
algorithms

Article

Fused Gromov-Wasserstein Distance for
Structured Objects

Titouan Vayer 1,*, Laetitia Chapel 1, Remi Flamary 2, Romain Tavenard 3 and Nicolas Courty 1

1 CNRS, IRISA, Université Bretagne-Sud, F-56000 Vannes, France; laetitia.chapel@univ-ubs.fr (L.C.);
nicolas.courty@irisa.fr (N.C.)

2 CNRS, OCA Lagrange, Université Côte d’Azur, F-06000 Nice, France; remi.flamary@unice.fr
3 CNRS, LETG, Université Rennes, F-35000 Rennes, France; romain.tavenard@univ-rennes2.fr
* Correspondence: titouan.vayer@irisa.fr

Received: 8 July 2020; Accepted: 26 August 2020; Published: 31 August 2020
����������
�������

Abstract: Optimal transport theory has recently found many applications in machine learning
thanks to its capacity to meaningfully compare various machine learning objects that are
viewed as distributions. The Kantorovitch formulation, leading to the Wasserstein distance,
focuses on the features of the elements of the objects, but treats them independently, whereas the
Gromov–Wasserstein distance focuses on the relations between the elements, depicting the structure
of the object, yet discarding its features. In this paper, we study the Fused Gromov-Wasserstein
distance that extends the Wasserstein and Gromov–Wasserstein distances in order to encode
simultaneously both the feature and structure information. We provide the mathematical framework
for this distance in the continuous setting, prove its metric and interpolation properties, and provide
a concentration result for the convergence of finite samples. We also illustrate and interpret its use in
various applications, where structured objects are involved.

Keywords: optimal transport; GRAPHS and Structured objects; Wasserstein and Gromov-Wasserstein
distances

1. Introduction

We focus on the comparison of structured objects, i.e., objects defined by both a feature and
a structure information. Abstractly, the feature information cover all the attributes of an object;
for example, it can model the value of a signal when objects are time series, or the node labels over a
graph. In shape analysis, the spatial positions of the nodes can be regarded as features, or, when objects
are images, local color histograms can describe the image’s feature information. As for the structure
information, it encodes the specific relationships that exist among the components of the object. In a
graph context, nodes and edges are representative of this notion, so that each label of the graph may be
linked to some others through the edges between the nodes. In a time series context, the values of the
signal are related to each other through a temporal structure. This representation can be related with
the concept of relational reasoning (see [1]), where some entities (or elements with attributes, such as
the intensity of a signal) coexist with some relations or properties between them (or some structure,
as described above). Including structural knowledge about objects in a machine learning context
has often been valuable in order to build more generalizable models. As shown in many contexts,
such as graphical models [2,3], relational reinforcement learning [4], or Bayesian nonparametrics [5],
considering objects as a complex composition of entities together with their interactions is crucial in
order to learn from small amounts of data.

Unlike recent deep learning end-to-end approaches [6,7] that attempt to avoid integration of
prior knowledge or assumptions about the structure wherever possible, ad hoc methods, depending
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on the kind of structured objects involved, aim to build meaningful tools that include structure
information in the machine learning process. In graph classification, the structure can be taken into
account through dedicated graph kernels, in which the structure drives the combination of the feature
information [8–10]. In a time series context, Dynamic Time Warping and related approaches are based
on the similarity between the features while allowing limited temporal (i.e., structural) distortion in
the time instants that are matched [11,12]. Closely related, an entire field has focused on predicting the
structure as an output and it has been deployed on tasks, such as segmenting an image into meaningful
components or predicting a natural language sentence [10,13,14].

All of these approaches rely on meaningful representations of the structured objects that
are involved. In this context, distributions or probability measures can provide an interesting
representation for machine learning data. This allows their comparison within the Optimal Transport
(OT) framework that provides a meaningful way of comparing distributions by capturing the
underlying geometric properties of the space through a cost function. When the distributions dwell in
a common metric space (Ω, d), the Wasserstein distance defines a metric between these distributions
under mild assumptions [15]. In contrast, the Gromov–Wasserstein distance [16,17] aims at comparing
distributions that support live in different metric spaces through the intrinsic pair-to-pair distances
in each space. Unifying both distances, the Fused Gromov–Wasserstein distance was proposed in a
previous work in [18] and used in the discrete setting to encode, in a single OT formulation, both feature
and structure information of structured objects. This approach considers structured objects as joint
distributions over a common feature space associated with a structure space specific to each object.
An OT formulation is derived by considering a tradeoff between the feature and the structure costs,
respectively, defined with respect to the Wasserstein and the Gromov–Wasserstein standpoints.

This paper presents the theoretical foundations of this distance and states the mathematical
properties of the FGW metric in the general setting. We first introduce a representation of structured
objects using distributions. We show that classical Wasserstein and Gromov–Wasserstein distance
can be used in order to compare either the feature information or the structure information of the
structured object but that they both fail at comparing the entire object. We then present the Fused
Gromov–Wasserstein distance in its general formulation and derive some of its mathematical properties.
Particularly, we show that it is a metric in a given case, we give a concentration result, and we study
its interpolation and geodesic properties. We then provide a conditional-gradient algorithm to solve
the quadratic problem resulting from FGW in the discrete case and we conclude by illustrating and
interpreting the distance in several applicative contexts.

Notations. Let P(Ω) be the set of all probability measures on a space Ω and B(A) the set of all
Borel sets of a σ-algebra A. We note # the push-forward operator, such, that for a measurable function
T, B ∈ B(A), T#µ(B) = µ(T−1(B)).

We note supp(µ) the support of µ ∈ P(Ω) is the minimal closed subset A ⊂ Ω such that
µ(Ω\A) = 0. Informally, this is the set where the measure “is not zero”.

For two probability measures µ ∈ P(A) and ν ∈ P(B) we note Π(µ, ν) the set of all couplings or
matching measures of µ and ν, i.e., the set {π ∈ P(Ω×Ω) | ∀(A0, B0) ∈ B(A)×B(B), π(A0 × B) =
µ(A0), π(Ω×Ω0) = ν(B0)}.

For two metric spaces (X, dX) and (Y, dY), we define the distance dX ⊕ dY on X × Y such that,
for (x, y), (x′, y′) ∈ X×Y, dX ⊕ dY((x, y), (x′, y′)) = dX(x, x′) + dY(y, y′).

We note the simplex of N bins as ΣN = {a ∈ (R+)N , ∑i ai = 1}. For two histograms a ∈ Σn and
b ∈ Σm we note with some abuses Π(a, b) the set of all couplings of a and b, i.e., the set Π(a, b) = {π ∈
Rn×m
+ |∑i πi,j = bj; ∑j πi,j = ai}. Finally, for x ∈ Ω, δx denotes the dirac measure in x.

Assumption. In this paper, we assume that all metric spaces are non-trivial Polish metric spaces
(i.e., separable and completely metrizable topological spaces) and that all measures are Borel.
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2. Structured Objects as Distributions and Fused Gromov–Wasserstein Distance

The notion of structured objects used in this paper is inspired from the discrete point of view
where one aims at comparing labeled graphs. More formally, we consider undirected labeled graphs
as tuples of the form G = (V , E , ` f , `s), where (V , E) are the set of vertices and edges of the graph.

` f : V → Ω is a labelling function that associates each vertex vi ∈ V with a feature ai
def
= ` f (vi) in some

feature metric space (Ω, d). Similarly, `s : V → X maps a vertex vi from the graph to its structure

representation xi
def
= `s(vi) in some structure space (X, dX) specific to each graph. dX : X × X → R+

is a symmetric application which aims at measuring the similarity between the nodes in the graph.
In the graph context, dX can either encode the neighborhood information of the nodes, the edge
information of the graph or more generally it can model a distance between the nodes such as the
shortest path distance or the harmonic distance [19]. When dX is a metric, such as the shortest-path
distance, we naturally endow the structure with the metric space (X, dX).

In this paper, we propose enriching the previous definition of a structured object with a probability
measure which serves the purpose of signaling the relative importance of the object’s elements.
For example, we can add a probability (also denoted as weight) (hi)i ∈ Σn to each node in the graph.
This way, we define a fully supported probability measure µ = ∑i hiδ(xi ,ai)

, which includes all the
structured object information (see Figure 1 for a graphical depiction).

}
}

}
Figure 1. Discrete structured object (left) can be described by a labeled graph with (ai)i the feature
information of the object and (xi)i the structure information. If we enrich this object with a histogram
(hi)i aiming at measuring the relative importance of the nodes, we can represent the structured object as
a fully supported probability measure µ over the couple space of feature and structure with marginals
µX and µA on the structure and the features respectively (right).

This graph representation for objects with a finite number of points/vertices can be generalized
to the continuous case and leads to a more general definition of structured objects:

Definition 1 (Structured objects). A structured object over a metric space (Ω, d) is a triplet (X×Ω, dX , µ),
where (X, dX) is a metric space and µ is a probability measure over X ×Ω. (Ω, d) is denoted as the feature
space, such that d : Ω × Ω → R+ is the distance in the feature space and (X, dX) the structure space,
such that dX : X× X → R+ is the distance in the structure space. We will note µX and µA the structure and
feature marginals of µ.

Definition 2 (Space of structured objects). We note X the set of all metric spaces. The space of all structured
objects over (Ω, d) will be written as S(Ω) and is defined by all the triplets (X×Ω, dX , µ) where (X, dX) ∈ X
and µ ∈ P(X × Ω). To avoid finiteness issues in the rest of the paper we define for p ∈ N∗ the space
Sp(Ω) ⊂ S(Ω) such that if (X×Ω, dX , µ) ∈ Sp(Ω) we have:

∫

Ω
d(a, a0)

pdµA(a) < +∞ (1)
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(the finiteness of this integral does not depend on the choice of a0)
∫

X×X
dX(x, x′)pdµX(x)dµX(x′) < +∞. (2)

For the sake of simplicity, and when it is clear from the context, we will sometimes denote only by
µ the whole structured object. The marginals µX , µA encode very partial information since they focus
only on independent feature distributions or only on the structure. This definition encompasses the
discrete setting discussed in above. More precisely, let us consider a labeled graph of n nodes with
features A = (ai)

n
i=1 with ai ∈ Ω and X = (xi)

n
i=1 the structure representation of the nodes. Let (hi)

n
i=1

be an histogram, then the probability measure µ = ∑n
i=1 hiδ(xi ,ai)

defines structured object in the sense
of Definition 1, since it lies in P(X×Ω). In this case, an example of µ, µX, and µA is provided in
Figure 1.

Note that the set of structured objects is quite general and also allows considering discrete
probability measures of the form µ = ∑

p,q
i,j=1 hi,jδ(xi ,aj)

with p, q possibly different than n. We propose
focusing on a particular type of structured objects, namely the generalized labeled graphs, as described
in the following definition:

Definition 3 (Generalized labeled graph). We call generalized labeled graph a structured object (X ×
Ω, dX, µ) ∈ Sp(Ω) such that µ can be expressed as µ = (I × ` f )#µX where ` f : X → Ω is surjective and
pushes µX forward to µA, i.e., ` f #µX = µA.

This definition implies that there exists a function ` f , which associates a feature a = l f (x) to a
structure point x ∈ X and, as such, one structure point can not have two different features. The labeled
graph described by µ = ∑n

i=1 hiδ(xi ,ai)
is a particular instance of a generalized labeled graph in which

l f is defined by l f (xi) = ai.

