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Introduction

Over the last two decades, online display advertising has become a key monetisation stream for many businesses. The market for the trading of these ads is controlled by a very small (< 10) number of large intermediaries who buy and sell at auction, which means that a seller-buyer pair might trade together in 10 10 to 10 12 auctions per day. Repeated auctions on this scale raise the stakes of revenue maximisation, while making computational efficiency a key consideration. In his 1981 seminal work on revenue maximisation, Myerson described the revenue-maximising auction when buyers' bid distributions are known. In the context of online display ads these distributions are private, but the large volume of data collected by sellers on buyers opens the way to learning revenue maximising auctions.

Optimal vs. tractable. The learning problem associated with the Myerson auction has infinite pseudo-dimension [START_REF] Morgenstern | On the pseudodimension of nearly optimal auctions[END_REF], making it unlearnable [START_REF] Pollard | Convergence of stochastic processes[END_REF]. 2 nd -price auctions with personalised reserve prices (i.e. different for each bidder) stand as the commonly accepted compromise between optimality and tractability. They provide a 2-approximation (Roughgar-den & Wang, 2016) to the revenue of the Myerson auction while securing finite pseudo-dimension.

Monopoly prices. 2 nd -price auctions with personalised reserves can be either eager or lazy. In the eager format, the item goes to the highest bidder amongst those who cleared their reserve prices and goes unsold if none of them did. In the lazy format, the item goes to the highest bidder if he cleared his reserve price and goes unsold if he did not. While an optimised eager version leads to better revenue than an optimised lazy version, solving the eager auction's associated Empirical Risk Minimisation (ERM) problem is NP-hard (Paes Leme et al., 2016) and even APX-hard [START_REF] Roughgarden | Minimizing Regret with Multiple Reserves[END_REF]. In contrast, solving the ERM for the lazy version can be done in polynomial time [START_REF] Roughgarden | Minimizing Regret with Multiple Reserves[END_REF]: it amounts to computing a bidder-specific quantity called the monopoly price. Not only is the monopoly price the optimal reserve in the lazy 2 nd -price auction, but it is also a provably good reserve in the eager one [START_REF] Roughgarden | Minimizing Regret with Multiple Reserves[END_REF], and the optimal reserve in posted-price [START_REF] Paes Leme | A field guide to personalized reserve prices[END_REF]. This makes learning monopoly prices for revenue maximisation an important and popular research direction.

Online learning. Finding the monopoly price in a repeated 2 nd -price auction is a natural sequential decision problem based on the incoming bids. All three aforementioned settings relating to the monopoly price have been studied: posted-price [START_REF] Amin | Repeated contextual auctions with strategic buyers[END_REF][START_REF] Blum | Online learning in online auctions[END_REF], eager [START_REF] Cesa-Bianchi | Regret minimization for reserve prices in second-price auctions[END_REF][START_REF] Roughgarden | Minimizing Regret with Multiple Reserves[END_REF][START_REF] Kleinberg | The value of knowing a demand curve: Bounds on regret for online posted-price auctions[END_REF], and lazy which we study [START_REF] Blum | Near-optimal online auctions[END_REF][START_REF] Blum | Online learning in online auctions[END_REF][START_REF] Mohri | Learning algorithms for second-price auctions with reserve[END_REF][START_REF] Rudolph | Objective variables for probabilistic revenue maximization in secondprice auctions with reserve[END_REF][START_REF] Bubeck | Online auctions and multi-scale online learning[END_REF][START_REF] Shen | Learning to clear the market[END_REF]. Each setting also corresponds to a different observability structure. The offline problems are well understood, but no online method offers the O(1) efficiency crucial for real-world settings. We focus, therefore, on the key problem of learning monopoly prices, online and efficiently, in the stationary and non-stationary cases.

Structure of the paper. We propose a real-time firstorder algorithm which makes online learning of monopoly prices computationally feasible, when interacting with stationary and non-stationary buyers. In Sec. 1, we detail the setting and problem we consider. We review, in Sec. 2, the existing approaches and stress the challenges of the problem including overcoming computational complexities. Our approach, based on convolution and the O(1) Online Gradient Ascent algorithm, is described in Sec. 3. We study performance for stationary bidders in Sec. 4 with 1/ √ t convergence rate to the monopoly price, and for nonstationary bidders in Sec. 5 with O( √ T ) dynamic regret.

Setting

A key property of a personalised reserve price in a lazy second price auction is that it can be optimised separately for each bidder [START_REF] Paes Leme | A field guide to personalized reserve prices[END_REF]. For a bidder with bid cdf F , the optimal reserve price is the monopoly price r * , i.e. the maximiser of the monopoly revenue defined as

Π F (r) = r(1 -F (r)) . (1) 
Thus, without loss of generality, we study each bidder separately in the following repeated game: the seller sets a reserve price r and simultaneously the buyer submits a bid b ∈ [0, b] drawn from his private distribution F , whose pdf is f . The seller then observes b which determines the instantaneous revenue

p(r, b) = r1 r≤b with E F [p(r, b)] = Π F (r) . (2) 
In this work, we consider two settings, depending whether the bid distribution is stationary or not.

