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Two-dimensional elastic Bloch waves in helical periodic structures

C.W. Zhoua, F. Treyssèdea,∗

aGERS-GeoEND, Univ Gustave Eiffel, IFSTTAR, F-44344 Bouguenais, France

Abstract

The goal of this paper is to investigate the propagation of two-dimensional elastic Bloch waves in helical peri-

odic structures, obeying two discrete screw symmetries about the same axis. First, a three-dimensional coordinate

system is built from the two helical directions of periodicity of the problem and the radial coordinate originating

from the symmetry axis. The existence of Bloch waves in bi-helical structures can be justified owing to the inde-

pendence of the metric tensor of the coordinate system on both helical coordinates. Considering the elastodynamic

equilibrium equations, Bloch theorem is expressed in appropriate bases to project the vector wavefields, namely the

covariant/contravariant bases of the bi-helical coordinate system (or, alternatively, the cylindrical basis). From a

geometrical point of view, the three-dimensional unit cell is delimited by non-plane boundaries, which must be care-

fully parametrized. The so-called wave finite element method is then applied to numerically solve the Bloch wave

eigenproblem and the implementation of the numerical method in a bi-helical system is detailed. Owing to the cylin-

drical nature of the geometry, the two-dimensional propagation constants are not independent to each other. The

relationship between both constants is established. The calculation of wave mode properties (wavenumbers, group

and energy velocities) is performed along the helical propagation directions, as well as the straight axial and circum-

ferential directions. Numerical validations of the overall approach are carried out for cylindrical uniform tubes and a

chiral nanotube. Finally, the method is applied to a complex multi-wire structure, often encountered in energy cables,

consisting of two layers of helical wires twisted in opposite directions.
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1. Introduction

The knowledge of elastic wave propagation characteristics is of great interest for the dynamic analysis of elongated

structures, particularly in mid or high frequencies when the size of the structure is large compared to the wavelength.

It provides the theoretical background necessary for many applications, such as nondestructive evaluation, struc-

tural health monitoring, vibration and noise reduction or statistical energy analysis for instance. Elongated structures

can most often be considered as waveguides along one direction (beam-like structures) or two directions (plate- or

tube-like structures), obeying continuous symmetry in these directions (uniform waveguides) or discrete symmetry

(periodic waveguides). Waves in these structures are multimodal and dispersive. Modeling tools are required to un-

derstand the mechanism of their propagation. Typically, dispersion curves of phase and group velocities as functions

of frequency help to identify wave modes that propagate in a frequency range of interest. In the case of periodic

waveguides, bandgaps usually occur. These bandgaps provide valuable information for the design of phononic crys-

tals to mitigate vibrations. Conversely, in nondestructive evaluation, the propagation distance of waves has to be

maximized and these bandgaps have to be avoided.

The analysis of arbitrarily shaped three-dimensional structures requires numerical methods. Some of the most

popular and efficient numerical techniques are based on finite element (FE) methods. The consideration of symmetries

allows significant simplifications and reduces computation cost. A first FE approach consists in discretizing only the

cross-section of the waveguide while describing analytically the direction of wave propagation. This approach has
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been applied under various names in the literature: the extended Ritz technique, the thin layer method for stratified

waveguides in geophysics, the strip-element method, the semi-analytical finite element (SAFE) method or the scaled

boundary finite element method in ultrasonics (see e.g. Refs. [1, 2, 3, 4, 5, 6, 7, 8]). This method allows studying

cross-sections of arbitrary shapes. Since the eigenproblem is reduced on the cross-section (two-dimensional), the

number of degrees of freedom is drastically reduced compared to a fully three-dimensional approach. However, this

method is only applicable to uniform waveguides. When the structure is periodic, a second FE approach must be used.

It consists in applying boundary conditions based on Bloch theorem in the finite element model of a single repetitive

unit cell of the problem (see Refs. [9, 10, 11, 12, 13, 14, 15] for instance). This second approach is usually referred to

as the Wave Finite Element Method (WFEM) in the literature and leads to an eigenproblem which is three-dimensional

but reduced on a single unit cell. The WFEM can be used to study both uniform and periodic waveguides.

The above-cited references deal with waveguides having straight directions of symmetry (straight propagation

directions), that is to say with translationally symmetric waveguides. A huge amount of works can be found in that

case and an exhaustive review on this topic is beyond the scope of this paper. Conversely, the literature concerning the

numerical modeling of curved waveguides is scarcer. One-directional uniform waveguides have been investigated with

semi-analytical FE methods by accounting for continuous rotational symmetry, i.e. periodicity along a circumferential

direction, occurring for instance in circular bars, toroidal pipes or tyres [16, 17, 18], as well as for continuous screw

symmetry, i.e. periodicity along a helical direction, for the study of twisted bars, helical springs or multi-wire helical

strands [19, 20, 21] (note that rotational symmetry can be viewed as a particular case of screw symmetry). One-

directional curved waveguides have also been considered using the WFEM with discrete symmetry of rotational

type [22] or screw type [23, 24, 25].

The case of two-directional periodic waveguides, curved in one or two directions, mainly concerns structures of

cylindrical type. The WFEM has been used for modeling cylindrical panels involving discrete rotational symmetry

along the circumferential direction, combined either with discrete translational symmetry [26, 27, 28] or screw sym-

metry [29]. Nanotubes involving two discrete screw symmetries have been investigated with the WFEM thanks to

revisited periodic boundary conditions [30]. Considering multi-wire helical structures, the WFEM with discrete rota-

tional symmetry has been combined with a semi-analytical finite element approach accounting for continuous screw

symmetry [31].

This paper is concerned with two-dimensional elastic Bloch waves in helical structures obeying two discrete screw

symmetries about the same axis. For simplicity, this type of periodicity will be termed as bi-helical in this paper. Since

symmetries are of discrete type, SAFE-like methods are excluded and WFEM methods must be used. The type of

problem considered here is similar to the nanotube investigation reported in Ref. [30], but the present paper adopts

a different point of view. The analysis starts by building a coordinate system from the two helical directions of

periodicity of the problem and the radial direction from the symmetry axis. The existence of Bloch waves in bi-

helical structures can then be justified owing to the independence of the metric tensor of the curvilinear system on

both helical coordinates. Because elastodynamics is governed by a vector wave equation, it is pointed out that Bloch

theorem has to be expressed in appropriate bases to project the vector wavefields, namely the covariant/contravariant

bases of the bi-helical system. It is shown that the more usual cylindrical basis can alternatively be used, which

theoretically justifies the revisited boundary conditions proposed in Ref. [30]. The paper also details how to build the

three-dimensional geometry of the bi-helical unit cell, which is delimited by non-plane boundaries and must hence be

carefully parametrized.

The paper is organized as follows. Section 2 introduces a preliminary parametrization of the problem from a

geometrical point of view. In Sec. 3, the so-called bi-helical coordinate system is built. The existence of two-

dimensional Bloch waves is discussed in Sec. 4, as well as the appropriate bases for expressing the components

of vector wavefields. Section 5 details the implementation of the WFEM and the calculation of modal properties

(wavenumbers, group and energy velocities). Numerical results are presented in Secs. 6 and 7. Section 6 validates the

overall approach with cylindrical tubes of uniform type as well as the chiral nanotube of Ref. [30]. Section 7 finally

gives a more complex application to a multi-wire structure involving two layers of helical wires twisted in opposite

directions.

As typical examples of bi-helical periodic structures, one could cite chiral nanotubes [32], grid-stiffened com-

posite cylinders [33, 34, 35] or multi-wire cables [36, 37]. The main motivation of this paper is to investigate wave

propagation in cable armors used in the energy industry. The armor of a cable provides the mechanical protection

to the internal active part of the cable, including the conductors, and is typically multi-wired with one or two layers.
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(a) (b)

Figure 1: Example of double armor cable. The internal active part is not represented. The armor consists of two protecting layers of helical

steel wires twisted in opposite directions. The two layers are typically separated by an intermediate cylindrical sheath (also represented are the

internal and external coatings surrounding the armor). (b) Sketch of the Cartesian coordinate system (x, y, z), the cylindrical system (r, θ, z, ) and

the bi-helical system (s1, s2, r). The curves s1 and s2 follow the outer and inner wires respectively. Here, the bi-helical system is plotted on the

intermediate sheath.

In the latter case, the two protecting layers of wires are twisted in opposite directions, as shown in Fig. 1a, and the

structure can be considered as a bi-helical periodic media. The analysis of wave propagation in cable armors is of

potential interest for the development of nondestructive techniques to asses their structural integrity.

2. Preliminary parametrization and problem statement

Let us consider a periodic structure of cylindrical type having two directions of periodicity. The Cartesian co-

ordinates are denoted as (x, y, z). The cylindrical coordinates are denoted as (r, θ, z), where r, θ and z are the radial,

circumferential and axial directions respectively (with x = r cos θ and y = r sin θ). We assume that both directions

of periodicity are inclined with respect to θ and z and are hence helical, resulting in a bi-helical periodicity. These

directions of periodicity are tangent to helical curves, denoted as s1 and s2. For clarity, the coordinate systems are

sketched in Fig. 1b for the example of a double armor cable. As shown in Fig. 2, the unit cells of the periodic structure

can therefore be delimited owing to two virtual layers of helices, each layer having their own helix parameters (in

particular, the layers can be twisted in opposite directions).