2.1. Comparing Structured Objects

We now aim to define a notion of equivalence between two structured objects (X×Ω, dX , µ) and
(Y×Ω, dY, ν). We note in the following νY, νB the marginals of ν. Intuitively, two structured objects are
the same if they share the same feature information, if their structure information are lookalike, and if
the probability measures are corresponding in some sense. In this section, we present mathematical
tools for individual comparison of the elements of structured objects. First, our formalism implies
comparing metric spaces, which can be done via the notion of isometry.

Definition 4 (Isometry). Let (X, dX) and (Y, dY) be two metric spaces. An isometry is a surjective map
f : X → Y that preserves the distances:

∀x, x′ ∈ X, dY( f (x), f (x′)) = dX(x, x′). (3)

An isometry is bijective, since for f (x) = f (x′) we have dY( f (x), f (x′)) = 0 = dX(x, x′) and
hence x = x′ (in the same way f−1 is also a isometry). When it exists, X and Y share the same “size”
and any statement about X, which can be expressed through its distance is transported to Y by the
isometry f .
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Example 1. Let us consider the two following graphs whose discrete metric spaces are obtained as shortest path
between the vertices (see corresponding graphs in Figure 2)




x1
x2

x3

x4


 ,




0 1 1 1
1 0 1 2
1 1 0 2
1 2 2 0




︸ ︷︷ ︸
dX(xi ,xj)

and




y1
y2

y3

y4


 ,




0 1 1 1
1 0 2 2
1 2 0 1
1 2 1 0




︸ ︷︷ ︸
dY(yi ,yj)

.

These spaces are isometric since the map f , such that f (x1) = y1, f (x2) = y3, f (x3) = y4, f (x4) = y2

verifies Equation (3).

x2 x3

x4x1

y2 y3

y1

y4

Figure 2. Two isometric metric spaces. Distances between the nodes are given by the shortest path,
and the weight of each edge is equal to 1.

The previous definition can be used in order to compare the structure information of two
structured objects. Regarding the feature information, because they all lie in the same ambient
space Ω, a natural way for comparing them is by the standard set equality A = B. Finally, in order to
compare measures on different spaces, the notion of preserving map can be used.

Definition 5 (Measure preserving map). Let Ω1, µ1 ∈ P(Ω1) and Ω2, µ2 ∈ P(Ω2) be two measurable
spaces. A function (usually called a map) f : Ω1 → Ω2 is said to be measure preserving if it transports the
measure µ1 on µ2 such that

f #µ1 = µ2.

If there exists such a measure preserving map, the properties about measures of Ω1 are transported via f
to Ω2.

Combining these two ideas together leads to the notion of measurable metric spaces (often
called mm-spaces [17]), i.e., a metric space (X, dX) enriched with a probability measure and described
by a triplet (X, dX, µX ∈ P(X)). An interesting notion for comparing mm-spaces is the notion
of isomorphism.

Definition 6 (Isomorphism). Two mm-spaces (X, dX, µX), (Y, dY, µY) are isomorphic if there exists a
surjective measure preserving isometry f : supp(µX) → supp(νY) between the support of the measures
µX , νY.

Example 2. Let us consider two mm-spaces (X = {x1, x2}, dX = {1}, µX = { 1
2 , 1

2}) and (Y =

{y1, y2}, dY = {1}, µY = { 1
4 , 3

4}), as depicted in Figure 3. These spaces are isometric, but not isomorphic,
as there exists no measure preserving map between them.

x1 x2 y1 y2

1
4

3
4

1
2

1
2

Figure 3. Two isometric but not isomorphic spaces.

All of this considered, we can now define a notion of equivalence between structured objects.
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Definition 7 (Strong isomorphism of structured objects). Two structured objects are said to be strongly
isomorphic if there exists an isomorphism I between the structures such that f = (I, id) is bijective between
supp(µ) and supp(ν) and measure preserving. More precisely, f satisfies the following properties:

P.1 f #µ = ν.
P.2 The function f statisfies:

∀(x, a) ∈ supp(µ), f (x, a) = (I(x), a). (4)

P.3 The function I : supp(µX)→ supp(νY) is surjective, satisfies I#µX = νY and:

∀x, x′ ∈ supp(µX)
2, dX(x, x′) = dY(I(x), I(x′)). (5)

It is easy to check that the strong isomorphism defines an equivalence relation over Sp(Ω).

Remark 1. The function f described in this definition can be seen as a feature, structure, and measure preserving
function. Indeed, from P.1 f is measure preserving. Moreover, (X, dX, µX) and (Y, dY, νY) are isomorphic
through I. Finally using P.1 and P.2 we have that µA = νB, so that the feature information is also preserved.

Example 3. To illustrate this definition, we consider a simple example of two discrete structured objects:



(x1, a1)

(x2, a2)

(x3, a3)

(x4, a4)




︸ ︷︷ ︸
xi ,ai

,




0 1 1 1
1 0 1 2
1 1 0 2
1 2 2 0




︸ ︷︷ ︸
dX(xi ,xj)

,




1/4

1/4

1/4

1/4




︸ ︷︷ ︸
hi

and




(y1, b1)

(y2, b2)

(y3, b3)

(y4, b4)




︸ ︷︷ ︸
yi ,bi

,




0 1 1 1
1 0 2 2
1 2 0 1
1 2 1 0




︸ ︷︷ ︸
dY(yi ,yj)

,




1/4

1/4

1/4

1/4




︸ ︷︷ ︸
h′i

with for i, ai = bi and for i 6= j, ai 6= aj (see Figure 4). The two structured objects have isometric structures and
same features individually, but they are not strongly isomorphic. One possible map f = ( f1, f2), such that f1

leads to an isometry is f (x1, a1) = (y1, b1), f (x2, a2) = (y3, b3), f (x3, a3) = (y4, b4), f (x4, a4) = (y2, b2).
Yet, this map does not satisfy f2(x, .) = Id for any x, since f (x2, a2) = (y3, b3) and a2 6= b3. The other possible
functions, such that f1 leads to an isometry are simply permutations of this example, yet it is easy to check that
none of them verifies P.2 (for example, with f (x2, a2) = (y4, b4)).

(x2, a2) (x3, a3)

(x4, a4)(x1, a1)

(y2, b2) (y3, b3)

(y1, b1)
(y4, b4)

Figure 4. Two structured objects with isometric structures and identical features that are not strongly
isomorphic. The color of the nodes represent the node feature and each edge represents a distance of 1
between the connected nodes.

2.2. Background on OT Distances

The Optimal Transport (OT) framework defines distances between probability measures that
describe either the feature or the structure information of structured objects.

Wasserstein distance. The classical OT theory aims at comparing probability measures µA ∈
P(Ω), νB ∈ P(Ω). In this context the quantity:

dW,p(µA, νB) =

(
inf

π∈Π(µA ,νB)

∫

Ω×Ω

d(a, b)pdπ(a, b)
) 1

p

(6)
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is usually called the p-Wasserstein distance (also known, for p = 1, as Earth Mover’s distance [20]
in the computer vision community) between distributions µA and νB. It defines a distance on
probability measures, especially dW,p(µA, νB) = 0 iff µA = νB. This distance also has a nice geometrical
interpretation as it represents an optimal cost (w.r.t. d) to move the measure µA onto νB with π(a, b) the
amount of probability mass shifted from a to b (see Figure 5). To this extent, the Wasserstein distance
quantifies how “far” µA is from νB by measuring how “difficult” it is to move all the mass from µA onto
νB. Optimal transport can deal with smooth and discrete measures and it has proved to be very useful
for comparing distributions in a shared space, but with different (and even non-overlapping) supports.

Figure 5. Example of a coupling between two discrete measures on the same ground space equipped
with a distance d that will define the Wasserstein distance. (Left): the discrete measures on Ω. (Right):
one possible coupling between these measures that conserves the mass. Image adapted from [21]
[Figure 2.6].

Gromov–Wasserstein distance. In order to compare measures whose support are not necessarily
in the same ambient space [16,17] define a new OT distance. By relaxing the classical Hausdorff
distance [15,17], authors build a distance over the space of all mm-spaces. For two compact mm-spaces
(X, dX , µX ∈ P(X)) and (Y, dY, νY ∈ P(Y)), the Gromov–Wasserstein distance is defined as:

dGW,p(µX , νY) =


 inf

π∈Π(µX ,νY)

∫

X×Y×X×Y

L(x, y, x′, y′)pdπ(x, y)dπ(x′, y′)




1
p

(7)

where:
L(x, y, x′, y′) = |dX(x, x′)− dY(y, y′)|

The Gromov–Wasserstein distance depends on the choice of the metrics dX and dY and with some
abuse of notation we denote the entire mm-space by its probability measure. When it is not clear from
the context, we will specify using dGW,p(dX , dY, µX , νY). The resulting coupling tends to associate pairs
of points with similar distances within each pair (see Figure 6). The Gromov–Wasserstein distance
allows for the comparison of measures over different ground spaces and defines a metric over the space
of all mm-spaces quotiented by the isomoprhisms (see Definitions 4 and 5). More precisely, it vanishes
if the two mm-spaces are isomorphic. This distance has been used in the context of relational data
e.g., in shape comparison [17,22], deep metric alignment [23], generative modelling [24] or to align
single-cell multi-omics datasets [25].
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Figure 6. Gromov–Wasserstein coupling of two mm-spaces X = (X, dX , µX) and Y = (Y, dY , νY).
Left: the mm-spaces have nothing in common. Similarity between pairwise distances is measured
by |dX(x, x′) − dY(y, y′)|. Right: an admissible coupling of µX and νY . Image adapted from [21]
[Figure 2.6].

2.3. Fused Gromov–Wasserstein Distance

Building on both Gromov–Wasserstein and Wasserstein distances, we define the Fused
Gromov–Wasserstein (FGW) distance on the space of structured objects:

Definition 8 (Fused Gromov-Wasserstein distance). Let α ∈ [0, 1] and p, q ≥ 1. We consider (X ×
Ω, dX , µ) ∈ Spq(Ω) and (Y×Ω, dY, ν) ∈ Spq(Ω). The Fused-Gromov–Wasserstein distance is defined as:

dFGW,α,p,q(µ, ν) =

(
inf

π∈Π(µ,ν)
Ep,q,α(π)

) 1
p

(8)

where

Ep,q,α(π)=
∫

(X×Ω×Y×Ω)2

(
(1− α)d(a, b)q + αL(x, y, x′, y′)q)p dπ((x, a), (y, b)) dπ((x′, a′), (y′, b′))

Figure 7 illustrates this definition. When it is clear from the context we will simply note dFGW
instead for dFGW,α,p,q for brevity. α acts as a trade-off parameter between the cost of the structures
represented by L(x, y, x′, y′) and the feature cost d(a, b). In this way, the convex combination of both
terms leads to the use of both information in one formalism resulting on a single map π that “moves”
the mass from one joint probability measure to the other.

Many desirable properties arise from this definition. Among them, one can define a topology
over the space of structured objects using the FGW distance to compare structured objects, in the
same philosophy as for Wasserstein and Gromov–Wasserstein distances. The definition also implies
that FGW acts as a generalization of both Wasserstein and Gromov-Wasserstein distances, with FGW
achieving an interpolation between these two distances. More remarkably, FGW distance also realizes
geodesic properties over the space of structured objects, allowing the definition of gradient flows.
All of these properties are detailed in the next section. Before reviewing them, we first compare FGW
with GW and W (by assuming for now that FGW exists, which will be shown later in Theorem 1).
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Figure 7. Illustration of Definition 8. The figure shows two structured objects (X×Ω, dX , µ) and
(Y×Ω, dY , µ). The feature space Ω is the common space for all features. The two metric spaces (X, dX)

and (Y, dY) represent the structures of the two structured objects, the similarity between all pair-to-pair
distances of the structure points is measured by L(x, y, x′, y′). µ and ν are the joint measures on the
structure space and the feature space.

