined respectively
as

m` = Exi∼µ`
[xi], C` = Exi∼µ`

[xix
ᵀ
i ]. (8)

For some q > 0, we consider a q-exponential concen-
tration property on the laws µ`, in the sense that for any
family of independent vectors y1, . . . ,ys sampled from µ`,
[y1, . . . ,ys] ∈ Eq(1 |Rp×s, ‖·‖F ). Without loss of general-
ity, we arrange the xi’s in a data matrix X = [x1, . . . ,xn]
such that, for each ` ∈ [k], x1+

∑`−1
j=1 nj

, . . . ,x∑`
j=1 nj

∼
µ`, where n` stands for the number of xi’s sampled from
µ`. In particular, we have the concentration of X as

X ∈ Eq(1 |Rp×n, ‖ · ‖F ). (9)

Such a data matrix X can be constructed through Lipschitz-
ally transformed Gaussian vectors (q = 2), with controlled
Lipschitz constant, thanks to Corollary 2.4. In particular,
DL representations of GAN-data are constructed as such, as
shown in Section 3.1. We further introduce the following
notations that will be used subsequently.

M = [m1, . . . ,mk] ∈ Rp×k, J = [j1, . . . , jk] ∈ Rn×k

and Z = [z1, . . . ,zn] ∈ Rp×n,

where j` ∈ Rn stands for the canonical vector selecting the
xi’s of distribution µ`, defined by (j`)i = 1xi∼µ`

, and the
zi’s are the centered versions of the xi’s, i.e. zi = xi−m`

for xi ∼ µ`.

3.3. Gram Matrices of Concentrated Vectors

Now we study the behavior of the Gram matrix G =
1
pX

ᵀX in the large n, p limit and under the model of the
previous section. Indeed, G appears as a central component
in many classification, regression and clustering methods.
Precisely, a finer description of the behavior of G provides
access to the internal functioning and performance evalua-
tion of a wide range of machine learning methods such as
Least Squares SVMs (AK et al., 2002), Semi-supervised
Learning (Chapelle et al., 2009) and Spectral Clustering (Ng
et al., 2002). Indeed, the performance evaluation of these
methods has already been studied under GMM models
in (Liao & Couillet, 2017; Mai & Couillet, 2017; Couil-
let & Benaych-Georges, 2016) through RMT. On the other
hand, analyzing the spectral behavior of G for DL rep-
resentations quantifies their quality –through its principal
subspace (Montavon et al., 2011)– as we have discussed in
the introduction. In particular, the Gram matrix decomposes
as

G =
1

p
JMᵀMJᵀ +

1

p
ZᵀZ +

1

p
(JMᵀZ +ZᵀMJᵀ).

Intuitively G decomposes as a low-rank informative ma-
trix containing the class canonical vectors through J and a
noise term represented by the other matrices and essentially
ZᵀZ. Given the form of this decomposition, RMT pre-
dicts –through an analysis of the spectrum of G and under
a GMM model (Benaych-Georges & Couillet, 2016)– the
existence of a threshold ξ function of the ratio p/n and the
data statistics for which the dominant eigenvectors of G con-
tain information about the classes only when ‖MᵀM‖ ≥ ξ
asymptotically (i.e., only when the means of the different
classes are sufficiently distinct).

In order to characterize the spectral behavior (i.e., eigenval-
ues and leading eigenvectors) of G under the concentration
assumption in Equation (9) on X , we will be interested
in determining the spectral distribution L = 1

n

∑n
i=1 δλi

of G, with λ1, . . . , λn the eigenvalues of G, where δx
stands for the Dirac measure at point x. Essentially, to
determine the limiting eigenvalue distribution as p, n→∞
and p/n → c ∈ (0,∞), a conventional approach in RMT
consists in determining an estimate of the Stieltjes trans-
form (Silverstein & Choi, 1995) mL of L, which is defined
for some z ∈ C \ Supp(L)

mL(z) =

∫
λ

dL(λ)

λ− z
=

1

n
tr
(
(G− zIn)−1

)
. (10)

Hence, quantifying the behavior of the resolvent of G de-
fined as R(z) = (G + zIn)

−1 determines the limiting
measure of L through mL(z). Furthermore, since R(z)
and G share the same eigenvectors with associated eigen-
values 1

λi+z
, the projector matrix corresponding to the top

m eigenvectors U = [u1, . . . ,um] of G can be calculated
through a Cauchy integral UUᵀ = −1

2πi

∮
γ
R(−z)dz where

γ is an oriented complex contour surrounding the top m
eigenvalues of G.