Let us denote these two virtual layers as Layer 1 and Layer 2, divided by N1 helices oriented along s1 and N2

helices oriented along s2 respectively. In the following, R1 and φ1 will denote the radius and the lay angle of the

helices of Layer 1 (φ1 ∈ [−π/2, π/2]). Similarly, R2 and φ2 will denote the radius and the lay angle of the helices of

Layer 2 (φ2 ∈ [−π/2, π/2])). The helix lay angles are the angles measured with respect to the z-axis. In the remainder,

subscripts α (α = 1, 2) will be used to denote the layer index and the direction of periodicity.

The i-th helix of Layer α can be described by the position vector R
(i)
α (sα) in the Cartesian orthonormal basis

(ex, ey, ez) as follows:

R(i)
α (sα) = Rα cos

(

2π
sα

lα
+ θ(i)

α

)

ex + Rα sin

(

2π
sα

lα
+ θ(i)

α

)

ey + Lα
sα

lα
ez (i = 1, . . . ,Nα) (1)

where Lα = 2πRα/ tanφα is equal to the helix step measured along the z-axis (straight) and lα = 2πRα/ sin φα is the

curvilinear step. The angle θ
(i)
α = 2(i − 1)π/Nα is the phase angle of the i-th helix of Layer α. As illustrated in Fig. 2,

the lay angle φα can be positive or negative. If 0 < φα < π/2, the helices of Layer α are twisted around the z-axis in

the counter-clockwise direction (right-handed), Lα and lα are both positive. If −π/2 < ψα < 0, the helices are twisted

in the clockwise direction (left-handed), Lα and lα are both negative. In any case, Lα and lα always have the same

sign, so that sα always increases as z increases.

From Eq. (1), two particular cases can be noted:
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(a) (b) (c)

(d) (e) (f)

Figure 2: Example of bi-helical periodicity patterns. The unit cells are delimited by two virtual layers of helices, Layer 1 (blue) and Layer 2 (red).

The helical coordinate curves are denoted as s1 and s2. The covariant basis vectors g1 and g2 are tangent to these curves (for clarity of figures, the

modulus of g1 and g2 has been magnified). Various cases are represented: (a) pattern with no pure periodicity by rotation or translation (φ1φ2 > 0),

(b) the same but with φ1φ2 < 0, (c) N1 = N2 (rotationally symmetric pattern), (d) N1L2/N2L1 = −1 (translationally symmetric pattern), (e) N1/N2

reducible to 3/2, (f) N1L2/N2L1 = −3/2. In examples (e)-(f), the symmetry is not achieved by a single unit cell but by a group of 3 × 2 unit cells

(delimited by gray dashed lines in the figures).
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• φα = 0 for a given direction (i.e. 1/lα = 0 and Lα/lα = 1): the direction α is straight (sα = z), corresponding to

a symmetry of translational type,

• φα = ±π/2 for a given direction (i.e. lα = ±2πRα and Lα = 0): the direction α is circumferential (sα/Rα = ±θ),
yielding a symmetry of rotational type.

Figure 2 shows examples of bi-helical periodicity patterns for different geometrical parameters. As shown later

in Sec. 3.5, a rotational symmetry will always occur if the ratio N1/N2 is reducible, a translational symmetry will

always occur if the ratio N1L2/N2L1 is rational. Figures 2a-b show two examples excluding these particular cases,

which hence do not obey any periodicity of rotational or translational type. Figure 2c shows an example for N1 = N2,

yielding a rotationally symmetric unit cell. Figure 2d shows an example such that L1/L2 = ±N1/N2, yielding a

translationally symmetric unit cell. In any case, the rotational or translational symmetry can be combined with a

screw one provided that the other direction remains helical. As typical examples, one can cite armchair nanotubes and

zigzag nanotubes [38], combining screw with translational and rotational symmetries respectively. Periodic structures

in the latter case can be treated by the WFEM proposed in Ref [29] for pipes with helical patterns.

As discussed later in Sec. 3.5, translational or rotational symmetry can also be found by grouping more than

one unit cell (the so-obtained period is not the minimum one) – see examples given by Figs. 2e-f. In Fig. 2e, the

geometrical parameters have been chosen such that a group of 2 × 3 unit cells are rotationnaly symmetric. In Fig. 2f,

they have been set such that a group of 2 × 3 unit cells are translationnaly symmetric.

In this paper, we are interested in working with the minimum period of the problem in order to reduce the com-

putation cost as far as possible. Using the smallest cell has also the advantage to avoid curve folding phenomena,

simplifying the interpretation of dispersion curves [30]. The contribution of this paper lies in the analysis of bi-helical

periodic configurations, exploiting the smallest unit cell, such that: φα < {0,±π/2}, N1 , N2 and N1L2/N2L1 , ±1.

Note that in Fig. 2, the helices of Layer 1 and Layer 2 have been defined on the same cylindrical surface R1 = R2

(typically, the mid-surface of the structure). However, the helices can be defined on two different cylindrical surfaces,

R1 , R2, which can be convenient depending on the problem (typically, when Layer 1 and 2 are physical – see example

in Sec. 7).

3. Bi-helical coordinate system

In this section, a natural curvilinear coordinate system attached to the bi-helical geometry of the problem is built.

The properties of this system regarding Bloch waves are discussed. For an introduction to the use of general curvilinear

coordinate systems, tensor calculus and differential geometry, the reader may refer to Refs. [39, 40, 41] for instance.

3.1. Definition of the coordinate system

The coordinates of the system have to map the helical geometry of both layers. As shown in Fig. 2, the first

coordinate s1 is curvilinear and follows the helices of Layer 1, while the second coordinate s2 is also curvilinear but

follows the helices of Layer 2.

The helical direction s1 and s2 can be linearly related to the cylindrical coordinates θ and z as follows:

z =
L1

l1
s1 +

L2

l2
s2 (2a)

θ =
2π

l1
s1 +

2π

l2
s2 (2b)

or inversely:

s1 =
l1L2

2π(L2 − L1)
θ − l1

L2 − L1

z (3a)

s2 = −
l2L1

2π(L2 − L1)
θ +

l2

L2 − L1

z (3b)

Without loss of generality, the origin (s1, s2) = (0, 0) has been arbitrarily set to (θ, z) = (0, 0) in the above equations.
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(a) (b) (c) (d)

Figure 3: Examples of curves and surfaces with constant coordinates in the bi-helical system: (a) curve (s2, r)=(0,R), (b) surface s2=0, (c) curve

(s1, r)=(0,R), (d) surface s1=0. In this example, the directions s1 and s2 are right-handed and left-handed respectively (φ1φ2 < 0) and R = 20.

Figures (a) and (c) also plot the local Serret-Frenet basis (Nα,Bα,Tα) associated with the curves, which are needed to parametrize the unit cell

geometry as detailed in Sec. 3.4.

The last coordinate of the system is chosen as the radial coordinate r of the cylindrical coordinate system, which

extends the two-dimensional mapping (s1, s2) to three dimensions. The three-dimensional coordinates are hence

(s1, s2, r). They will be termed as bi-helical coordinates.

As shown in the following, the bi-helical coordinates can be used to represent the position vector OM of an

arbitrary point M in the three-dimensional space. Let us start from the position vector written in the cylindrical system,

OM = rer(θ) + zez (with er = cos θex + sin θey). Using the relationships (2), the position vector OM = xex + yey + zez

in the Cartesian basis can now be written in terms of the bi-helical coordinates (s1, s2, r) as:

OM = r cos

(

2π

l1
s1 +

2π

l2
s2

)

ex + r sin

(

2π

l1
s1 +

2π

l2
s2

)

ey +

(

L1

l1
s1 +

L2

l2
s2

)

ez (4)

The above equation gives the relationships between the Cartesian coordinates (x, y, z) of any point M in terms of the

bi-helical coordinates (s1, s2, r).

From Eq. (4), it can be shown that the helical curves s1 and s2 are inclined by angles with respect to the z-axis equal

to tan−1 2πr
L1

and tan−1 2πr
L2

respectively. These directions are hence generally not orthogonal to each other. Besides, the

angles of s1 and s2 increase in absolute value with r (they coincide with the helix lay angles defined in Sec. 2, φ1 and

φ2, at r = R1 and r = R2 respectively). The surfaces s1=constant and s2=constant are helicoids. Figure 3 illustrates

these geometrical considerations.

Without loss of generality, the mapping will be defined in this paper such that (s1, s2, r) forms a right-handed basis.

Since s1 and s2 are always oriented towards increasing values of z, this means that the angle of s1 with respect to the

z-axis must be greater than the angle of s2 for any r. Therefore, the following condition is required:

1

L1

>
1

L2

(5)

3.2. Covariant/contravariant bases and metric tensor

Let us consider the differential of the position vector, dOM = erdr + reθdθ + ezdz. Replacing dθ and dz thanks to

Eqs. (2) and collecting terms in ds1 and ds2, the vector dOM can be rewritten as:

dOM = g1ds1 + g2ds2 + g3dr (6)

6



where (g1, g2, g3) defines the covariant basis, given by:

g1 =
2πr

l1
eθ +

L1

l1
ez, g2 =

2πr

l2
eθ +

L2

l2
ez, g3 = er (7)

The covariant basis vectors g1 = ∂OM/∂s1 and g2 = ∂OM/∂s2 are tangent to the coordinate curves s1 and s2

respectively (as sketched in Fig. 2).