Proposition 1 (Comparaison between FGW, GW and W). We have the following results for two structured
objects µ and ν:

• The following inequalities hold:

dFGW,α,p,q(µ, ν) ≥ (1− α)dW,pq(µA, νB)
q (9)

dFGW,α,p,q(µ, ν) ≥ αdGW,pq(µX , νY)
q (10)

• Let us suppose that the structure spaces (X, dX),(Y, dY) are part of a single ground space (Z, dZ) (i.e.,
X, Y ⊂ Z and dX = dY = dZ). We consider the Wasserstein distance between µ and ν for the distance on
Z×Ω: d̃((x, a), (y, b)) = (1− α)d(a, b) + αdZ(x, y). Then:

dFGW,α,p,1(µ, ν) ≤ 2dW,p(µ, ν). (11)

Proof of this proposition can be found in Section 7.1. In particular, following this proposition,
when the FGW distance vanishes then both GW and W distances vanish so that the structure and
the feature of the structure object are individually “the same” (with respect to their corresponding
equivalence relation). However, the converse is not necessarily true, as shown in the following example.

Example 4 (Toy trees). We construct two trees as illustrated in Figure 8 where the 1D node features are
shown with colors. The shortest path between the nodes is used to capture the structures of the two structured
objects and the Euclidean distance is used for the features. We consider uniform weights on all nodes. Figure 8
illustrates the differences between FGW, GW, and W distances. The left part is the Wasserstein coupling
between the features: red nodes are transported on red ones and the blue nodes on the blue ones but tree structures
are completely discarded. In this case, the Wasserstein distance vanishes. In the right part, we compute the
Gromov–Wasserstein distance between the structures: all couples of points are transported to another couple of
points, which enforces the matching of tree structures without taking into account the features. Because structures
are isometric, the Gromov–Wasserstein distance is null. Finally, we compute the FGW using intermediate α

(center), the bottom and first level structure is preserved as well as the feature matching (red on red and blue on
blue) and FGW discriminates the two structured objects.
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dW = 0 dFGW > 0 dGW = 0

Figure 8. Difference on transportation maps between FGW, GW, and W distances on synthetic trees.
(Left) the W distance between the features is null since feature information are the same, (Middle) FGW
with α ∈]0, 1[ is different from zero and discriminate the two structured objects, and (Right) GW
between the two isometric structures is null.

3. Mathematical Properties of FGW

In this section, we establish some mathematical properties of the FGW distance. The first result
relates to the existence of the FGW distance and the topology of the space of structured objects.
We then prove that the FGW distance is indeed a distance regarding the equivalence relation between
structured objects, as defined in Defintion 7, allowing us to derive a topology on S(Ω).

3.1. Topology of the Structured Object Space

The FGW distance has the following properties:

Theorem 1 (Metric properties). Let p, q ≥ 1, α ∈]0, 1[ and µ, ν ∈ Spq(Ω). The functional π → Ep,q,α(π)

always achieves an infimum π∗ in Π(µ, ν) s.t. dFGW,α,p,q(µ, ν) = Ep,q,α(π∗) < +∞. Moreover:

• dFGW,α,p,q is symmetric and, for q = 1, satisfies the triangle inequality. For q ≥ 2, the triangular inequality
is relaxed by a factor 2q−1.

• For α ∈]0, 1[, dFGW,α,p,q(µ, ν) = 0 if an only if there exists a bijective function f = ( f1, f2) : supp(µ)→
supp(ν) such that:

f #µ = ν (12)

∀(x, a) ∈ supp(µ) , f2(x, a) = a (13)

∀(x, a), (x′, a′) ∈ supp(µ)2, dX(x, x′) = dY( f1(x, a), f1(x′, a′)) (14)

• If (µ, ν) are generalized labeled graphs then dFGW,α,p,q(µ, ν) = 0 if and only if (X × Ω, dX, µ) and
(Y×Ω, dY, ν) are strongly isomorphic.

Proof of this theorem can be found in Section 7.2. The identity of indiscernibles is the most
delicate part to prove and it is based on using the Gromov–Wasserstein distance between the spaces
X×Ω and Y×Ω. The previous theorem states that FGW is a distance over the space of generalized
labeled graphs endowed with the strong isomorphism as equivalence relation defined in Definition 7.
More generally, for any structured objects the equivalence relation is given by (12)–(14). Informally,
invariants of the FGW are structured objects that have both the same structure and the same features
in the same place. Despite the fact that q = 1 leads to a proper metric, we will further see in Section 4.1
that the case q = 2 can be computed more efficiently using a separability trick from [26].

Theorem 1 allows a wide set of applications for FGW, such as k-nearest-neighbors,
distance-substitution kernels, pseudo-Euclidean embeddings, or representative-set methods [27–29].
Arguably, such a distance allows for a better interpretation than to end-to-end learning machines,
such as neural networks, because the π matrix exhibits the relationships between the elements of the
objects in a pairwise comparison.
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3.2. Can We Adapt W and GW for Structured Objects?

Despite the appealing properties of both Wasserstein and Gromov–Wasserstein distances, they fail
at comparing structured objects by focusing only on the feature and structure marginals, respectively.
However, with some hypotheses, one could adapt these distances for structured objects.

Adapting Wasserstein. If the structure spaces (X, dX) and (Y, dY) are part of a same ground
space (Z, dZ), i.e., (X, Y ⊂ Z and dX = dY = dZ), one can build a distance d̂ = dZ ⊕ d between couples
(x, a) and (y, b) and apply the Wasserstein distance, so as to compare the two structured objects.
In this case, when the Wasserstein distance vanishes it implies that the structured objects are equal
in the sense µ = ν. This approach is very related with the one discussed in [30], where the authors
define the Transportation Lp distance for signal analysis purposes. Their approach can be viewed as a
transport between two joint measures µ(X×Ω) = λ({(x, f (x)) | x ∈ X ⊂ Z = Rd; f (x) ∈ A ⊂ Rm}),
ν(Y × Ω) = λ({(y, g(y)) | y ∈ Y ⊂ Z = Rd; g(y) ∈ B ⊂ Rm}) for function f , g : Z → Rm

representative of the signal values and λ the Lebesgue measure. The distance for the transport is
defined as d̂((x, f (x)), (y, g(y))) = 1

α‖x− y‖p
p + ‖ f (x)− g(y)‖p

p for α > 0 and ‖ · ‖p the lp norm. In this
case, f (x) and g(y) can be interpreted as encoding the feature information of the signal, while x, y
encode its structure information. This approach is very interesting, but cannot be used on structured
objects, such as graphs that will not share a common structure embedding space.

Adapting Gromov-Wasserstein. The Gromov–Wasserstein distance can also be adapted to
structured objects by considering the distances (1− β)dX ⊕ βd and (1− β)dY ⊕ βd within each space
X×Ω and Y×Ω, respectively, and β ∈]0, 1[. When the resulting GW distance vanishes, structured
objects are isomorphic with respect to (1 − β)dX ⊕ βd and (1 − β)dY ⊕ βd. However, the strong
isomorphism is stronger than this notion, since the isomorphism allows for “permuting the labels”,
but not the strong isomorphism. More precisely, we have the following lemma:

Lemma 1. Let (X×Ω, dX , µ), (Y×Ω, dY, ν) be two structured objects and β ∈]0, 1[.
If (X ×Ω, dX, µ) and (Y ×Ω, dY, ν) are strongly isomorphic then (X ×Ω, (1− β)dX ⊕ βd, µ) and

(Y×Ω, (1− β)dY ⊕ βd, ν) are isomorphic. However the converse is not true in general.

Proof. To see this, if we consider f as defined in Theorem 1, then, for (x, a), (x′, b) ∈ (supp(µ))2,
we have dX(x, x′) = dY(I(x), I(x′)). In this way:

(1− β)dX(x, x′) + βd(a, b) = (1− β)dY(I(x), I(x′)) + βd(a, b) (15)

which can be rewritten as:

(1− β)d⊕ βdX((x, a), (x′, b)) = (1− β)d⊕ βdY( f (x, a), f (x′, b)) (16)

and so f is an isometry with respect to (1 − β)d ⊕ βdX and (1 − β)d ⊕ βdY. Because f is
also measure preserving and surjective (X × Ω, (1− β)dX ⊕ βd, µ) and (Y × Ω, (1− β)dY ⊕ βd, ν)

are isomorphic.

However, the converse is not necessarily true, as it is easy to cook up an example with the
same structure but with permuted labels, so that objects are isomorphic but not strongly isomorphic.
For example, in the tree example Figure 4, the structures are isomorphic and the distances between the
features within each space are the same between each structured objects, so that (X×Ω, (1− β)dX ⊕
βd, µ) and (Y ×Ω, (1− β)dY ⊕ βd, ν) are isomorphic, yet not strongly isomorphic, as shown in the
example since FGW > 0.

3.3. Convergence of Structured Objects

The metric property naturally endows the structured object space with a notion of convergence,
as described in the next definition:
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Definition 9. Convergence of structured objects.
Let
(
(Xn × An, dXn , µn)

)
n∈N be a sequence of structured objects. It converges to (X×Ω, dX , µ) in the Fused

Gromov–Wasserstein sense if:

lim
n→∞

dFGW,α,p,1(µn, µ) = 0 (17)

Using Proposition 1, it is straightforward to see that if the sequence converges in the FGW sense,
both the features and the structure converge respectively in the Wasserstein and Gromov–Wasserstein
sense (see [17] for the definition of convergence in the Gromov–Wasserstein sense).

An interesting question arises from this definition. Let us consider a structured object
(X×Ω, dX , µ) and let us sample the joint distribution so as to consider ({(xi, ai)}i∈{1,..,n}, dX , µn)n∈N

with µn = 1
n

n
∑

i=1
δxi ,ai where (xi, ai) ∈ X×Ω are sampled from µ. Does this sequence converges to

(X×Ω, dX , µ) in the FGW sense and how fast is the convergence?
This question can be answered thanks to a notion of “size” of a probability measure. For the sake

of conciseness, we will not exhaustively present the theory, but the reader can refer to [31] for more
details. Given a measure µ on Ω, we denote as dim∗p(µ) its upper Wasserstein dimension. It coincides
with the intuitive notion of “dimension” when the measure is sufficiently well behaved. For example,
for any absolutely continuous measure µ with respect to the Lebesgue measure on [0, 1]d, we have
dim∗p(µ) = d for any p ∈ [1, d

2 ]. Using this definition and the results presented in [31], we answer the
question of convergence of finite sample in the following theorem (proof can be found in Section 7.3):

Theorem 2. Convergence of finite samples and a concentration inequality
Let p ≥ 1. We have:

lim
n→∞

dFGW,α,p,1(µn, µ) = 0.

Moreover, suppose that s > d∗p(µ). Then there exists a constant C that does not depend on n such that:

E[dFGW,α,p,1(µn, µ)] ≤ Cn−
1
s . (18)

The expectation is taken over the i.i.d samples (xi, ai). A particular case of this inequality is when α = 1
so that we can use the result above to derive a concentration result for the Gromov-Wasserstein distance.
More precisely, if νn = 1

n ∑i δxi denotes the empirical measure of ν ∈ P(X) and if s′ > d∗p(ν), we have:

E[dGW,p(νn, ν)] ≤ C′n−
1
s′ . (19)

This result is a simple application of the convergence of finite sample properties of the Wasserstein
distance, since in this case µn and µ are part of the same ground space so that (18) derive naturally
from (11) and the properties of Wasserstein. In contrast to the Wasserstein distance case, this inequality
is not necessarily sharp and future work will be dedicated to the study of its tightness.