To study the behavior of R(z), we look for a so-called de-
terministic equivalent (Hachem et al., 2007) R̃(z) for R(z),
which is a deterministic matrix that satisfies for all A ∈
Rn×n and all u,v ∈ Rn of respectively bounded spectral
and Eucildean norms, 1

n tr(AR(z)) − 1
n tr(AR̃(z)) → 0

and uᵀ(R(z)− R̃(z))v → 0 almost surely as n→∞. In
the following, we present our main result which gives such a
deterministic equivalent under the concentration assumption
on X in Equation (9) and under the following assumptions.

Assumption 3.2. As p→∞,

1. p/n→ c ∈ (0,∞),

2. The number of classes k is bounded,

3. ‖m`‖ = O(
√
p).

Theorem 3.3 (Deterministic Equivalent for R(z)). Under
the model described in Section 3.2 and Assumptions 3.2, we
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have R(z) ∈ Eq(p−1/2 |Rn×n, ‖ · ‖F ). Furthermore,

∥∥∥ER(z)− R̃(z)
∥∥∥ = O

(√
log(p)

p

)

R̃(z) =
1

z
diag

{
In`

1 + δ∗` (z)

}k
`=1

+
1

p z
JΩzJ

ᵀ

(11)

with Ωz = MᵀQ̃(z)M � diag
{
δ∗` (z)−1
δ∗` (z)+1

}k
`=1

and

Q̃(z) =
(

1
c k

∑k
`=1

C`

1+δ∗` (z)
+ zIp

)−1
,

where δ∗(z) = [δ∗1(z), . . . , δ
∗
k(z)]

ᵀ is the unique fixed point
of the system of equations for each ` ∈ [k]

δ`(z) =
1

p
tr

C`

 1

c k

k∑
j=1

Cj

1 + δj(z)
+ zIp

−1
 .

Sketch of proof. The first step of the proof is to show the
concentration of R(z). This comes from the fact that the
application X 7→ R(z) is 2z−3/2p−1/2-Lipschitz w.r.t.
the Frobenius norm, thus we have by Proposition 2.3 that
R(z) ∈ Eq(p−1/2 |Rn×n, ‖ · ‖F ). The second step consists
in estimating ER(z) through a deterministic matrix R̃(z).
Indeed, R(z) can be expressed as a function of Q(z) =
(XXᵀ/p + zIp)

−1 as R(z) = z−1(In −XᵀQ(z)X/p),
where the statistical dependency between X and Q(z) is
handled through Lemmas 1.1 and 1.2 (see supplementary
material) and finally exploiting the result of (Louart & Couil-
let, 2019) which shows that EQ(z) can be estimated through
Q̃(z), we obtain the estimator R̃(z) for ER(z). A more de-
tailed proof is provided in the supplementary material.

This result allows specifically to (i) describe the limiting
eigenvalues distribution of G, (ii) determine the spectral
detectability threshold mentioned above, (iii) evaluate the
asymptotic “content” of the leading eigenvectors of G and,
much more fundamentally, (iv) infer the asymptotic per-
formances of machine learning algorithms that are based
on simple functionals of G (e.g., LS-SVM, spectral clus-
tering etc.). Looking carefully at Theorem 3.3 we see that
the spectral behavior of the Gram matrix G computed on
concentrated vectors only depends on the first and second
order statistics of the laws µ` (their means m` and “covari-
ances” C`). This suggests the surprising result that G has
the same behavior as when the data follow a GMM model
with the same means and covariances. The asymptotic spec-
tral behavior of G is therefore universal with respect to
the data distribution laws which satisfy the aforementioned
concentration properties (for instance DL representations
of GAN-data). We illustrate this universality result in the
next section by considering data as CNN representations of
GAN generated images.
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Figure 3. (Top) GAN generated images using the BigGAN
model (Brock et al., 2018). (Bottom) Real images selected from
the Imagenet dataset (Deng et al., 2009). We considered n = 1500
images from k = 3 classes which are {mushroom, pizza, ham-
burger}.