Stationary setting. Stationarity here means F is fixed for the whole game. We thus have a stream of i.i.d. bids from F , where the seller aims to maximise her long term revenue

lim T →∞ 1 T T t=1 p(r, b t ) = Π F (r) .
Or, equivalently, tries to construct a sequence of reserve prices {r t } t≥1 given the information available so far encoded in the filtration

F t = σ(r 1 , b 1 , . . . , b t-1 ) such that Π F (r t ) → Π F (r * ) as fast as possible.
Non-stationary setting. In real-world applications, bid distributions may change over time based on the current context. For example, near Christmas the overall value of advertising might go up since customers spend more readily, and thus bids might increase. The bidder could also refactor his bidding policy for reasons entirely independent of the seller. We relax the stationarity assumption by allowing bids to be drawn according to a sequence of distributions {F t } t≥1 that varies over time. As a result, the monopoly prices {r * t } t≥1 and optimal monopoly revenues {Π Ft (r * t )} t≥1 fluctuate and convergence is no longer defined. Instead, we evaluate the performance of an adaptive sequence of reserve prices by its expected dynamic regret

R(T ) = E T t=1 Π Ft (r * t ) -Π Ft (r t ) , (3) 
and our objective is to track the monopoly price as fast as possible to minimise the dynamic regret.

Related work, challenges and contributions

Related Work

Lazy 2 nd -price auctions have been studied both in batch [START_REF] Mohri | Learning algorithms for second-price auctions with reserve[END_REF][START_REF] Shen | Learning to clear the market[END_REF][START_REF] Rudolph | Objective variables for probabilistic revenue maximization in secondprice auctions with reserve[END_REF][START_REF] Paes Leme | A field guide to personalized reserve prices[END_REF] and online [START_REF] Blum | Near-optimal online auctions[END_REF][START_REF] Blum | Online learning in online auctions[END_REF][START_REF] Bubeck | Online auctions and multi-scale online learning[END_REF] settings.

All existing approaches aim to optimise, at least up to a precision of 1/ √ t, the ERM objective

Π Ft (r) = r(1 -Ft (r)) = 1 t t i=1 r1 r≤bi . (4) 
However, regardless of how well-behaved Π F is, Π Ft is very poorly behaved for optimisation: it is non-smooth, non-quasi-concave, discontinuous, and is increasing everywhere (see Fig.1,center,dashed). Thus direct optimisation with first order methods is not applicable. Some attempts have been made in the batch setting to optimise surrogate objectives, but ended up with an irreducible bias [START_REF] Rudolph | Objective variables for probabilistic revenue maximization in secondprice auctions with reserve[END_REF] or with hyper-parameters whose tuning is as hard as the initial problem [START_REF] Shen | Learning to clear the market[END_REF]. The classical approach relies on sorting the bids {b i } t i=1 to be able to enumerate Π Ft (.) linearly over {b i } t i=1 [START_REF] Mohri | Learning algorithms for second-price auctions with reserve[END_REF][START_REF] Paes Leme | A field guide to personalized reserve prices[END_REF]. A popular improvement in terms of complexity, especially used in online approaches [START_REF] Blum | Online learning in online auctions[END_REF][START_REF] Blum | Near-optimal online auctions[END_REF] This idea of discretising the bid space was widely adopted in partially observable settings -e.g. online eager or online posted-price auctions -as it reduces the problem to a multiarmed bandit with its well-studied algorithms [START_REF] Kleinberg | The value of knowing a demand curve: Bounds on regret for online posted-price auctions[END_REF][START_REF] Cesa-Bianchi | Regret minimization for reserve prices in second-price auctions[END_REF][START_REF] Roughgarden | Minimizing Regret with Multiple Reserves[END_REF] at the price of still suffering the same update and memory complexities of O( √ t).

Numerous approaches with adversarial bandits also followed this discretisation approach to adapt Exp3/Exp4 [START_REF] Kleinberg | The value of knowing a demand curve: Bounds on regret for online posted-price auctions[END_REF][START_REF] Cohen | Feature-based dynamic pricing[END_REF][START_REF] Bubeck | Online auctions and multi-scale online learning[END_REF] to all the settings. As a bonus, it also allows to handle the case of non-stationary bidders. However, the work of [START_REF] Amin | Repeated contextual auctions with strategic buyers[END_REF] stresses that bidders cannot behave in an arbitrary way, as they optimise their own objective that is not incompatible with the seller's1 . Hence, the non-stationarity mostly comes from the item's value changing over time. This suggest adapting a regular stochastic algorithms (ERM, UCB...), e.g. using sliding windows [START_REF] Garivier | On upper-confidence bound policies for switching bandit problems[END_REF][START_REF] Lattimore | Bandit algorithms[END_REF].

Non-smooth or non-differentiable objectives such as Π F have been studied in both stochastic and 0-order optimisation. In both, convolution smoothing has been employed to circumvent these problems. In [START_REF] Duchi | Randomized smoothing for stochastic optimization[END_REF] stochastic gradient with decreasing convolution smoothing is studied for the convex case. Unfortunately, very few distributions yield a concave Π F . In 0-order optimisation, the only feedback received for an input is the value of the objective at that input. In this setting, [START_REF] Flaxman | Online convex optimization in the bandit setting: Gradient descent without a gradient[END_REF] perturb their inputs to estimate a convolved gradient. In contrast, we obtain a closed form and do not need to perturb inputs.