The contravariant basis (g1, g2, g3) is defined from gi · g j = δ
i
j
, yielding:

g1 =
L2l1

2πr(L2 − L1)
eθ −

l1

L2 − L1

ez, g2 = − L1l2

2πr(L2 − L1)
eθ +

l2

L2 − L1

ez, g3 = er (8)

Note that both the covariant and contravariant bases are non-orthogonal.

The calculation of the covariant metric tensor, defined by (g)i j = gi · g j, leads to the following result:

g =



























































4π2r2 + L2
1

l2
1

4π2r2 + L1L2

l1l2
0

4π2r2 + L1L2

l1l2

4π2r2 + L2
2

l2
2

0

0 0 1



























































(9)

It can be noticed that g does not depend on s1 and s2. An important consequence of this property will be discussed in

Sec. 4.1.

3.3. Transformation of vector components

Let us rewrite the expression of the covariant basis (7) and the cylindrical basis as follows:





















g1

g2

g3





















=























0 2πr
l1

L1

l1

0 2πr
l2

L2

l2

1 0 0











































er

eθ
ez





















,





















er

eθ
ez





















=





















cos θ sin θ 0

− sin θ cos θ 0

0 0 1









































ex

ey

ez





















(10)

From these expressions, the covariant basis can be related to the Cartesian basis as:





















g1

g2

g3





















= J
T





















ex

ey

ez





















, J
T =























− 2πr
l1

sin θ 2πr
l1

cos θ L1

l1

− 2πr
l2

sin θ 2πr
l2

cos θ L2

l2

cos θ sin θ 0























(11)

and the metric tensor can be expressed in terms of the Jacobian matrix as g = JTJ. According to the definition of the

contravariant basis, we also have:

I =





















g1

g2

g3





















[

g1 g2 g3
]

(12)

where I denotes the three-by-three identity matrix. Hence, the transformation matrix between the Cartesian basis and

the contravariant one is actually equal to J−1:




















g1

g2

g3





















= J
−1





















ex

ey

ez





















(13)

Any vector v can be written in the different bases, Cartesian, covariant or contravariant: v = vxex + vyey + vzez =

v1g1 + v2g2 + v3g3 = v1g1 + v2g2 + v3g3. The components (vx, vy, vz) are the Cartesian components, (v1, v2, v3) are
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referred to as the contravariant components, and (v1, v2, v3) as the covariant components. Covariant or contravariant

components can be transformed to Cartesian components through the Jacobian matrix J by:





















vx

vy

vz





















= J





















v1

v2

v3





















= J
−T





















v1

v2

v3





















(14)

For symmetries other than translation, it is noteworthy that Bloch theorem cannot be used in its original form. As

discussed hereafter, the above-mentioned transformations will have to be considered for a proper application of Bloch

theorem to a vector wave equation.

3.4. Geometrical definition of the three-dimensional unit cell

For a structure which extends periodically along straight directions x and y, the unit cell is easy to define. Denoting

as ∆lx and ∆ly the cell lengths in both directions, the unit cell can be delimited by the four planes: x = 0, x = ∆lx,

y = 0 and y = ∆ly. However, defining the boundaries of the unit cell with periodicity along curved directions is not as

trivial as for straight ones.

3.4.1. Cutting surfaces

Let us denote ∆l1 and ∆l2 the curvilinear lengths of the unit cell in the s1 and s2 directions respectively. The cell

can be delimited by the boundaries s1 = 0, s1 = ∆l1, s2 = 0 and s2 = ∆l2, denoted as Γ−
1

, Γ+
1
, Γ−

2
and Γ+

2
respectively.

The position of any point M on Γ+
1

and Γ+
2

can be obtained from Eqs. (4), which yields the following parametric

equations for the cutting surfaces:

Γ+1 : OM =r cos

(

2π

l1
∆l1 +

2π

l2
s2

)

ex + r sin

(

2π

l1
∆l1 +

2π

l2
s2

)

ey +

(

L1

l1
∆l1 +

L2

l2
s2

)

ez, (s2, r) ∈ R × R+ (15a)

Γ+2 : OM =r cos

(

2π

l1
s1 +

2π

l2
∆l2

)

ex + r sin

(

2π

l1
s1 +

2π

l2
∆l2

)

ey +

(

L1

l1
s1 +

L2

l2
∆l2

)

ez, (s1, r) ∈ R × R+ (15b)

The parametric equations for Γ−
1

and Γ−
2

are obtained by replacing ∆l1 and ∆l2 with zero in Eq. (15a) and Eq. (15b)

respectively. An example of cutting surfaces is given in Fig. 4a-b. As can be observed, the cutting surfaces Γ±
1

and Γ±
2

are helicoids and are hence non-plane, which complicates the parametrization of the geometry of the unit cell.

3.4.2. Local helical coordinate systems

Local coordinate systems attached to the helices can be built from their Serret-Frenet basis. The Serret-Frenet basis

of the i-th helix of Layer α, denoted as (T
(i)
α ,N

(i)
α ,B

(i)
α ), is defined by the Serret-Frenet formula [41]: T

(i)
α = dR

(i)
α /dsα,

dT
(i)
α /dsα = −καN

(i)
α , B

(i)
α = T

(i)
α ∧N

(i)
α , where κα = 4π2Rα/lα denotes the helix curvature of Layer α. The Serret-Frenet

formula yield:

N(i)
α (sα) = cos(2π

sα

lα
+ θ(i)

α )ex + sin(2π
sα

lα
+ θ(i)

α )ey

B(i)
α (sα) = − Lα

lα
sin(2π

sα

lα
+ θ(i)

α )ex +
Lα

lα
cos(2π

sα

lα
+ θ(i)

α )ey −
2πRα

lα
ez

T(i)
α (sα) = − 2πRα

lα
sin(2π

sα

lα
+ θ(i)

α )ex +
2πRα

lα
cos(2π

sα

lα
+ θ(i)

α )ey +
Lα

lα
ez

(16)

As an example, Figs. 3a and 3c depict the serret-Frenet basis for a helix in Layer 1 and Layer 2 respectively. A local

coordinate system, (x
(i)
α , y

(i)
α , sα), associated with the i-th helix of Layer α is then naturally built from the following

position vector:

OM = R(i)
α (sα) + x(i)

α N(i)
α (sα) + y(i)

α B(i)
α (sα) (17)

The geometrical shape of the structure is usually parametrized from the local coordinate systems because the plane

(x
(i)
α , y

(i)
α ) is normal to the helix. For instance, a wire of rectangular cross-section (along the i-th helix of Layer α)

corresponds to the parametrization (x
(i)
α , y

(i)
α , sα) ∈ [−a, a]×[−b, b]×R, where a and b are the cross-section dimensions.

A circular wire is parametrized by (x
(i)
α , y

(i)
α , sα) = (̺ cosϕ, ̺ sin ϕ, sα), with parameters (̺, ϕ, sα) ∈ [0, a]× [0, 2π]×R

where a is the cross-section radius.
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(a) (b)

RT

T

B

L

R

RB

LB

LT

I

(c)

Figure 4: Cutting surfaces of the unit cell, Γ−
1

(s1 = 0), Γ+
1

(s1 = ∆l1), Γ−
2

(s2 = 0), Γ+
2

(s2 = ∆l2). (a) Three-dimensional view, (b) two-dimensional

view, (c) classification of the boundaries of the unit cell into left (L), right (R), bottom (B), top (T ) boundaries excluding the four corners LB, RB,

LT , RT (the remaining part of the unit cell is the internal (I) region, bullets represent FE nodes). In this example, the directions s1 and s2 are

right-handed and left-handed respectively (φ1φ2 < 0).

3.4.3. Boundaries of the unit cell

The geometry of the unit cell can be determined by finding the boundaries corresponding to the intersection of the

cutting surfaces of Sec. 3.4.1 with the volume parametrization defined from the local systems in Sec. 3.4.2. This is

done by equating Eq. (15a) and Eq. (15b) with Eq. (17) written for α = 1 and 2 respectively. An example is detailed

in Sec. 7 for a complex structure.

3.4.4. Lengths of the unit cell

The curvilinear lengths ∆l1 and ∆l2 of the unit cell, defined on r = R1 and r = R2 respectively, have not yet been

determined. Let us determine ∆l2, the curvilinear distance along s2. In Layer 1, the boundary s2 = 0 coincides with

the helix of zero phase angle, i.e. the helix i = 1 (of phase θ
(1)

1
= 0). Then it can be seen from Fig. 2 that the boundary

s2 = ∆l2 coincides with the helix i = N1, which is of phase angle θ
(N1)

1
. One recalls that the helix phase angles are given

in the z = 0 plane (see Eq. (1)). Hence for z = 0 and θ = θ
(N1)

1
− θ(1)

1
= −2π/N1, Eq. (3b) leads to: s2 = ∆l2 =

l2
N1

L1

L2−L1
.

Similarly, the curvilinear length ∆l1 along s1 is obtained by setting z = 0 and θ = θ
(2)

2
− θ(1)

2
= 2π/N2 in Eq. (3a).