4. Application to CNN Representations of
GAN-generated Images

This section presents experiments that confirm the result of
Theorem 3.3. In particular, we compare, in the first part,
the eigenvalues distribution and the largest eigenvectors of
the Gram matrix computed on deep learning representa-
tions with those of the Gram matrix computed on Gaussian
data with the same first and second order moments. In the
second part of this section, we evaluate the performance
of a linear SVM model on the principal subspace of the
Gram matrix (computed on the representations or on the
corresponding Gaussian data) by varying the number of
components in the same vein as the work of (Montavon
et al., 2011). In the following, all representation networks
are standard convolutional neural networks pre-trained on
the Imagenet dataset (Deng et al., 2009), in particular, we
used pre-trained models of the Pytorch deep learning frame-
work.

4.1. Spectrum and Dominant Eigenspace of the Gram
Matrix

In this section, we consider n = 1500 data x1, . . . ,xn ∈
Rp as CNN representations –across popular CNN architec-
tures of different sizes p– of GAN-generated images using
the generator of the Big-GAN model (Brock et al., 2018).
We further use real images from the Imagenet dataset (Deng
et al., 2009) for comparison. In particular, we empirically
compare the spectrum of the Gram matrix of this data with
the Gram matrix of a GMM model with the same means and
covariances. We also consider the leading 2-dimensional
eigenspace of the Gram matrix which contains clustering
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Figure 4. (Top) Spectrum and leading eigenspace of the Gram
matrix for CNN representations of GAN generated images using
the BigGAN model (Brock et al., 2018). (Bottom) Spectrum and
leading eigenspace of the Gram matrix for CNN representations of
real images selected from the Imagenet dataset (Deng et al., 2009).
Columns correspond to the three representation networks which
are resnet50, vgg16 and densenet201. We used n = 1500 images
and considered k = 3 classes as depicted in Figure 3.

information as detailed in the previous section. Figure 3
depicts some images generated using the Big-GAN model
(Top) and the corresponding real class images from the Im-
agenet dataset (Bottom). The Big-GAN model is visually
able to generate highly realistic images which are by con-
struction concentrated vectors, as discussed in Section 3.1
and therefore satisfy the assumptions of Theorem 3.3.

Figure 4 depicts the spectrum and leading 2D eigenspace of
the Gram matrix computed on CNN representations of GAN
generated and real images (in gray), and the correspond-
ing GMM model with same first and second order statistics
(in green). The Gram matrix is seen to follow the same
spectral behavior for GAN-data as for the GMM model
which is a natural consequence of the universality result of
Theorem 3.3 with respect to the data distribution. Besides,
and perhaps no longer surprisingly, we further observe that
the spectral properties of G for real data (here CNN rep-
resentations of real images) are conclusively matched by
their Gaussian counterpart. Figure 5 shows more results
about the Gram matrix spectrum of the representations (in
black) and the corresponding Gaussian data (in green), by
considering more representation networks and using k = 6
classes for both GAN images and real images, which con-
firms the result of Theorem 3.3. This both theoretically
and empirically confirms that the proposed random matrix
framework is fully compliant with the theoretical analysis
of real machine learning datasets. As a consequence, re-
calling the work of (Montavon et al., 2011), the quality of
a given representation is quantified through the prediction

GAN Images

Real Images

Figure 5. Spectrum of the Gram matrix for CNN representations in
(black) and the corresponding Gaussian data (in green) for GAN
generated images using the BigGAN model (Brock et al., 2018)
(Top) and for real images randomly selected from the Imagenet
dataset (Deng et al., 2009) (Bottom). The considered represena-
tion network are resnet18, resnet101, densenet161, vgg19, alexnet
and googlenet. We used n = 600 images selected among k = 6
classes {hamburger, mushroom, pizza, strawberry, coffee, daisy}
(100 images per class).

accuracy of a linear classifier trained on the principal Gram
matrix eigenvectors of the representations computed on a
set of samples. Given our result in Theorem 3.3, and the
fact that the top m eigenvectors U = [u1, . . . ,um] of G
are related to the resolvent matrix R(z) through the Cauchy
integral UUᵀ = −1

2πi

∮
γ
R(−z)dz where γ is an oriented

complex contour surrounding the top m eigenvalues of G,
we should expect that the prediction accuracy of a linear
classifier trained on the principal eigenvectors of G be the
same for the representations themselves as for the corre-
sponding Gaussian data with the same first and second order
moments. Therefore, the purpose of the following section is
to show simulations which confirm this result.