3.4. Interpolation Properties between Wasserstein and Gromov-Wasserstein Distances

FGW distance is a generalization of both Wasserstein and Gromov–Wasserstein distances in the
sense that it achieves an interpolation between them. More precisely, we have the following theorem:

Theorem 3. Interpolation properties.
As α tends to zero, one recovers the Wasserstein distance between the features information and as α goes to

one, one recovers the Gromov–Wasserstein distance between the structure information:

lim
α→0

dFGW,α,p,q(µ, ν) = (dW,qp(µA, νB))
q (20)
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lim
α→1

dFGW,α,p,q(µ, ν) = (dGW,qp(µX , νY))
q (21)

Proof of this theorem can be found in Section 7.4.

This result shows that FGW can revert to one of the other distances. In machine learning,
this allows for a validation of the α parameter to better fit the data properties (i.e., by tuning the relative
importance of the feature vs structure information). One can also see the choice of α as a representation
learning problem and its value can be found by optimizing a given criterion.

3.5. Geodesic Properties

One desirable property in OT is the underlying geodesics defined by the mass transfer between
two probability distributions. These properties are useful in order to define the dynamic formulation
of OT problems. This dynamic point of view is inspired by fluid dynamics and found its origin in
the Wasserstein context with [32]. Various applications in machine learning can be derived from
this formulation: interpolation along geodesic paths were used in computer graphics for color or
illumination interpolations [33]. More recently, Ref. [34] used Wasserstein gradient flows in an
optimization context, deriving global minima results for non-convex particles gradient descent.
In [35], the authors used Wasserstein gradient flows in the context of reinforcement learning for
policy optimization.

The main idea of this dynamic formulation is to describe the optimal transport problem between
two measures as a curve in the space of measures minimizing its total length. We first describe
some generality about geodesic spaces and recall classical results for dynamic formulation in both
Wasserstein and Gromov–Wasserstein contexts. In a second part, we derive new geodesic properties in
the FGW context.

Geodesic spaces. Let (X, d) be a metric space and x, y two points in X. We say that a curve
w : [0, 1] → X joining the endpoints x and y (i.e., with w(0) = x and w(1) = y) is a constant speed
geodesic if it satisfies d(w(t), w(s)) ≤ |t− s|d(w(0), w(1)) = |t− s|d(x, y) for t, s ∈ [0, 1]. Moreover,
if (X, d) is a length space (i.e., if the distance between two points of X is equal to the infimum of the
lengths of the curves connecting these two points) then the converse is also true and a constant speed
geodesic satisfies d(w(t), w(s)) = |t− s|d(x, y). It is easy to compute distances along such curves,
as they are directly embedded into R.

In the Wasserstein context, if the ground space is a complete separable, locally compact length
space, and if the endpoints of the geodesic are given, then there exists a geodesic curve. Moreover,
if the transport between the endpoints is unique, then there is a unique displacement interpolation
between the endpoints (see Corollary 7.22 and 7.23 in [15]). For example, if the ground space is Rd and
the distance between the points is measured via the `2 norm, then geodesics exist and are uniquely
determined (this can be generalized to strictly convex costs). In the Gromov–Wasserstein context,
there always exists constant speed geodesics as long as the endpoints are given. These geodesics are
unique modulo the isomorphism equivalence relation (see [16]).

The FGW case. In this paragraph, we suppose that Ω = Rd. We are interested in finding a
geodesic curve in the space of structured objects i.e., a constant speed curve of structured objects
joining two structured objects. As for Wasserstein and Gromov–Wasserstein, the structured object
space endowed with the Fused Gromov–Wasserstein distance maintains some geodesic properties.
The following result proves the existence of such a geodesic and characterizes it:

Theorem 4. Constant speed geodesic.
Let p ≥ 1 and (X ×Ω, dX, µ0) and (Y ×Ω, dY, µ1) in Sp(Rd). Let π∗ be an optimal coupling for the

Fused Gromov–Wasserstein distance between µ0, µ1, and t ∈ [0, 1]. We equip Rd with the `m norm for m ≥ 1.
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We define ηt : X×Ω×Y×Ω→ X×Y×Ω such that:

∀(x, a), (y, b) ∈ X×Ω×Y×Ω, ηt(x, a, y, b) = (x, y, (1− t)a + tb) (22)

Then:
(X×Y×Ω, (1− t)dX ⊕ tdY, µt = ηt#π∗)t∈[0,1] (23)

is a constant speed geodesic connecting (X × Ω, dX, µ0) and (Y × Ω, dY, µ1) in the metric space(
Sp(Rd), dFGW,α,p,1

)
.

Proof of the previous theorem can be found in Section 7.5. In a sense, this result combines the
geodesics in the Wasserstein space and in the space of all mm-spaces, since it suffices to interpolate
the distances in the structure space and the features to construct a geodesic. The main interest is
that it defines the minimum path between two structured objects. For example, when considering
two discrete structured objects represented by the measures µ = ∑n

i=1 hiδ(xi ,ai)
and ν = ∑m

j=1 gjδ(yj ,bj)
,

the interpolation path is given for t ∈ [0, 1] by the measure µt = ∑n
i=1 ∑m

j=1 π∗(i, j)δ(xi ,yj ,(1−t)ai+tbj)

where π∗ is an optimal coupling for the FGW distance. However this geodesic is difficult to handle in
practice, since it requires the computation of the cartesian product X×Y. To overcome this obstacle,
an extension using theFrÃ c©chet mean is defined in Section 4.2. The proper definition and properties
of velocity fields associated to this geodesic is postponed to further works.

4. FGW in the Discrete Case

In practice, structured objects are often discrete and can be defined using the labeled graph
formalism described previously. In this section, we discuss how to compute FGW efficiently. We also
provide an algorithm for the computation of Fréchet means.

4.1. FGW in the Discrete Case

We consider two structured objects µ = ∑n
i=1 hiδ(xi ,ai)

and ν = ∑m
j=1 gjδ(yj ,bj)

, as described
previously. We note MAB the matrix MAB(i, j) = d(ai, bj) and C1, C2 the matrices C1(i, k) = dX(xi, xk),
C2(j, l) = dY(yj, yl) (see Figure 9). The Fused Gromov–Wasserstein distance is defined as

dFGW,α,p,q(µ, ν) =

(
min

π∈Π(h,g)
Ep,q,α(π)

) 1
p

(24)

where:
Ep,q,α(π) = ∑

i,j,k,l
((1− α)MAB(i, j)q + α|C1(i, k)− C2(j, l)|q)p πi,j πk,l .

Solving the related Quadratic Optimization problem. Equation (24) is clearly a quadratic
problem w.r.t. π. Note that, despite the apparent O(m2n2) complexity of computing the tensor
product, one can simplify the sum to complexity O(mn2 + m2n) [26] when considering p = 1, q = 2.
In this case, the FGW computation problem can be re-written as finding π∗, such that:

π∗ = arg min
π∈Π(h,g)

vec(π)TQ(α)vec(π) + vec(D(α))Tvec(π) (25)

where Q = −2αC2 ⊗K C1 and D(α) = (1− α)MAB. ⊗K denote the Kronecker product of two matrices,
vec the column-stacking operator. With such form, the resulting optimal map can be seen as a quadratic
regularized map from initial Wasserstein [36,37]. However, unlike these approaches, we have a
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quadratic but probably non-convex term. The gradient G that arises from Equation (24) can be
expressed with the following partial derivative w.r.t. π:

G = (1− α)Mq
AB + 2α

(
∑
k,l
|C1(i, k)− C2(j, l)|qπk,l

)

i,j

(26)

Solving a large scale QP with a classical solver can be computationally expensive. In [36],
the authors propose a solver for a graph regularized optimal transport problem whose resulting
optimization problem is also a QP. We can then directly use their conditional gradient defined in
Algorithmic 1 to solve our optimization problem. It only needs at each iteration to compute the
gradient in Equation (26) and solve a classical OT problem for instance with a network flow algorithm.
The line-search part is a constrained minimization of a second degree polynomial function that is
adapted to the non convex loss in Algorithmic 2. While the problem is non convex, conditional gradient
is known to converge to a local stationary point [38]. When C1, C2 are squared Euclidean distance
matrices the problem reduces to a concave graph matching so that the line-search of the conditional
gradient Algorithm 1 always leads to 1 [39,40].

Figure 9. FGW loss for a coupling π depends on both a similarity between each feature of each node
of each graph (d(ai, bj))i,j and between all intra-graph structure similarities (|C1(i, k)− C2(j, l)|)i,j,k,l .

Algorithm 1 Conditional Gradient (CG) for FGW

1: π(0) ← µXµ>Y
2: for i = 1, . . . , do
3: G ← Gradient from Equation (26) w.r.t. π(i−1)

4: π̃(i) ← Solve OT with ground loss G
5: τ(i) ← Line-search for loss (24) with τ ∈ (0, 1) using Algorithm 2
6: π(i) ← (1− τ(i))π(i−1) + τ(i)π̃(i)

7: end for

Algorithm 2 Line-search for CG (q = 2)

1: cC1,C2 from Equation (6) in [26]
2: a = −2α〈C1π̃(i)C2, π̃(i)〉
3: b=〈(1−α)MAB+αcC1,C2 , π̃(i)〉 −2α

(
〈C1π̃(i)C2, π(i−1)〉+ 〈C1π(i−1)C2, π̃(i)〉

)

4: if a > 0 then
5: τ(i) ← min(1, max(0, −b

2a ))
6: else
7: τ(i) ← 1 if a + b < 0 else τ(i) ← 0
8: end if
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4.2. Structured Optimal Transport Barycenter

An interesting use of the FGW distance is to define a barycenter of a set of structured data
as a Fréchet mean. In that context, one seeks the structured object that minimizes the sum of the
(weighted) FGW distances with a given set of objects. OT barycenters have many desirable properties
and applications [26,41], yet no formulation can leverage both structural and feature information in
the barycenter computation. Here, we propose to use the FGW distance to compute the barycenter of
a set of K structured objects (µk)k ∈ S(Ω)K associated with structures (Ck)k, features (Bk)k and base
histograms (hk)k.

We suppose that the feature space is Ω = (Rd, `2) and p = 1. For simplicity, we assume that the
base histograms and the histogram h associated to the barycenter are known and fixed. Note that it
could be also included in the optimization process, as suggested in [26].

In this context, for a fixed N ∈ N and (λk)k, such that ∑k λk = 1 , we aim to find:

min
µ

∑
k

λkdFGW,α,1,q(µ, µk) = min
C, A∈RN×d ,(πk)k

∑
k

λkE1,q,α(MABk , C, Ck, πk) (27)

Note that this problem is convex w.r.t. C and A, but not w.r.t. πk. Intuitively, looking for
a barycenter means finding feature values supported on a fixed size support, and the structure
that relates them. Interestingly enough, there are several variants of this problem, where features
or structure can be fixed for the barycenter. Solving the related simpler optimization problems
extend straightforwardly.

Solving the barycenter problem with Block Coordinate Descent (BCD). We propose
minimizing Equation (27) using a BCD algorithm, i.e., iteratively minimizing with respect to the
couplings πk, the structure metric C and the feature vector A.The minimization of this problem w.r.t.
(πk)k is equivalent to computing K independent Fused Gromov–Wasserstein distances using the
algorithm presented above. We suppose that the feature space is Ω = (Rd, `2) and we consider q = 2.
Minimization w.r.t. C in this case has a closed form (see Prop. 4 in [26]):

C ← 1
hhT ∑k λkπT

k Ckπk (28)

where h is the histogram of the barycenter and the division is computed pointwise. Minimization w.r.t.
A can be computed with (Equation (8) in [42]):

A←∑
k

λkBkπT
k diag

(
1
h

)
. (29)

5. Examples and Applications

In this section we derive some applications of FGW in graph contexts such as classification,
clustering and coarsening of graphs.