Finally, the curvilinear lengths of the unit cell in both directions are:

∆l1 =
l1

N2

L2

L2 − L1

, ∆l2 =
l2

N1

L1

L2 − L1

(18)

Both curvilinear cell lengths ∆l1 and ∆l2 are always positive thanks to condition (5).

3.5. Particular cases of periodicity

Depending on the geometrical parameters, translational or rotational symmetry can occur by grouping several unit

cells. It is instructive to highlight when these kinds of symmetry occur in order to evaluate their computational cost

compared with the proposed approach, which exploits the minimum period.

3.5.1. Periodicity by translation

Let us consider the corners of the unit cell, denoted as LB, RB, LT and RT , as depicted by Fig. 4c. Periodicity by

translation occurs when opposite corners of the unit cell, that is to say the corners LB and RT , or the corners RB and

LT , are aligned along the z-direction. The corners LB and RT will be aligned if θB + θR = 0, where θB and θR are the

circumferential angles of the cell boundaries B and R respectively (see also Fig. 4c). Similarly, the corners RB and LT
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will be aligned if θB = θL. Gathering both possibilities of alignment and noticing that θR = θL, the unit cell will thus

obey a periodicity by translation if θB ± θL = 0. More generally, the problem will remain periodic by translation for a

group of m1 × m2 unit cells if:

m1θB ± m2θL = 0 (19)

From Eq. (15a), it can be inferred that θB = 2π∆l1/L1, and from Eq. (15b), θL = 2π∆l2/L2. Using Eqs. (18) into (19),

a group of m1 × m2 unit cells will hence be periodic by translation if:

N1L2

N2L1

= ∓
m2

m1

(20)

The problem will hence have a periodicity by translation if N1L2/N2L1 is a rational number.

3.5.2. Periodicity by rotation

Periodicity by rotation occurs when opposite corners of the unit cell are aligned along the circumferential θ-

direction. This will occur if zB = zL, where zB and zL are the height of the cell boundaries B and L respectively.

More generally, the problem will remain periodic by rotation for a group of m1 × m2 unit cells if m1zB = m2zL. From

Eqs. (15a) and (15b), one has zB = L1∆l1/l1 and zL = L2∆l2/l2. Therefore, the condition for a group of m1 × m2 unit

cells to be periodic by rotation is:
N1

N2

=
m2

m1

(21)

The problem will have a rotational periodicity of order n if the rational number N1/N2 is reducible by a factor n.

4. On the consideration of two-dimensional Bloch waves in helical directions

Bloch wave modes can be viewed as waves traveling to infinity without reflection (progressive waves). The

condition for such waves to exist is that the problem must be space-periodic. If the geometry is arbitrarily curved, the

periodicity is broken and Bloch waves no longer exist. The periodicity can yet be preserved for some particular cases

of curvature/torsion of the geometry. The goal of this subsection is to justify the existence of two-dimensional Bloch

waves in bi-helical structures, as well as the method to compute these waves considering the vector wave equation of

elastodynamics.

4.1. Existence

By definition, a two-dimensional periodic wave problem in the directions (s1, s2) is governed by a set of partial

differential equations whose coefficients, concatenated in a vector a(x, y, s), are (∆l1,∆l2)-periodic in (s1, s2): a(s1 +

m1∆l1, s2 + m2∆l2, r) = a(s1, s2, r), ∀(m1,m2) ∈ N2. Then owing to Bloch theorem, there exists wave mode solutions

of the form: ψ(s1, s2, r) = ei(k1 s1+k2 s2)u(s1, s2, r; k1, k2), where (k1, k2) are the two-dimensional wavenumbers and u is a

(∆l1,∆l2)-periodic function in (s1, s2) [42, 14].

First, let us assume that the directions (s1, s2) are straight. Obviously, The coefficients of the governing equations

(including boundary conditions) are periodic if:

1. the material properties are (∆l1,∆l2)-periodic,

2. the geometrical shape of the structure is (∆l1,∆l2)-periodic.

However, these two conditions are no longer sufficient if periodicity occurs along curved directions. The equilib-

rium equations have to be written in an appropriate curvilinear coordinate system capable of tracking the geometry of

the structure (so that condition 2 can be satisfied). The consequence of this change of coordinate system is that the

coefficients of the partial differential equations become also dependent on the so-called Christoffel symbols, related

to the geometry. The Christoffel symbols, denoted as Γk
i j

, are defined as follows [41]:

Γk
i j =

∂gi

∂x j
· gk (22)
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If the Christoffel symbols do not depend on (s1, s2), the periodicity of coefficients in the equilibrium equation will be

preserved (provided that the two above-mentioned conditions are also fulfilled), so that Bloch theorem will remain

applicable along these curved directions.

Actually, the Christoffel symbols can be expressed as a function of the metric tensor solely by [41]:

Γk
i j =

1

2
gkl

(

∂g jl

∂xi
+
∂gil

∂x j
−
∂gi j

∂xl

)

(23)

where gi j = gi · g j is the contravariant metric tensor, equal to the inverse of the covariant metric tensor (gi j = (g−1)i j).

Therefore, Bloch waves will be supported in the curved directions (s1, s2) if g does not depend on these coordinates.

As already noticed from Eq. (9), the independence of g on (s1, s2) is fulfilled by the bi-helical coordinate system. The

existence of two-dimensional Bloch waves in helical directions is hence justified, somehow a posteriori, from the

calculation of the metric tensor.

Note that other kinds of helical coordinate systems have been proposed in the literature [43]. Contrary to the bi-

helical system defined in the present paper, these coordinates systems are orthogonal but their metric tensors depend

on the three coordinates.

4.2. Vector wave equation

Let us go further by examining the equilibrium equation of elastodynamics, written in a vectorial form: ∇ · σ +
ρω2u = 0, where σ = C : ǫ is the stress tensor, ǫ = 1/2(∇u + ∇uT) is the strain tensor and u is the displacement

vector (ρ denotes mass density, ω is the angular frequency, C is the tensor of material properties). The periodicity

of the problem along curved directions imposes to write these equations in a curvilinear coordinate system, yielding

tensorial equations of the following form (see e.g. Refs. [39, 40, 44, 45]):

σ
i j

, j
+ Γi

m jσ
m j + Γ

j

m j
σim + ρω2gi ju j = f i, σi j = Ci jklǫkl, ǫkl =

1

2
(uk,l + ul,k − Γm

klum) (24)

where the subscripts i, j = 1, 2, 3 are associated with the coordinates s1, s2 and r respectively. Subscripts and super-

scripts denote covariant and contravariant components respectively. Einstein summation convention has been used

together with commas for partial derivatives with respect to the coordinates. It can be noticed that the coefficients

of the equilibrium equations expressed in the curvilinear coordinate system depend on the Christoffel symbols (in

addition to the material properties ρ and Ci jkl). As explained previously, since Γk
i j

does not depend on s1 and s2, Bloch

theorem remains applicable.

Equations (24) are instructive because they clearly indicate that tensor and vector wavefields are written in the

covariant or contravariant bases. If other bases are used, there is no guarante that the coefficients of the partial

differential equations will remain independent on s1 ans s2 (in particular, the Cartesian basis cannot be used). In

practice, expressing Eqs. (24) in the bi-helical coordinate system is tedious. Fortunately, there is no need to write

these equations with the WFEM, which only requires a special treatment of the boundary conditions (see Sec. 5).

4.3. Remark: projection of vectors in the cylindrical basis

Equation (10) shows that the transformation matrix between the covariant basis and the cylindrical basis does not

depend on s1 and s2 either. This also holds for the contravariant basis. If the tensorial equations given by Eqs. (24) are

rewritten in terms of cylindrical components, the coefficients of the so-obtained partial differential equations will also

remain independent of s1 and s2. Therefore, Bloch theorem still holds if vector fields are expressed in the cylindrical

basis instead of the covariant/contravariant bases. This result constitutes a theoretical justification of the revised

boundary conditions proposed in Ref. [30], where the cylindrical basis has been proposed to express periodicity with

two discrete screw symmetries.

For any vector v in the cylindrical basis, v = vrer + vθeθ + vzez, we have the following transformation matrix:





















vx

vy

vz





















= Ĵ





















vr

vθ
vz





















, Ĵ =





















cos θ − sin θ 0

sin θ cos θ 0

0 0 1





















(25)

where Ĵ−1 = ĴT (the cylindrical basis is orthonormal).
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5. Wave finite element method in the bi-helical system

A time harmonic e−iωt dependence of wavefields is assumed. The unit cell of the periodic structure is discretized

by the conventional FE method, which leads to the following equation of motion:

(K − ω2M − iωC)U = F (26)

where K, M and C are the stiffness, mass and viscous damping symmetric matrices. The vectors U and F contain the

components of the nodal displacements and forces expressed in the Cartesian basis. As is commonly done with the

two-directional WFEM [46, 12, 47], these vectors are partitionned into left (L), right (R), bottom (B), top (T), internal

(I) degrees of freedom (dofs), as well as four corners dofs (LB, RB, LT, RT):

U =

















































































ULB

URB

ULT

URT

UL

UR

UB

UT

UI

















































































, F =

















































































FLB

FRB

FLT

FRT

FL

FR

FB

FT

0

















































































(27)

As depicted in Fig. 4c, right and left dofs are linked through periodicity in the first direction s1 while top and bottom

dofs are linked through periodicity in the second direction s2. In the purpose of computing wave modes (free response),

one assumes that no external force is applied so that FI = 0.