4.2. Linear SVM Performance on the Dominant
k-dimensional Eigenspace of G

In this section, we compare the performance of a linear
SVM model trained on the dominant Gram matrix’s k-
dimensional eigenspace of the representations versus the
corresponding Gaussian data with the same first and second
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GAN Images

Figure 6. Train and test accuracy of a linear SVM model trained
on the top k eigenvectors of the Gram matrix, computed on the
representations of GAN generated images. We generated with the
BigGAN model (Brock et al., 2018) n = 6000 images belonging
to the 6 classes {hamburger, mushroom, pizza, strawberry, coffee,
daisy} (1000 images per class). We considered 9 representation
networks which are vgg16, vgg19, resnet18, resnet50, resnet101,
densenet161, densenet201, alexnet and googlenet. Lines represent
the performance of the SVM model on the representations them-
selves whereas dotes represent the performance of the SVM model
on Gaussian data with the same first and second order moments.
We used a train vs test split of 2/3 and 1/3 respectively.

order moments. Experiments were made in the following
settings:

• Data types: We do the experiments for both GAN
generated images using the BigGAN model (Brock
et al., 2018) and for real images randomly selected for
the Imagenet dataset (Deng et al., 2009). In both cases
we consider n = 6000 images.

• Classes: We consider k = 6 classes which are: ham-
burger, mushroom, pizza, strawberry, coffee and daisy.

• Representation networks: We consider 9 representation
networks pre-trained on the Imagenet dataset (Deng
et al., 2009) which are: vgg16 (p = 4096), vgg19
(p = 4096), resnet18 (p = 512), resnet50 (p = 2048),
resnet101 (p = 2048), densenet161 (p = 2208),
densenet201 (p = 1920), alexnet (p = 4096) and
googlenet (p = 2048).

Figure 6 depicts the train and test accuracy of a linear SVM
trained on the top k eigenvectors of G, for the represen-
tations (of GAN generated images) and the corresponding
Gaussian data, for different values of k. As we can notice,
the performance of the SVM model on the representations
matches its performance on the corresponding Gaussian data

Real Images

Figure 7. Train and test accuracy of a linear SVM model trained
on the top k eigenvectors of the Gram matrix, computed on the
representations of Real images. We randomly sampled n = 6000
images belonging to the 6 classes {hamburger, mushroom, pizza,
strawberry, coffee, daisy} (1000 images per class) of the Imagenet
dataset (Deng et al., 2009). We considered 9 representation net-
works vgg16, vgg19, resnet18, resnet50, resnet101, densenet161,
densenet201, alexnet and googlenet. Lines represent the per-
formance of the SVM model on the representations themselves
whereas dotes represent the performance of the SVM model on
Gaussian data with the same first and second order moments. We
used a train vs test split of 2/3 and 1/3 respectively.

with the same first and second order statistics as predicted by
Theorem 3.3. This matching seems to extend beyond GAN
images (which are concentrated vectors) to real images as
depicted in Figure 7. As a consequence, our results suggest
that the quality of a given representation network can be
quantified through their first two statistical moments.

5. Conclusion
Leveraging on random matrix theory (RMT) and the con-
centration of measure phenomenon, we have shown through
this paper that DL representations of GAN-data behave as
Gaussian mixtures for linear classifiers, a fundamental uni-
versal property which is only valid in high-dimension of
data. To the best of our knowledge, this result constitutes
a new approach towards the theoretical understanding of
complex objects such as DL representations, as well as the
understanding of the behavior of more elaborate machine
learning algorithms for complex data structures. In addition,
the article explicitly demonstrated our ability, through RMT,
to anticipate the behavior of a certain range of widely used
standard classifiers for data as complex as DL representa-
tions of the realistic and surprising images generated by
GANs. This opens the way to a more systematic analysis
and improvement of machine learning algorithms on real
datasets by means of large dimensional statistics.
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