5.1. Illustrations of FGW

In this section, we present several applications of FGW as a distance between structured objects
and provide an interpretation of the OT matrix.

Example with one-dimensional (1D) features and structure spaces. Figure 10 illustrates the
differences between Wasserstein, Gromov–Wasserstein, and Fused Gromov–Wasserstein couplings π∗.
In this example, both the feature and structure space are one-dimensional (Figure 10 left). The feature
space (vertical axis) denotes two clusters among the elements of both objects illustrated in the OT
matrix MAB , the structure space (horizontal axis) denotes a noisy temporal sequence along the indexes
illustrated in the matrices C1 and C2 (Figure 10 center). Wasserstein respects the clustering, but forgets
the temporal structure, Gromov–Wasserstein respects the structure, but do not take the clustering into
account. Only FGW retrieves a transport matrix respecting both feature and structure.
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Example on two simple images.We extract a 28× 28 image from the MNIST dataset and generate
a second one through translation or mirroring of the digit in the original image. We use pixel gray
levels of the pixels as the features, and the structure is defined as the city-block distance on the pixel
coordinate grid. We use equal weights for all of the pixels in the image. Figure 11 shows the different
couplings obtained when only considering either the features, the structure only or both information.
FGW aligns the pixels of the digits, recovering the correct order of the pixels, while both Wassertein
and Gromov–Wasserstein distances fail at providing a meaningful transportation map. Note that in
the Wasserstein and Gromov-Wasserstein case, the distances are equal to 0, whereas FGW manages to
spot that the two images are different. Additionally, note that, in the FGW sense, the original digit
and its mirrored version are also equivalent as there exists an isometry between their structure spaces,
making FGW invariant to rotations or flips in the structure space in this case.

x

a

1

2 3

4

5

6

78

9 10

11 12

13

14

15
16

1718

1920

µ =
∑

i δxi,ai

y

b

12

3

4
5
6
7

8

9

10

11

12

13

14
15

16

17

18
19

20

21
222324 25

26

27

28

29
30

ν =
∑

j δyj,bj

0 5 10 15

k

0

5

10

15

i

C1

0 5 10 15 20 25

0

5

10

15

20

25

l
C2

0 5 10 15 20 25

j

0

5

10

15

i

Figure 10. Illustration of the difference between W, GW, and FGW couplings. (left) Empirical
distributions µ with 20 samples and ν with 30 samples which color is proportional to their index.
(middle) Cost matrices in the feature (MAB) and structure domains (C1, C2) with similar samples in
white. (right) Solution for all methods. Dark blue indicates a non zero coefficient of the transportation
map. Feature distances are large between points laying on the diagonal of MAB such that Wasserstein
maps is anti-diagonal but unstructured. Fused Gromov–Wasserstein incorporates both feature and
structure maps in a single transport map.

Example on time series data. One of the main assets of FGW is that it can be used on a wide class
of objects and time series are one more example of this. We consider here 25 monodimensional time
series composed of two humps in [0, 1] with random uniform height between 0 and 1. The signals are
distributed according to two classes translated from each other with a fixed gap. The FGW distance
is computed by considering d as the euclidean distance between the features of the signals (here the
value of the signal in each point) and dX and dY as the euclidean distance between timestamps.

A two-dimensional (2D) embedding is computed from a FGW distance matrix between a number
of examples in this dataset with multidimensional scaling (MDS) [43] in Figure 12 (top). One can
clearly see that the representation with a reasonable α value in the center is the most discriminant
one. This can be better understood by looking as the OT matrices between the classes. Figure 12
(bottom) illustrates the behavior of FGW on one pair of examples when going from Wasserstein to
Gromov–Wasserstein. The black line depicts the matching provided by the transport matrix and one
can clearly see that while Wasserstein on the left assigns samples completely independently to their
temporal position, the Gromov-Wasserstein on the right tends to align perfectly the samples (note that
it could have reversed exactly the alignment with the same loss), but discards the values in the signal.
Only the true FGW in the center finds a transport matrix that both respects the time sequences and
aligns similar values in the signals.
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Figure 11. Couplings obtained when considering (Top left) the features only, where we have dΩ
W,1 = 0

(Top right) the structure only, with dGW,1 = 0 (Bottom left, and right) both the features and the
structure, with dΩ

FGW,0.1,1,2. For readibility issues, only the couplings starting from non white pixels on
the left picture are depicted.

Increasing value of 

Class 1
Class 2

0 10 20 30 40 50

2D MDS embeddings from distances

0 10 20 30 40 50 0 10 20 30 40 50

Figure 12. Behavior of trade-off parameter α on a toy time series classification problem. α is increasing
from left (α = 0: Wasserstein distance) to right (α = 1: Gromov–Wasserstein distance). (top row)
Two-dimensional (2D)-embedding is computed from the set of pairwise distances between samples
with multidimensional scaling (MDS) (bottom row) illustration of couplings between two sample time
series from opposite classes.

5.2. Graph-Structured Data Classification

In this section, we adress the question of training a classifier for graph data and evaluate the FGW
distance used in a kernel with SVM.

Learning problem and datasets. We consider 12 widely used benchmark datasets divided into
3 groups. BZR, COX2 [44], PROTEINS, ENZYMES [45], CUNEIFORM [46] and SYNTHETIC [47] are
vector attributed graphs. MUTAG [48], PTC-MR [49], and NCI1 [50] contain graphs with discrete
attributes derived from small molecules. IMDB-B, IMDB-M [51] contain unlabeled graphs derived
from social networks. All of the datasets are available in [52].

Experimental setup. Regarding the feature distance matrix MAB between node features,
when dealing with real valued vector attributed graphs, we consider the `2 distance between the labels
of the vertices. In the case of graphs with discrete attributes, we consider two settings: in the first
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one, we keep the original labels (denoted as RAW); we also consider a Weisfeiler-Lehman labeling
(denoted as WL) by concatenating the labels of the neighbors. A vector of size H is created by
repeating this procedure H times [49,53]. In both cases, we compute the feature distance matrix by
using d(ai, bj) = ∑H

k=0 δ(τ(ak
i ), τ(bk

j )) where δ(x, y) = 1 if x 6= y else δ(x, y) = 0 and τ(ak
i ) denotes the

concatenated label at iteration k (for k = 0 original labels are used). Regarding the structure distances C,
they are computed by considering a shortest path distance between the vertices.

For the classification task, we run a SVM using the indefinite kernel matrix e−γFGW , which is
seen as a noisy observation of the true positive semidefinite kernel [54]. We compare classification
accuracies with the following state-of-the-art graph kernel methods: (SPK) denotes the shortest path
kernel [45], (RWK) the random walk kernel [55], (WLK) the Weisfeler Lehman kernel [53], and (GK)
the graphlet count kernel [56]. For real valued vector attributes, we consider the HOPPER kernel
(HOPPERK) [47] and the propagation kernel (PROPAK) [57]. We build upon the GraKel library [58]
to construct the kernels and C-SVM to perform the classification. We also compare FGW with the
PATCHY-SAN framework for CNN on graphs (PSCN) [9] building on our own implementation of
the method.

To provide a comparison between the methods, most of the papers about graph classification
usually perform a nested cross validation (using nine-fold for training, one for testing, and reporting
the average accuracy of this experiment repeated 10 times), and report accuracies of the other methods
taken from the original papers. However, these comparisons are not fair because of the high variance
(on most datasets) w.r.t. the folds chosen for training and testing. This is why, in our experiments,
the nested cross validation is performed on the same folds for training and testing for all methods [59].
In the result, Tables 1–3, we write in bold the best score for each dataset and we add a (*) when the
best score does not yield to a significative improvement (based on a Wilcoxon signed rank test on the
test scores) compared to the second best one. Note that, because of their small sizes, we repeat the
experiments 50 times for MUTAG and PTC-MR datasets. For all methods using SVM, we cross validate
the parameter C ∈ {10−7, 10−6, . . . , 107}. The range of the WL parameter H is {0, 1 . . . , 10}, and we
also compute this kernel with H fixed at 2, 4. The decay factor λ for RWK {10−6, 10−5 . . . , 10−2}, for the
GK kernel we set the graphlet size κ = 3 and cross validate the precision level ε and the confidence δ

as in the original paper [56]. The tmax parameter for PROPAK is chosen within {1, 3, 5, 8, 10, 15, 20}.
For PSCN, we choose the normalized betweenness centrality as labeling procedure and cross validate
the batch size in {10, 15, . . . , 35} and number of epochs in {10, 20, . . . , 100}. Finally, for FGW, γ is
cross validated within {2−10, 2−9, . . . , 210} and α is cross validated via a logspace search in [0, 0.5] and
symmetrically [0.5, 1] (15 values are drawn).

Vector attributed graphs. The average accuracies reported in Table 1 show that FGW is a clear
state-of-the-art method and performs best on four out of six datasets with performances in the error
bars of the best methods on the other two datasets. The results for CUNEIFORM are significantly
below those from the original paper [46], which can be explained by the fact that the method in this
paper uses a graph convolutional approach specially designed for this dataset and that experiment
settings are different. In comparison, the other competitive methods are less consistent, as they exhibit
some good performances on some datasets only.

Discrete labeled graphs. We first note in Table 2 that FGW using WL attributes outperforms
all competitive methods, including FGW with raw features. Indeed, the WL attributes allow for
more finely encoding the neighborood of the vertices by stacking their attributes, whereas FGW
with raw features only consider the shortest path distance between vertices, not their sequence
of labels. This result calls for using meaningful feature and/or structure matrices in the FGW
definition, which can be dataset-dependant, in order to enhance the performances. We also note
that FGW with WL attributes outperforms the WL kernel method, highlighting the benefit of an
optimal transport-based distance over a kernel-based similarity. Surprisingly, the results of PSCN are
significantly lower than those from the original paper. We believe that it comes from the difference
between the fold assignment for training and testing, which suggests that PSCN is difficult to tune.
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Table 1. Average classification accuracy on the graph datasets with vector attributes.

Vector Attributes BZR COX2 CUNEIFORM ENZYMES PROTEIN SYNTHETIC

FGW sp 85.12 ± 4.15 * 77.23 ± 4.86 76.67 ± 7.04 71.00 ± 6.76 74.55 ± 2.74 100.00 ± 0.00

HOPPERK 84.15 ± 5.26 79.57 ± 3.46 32.59 ± 8.73 45.33 ± 4.00 71.96 ± 3.22 90.67 ± 4.67
PROPAK 79.51 ± 5.02 77.66 ± 3.95 12.59 ± 6.67 71.67 ± 5.63 * 61.34 ± 4.38 64.67 ± 6.70

PSCN k = 10 80.00 ± 4.47 71.70 ± 3.57 25.19 ± 7.73 26.67 ± 4.77 67.95 ± 11.28 100.00 ± 0.00
PSCN k = 5 82.20 ± 4.23 71.91 ± 3.40 24.81 ± 7.23 27.33 ± 4.16 71.79 ± 3.39 100.00 ± 0.00

Non-attributed graphs. The particular case of the GW distance for graph classification is also
illustrated on social datasets, which contain no labels on the vertices. Note that no artificial features
were added to these datasets. Accuracies reported in Table 3 show that it greatly outperforms the
SPK and GK graph kernel methods. This is, to the best of our knowledge, the first application of the
Gromov–Wasserstein distance for social graph classification and it highlights the fact that GW is a
good metric for comparing the graph structures.