5.1. Projection of vector fields

As highlighted in Sec. 4, Bloch theorem involving curved directions of periodicity holds if the vector wavefields

are projected in the bases of the curvilinear coordinate system following the geometry of the problem. Therefore, the

Cartesian dofs of U and F must be transformed into contravariant/covariant components. From Eq. (14), let us denote

J the transformation matrix from the contravariant components to the Cartesian components U. The matrix J is block

diagonal and comprises the three-by-three sub-matrices J as defined by Eq. (14).

Alternatively, the Cartesian dofs can instead be transformed into cylindrical components as noticed in Sec. 4.3.

In this case, one has just to replace J with Ĵ (the matrix J comprises the three-by-three sub-matrices Ĵ as defined by

Eq. (25)).

Two approaches can be considered. As done in Refs. [26, 27], the projection of vectors can be applied to the global

stiffness and mass matrices of the unit cell. However, it is not necessary to apply it to the internal nodes of the cell.

In Refs. [24, 25, 30], the projection of vectors has been applied to the periodic boundary conditions only, keeping the

Cartesian coordinate system in the FE formulation of the problem. The present paper follows this second approach.

Partitioning the matrix J with the same notations as introduced previously for U, the periodic boundary conditions

for the nodal displacements are given in covariant components (or alternatively in cylindrical components) by:

JT
RUR = λ1JT

LUL, JT
T UT = λ2JT

BUB (28a)

JT
RBURB = λ1JT

LBULB, JT
LT ULT =λ2JT

LBULB, JT
RT URT = λ1λ2JT

LBULB (28b)

with:

λ1 = exp(ik1∆l1), λ2 = exp(ik2∆l2) (29)

which defines the wavenumbers k1 and k2. These wavenumbers are given in the first Brillouin zone:

k1 ∈
[

− π

∆l1
,
π

∆l1

]

, k2 ∈
[

− π

∆l2
,
π

∆l2

]

(30)
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Similarly, the periodic boundary conditions for the nodal forces [46] are given in contravariant components (or alter-

natively in cylindrical components) by:

J−1
R FR + λ1J−1

L FL = 0, J−1
T FT + λ2J−1

B FB = 0 (31a)

J−1
RT FRT + λ1J−1

LT FLT + λ2J−1
RBFRB + λ1λ2J−1

LBFLB = 0 (31b)

The conditions (28) and (31) can be rewritten under matrix forms as follows:

U = AŨ, BF = 0 (32)

with the notations:

A =

















































































I 0 0 0

λ1J−T
RB

JT
LB

0 0 0

λ2J−T
LT

JT
LB

0 0 0

λ1λ2J−T
RT

JT
LB

0 0 0

0 I 0 0

0 λ1J−T
R

JT
L

0 0

0 0 I 0

0 0 λ2J−T
T

JT
B

0

0 0 0 I

















































































, BT =

















































































I 0 0 0

λ−1
1

JLBJ−1
RB

0 0 0

λ−1
2

JLBJ−1
LT

0 0 0

λ−1
1
λ−1

2
JLBJ−1

RT
0 0 0

0 I 0 0

0 λ−1
1

JLJ−1
R

0 0

0 0 I 0

0 0 λ−1
2

JBJ−1
T

0

0 0 0 I

















































































, Ũ =





























ULB

UL

UB

UI





























(33)

For pure propagating waves (k1 ∈ R, k2 ∈ R), we have |λ1| = 1 and |λ2| = 1 so that B is the conjugate transpose of A

(B = A∗). Using Eq. (32) into Eq. (27) yields:

A∗(K − ω2M − iωC)AŨ = 0 (34)

The matrices A∗MA is Hermitian positive definite (M is real symmetric positive definite). In this paper, the eigensys-

tem (34) is solved based on the implicitly restarted Arnoldi method with the ARPACK library [48]. If no damping

is considered, K is also real symmetric positive (semi-)definite and C = 0 so that the eigenvalue problem leads to

positive real eigenvalues ω2.

5.2. Relationship between propagation constants

As opposed to a plate-like geometry, the propagation constants λ1 and λ2 in a structure of cylindrical type are not

independent. An important property of the geometry is that the position of any arbitrary point of the structure can

be recovered by traveling the distance of N2 unit cells in the direction s1 and then traveling back the distance of N1

unit cells in the direction −s2 (or equivalently, N1 unit cells in the direction s2 and N2 unit cells in the direction −s1).

Hence, the following fundamental relationship holds:

λ
N2

1
λ
−N1

2
= 1 (35)

In terms of wavenumbers, this leads to:

(k1∆l1 − 2p1π)N2 − (k2∆l2 − 2p2π)N1 = 2nαπ (36)

where p1 and p2 are integers ensuring that k1 and k2 lie in the first Brillouin zone and nα is an integer corresponding

to a user-defined input parameter. As shown further in Sec. 5.3, this integer can be interpreted as a circumferential

order.

For a given value of k1 ∈ [−π/∆l1,+π/∆l1] (p1 = 0), k2 is determined by:

k2 =
k1∆l1N2

∆l2N1

+
2π

∆l2

(

p2 −
n1

N1

)

(37)

where p2 is the integer such that k2 ∈ [−π/∆l2,+π/∆l2]. Interestingly, the expression (37) shows that the parameter

n1 can only take N1 consecutive integer values in the first Brillouin zone, which we will denote n1 ∈ N1 (because the

symmetry of our problem is discrete, nα has to lie inside a finite set).
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Alternatively, one can determine k1 for a given value of k2 ∈ [−π/∆l2,+π/∆l2] (p2 = 0):

k1 =
k2∆l2N1

∆l1N2

+
2π

∆l1

(

p1 +
n2

N2

)

(38)

where p1 is the integer ensuring that k1 ∈ [−π/∆l1,+π/∆l1]. In this case, the integer n2 can now take N2 consecutive

integer values in the first Brillouin zone, which we will denote n2 ∈ N2.

For the computation of the eigensolutions {ω2, Ũ} of Eq. (34), determining k2 from k1 or vice-versa is a matter of

choice. Yet in practice, the choice leading to the largest set for the circumferential order can help in classifying the

modes (see example in Sec. 6.2).

For simplicity in this paper, one will adopt the numbering Nα = {0, 1, ...,Nα − 1} (although it could be more

convenient to center the numbering on zero in order to easily pair modes rotating in opposite directions [31]).

5.3. Post-processing the modal properties in the axial direction

The characteristics of wave propagation in the z-direction are of particular interest and have to be post-processed.

First, let us remind that the Bloch theory allows expressing any acoustic field ψ at any point (s1, s2, r) = (m1∆l1,m2∆l2, r)

from the field at the origin (0, 0, r):

ψ(s1, s2, r) = ei(k1 s1+k2 s2)ψ(0, 0, r) (39)

where m1 and m2 are integers. Using the change of variable given by Eq. (3), the exponential term can be rewritten

in terms of the cylindrical coordinates θ and z. The coefficients for θ and z can then be interpreted as kθ and kz, the

wavenumbers in the θ and z directions respectively, leading to the following expressions:































kz =
k2l2 − k1l1

L2 − L1

kθ =
k1l1L2 − k2l2L1

2π(L2 − L1)

(40)

From Eqs. (18) and (37) or (38), the above expression of kθ yields:

kθ = nα (41)

This shows that the parameter nα can be interpreted as the circumferential order of the problem, nα varying between

N1 consecutive values or N2 consecutive values (depending on whether k1 or k2 is fixed). This also shows that the

condition ψ(r, θ + 2π, z) = ψ(r, θ, z) is hence automatically fulfilled by the numerical method (the wavefields at the

same position but described by θ and θ + 2π are identical).

As far as the group velocity is concerned, its value in the z-direction is defined by cg =
∂ω
∂kz

, which yields:

cg =
∂ω

∂k1

∂k1

∂kz

+
∂ω

∂k2

∂k2

∂kz

(42)

Inverting Eq. (40), one gets:






























k1 =
2π

l1
kθ +

L1

l1
kz

k2 =
2π

l2
kθ +

L2

l2
kz

(43)

Equation (43) shows that ∂k1

∂kz
=

L1

l1
and ∂k2

∂kz
=

L2

l2
. The group velocity in the z-direction is hence:

cg =
L1

l1
cg1
+

L2

l2
cg2

(44)

The expression for ce, the energy velocity in the z-direction, is obtained by replacing the subscripts g with e in the

above expression. The calculation of the group and energy velocities in the helical directions, cgα and ceα , is detailed

in Appendix A.
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6. Validation

In this section, the bi-helical WFEM is validated for two test cases. One assumes isotropic materials without

damping. E, ρ and ν denote Young’s modulus, mass density and Poisson’s ratio respectively. The dispersion curves

will be given for the normalized wavenumber kℓ or the normalized group velocity cg/c as a function of the normalized

frequencyωℓ/c, where k is a wavenumber (kz or k2), ℓ is a characteristic length and c is a characteristic wave velocity

depending on the test case. The Poisson’s ratio is set to ν = 0.3.

The three-dimensional FE discretization of the unit cell is generated so that the two-dimensional elements of the

right and top boundaries are forced to match those of the left and bottom boundaries respectively (this allows a direct

connection of right and top dofs with left and bottom dofs). The FE meshes of this paper have been built from the free

software Gmsh [49] using ten-nodes tetrahedral elements (quadratic interpolating functions). The bi-helical WFEM

has been implemented in an in-house FE code written in Matlab.

6.1. Uniform tube test case

A homogeneous and uniform tube is considered. The thickness and the mid-surface radius are denoted as h and

R respectively. The inner and outer radii are hence equal to R − h/2 and R + h/2. The characteristic length and wave

velocity are chosen as the thickness (ℓ = h) and the shear wave velocity (c = cs =
√

E/2ρ(1 + ν)). The symmetry is

continuous along both the axial and the circumferential directions. Consequently, the problem can also be artificially

viewed as bi-helical along two different helical directions arbitrarily defined.

The volume corresponding to the bi-helical unit cell is parametrized by Eq. (4) with r ∈ [R − h/2,R + h/2]. Its

intersection with Γ±
1

is determined by setting s1 = 0 and s1 = ∆l1. Since the unit cell is additionally delimited by Γ±
2
,

one has s2 ∈ [0,∆l2]. Therefore, the left and right boundaries of the unit cell are parametrized by Eq. (15a) with:

(s2, r) ∈ [0,∆l2] × [R − h/2,R + h/2] (45)

Similarly, the bottom and top boundaries of the unit cell (intersection with Γ±
2

) are parametrized by Eq. (15b) with:

(s1, r) ∈ [0,∆l1] × [R − h/2,R + h/2] (46)

The following paremeters are set: R1 = R2 = R, φ1 = 20◦, φ2 = −20◦. The eigenproblem (34) is solved for the

eigenvalue ω2. From the wavenumber k1 given inside the interval [−π/∆l1, π/∆l1], the wavenumber k2 is calculated

according to Eq. (37) for various circumferential orders n1. Two geometries are considered.

For the first one, we set R/h = 74.5. This first case can be considered as a thin shell problem and allows a

comparison with the analytical solution obtained from Flügge theory [50], recalled in Appendix B. The parameters

N1 and N2 are set to 110 and 100 respectively. As can be observed in Fig 5a, the periodicity boundaries of the unit

cell are almost planar. The dispersion curves are computed for various circumferential orders n1 and shown in Fig. 5b.

Good agreement is found with the analytical solution.

For the second one, we set R/h = 2. In this case, the structure is thick and can no longer be approximated as a thin

shell. The parameters N1 and N2 are set to 40 and 30 respectively. The FE mesh of the unit cell is shown in Fig. 6a. The

non-planar nature of the periodic boundaries (left, right, top and bottom), as explained earlier in Sec. 3.4.1, is clearly

visible as opposed to the first case, which constitutes a further validation test. The dispersion curves are computed for

various circumferential orders n1 and shown in Fig. 6b.

For both thin and thick problems, the results are compared with those obtained from a straight unit cell, that is

to say, cut along the directions θ (circumferential) and z (axial) of the cylindrical coordinate system as is commonly

done [26, 27, 28]. The results obtained with the bi-helical approach fully agree in both cases.

Note that the definition of the circumferential order differs from one model to another. In a WFEM model, the

circumferential order n1 is such that n1 ∈ N1. In Flügge theory, the circumferential order n lies in the infinite set

of integers (n ∈ Z). For plotting the results in Figs. 5b and 6b, the parameters n1 and n are yet identical, which is

explained by the fact that the size of the cell and the frequency range considered are both relatively small in these test

cases.
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(a) (b)

Figure 5: Thin tube test case (R/h = 74.5). (a) FE mesh of the bi-helical unit cell (3198 dofs), (b) normalized dispersion curves for various

circumferential orders n, computed with the bi-helical unit cell (•), with a straight unit cell (×) cut along θ and z (Nθ = 100, ∆lz = 3h) and with

Flügge theory (–). Color online.

(a) (b)

Figure 6: Thick tube test case (R/h = 2). Same legend as Fig. 5 (with 4521 dofs, Nθ = 40, ∆lz = 0.5h). Color online.
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Figure 7: (a) Nanotube like structure (built with 50 unit cells), (b) parameters of the unit cell and its boundaries, (c) three-dimensional FE mesh of

the unit cell (23133 dofs).

6.2. Chiral nanotube

The second validation test case concerns a chiral nanotube and is taken from Ref. [30]. The structure is obtained

from tilting a hexagonal lattice by a chiral angle ψ and rolling up the lattice around a virtual cylinder of radius R. As

illustrated in Fig. 7a, the so-obtained structure is screw symmetric along two directions, i.e. bi-helical as defined in

this paper.

The chiral angle and the radius are set to ψ = arctan
√

3
15

and R =
√

3
√

152+3
4π

l respectively, where l denotes the

side length of the hexagonal lattice. The unit cell of the problem is sketched in Fig. 7b with its helical direction of

periodicity, s1 and s2. The widths of the unit cell are given by ∆l1 = ∆l2 =
√

3l. The helical parameters are set as

follows:

φ1 =
π

2
− ψ = arctan

15
√

3
, φ2 = φ1 −

π

3
= arctan

√
3

4
, R1 = R2 = R (47)

From Eqs. (18), it can be checked that N1 = 1 and N2 = 8. Note that the ratio N1/N2 is an irreducible rational number,

so that there is no pure periodicity by rotation in this example. The ratio L1/L2 = tan φ2/ tanφ1 is a rational number,

which means that there is a periodicity by translation. From Eq. (20), This periodicity occurs for a group of 2× 5 unit

cells (N1L2/N2L1 = 5/2). Accounting for this symmetry would hence lead to a drastic increase of the problem size by

a factor 10.

The beam cross-section of the hexagonal lattice is square with a thickness equal to 2
√

3l/50. The FE mesh of the

unit cell is shown in Fig. 7c. The structure is meshed with three-dimensional elements in this paper (one-dimensional

beam elements have been used in Ref. [30]).

The eigenproblem (34) is solved for the eigenvalue ω2. From the wavenumber k2 given inside the interval

[−π/∆l2, π/∆l2], the wavenumber k1 is calculated according to Eq. (38) for each circumferential order n2 ∈ N2,

N2 = {0, 1, ..., 7}.
Figure 8a gives the dispersion curves of the nanotube for the normalized frequency ωl/c0 as a function of the

normalized wavenumber k2∆l2, where c0 = π
2
√

E
ρ

. This normalization is chosen similarly to Ref. [30] for a direct

comparison of figures. Figure 8a correlates fairly well with that found in [30]. In particular, the bandgap observed

around the frequency ωl/c0 ≃ 0.018 is properly identified. As an additional result in this paper, the normalized group

velocity along the z-direction, calculated from Eq. (44), is shown in Fig. 8b. It can be observed that the fastest waves

occur for the lowest circumferential order (n = 0).

Figure 8 also shows the results if, alternatively, k1 is fixed inside the interval [−π/∆l1, π/∆l1] and k2 is determined

according to Eq. (37) for n1 = 0 (since N1 = 0, note that N1 = {0}). As expected, results are identical to those
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(a) (b)

Figure 8: Dispersion curves for a chiral nanotube calculated by setting k2 ∈ [−π/∆l2 , π/∆l2] and n2 = 0, 1, ...,7 (•) and by setting k1 ∈
[−π/∆l1, π/∆l1] and n1 = 0 (o). (a) Normalized frequency as a function of the wavenumber along the s2-direction, (b) normalized group ve-

locity along the z-direction as a function of frequency. Color online.

previously obtained. However, this choice does not help to classify the wave modes in terms of the circumferential

order because N1 is a singleton in this example. As rule of thumb, it is hence preferable to fix kα such that the

cardinality of Nα is the greatest.

7. Application to multi-wire cables

The overall approach proposed in this paper is now applied to investigate wave propagation in a multi-wire bi-

helical periodic structure, representing the armor of a cable used in the energy industry. As already explained in

Sec. 1, the armor consists of two layers of wires twisted with different angles, which yields a bi-helical periodic

media. To simplify the problem and since our attention is focused on this component, only the armor will be modeled,

the internal and the external parts of the cable being discarded. In this final example, we are particularly interested

in modes propagating predominantly in the individual wires to see how much the double armor structure affects their

behavior.

7.1. Geometrical description of the unit cell

The structure consists of two cylindrical layers of helical wires (see Fig. 9). The outer layer, Layer 1, is formed by

N1 helical wires twisted around the z-axis in the counter-clockwise direction (right-handed, φ1 > 0). The inner layer,

Layer 2, is formed by N2 helical wires twisted in the clockwise direction (left-handed, φ2 < 0). The wire cross-section

is circular and will be denoted as a1 and a2 in the outer and inner layer respectively.

Inside each layer, it is assumed that there is no interwire contact. However, both layers are separated by a thin

intermediate homogeneous cylindrical layer of thickness h = R1 − a1 − (R2 + a2). Every wire of the structure is in

contact with this layer.