Table 2. Average classification accuracy on the graph datasets with discrete attributes.

Discrete Attr. MUTAG NCI1 PTC-MR

FGW raw sp 83.26 ± 10.30 72.82 ± 1.46 55.71 ± 6.74
FGW wl h = 2 sp 86.42 ± 7.81 85.82 ± 1.16 63.20 ± 7.68
FGW wl h = 4 sp 88.42 ± 5.67 86.42 ± 1.63 65.31 ± 7.90

GK k = 3 82.42 ± 8.40 60.78 ± 2.48 56.46 ± 8.03
RWK 79.47 ± 8.17 58.63 ± 2.44 55.09 ± 7.34
SPK 82.95 ± 8.19 74.26 ± 1.53 60.05 ± 7.39
WLK 86.21 ± 8.48 85.77 ± 1.07 62.86 ± 7.23
WLK h=2 86.21 ± 8.15 81.85 ± 2.28 61.60 ± 8.14
WLK h = 4 83.68 ± 9.13 85.13 ± 1.61 62.17 ± 7.80

PSCN k = 10 83.47 ± 10.26 70.65 ± 2.58 58.34 ± 7.71
PSCN k = 5 83.05 ± 10.80 69.85 ± 1.79 55.37 ± 8.28

Table 3. Average classification accuracy on the graph datasets with no attributes.

Without Attribute IMDB-B IMDB-M

GW sp 63.80 ± 3.49 48.00 ± 3.22

GK k = 3 56.00 ± 3.61 41.13 ± 4.68
SPK 55.80 ± 2.93 38.93 ± 5.12

Comparison between FGW, W and GW. During the validation step, the optimal value of α was
consistently selected inside the ]0, 1[ interval, i.e., excluding 0 and 1, suggesting that both structure
and feature information are necessary.

5.3. Graph Barycenter and Compression

In this experiment, we use FGW to compute barycenters and approximations of toy graphs. In the
first example, we generate graphs following either a circle or 8 symbol with 1D features following a
sine and linear variation, respectively. For each example, the number of nodes is drawn randomly
between 10 and 25, Gaussian noise is added to the features and a small noise is applied to the structure
(some connections are randomly added). An example graph with no noise is provided for each class
in the first column of Figure 13. One can see from there that the circle class has a feature varying
smoothly (sine) along the graph, but the 8 has a sharp feature change at its center (so that low pass
filtering would loose some information). Some examples of the generated graphs are provided in
the 2nd-to-7th columns of Figure 13. We compute the FGW barycenter containing 10 samples while
using the shortest path distance between the nodes as the structural information and the `2 distance
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for the features. We recover an adjacency matrix by thresholding the similarity matrix C given by
the barycenter. The threshold is tuned, so as to minimize the Frobenius norm between the original
C matrix and the shortest path matrix constructed after thresholding C. Resulting barycenters are
showed in Figure 13 for n = 15 and n = 7 nodes. First, one can see that the barycenters are denoised in
both the feature space and structure space. Also note that the sharp change at the center of the 8 class
is conserved in the barycenters, which is a nice result when compared to other divergences that tend to
smooth-out their barycenters (`2, for instance). Finally, note that, by selecting the number of nodes in
the barycenter, one can compress the graph or estimate a “high resolution” representation from all the
samples. To the best of our knowledge, no other method can compute such graph barycenters. Finally,
note that FGW is interpretable, because the resulting OT matrix provides correspondence between the
nodes from the samples and those from the barycenter.

Noiseless graph Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Bary n=15 Bary n=7

Figure 13. Illustration of FGW graph barycenter. The first column illustrates the original settings with
the noiseless graphs, and columns 2 to 7 are noisy samples that constitute the datasets. Columns 8 and
9 show the barycenters for each setting, with different number of nodes. Blue nodes indicates a feature
value close to −1, yellow nodes close to 1.

In the second experiment, we evaluate the ability of FGW to perform graph approximation and
compression on a Stochastic Block Model graph [60,61]. The question is to see whether estimating
an approximated graph can recover the relation between the blocks and perform simultaneously a
community clustering on the original graph (using the OT matrix). We generate two community
graphs illustrated in the left column of Figure 14. We can see that the relation between the blocks is
sparse and has a “linear” structure, the example in the first line has features that follow the blocks
(noisy but similar in each block) whereas the example in the second line has two modes per block.
The first graph approximation (top line) is done with four nodes and we can recover both the blocks
in the graph and the average feature on each blocks (colors on the nodes). The second problem is
more complex due to the two modes per block but one can see that when approximating the graph
with eight nodes we recover both the structure between the blocks and the sub-clusters in each block,
which illustrates the strength of FGW that encodes both features and structures.
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Graph with communities Approximate Graph Clustering with transport matrix

Graph with bimodal communities Approximate Graph Clustering with transport matrix

Figure 14. Example of community clustering on graphs using FGW. (top) Community clustering
with four communities and uniform features per cluster. (bottom) Community clustering with four
communities and bimodal features per cluster (and two nodes per cluster in the approximate graph).

5.4. Unsupervised Learning: Graphs Clustering

In the last experiment, we evaluate the ability of FGW to perform a clustering of multiple graphs
and to retrieve meaningful barycenters of such clusters. To do so, we generate a dataset of four
groups of community graphs. Each graph follows a simple Stochastic Block Model [60,61] and the
groups are defined w.r.t. the number of communities inside each graph and the distribution of their
labels. More precisely, labels are drawn from a 1D gaussian distribution specific to each community:
each feature of a node is drawn from a lawN (nc1 + nc2 , σ), where nc1 is the index of the community and
nc2 ∈ {0, 1} to create two modes per community. The dataset is composed of 40 graphs (10 graphs per
group) and the number of nodes of each graph is drawn randomly from {20, 30, . . . , 50}, as illustrated
in Figure 15. We perform a k-means clustering using the FGW barycenter defined in Equation (27) as
the centroid of the groups and the FGW distance for the cluster assignment. We set the number of
nodes of each centroid to 30. We perform a thresholding on the pairwise similarity matrix C of the
centroid at the end in order to obtain an adjacency matrix for visualization purposes. The threshold
value is chosen, so as to minimize the distance that is induced by the Frobenius norm between the
original matrix C and the shortest path matrix obtained from the adjacency matrix. The evolution of
the barycenters along the iterations is reported in Figure 15. We can see that these centroids recover
community structures and feature distributions that are representative of their cluster content. On this
example, note that the clustering perfectly recovers the known groups in the dataset. To the best of our
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knowledge, there exists no other method that is able to perform a clustering of graphs of arbitrary size
and to retrieve the average graph in each cluster without having to solve a pre-image problem.
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Figure 15. (left) Examples from the clustering dataset, color indicates the labels. (right) Evolution of
the centroids of each cluster in the k-means clustering, from the random initialization until convergence
to the final centroid.

6. Conclusions

This paper presents the Fused Gromov–Wasserstein (FGW) distance. Inspired by both Wasserstein
and Gromov–Wasserstein distances, FGW can compare structured objects by including the inherent
relations that exist between the elements of the objects, constituting their structure information,
and their feature information, part of a common ground space between each structured objects.
We have stated mathematical results about this new distance, such as metric, interpolation,
and geodesic properties. We have also provided a concentration result for the convergence of finite
samples. In the discrete case, algorithms to compute FGW itself and related FrÃ c©chet means are
provided. The use of this new distance is illustrated on problems involving structured objects, such as
time series embedding, graph classification, graph barycenter computation, and graph clustering.
Several questions are raised by this work. From a practical side, the FGW method is quite expensive
to compute and further works will try to lower the computational complexity of the underlying
optimization problem to ensure better scalability to very large graphs. Moreover, while we mostly
consider in this work structure of graphs described by the shortest path, other choices could be made,
such as the distances based on the Laplacian of the graph. Finally, from a theoretical point of view, it is
often valuable that the geodesic path be unique, so as to defined properly objects, such as gradient
flows. One interesting result would be, for example, to see if the geodesic is unique with respect to the
strong isomorphism relation.

7. Proofs of the Mathematical Properties

This section presents all of the proofs of previous theorems and results. We note Pi#µ the projection
on the i-th marginal of µ. We will frequently use the following lemma:
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Lemma 2. Let q ≥ 1. We have:

∀x, y ∈ R+, (x + y)q ≤ 2q−1(xq + yq). (30)

Proof. Indeed, if q > 1

(x + y)q =
(
( 1

2q−1 )
1
q x

( 1
2q−1 )

1
q
+ ( 1

2q−1 )
1
q y

( 1
2q−1 )

1
q

)q ≤
[
( 1

2q−1 )
1

q−1 + ( 1
2q−1 )

1
q−1
]q−1( xq

1
2q−1

+ yq

1
2q−1

)

= xq
1

2q−1
+ yq

1
2q−1

.

Last inequality is a consequence of HÃlder inequality. The result remains valid for q = 1.

7.1. Proof of Proposition 1—Comparison between FGW, GW and W

Proof. of the Proposition.
For the two inequalities (9) and (10), let π be an optimal coupling for the Fused

Gromov-Wasserstein distance between µ and ν (assuming its existence for now). Clearly:

dFGW,α,p,q(µ, ν) =
( ∫

(X×Ω×Y×Ω)2

(
(1− α)d(a, b)q + αL(x, y, x′, y′)q)p dπ((x, a), (y, b))dπ((x′, a′), (y′, b′))

) 1
p

≥
( ∫

X×Ω×Y×Ω

(1− α)pd(a, b)pq dπ((x, a), (y, b))
) 1

p
= (1− α)

( ∫

Ω×Ω

d(a, b)pqdP2,4#π(a, b)
) 1

p

Becasue π ∈ Π(µ, ν) the coupling P2,4#π is in Π(µA, νB). So by suboptimality:

dFGW,α,p,q(µ, ν)≥(1− α)(dW,pq(µA, νB))
q

which proves Equation (9). Same reasoning is used for Equation (10).
For the last inequality (11), let π ∈ Π(µ, ν) be any admissible coupling. By suboptimality:

dFGW,α,p,1(µ, ν) ≤
( ∫

(X×Ω×Y×Ω)2

(
(1−α)d(a, b) + α|dZ(x, x′)− dZ(y, y′)|

)pdπ((x, a), (y, b))dπ((x′, a′), (y′, b′))
) 1

p

(∗)
≤
( ∫

(X×Ω×Y×Ω)2

(
(1−α)d(a, b) + αdZ(x, y) + αdZ(x′, y′)

)pdπ((x, a), (y, b))dπ((x′, a′), (y′, b′))
) 1

p

≤
( ∫

(X×Ω×Y×Ω)2

(
(1−α)d(a, b) + αdZ(x, y) + (1−α)d(a′, b′) + αdZ(x′, y′)

)pdπ((x, a), (y, b))dπ((x′, a′), (y′, b′))
) 1

p

(∗∗)
≤ 2

( ∫

X×Ω×Y×Ω

(
(1−α)d(a, b) + αdZ(x, y)

)pdπ((x, a), (y, b))
) 1

p

(*) is the triangle inequality of dZ and (**) Minkowski inequality. Since this inequality is true for any
admissible coupling π we can apply it with the optimal coupling for the Wasserstein distance defined
in the proposition and the claim follows.