The whole geometry of the unit cell has to be created with a FE mesh generator (Gmsh [49], in this paper). As

shown in Fig. 9c, the cutting surfaces Γ±
1

intersect the helical outer wire and the cutting surfaces Γ±
2

intersect the helical

inner wire of the unit cell. Γ±
1

and Γ±
2

also intersect the intermediate cylindrical layer. It remains necessary to detail

how to parametrize the boundaries of the unit cell in the bi-helical coordinate system, that is to say, the left, right,

bottom and top boundaries.
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Figure 9: Skecth of a double armor structure. The wires are helical, twisted around the z-axis. The inner layer (red) is twisted in the direction

opposite to the outer layer (blue). Both layers are separated by an intermediate cylindrical layer. (a) Cross-section in the (x, y) plane, (b) front view

(without intermediate layer) and unit cell of the structure, (c) definition of volumes and cutting surfaces of the unit cell. Also represented are the

different coordinate systems: Cartesian (x, y, z), cylindrical (r, θ, z) and bi-helical (s1, s2, r).

7.1.1. Outer wire boundaries (left and right)

Without loss of generality, let us consider the outer wire i = 1. Its phase angle θ
(1)

1
, involved in Eqs. (1) and (16),

is zero. Based on the local coordinate system defined in Sec. 3.4.2, the volume of the outer wire, denoted as H1 in

Fig. 9c, is parametrized by the following equation given for any point M inside the volume:

OM =R
(1)

1
(s1) + ̺1 cosϕ1N

(1)

1
(s1) + ̺1 sin ϕ1B

(1)

1
(s1)

=

(

(R1 + ̺1 cosϕ1) cos
2πs1

l1
− ̺1

L1

l1
sinϕ1 sin

2πs1

l1

)

ex+

(

(R1 + ̺1 cosϕ1) sin
2πs1

l1
+ ̺1

L1

l1
sinϕ1 cos

2πs1

l1

)

ey+

(

L1

l1
s1 − ̺1

2πR1

l1
sin ϕ1

)

ez

(48)

with ̺1 ∈ [0, a1], ϕ1 ∈ [0, 2π] and s1 ∈ R. The parameters ̺1 and ϕ1 can be viewed as the local polar coordinates in

the cross-section of the outer wire.

Right and left boundaries of the unit cell are obtained from the intersection between the cutting surfaces Γ±
1

and

the volume H1. They can be found by equating Eqs. (15a) and (48), which allows expressing the variables r and s2 in

terms of ̺1, ϕ1 and s1 as:


























r2 = (R1 + ̺1 cosϕ1)2 + (̺1

L1

l1
sin ϕ1)2

L2

l2
s2 =

L1

l1
s1 − ̺1

2πR1

l1
sin ϕ1 −

L1

l1
∆l1

(49)

Thanks to Eqs. (49), r and s2 can be eliminated from the equality between Eqs. (15a) and (48) in the x-direction,

yielding the single equation:

(R1 + ̺1 cosϕ1) cos
2πs1

l1
− ̺1

L1

l1
sin ϕ1 sin

2πs1

l1
=

√

(R1 + ̺1 cosϕ1)2 + (̺1

L1

l1
sin ϕ1)2 cos

(

4π2R1

L2l1
̺1 sinϕ1 −

2πL1

L2l1
s1 + (1 +

L1

L2

)
2π∆l1

l1

) (50)

This equation gives a relationship between the variables s1, ϕ1 and ̺1 and defines the right boundary of the unit

cell. The equation for the left boundary is obtained by setting ∆l1 to zero in the above equation. In this paper, this
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Rα/a φα Nα

Layer 1 40.40 +20◦ 112

Layer 2 37.89 −20◦ 106

Table 1: Geometrical parameters (thickness of the intermediate layer: h = 0.51a).

non-linear equation is solved numerically for s1 based on a Nelder-Mead simplex algorithm, with ̺1 ∈ [0, a1] and

ϕ1 ∈ [0, 2π]. Once the value of s1 is found for a specified set of values (̺1, ϕ1), the left and right surfaces can be built

in the Cartesian coordinate system from Eq. (48). As already mentioned previously, the resulting surface is not planar

since the cutting surface are helicoids.

7.1.2. Inner wire boundaries (bottom and top)

The volume of the inner wire i = 1, denoted as H2, is parametrized by an equation identical to Eq. (48) by replacing

subscripts 1 with 2:

OM =

(

(R2 + ̺2 cosϕ2) cos
2πs2

l2
− ̺2

L2

l2
sinϕ2 sin

2πs2

l2

)

ex+

(

(R2 + ̺2 cosϕ2) sin
2πs2

l2
+ ̺2

L2

l2
sinϕ2 cos

2πs2

l2

)

ey+

(

L2

l2
s2 − ̺2

2πR2

l2
sin ϕ2

)

ez

(51)

The bottom and top boundaries of the unit cell are the intersection between the cutting surfaces Γ±
2

and the volume H2

(see Fig. 9c). The intersection is found by equating Eqs. (15b) and (51), which yields an equation identical to Eq. (50)

except that subscripts 1 and 2 have to be switched.

7.1.3. Boundaries of the intermediate cylindrical layer

The volume corresponding to the thin intermediate layer is parametrized by Eq. (4) with r ∈ [R2 + a2,R1 − a1]. Its

intersection with Γ±
1

is determined by setting s1 = 0 and s1 = ∆l1. Since the unit cell is additionally delimited by Γ±
2
,

one has s2 ∈ [0,∆l2]. Therefore, the left and right boundaries of the layer are parametrized by Eq. (15a) with:

(s2, r) ∈ [0,∆l2] × [R2 + a2,R1 − a1] (52)

Similarly, the bottom and top boundaries of the layer (intersection with Γ±
2
) are parametrized by Eq. (15b) with:

(s1, r) ∈ [0,∆l1] × [R2 + a2,R1 − a1] (53)

7.2. Numerical results

7.2.1. Model parameters

The geometrical parameters chosen for the numerical results are summarized in Table 1. The wire radius is denoted

as a and is the same in each layer (a = a1 = a2). Figures 10a and 10b depict the FE mesh of the unit cell used for the

computation in the low-frequency regime (Sec. 7.2.2) and in the high-frequency regime (Sec. 7.2.3) respectively. The

periodicity boundaries of the unit cell are almost planar in this case because a is small compared to Rα. Figure 10c

shows a reconstitution of the double armor structure built from 10 unit cells along each helical directions, which

allows us to check that the unit cell as parametrized from Sec. 7.1 is properly defined from the geometrical point of

view.

The wires and the intermediate layer are constituted by a metallic material (steel) and a plastic material (polyethy-

lene) respectively. Both materials are isotropic. The material properties are given in Table 2. Accounting for the

viscoelasticity of materials, Young’s modulus and Poisson’s ratio are complex and given by:

E = ρc̃2
s

3c̃2
l
− 4c̃2

s

c̃2
l
− c̃2

s

, ν =
1

2

c̃2
l
− 2c̃2

s

c̃2
l
− c̃2

s

(54)
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(a) (b) (c)

Figure 10: (a) FE mesh of the unit cell (7374 dofs), (b) FE mesh used in the high-frequency regime (78747 dofs), (c) double armor structure built

from 10x10 unit cells.

Material ρ (kg/m3) cl (m/s) cs (m/s) ηl (Np/wavelength) ηs (Np/wavelength)

Steel 7800 6020.2 3217.9 0.003 0.008

Polyethylene 1000 1463.9 597.6 0.02 0.16

Table 2: Material properties.

with the complex bulk velocities c̃l and c̃s:

c̃l,s = cl,s

(

1 + i
ηl,s

2π

)−1

(55)

where ηl and ηs denote the bulk wave attenuations in Neper per wavelength. No viscous damping is considered

(C = 0).

In order to simplify the analysis and reduce the size of the problem, we restrict ourselves to a qualitative study.

The FE mesh is not refined near the regions of contact between wires and the intermediate layer. Line contacts are

assumed with perfectly stick conditions (no slip, no separation and no friction are considered). The displacement is

hence continuous in the three directions along each contact curve (contact curves are helix).

Note that the choice φ2 = −φ1 in Table 1 may seem particular at first sight. However, the helix angles are not

defined on the same radius (R2 , R1). The ratio N1L2/N2L1 is equal to −R2N1/R1N2, where R2/R1 is not a rational

number (the values given in Table 1 can be viewed as irrationals approximated up to two digits). Hence, there is no

pure periodicity by translation in this example. The ratio N1/N2 is reducible by a factor 2, so that there is a rotational

symmetry of order 2 (which occurs for a group of 53× 56 unit cells). Accounting for such a periodicity instead of the

bi-helical one would then prohibitively increase the problem size by a factor 53 × 56 = 2968.

7.2.2. Low-frequency results

The eigenproblem (34) is solved for ω2, with k1 given inside [−π/∆l1, π/∆l1] and k2 determined according to

Eq. (37). The viscoelasticity of materials is neglected (ηl,s = 0).

Figures 11a and 11b show the dispersion curves computed for the normalized frequency ωa/cs as a function of

the normalized wavenumber k1a for n1=0 and n1=5 respectively (here, cs is the shear wave velocity of steel).

No bandgap is observed. In order to help the identification of wave modes propagating predominantly in wires,

Fig. 11c gives the dispersion curves obtained for a free wire, i.e. uncoupled from the intermediate layer. In the low-

frequency range, four fundamental modes are propagating inside each helical wire: two flexural, one torsional and

one longitudinal modes, labeled as F(1,1)+, F(1,1)−, T(0,1) and L(0,1) respectively [24].
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(a) (b)

(c)

Figure 11: Dispersion curves ωa/cs versus k1a of the double armor structure for: (a) n1 = 0, (b) n1 = 5. Figure (c): results for a free wire in Layer

1 (wire disconnected from the intermediate layer). The results obtained for a free wire in Layer 2 are nearly identical and not shown.

From Figs. 11a and 11b, the trace of these fundamental modes can still be observed in the double armor structure.

This indicates that these modes are moderately perturbed. As usual with weakly coupled systems [51, 52, 53], this

perturbation manifests itself as curve veerings (i.e. repulsions of modal branches). These veering phenomena can be

clearly observed for the T(0,1) mode, which turns out to be more affected by the structural coupling than longitudinal

and flexural modes. In addition to these fundamental waves, many other modes can be observed due to the strong

coupling of the intermediate layer to the wires.

A closer look at Fig. 11b shows that results are unsymmetric with respect to the frequency axis, which means

that modes propagating in opposite directions behave differently. This break of symmetry actually occurs for non-

zero circumferential orders, nα , 0, and is due to the anisotropy of the structure in the circumferential direction (as

similarly found in Ref. [31] with a helical multi-wire geometry).

7.2.3. High-frequency results

Focusing on modes propagating predominantly in the individual wires, the dispersion curves of the double armor

structure are now computed in a higher frequency range.

To avoid the computation of too many modes, which would be memory and time-consuming, the eigenvalues in

the armor structure are computed around the solutions found preliminarily for a free wire. In practice, this is done

with the ARPACK library by specifying a limited number of eigenvalues (here, 20 modes) around a user-defined

shift. Besides, viscoelastic properties are introduced (see Table 2) in order to move the complex eigenfrequencies of
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(a) (b)

Figure 12: Dispersion curves ce/cs as a function of ωa/cs of the double armor structure for: (a) n1 = 0, (b) n1 = 50. Results are computed by using

an eigenshift obtained from a free wire model. Gray continuous lines: modes of a free wire.

strongly coupled modes, which involve the attenuating intermediate layer and are of little interest, further away from

the weakly coupled wire modes.

The eigenproblem (34) is still solved for ω2, with k1 fixed to real values and k2 determined according to Eq. (37).

Due to the presence of damping in the system, the eigenfrequencies are now complex-valued. Although it might be

preferable from a physical point of view to set the frequency as a fixed real value and look for complex wavenumbers,

such a procedure is more complicated to implement [47, 14] and is left out of the scope of this paper. Note that the

viscoelastic parameters of Table 2 yet introduce quite small imaginary parts in the material properties, so that the

dispersion curves will be negligibly affected by the presence of damping in our results.

Figure 12a gives the dispersion curves for the normalized energy velocity ce/cs as a function of the normalized

frequency (n1=0). Also shown are the dispersion curves of the L(0,1), L(0,2), F(1,1)± and T(0,1) modes propagating

in a free wire. Note that curve veering is more clearly observable on the energy velocity, because it is (approximately)

equal to the slope in Fig. 11a (that is to say, the group velocity). Veering mainly occurs in the low-frequency regime

of the double armor structure, roughly below ωa/cs ≃ 1. Above the frequency ωa/cs ≃ 1, the modes propagating in

a free wire are almost unchanged. This shows that these modes tend to propagate freely in the armor structure as the

frequency increases. This is confirmed by the results computed for the higher order L(0,2) mode, which turns out to

be negligibly affected by the double armor structure.

In Fig. 12a, the solutions of low energy velocity (ce/cs<0.2) mainly correspond to waves involving the motion of

the intermediate layer (of less interest here). The remaining curves, found for ωa/cs > 2 and 0.2<ce/cs<1, mainly

correspond to higher order modes of flexural type propagating predominantly in wires and have not been labeled.

Finally, Fig. 12b shows the dispersion curves computed for a high circumferential order (n1=50). The interpre-

tation of results is similar to those previously obtained for n1=0. It is noteworthy that above ωa/cs ≃ 1, the L(0,1),

L(0,2), F(1,1)± and T(0,1) curves are nearly identical to Fig. 12a, which further confirms that waves in wires tend to

behave freely as the frequency increases.

8. Conclusions

In this paper, the propagation of two-dimensional elastic Bloch waves in helical periodic structures has been

investigated both from a theoretical and a numerical point of view. A three-dimensional coordinate system has been

built in order to handle the two-directional curved periodicity. This system has been defined from the two helical

directions of periodicity and the radial coordinate of the problem. The existence of Bloch waves in bi-helical structures

can be justified, somehow a posteriori, owing to the independence of the metric tensor of the curvilinear system on

both helical coordinates. Because elastodynamic problems correspond to a vector wave equation, Bloch theorem has

to be expressed in appropriate bases to project the vector wavefields. It has been shown that these bases can be the
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covariant/contravariant bases of the bi-helical system, or alternatively, the cylindrical basis. The three-dimensional

geometry of the unit cell, delimited by helicoids, has been carefully built. The problem has been solved numerically

thanks to a WFEM approach. The relationship between the two-dimensional propagation constants, which are not

independent of each other due to the cylindrical nature of the geometry, has been derived. The wave mode properties

(wavenumbers, group and energy velocities) have been calculated along the helical propagation directions as well

as the straight and circumferential directions of the problem. The overall approach has been successfully validated

by considering uniform tubes and a chiral nanotube taken from the literature. Finally, the method has been applied

to a complex multi-wire structure corresponding to the double armor of an energy cable, showing that wave modes

propagating predominantly in the individual wires tend to behave freely in the structure as the frequency increases.
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Appendix A. Group and energy velocities in the helical directions

One considers no damping and real values of k1 and k2. Taking the differential of Eq. (34) yields:

dA∗(K − ω2M)AŨ + −2ωdωA∗MAŨ + A∗(K − ω2M)dAŨ + A∗(K − ω2M)AdŨ = 0 (A.1)

This equation is used to investigate the effect on frequency of a small change in wavenumbers dk1 and dk2. After

left-multiplying the above equation by Ũ∗, the last term vanishes due to the fact that K and M are hermitian, so that:

Ũ∗dA∗(K − ω2M)AŨ − 2ωdωŨ∗A∗MAŨ + Ũ∗A∗(K − ω2M)dAŨ = 0 (A.2)
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which can be simplified to:

Ũ∗dA∗F − 2ωdωU∗MU + F∗dAŨ = 0 (A.3)

Since Ũ∗dA∗F = (F∗dAŨ)∗, this equation becomes:

2Re(F∗dAŨ) = 2ωdωU∗MU (A.4)

From Eq. (33) and the equality dλ1 = iλ1∆l1dk1 (and similar expression for dλ2), the differential of A times Ũ can be

expressed as follows:
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From Eq. (A.5) and Eq. (A.4), the partial derivative of ω with respect to kα, which defines the group velocity in the

sα-direction, can be identified as:

cgα =
∂ω

∂kα
=

Pnα

ω2

2∆lα
U∗MU

(A.6)

with:

Pn1
=

1

2
Re(iω(F∗RBURB + F∗RT URT + F∗RUR)), Pn2

=
1

2
Re(iω(F∗LT ULT + F∗RT URT + F∗T UT )) (A.7)

In the above expressions, it can be checked that Pnα represents the time-averaged power flow on the boundary normal

to the helical direction sα. The denominators in Eq. (A.6) is the time-averaged total energy per unit length in the

direction sα. These expressions coincide with the results obtained in Ref. [54] for straight directions of periodicity.

In damped systems, the physical meaning of group velocity may be not obvious. Conversely, the energy velocity

remains well defined in conservative or in absorbing media [55, 56]. The energy velocity ceα in the direction sα is

defined by:

ceα =
Pnα

E/∆lα
(A.8)

where E is the sum of the time-averaged kinetic and potential energy of the cell. In damped systems, no equipartition

occurs between kinetic and potential energy. Based on a FE method, the energy E can be readily calculated from the

expression:

E =
1

4
Re(U∗KU) +

|ω|2

4
Re(U∗MU). (A.9)

Appendix B. Dispersion relation for a thin cylindrical shell based on Flügge theory

Based on Flügge theory, the characteristic equation of the dispersion relation is given by the following polynomial

of degree 3 [50]:

Ω6 − K2Ω
4 + K1Ω

2 − K0 = 0 (B.1)

where Ω2 =
ρ(1−ν2)R2ω2

E
is the non-dimensional frequency. The coefficients K0, K1 and K2 are expressed as follows:















































K2 = 1 +
1

2
(3 − ν)(n2 + κ2) + β(n2 + κ2)2

K1 =
1

2
(1 − ν)[(3 + 2ν)κ2 + n2 + (n2 + κ2)2 +

3 − ν
1 − ν

β(n2 + κ2)3]

K0 =
1

2
(1 − ν)[(1 − ν2)κ4 + β(n2 + κ2)4] +

β

2
(1 − ν)[2(2 − ν)κ2n2 + n4 − 2νκ6 − 6κ4n2 − 2(4 − ν)κ2n4 − 2n6]

(B.2)
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with β = h2

12R2 and κ = kzR. The parameter n denotes the circumferential order, which lies inside the infinite set of

integers (n ∈ Z) due to the continuous rotational symmetry (the wavefields dependence can be written in terms of the

exponential functions einθ).
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