7.2. Proof of Theorem 1—Metric Properties of FGW

We prove the theorem point by point: first the existence, then the equality relation and finally the
triangle inequality statement. We first recall the definition of weak convergence of probability measure
in a metric space [62]:

Definition 10 (Weak-convergence on a metric space). Let (µn)n∈N be a sequence of probability measures
on (X,B(d)) where (X, d) is a completely metrizable topological space (Polish space) and B(d) is the Borel σ
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algebra. We say that (µn)n∈N converges weakly to µ in (X,B(d)) if for all continuous and bounded functions
f : X → R: ∫

X
f dµn →

∫

X
f dµ (31)

We also recall the definition of semi continuity in a metric space:

Definition 11 (Lower-semi continuity). On a metric space (X, d) a function f : X → R∪ {+∞} is said to
be lower semi-continuous (l.s.c.) if for every sequence xn → x we have f (x) ≤ lim inf f (xn)

To state the existence of a minimizer, we will rely on the following lemma:

Lemma 3. Let W be a Polish space. If f : W ×W → R+ ∪+∞ is lower semi-continuous, then the functional
J : P(W)→ R∪+∞ with J(µ) =

∫ ∫
f (w, w′)dµ(w)dµ(w′) is l.s.c. for the weak convergence of measures.

Proof. f is l.s.c. and bounded from below by 0. We can consider ( fk)k a sequence of continuous and
bounded functions converging increasingly to f (see e.g., [63]). By the monotone convergence theorem

Jk(µ)→ J(µ)
de f
= supk Jk(µ) = supk

∫ ∫
fkdµdµ.

Moreover every Jk is continuous for the weak convergence. Using Theorem 2.8 [62] on the Polish
space W ×W we know that if µn converges weakly to µ then the product measure µn ⊗ µn converges
weakly to µ⊗ µ. In this way limn→∞ Jk(µn) = Jk(µ) since fk are continuous and bounded. In particular
every Jk is l.s.c.

We can conclude that J is l.s.c. as the supremum of l.s.c. functionals on the metric space of
(P(W), δ) (see e.g., [63]). Here we equippedP(W) with a metric δ as e.g. δ(µ, ν) = ∑∞

k=1 2−k|
∫

W fkdµ−∫
W fkdν| (see Remark 5.11 in [64]).

Proposition 2. Existence of an optimal coupling for the FGW distance. For p, q ≥ 1, π → Ep,q,α(π) always
achieves a infimum π∗ in Π(µ, ν) such that dFGW,α,p,q(µ, ν) = Ep,q,α(π∗)< +∞.

Proof. Since X×Ω and Y×Ω are Polish spaces we known that Π(µ, ν) ⊂ P(X ×Ω × Y ×Ω) is
compact (Theorem 1.7 in [63]), so by applying Weierstrass theorem we can conclude that the infimum
is attained at some π∗ ∈ Π(µ, ν) if π → Ep,q,α(π) is l.s.c.

We will use Lemma 3 to prove that the functionnal is l.s.c. on Π(µ, ν). If we consider W =

X ×Ω× Y ×Ω which is a a metric space endowed with the distance dX ⊕ d⊕ dY ⊕ d and f ((w =

(x, a, y, b), w′ = (x′, a′, y′, b′)) = ((1− α)d(a, b)q + αL(x, y, x′, y′)q)p then f is l.s.c. by continuity of d,
dX and dY. With the previous reasoning we can conclude that the infimum is attained. Finally finiteness
come from:

∫

(X×Ω×Y×Ω)2

(
(1− α)d(a, b)q + αL(x, y, x′, y′)q)p dπ((x, a), (y, b)) dπ((x′, a′), (y′, b′))

∗
≤
∫

2p−1(1− α)d(a, b)qpdµA(a)dν(b) +
∫

2p−1αL(x, y, x′, y′)qpdµX(x)dµX(x′)dνY(y′)dνY(y′)

∗∗
< +∞

(32)

where in (*) we used Lemma 30 and in (**) that µ, ν are in Spq(Ω).

Proposition 3. Equality relation. For α ∈]0, 1[, dFGW,α,p,q(µ, ν) = 0 if an only if there exists a bijective
function f = ( f1, f2) : supp(µ)→ supp(ν) such that:

f #µ = ν (33)

∀(x, a) ∈ supp(µ) , f2(x, a) = a (34)
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∀(x, a), (x′, a′) ∈ supp(µ)2, dX(x, x′) = dY( f1(x, a), f1(x′, a′)) (35)

Moreover if (µ, ν) are generalized labeled graphs then dFGW,α,p,q(µ, ν) = 0 if and only if (X, dX , µ) and
(Y, dY, ν) are strongly isomorphic.

Proof. For the first point, let us assume that there exists a function f verifying (33)–(35). We consider
the map π = (Id × f )#µ ∈ Π(µ, ν). We note f = ( f1, f2). Then:

Ep,q,α(π) =
∫

(X×Ω×Y×Ω)2

(
(1− α)d(a, b)q + αL((x, y, x′, y′)q

)p
dπ((x, a), (y, b))dπ((x′, a′), (y′, b′))

=
∫

(X×Ω)2

(
(1− α)d(a, f2(x, a))q + αL

(
(x, f1(x, a), x′, f1(x′, a′)

)q
)p

dµ(x, a)dµ(x′, a′)

=
∫

(X×Ω)2

(
(1− α)d(a, f2(x, a))q + α|dX(x, x′)− dY( f1(x, a), f1(x′, a′))|q

)p
dµ(x, a)dµ(x′, a′)

= 0

(36)

Conversely, suppose that dFGW,α,p,q(µ, ν) = 0. To prove the existence of a map f : supp(µ) →
supp(ν) verifying (33)–(35) we will use the Gromov-Wasserstein properties. We are looking for a
vanishing Gromov-Wassersein distance between the spaces X×Ω and Y×Ω equipped with our two
measures µ and ν.

More precisely, we define for
(
(x, a), (y, b), (x′, a′), (y′, b′)

)
∈ (X×Ω×Y×Ω)2 and β ∈]0, 1[:

dX×Ω
(
(x, a), (x′, a′)

)
= (1− β)dX(x, x′) + βd(a, a′)

and
dY×Ω

(
(y, b), (y′, b′)

)
= (1− β)dY(y, y′) + βd(b, b′)

We will prove that dGW,p(dX×Ω, dY×Ω, µ, ν) = 0. To show that we will bound the Gromov cost
with the metrics dX×Ω, dY×Ω by the Gromov cost with the metrics dX , dY and a Wasserstein cost.

Let π ∈ Π(µ, ν) be any admissible transportation plan. Subsequently, for n ≥ 1:

Jn(dX×Ω, dY×Ω, π)
de f
=

∫

(X×Ω×Y×Ω)2

L(x, y, x′, y′)ndπ((x, a), (y, b))dπ((x′, a′), (y′, b′))

=
∫

(X×Ω×Y×Ω)2

|(1− β)(dX(x, x′)− dY(y, y′)) + β(d(a, a′)− d(b, b′))|ndπ((x, a), (y, b))dπ((x′, a′), (y′, b′))

≤
∫

(X×Ω×Y×Ω)2

(1− β)|dX(x, x′)− dY(y, y′)|ndπ((x, a), (y, b)) dπ((x′, a′), (y′, b′))

+
∫

(X×Ω×Y×Ω)2

β|d(a, a′)− d(b, b′)|ndπ((x, a), (y, b))dπ((x′, a′), (y′, b′))

using Jensen inequality with convexity of t→ tn and subadditivity of |.| . We note (∗) the first term
above and (∗∗) the second term above. By the triangle inequality property of d we have:

(**)≤ β
∫

(
X×Ω×Y×Ω)2

(d(a, b) + d(a′, b′)
)ndπ((x, a), (y, b)) dπ((x′, a′), (y′, b′))

de f
= βMn(π) such that we

have shown:

∀π ∈ Π(µ, ν), ∀n ≥ 1, Jn(dX×Ω, dY×Ω, π) ≤ (1− β)Jn(dX , dY, π) + βMn(π) (37)
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Now let π∗ be an optimal coupling for dFGW,α,p,q between µ and ν. By hypothesis
dFGW,α,p,q(µ, ν) = 0 so that:

Jqp(dX , dY, π∗) = 0 (38)

and:
Hqp(π

∗) = 0. (39)

Subsequently,
∫

(X×Ω×Y×Ω)

d(a, b)qpdπ∗((x, a), (y, b))=0 which implies that d is zero π∗ a.e. so that
∫

(X×Ω×Y×Ω)

d(a, b)mdπ∗((x, a), (y, b)) = 0 for any m ∈ N∗. In this way:

Mqp(π
∗) = β

∫

(X×Ω×Y×Ω)2

∑
h

(
qp
h

)
d(a, b)hd(a′, b′)qp−hdπ∗((x, a), (y, b))dπ∗((x′, a′), (y′, b′))

= β ∑
h

(
qp
h

)( ∫

(X×Ω×Y×Ω)

d(a, b)hdπ∗((x, a), (y, b))
)( ∫

(X×Ω×Y×Ω)

d(a′, b′)qp−hdπ∗((x′, a′), (y′, b′))
)
= 0

Using Equation (37), we have shown

Jqp(dX×Ω, dY×Ω, π∗) = 0

which implies that dGW,p(dX×Ω, dY×Ω, µ, ν) = 0 for the coupling π∗.
Thanks to the Gromov–Wasserstein properties (see [17]) this states the existence of an isometry

between supp(µ) and supp(ν). So there exists a surjective function f = ( f1, f2) : supp(µ)→ supp(ν),
which verifies P.1 and:

∀((x, a), (x′, a′)) ∈ (supp(µ))2, dX×Ω((x, a), (x′, a′)) = dY×Ω( f (x, a), f (x′, a′)) (40)

or equivalently:

∀((x, a), (x′, a′)) ∈ (supp(µ))2, (1− β)dX(x, x′) + βd(a, a′) = (1− β)dY( f1(x, a), f1(x′, a′)) + βd( f2(x, a), f2(x′, a′)) (41)

In particular, π∗ is concentrated on {(x, y) = f (x, y)} or equivalently π∗ = (Id × f )#µ. Injecting π∗

in (39) leads to:

Hqp(π
∗) =

∫

(X×Ω×Y×Ω)

d(a, b)qpdπ∗((x, a), (y, b)) =
∫

X×Ω

d(a, f2(x, a))qpdµ(x, a) = 0 (42)

Which implies:
∀(x, a) ∈ supp(µ) , f2(x, a) = a (43)

Moreover, using the equality (41), we can conclude that:

∀(x, a)(x′, a′) ∈ supp(µ)2, dX(x, x′) = dY( f1(x, a), f1(x′, a′)) (44)

In this way, f verifies all of the properties (33)–(35).
Moreover, suppose that µ and ν are generalized labeled graphs. In this case there exists ` f : X → A

surjective such that µ = (I × ` f )#µX . Afterwards, (44) implies that:

∀(x, x′) ∈ supp(µX)
2, dX(x, x′) = dY( f1(x, ` f (x)), f1(x′, ` f (x′))) (45)

We define I : supp(µX) → supp(µY) such that I(x) = f1(x, ` f (x)). Then we have by (45)
dX(x, x′) = dY(I(x), I(x′)) for (x, x′) ∈ supp(µX)

2. Overall we have f (x, a) = (I(x), a) for all (x, a) ∈
supp(µ). Also since f #µ = ν we have I#µX = νY.
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Moreover, I is a surjective function. Indeed let y ∈ supp(νY). Let b ∈ supp(νB) such that
(y, b) ∈ supp(ν). By surjectivity of f there exists (x, a) ∈ supp(µ) such that (y, b) = f (x, a) = (I(x), a)
so that y = I(x).

Overall, f satisfies all P.1, P.2 and P.3 if µ and ν are generalized labeled graphs. The converse is
also true using the reasoning in (36).

Proposition 4. Symmetry and triangle inequality.
dFGW,α,p,q is symmetric and for q = 1 satisfies the triangle inequality. For q ≥ 2 the triangle inequality is

relaxed by a factor 2q−1

To prove this result we will use the following lemma:

Lemma 4. Let (X×Ω, dX, µ), (Y×Ω, dY, β), (Z ×Ω, dZ, ν) ∈ S(Ω)3. For (x, a), (x′, a′) ∈ (X×Ω)2,
(y, b), (y′, b′) ∈ (Y×Ω)2 and (z, c), (z′, c′) ∈ (Z×Ω)2 we have:

L(x, z, x′, z′)q ≤ 2q−1(L(x, y, x′, y′)q + L(y, z, y′, z′)q) (46)

d(a, c)q ≤ 2q−1(d(a, b)q + d(b, c)q) (47)

Proof. Direct consequence of (30) and triangle inequalities of d, dX , dY, dZ.

Proof of Proposition 4. To prove the triangle inequality of dFGW,α,p,q distance for arbitrary measures
we will use the Gluing lemma which stresses the existence of couplings with a prescribed structure.
Let (X×Ω, dX , µ), (Y×Ω, dY, β), (Z×Ω, dZ, ν) ∈ S(Ω)3.

Let π1 ∈ Π(µ, β) and π2 ∈ Π(β, ν) be optimal transportation plans for the Fused
Gromov-Wasserstein distance between µ, β and β, ν respectively. By the Gluing Lemma (see [15]
and Lemma 5.3.2 in [65]) there exists a probability measure π ∈ P

(
(X×Ω)× (Y×Ω)× (Z ×Ω)

)

with marginals π1 on (X×Ω)× (Y×Ω) and π2 on (Y×Ω)× (Z×Ω). Let π3 be the marginal of π
on (X×Ω)× (Z×Ω). By construction π3 ∈ Π(µ, ν). So by suboptimality of π3:

dFGW,α,p,q(dX , dZ, µ, ν) ≤
( ∫

(X×Ω×Z×Ω)2

(
(1− α)d(a, c)q + αL(x, z, x′, z′)q)pdπ3((x, a), (z, c))dπ3((x′, a′), (z′, c′))

) 1
p

=
( ∫

(X×Ω×Y×Ω×Z×Ω)2

(
(1− α)d(a, c)q + αL(x, z, x′, z′)q)pdπ((x, a), (y, b), (z, c))dπ((x′, a′), (y′, b′), (z′, c′))

) 1
p

(∗)
≤ 2q−1

( ∫

(X×Ω×Y×Ω×Z×Ω)2

(
(1− α)d(a, b)q + (1− α)d(b, c)q + αL(x, y, x′, y′)q + αL(y, z, y′, z′)q)p

dπ((x, a), (y, b), (z, c))dπ((x′, a′), (y′, b′), (z′, c′))
) 1

p

(∗∗)
≤ 2q−1

(( ∫

(X×Ω×Y×Ω×Z×Ω)2

(
(1− α)d(a, b)q + αL(x, y, x′, y′)q)pdπ((x, a), (y, b), (z, c))dπ((x′, a′), (y′, b′), (z′, c′))

) 1
p

+
( ∫

(X×Ω×Y×Ω×Z×Ω)2

(
(1− α)d(b, c)q + αL(y, z, y′, z′)q)pdπ((x, a), (y, b), (z, c))dπ((x′, a′), (y′, b′), (z′, c′))

) 1
p
)

= 2q−1
(( ∫

(X×Ω×Y×Ω)2

(
(1− α)d(a, b)q + αL(x, y, x′, y′)q)pdπ1((x, a), (y, b))dπ1((x′, a′), (y′, b′))

) 1
p

+

(∫

(Y×Ω×Z×Ω)2

(
(1− α)d(b, c)q + αL(y, z, y′, z′)q)pdπ2((y, b), (z, c)) dπ2((y′, b′), (z′, c′))

) 1
p
)

= 2q−1(dFGW,α,p,q(µ, β)+dFGW,α,p,q(β, ν))

with (*) comes from (46) and (47) and (**) is Minkowski inequality. So when q = 1, dFGW,α,p,q satisfies
the triangle inequality and when q > 1, dFGW,α,p,q satisfies a relaxed triangle inequality so that it
defines a semi-metric as described previously.
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7.3. Proof of Theorem 2—Convergence and Concentration Inequality.

Proof. The proof of the convergence in FGW directly stems from the weak convergence of the empirical
measure and Lemma 3. Moreover, since µn and µ are both in the same ground space, we have:

dFGW,α,p,1(µn, µ) ≤ 2dW,p(µn, µ) =⇒ E[dFGW,α,p,1(µn, µ)] ≤ 2E[dW,p(µn, µ)].

We can directly apply Theorem 1 in [31] to state the inequality.

7.4. Proof of Theorem 3—Interpolation Properties between GW and W

Proof. Let πOT ∈ Π(µA, νB) be an optimal coupling for the pq-Wasserstein distance between µA and
νB. We can use the same Gluing lemma (Lemma 5.3.2 in [65]) to construct:

ρ ∈ P(

µ︷ ︸︸ ︷
X× ︸ ︷︷ ︸

πOT

Ω×
ν︷ ︸︸ ︷

Ω×Y)

such that ρ ∈ Π(µ, ν) and P2,3#ρ = πOT .
Moreover we have:

∫

Ω×Ω

d(a, b)pqdπOT(a, b) =
∫

X×Ω×Ω×Y

d(a, b)pqdρ(x, a, b, y) (48)

Let α ≥ 0 and πα optimal plan for the Fused Gromov-Wasserstein distance between µ and ν.
We can deduce that:

dFGW,α,p,q(µ, ν)p − (1− α)pdW,pq(µA, νB)
pq

=
∫

(X×Ω×Y×Ω)2

(
(1− α)d(a, b)q + αL(x, y, x′, y′)q

)p
dπα((x, a), (y, b))dπα((x′, a′), (y′, b′))−

∫

Ω×Ω

(1− α)pd(a, b)pqdπOT(a, b)

(∗)
≤

∫

(X×Ω×Y×Ω)2

(
(1− α)d(a, b)q + αL(x, y, x′, y′)q

)p
dρ(x, a, b, y)dρ(x′, a′, b′, y′)−

∫

X×Ω×Y×Ω

(1− α)pd(a, b)pqdρ(x, a, b, y)

= (1− α)p
∫

(X×Ω×Y×Ω)2

d(a, b)pqdρ(x, a, b, y)dρ(x′, a′, b′, y′)− (1− α)p
∫

X×Ω×Y×Ω

d(a, b)pqdρ(x, a, b, y)

+
p−1

∑
k=0

(
p
k

)
(1− α)kαp−k

∫

(X×Ω×Y×Ω)2

d(a, b)qk L(x, y, x′, y′)q(p−k)dρ(x, a, b, y)dρ(x′, a′, b′, y′)

=
p−1

∑
k=0

(
p
k

)
(1− α)kαp−k

∫

(X×Ω×Y×Ω)2

d(a, b)qk L(x, y, x′, y′)q(p−k)dρ(x, a, b, y)dρ(x′, a′, b′, y′).

We note Hk =
∫

(X×Ω×Y×Ω)2
d(a, b)qkL(x, y, x′, y′)q(p−k)dρ(x, a, b, y)dρ(x′, a′, b′, y′).

Using (9) we have shown that:

(1− α)(dW,pq(µA, νB))
q ≤ dFGW,α,p,q(µ, ν) ≤

(
(1− α)p(dW,pq(µA, νB))

pq + ∑
p−1
k=0 (

p
k)(1− α)kαp−k Hk

) 1
p

Accordingly, lim
α→0

dFGW,α,p,q(µ, ν) = (dW,pq(µA, νB))
q.

For the case α → 1 we rather consider πGW ∈ Π(µX, νY) an optimal coupling for the
pq-Gromov–Wasserstein distance between µX and νY and we construct

γ ∈ P(

µ︷ ︸︸ ︷
Ω× ︸ ︷︷ ︸

πGW

X×
ν︷ ︸︸ ︷

Y×Ω)
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such that γ ∈ Π(µ, ν) and P2,3#ρ = πGW . In the same way as previous reasoning we can derive:

α(dGW,pq(µX , νY))
q ≤ dFGW,α,p,q(µ, ν) ≤

(
αp(dGW,pq(µX , νY))

pq +
p−1

∑
k=0

(
p
k

)
(1− α)p−kαk Jk)

1
p (49)

with Jk =
∫

d(a, b)q(p−k)L(x, y, x′, y′)qkdρ(x, a, b, y)dρ(x′, a′, b′, y′). In this way lim
α→1

dFGW,α,p,q(µ, ν) =

(dGW,pq(µX , νY))
q.

7.5. Proof of Theorem 4—Constant Speed Geodesic

Proof. Let t, s ∈ [0, 1]. Recalling:

∀(x, a), (y, b) ∈ X×Ω×Y×Ω, ηt(x, a, y, b) = (x, y, (1− t)a + tb) (50)

We note St = (X×Y×Ω, (1− t)dX ⊕ tdY, µt = ηt#π∗)t∈[0,1] and dt = (1− t)dX ⊕ tdY. Let ‖.‖ be
any `m norm for m ≥ 1. It suffices to prove:

dFGW,α,p,1(µt, µs) ≤ |t− s|dFGW,α,p,1(µ0, µ1) (51)

To do so, we consider ∆t
s ∈ P(X×Y×Ω× X×Y×Ω) defined by ∆t

s = (ηt × ηs)#π∗ ∈ Π(µt, µs)

and the following “diagonal” coupling:

dγt
s((x, y), a, (x′′, y′′), b) = d∆t

s((x, y), a, (x′′, y′′), b)dδ(x0,x1)
(x′′0 , x′′1 ) (52)

Subsquently, γt
s ∈ P(X × Y ×Ω× X × Y ×Ω) and since ∆t

s ∈ Π(µt, µs) then γt
s ∈ Π(µt, µs) So

by suboptimality:

dFGW,α,p,1(µt, µs)
p ≤

∫

(X×Y×Ω×X×Y×Ω)2

(
(1− α)d(a, b) + α|dt[(x, y), (x′, y′)]−ds[(x′′, y′′), (x′′′, y′′′)]|

)p

dγt
s(x, y, a, x′′, y′′, b)dγt

s(x′, y′, a′, x′′′, y′′′, b′)

=
∫

(X×Y×Ω×X×Y×Ω)2

(
(1− α)d(a, b) + α|dt[(x, y), (x′, y′)]−ds[(x, y), (x′, y′)]|

)p

d∆t
s(x, y, a, x, y, b)d∆t

s(x′, y′, a′, x′, y′, b′)

=
∫

(X×Ω×Y×Ω)2

(
(1− α)‖(1− t)a + tb−(1−s)a−sb‖+ α|(1− t)dX(x, x′)+tdY(y, y′)− (1− s)dX(x, x′) + sdY(y, y′)|

)p

dπ∗(x, a, y, b)dπ∗(x′, a′, y′, b′)

= |t− s|p
∫

(X×Ω×Y×Ω)2

(
(1− α)‖a− b‖+ α|dX(x, x′)− dY(y, y′)|

)p
dπ∗(x, a, y, b)dπ∗(x′, a′, y′, b′)

So dFGW,α,p,1(µt, µs) ≤ |t− s|dFGW,α,p,1(d0, d1, µ0, µ1).
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