Challenges

The directing challenge of our line of work is to devise an online learning algorithm for monopoly prices with minimal cost, to handle very large real-world data streams. With 10 10 daily interactions in one seller-bidder pair, it is acceptable to forfeit some convergence speed in exchange for feasibility of the algorithm. It is not possible to accept update complexity or memory requirement scaling with t. Our objective is thus to find a method that 1) converges to r * in the stationary setting or has a low regret R(T ) in the nonstationary one, 2) has O(1) memory footprint, and 3) computes the next reserve r t+1 with O(1) computations.

Computational Complexity. Unfortunately, none of the previously proposed methods fit these requirements. On one hand, all methods based on solving ERM by sorting [START_REF] Cesa-Bianchi | Regret minimization for reserve prices in second-price auctions[END_REF][START_REF] Roughgarden | Minimizing Regret with Multiple Reserves[END_REF] need to keep all past bids in memory (O(t) dependency) and their update steps require at best O( √ t) computations. On the other hand, adversarial methods such as Exp3 or Exp4 [START_REF] Cohen | Feature-based dynamic pricing[END_REF][START_REF] Bubeck | Online auctions and multi-scale online learning[END_REF] are designed for finite action space and thus need to discretise [0, b] into √ t intervals (to keep their regret guarantees), also leading to a complexity of O( √ t) from sampling to compute r t+1 .

Gradient bias. First order methods (e.g. Online Gradient Ascent a.k.a. OGA) are standard tools in online learning and enjoy O(1) update and memory. This makes them great candidates for our problem. OGA requires 3 ingredients to converge: an objective whose gradients always point towards the optimum2 , a gradient estimator with bounded variance, and which is unbiased. Unfortunately, discontinuity of p makes ∇p a biased estimator of ∇Π F . A natural approach is to construct a surrogate for p which has unbiased gradients and preserves the other two conditions.

Surrogate consistency. Optimising a surrogate objective inherently creates a bias, which has to be reduced overtime. To do so without breaking the convergence of OGA, we must conduct a careful finite time analysis of the algorithm, which is an analytical challenge. We must reanalyse classical results (e.g. [START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF]; [START_REF] Duchi | Randomized smoothing for stochastic optimization[END_REF]) for varying objectives: the challenge is to design a bias reduction procedure, and then integrate it into these proofs to show we preserve consistency.

Non-stationarity. Resolving the above challenges is sufficient to achieve efficient convergence in the stationary setting. However, it is not sufficient in order to track nonstationary bid distributions. Taking a constant surrogate and learning rate, it is possible to adapt the stationary solution to the non-stationary case and keep its computational efficiency. The challenge is to devise this adaptation, and then to derive (sub-linear) regret for it.

Contributions

We propose a smoothing method for creating surrogates in pseudo-concave problems with biased gradients. We use it to create a first-order real-time optimisation algorithm which reduces the surrogate's bias during optimisation. We prove convergence and give rates in the stationary setting and dynamic regret bounds for tracking. In more detail:

Smooth surrogates for first order methods. We first translate standard auction theory assumptions (e.g. increasing virtual value) into properties of generalised concavity of the monopoly revenue (Prop. 1). Next, we introduce our smoothing method and show (in Prop. 2) that it preserves the properties from Prop. 1 while offering arbitrary smoothness, which fixes the biased gradient problem. Finally, we provide controls, via the choice of the kernel, on the bias and variance of the gradient estimates of our surrogate, which is now ready for OGA (Prop. 3).

Consistent algorithm for stationary bidders. We construct an algorithm (V-CONV-OGA) which performs gradient ascent while simultaneously decreasing the strength of the smoothing over time, reducing the bias to zero. As a result our algorithm almost surely converges to the monopoly price (Thm. 1) while enjoying computational efficiency. Further, under a minimum curvature assumption, we provide the rate of convergence and optimal tuning parameters (Thm. Tracking for non-stationary bidders. Contrary to the stationary setting, when tracking we do not decrease the strength of the smoothing over time. When the bias created is smaller than the noise, our algorithm can still achieve sub-linear dynamic regret when tracking changing bid distributions. For reasonably varying distribution, we show a regret bound of O( √ T ) (see Thm. 3 and Cor. 2).

Smooth Surrogate for First Order Methods

Our objective, to reiterate, is to design an online optimisation procedure to learn or track the optimal reserve price whose updates require O(1) computational and memory cost. To this end, we focus on first order method and consider vanilla Online Gradient Ascent. Unfortunately, the specific problem of learning a monopoly price doesn't provide a way to compute unbiased gradient estimates for Π F from bid samples. We therefore want to design a surrogate that makes p sufficiently smooth so that differentiation and integration commute. This is a well known property of convolutional smoothing, suggesting its use. In addition, we must ensure our surrogate preserves the optimisation properties that Π F already has. These must thus be studied first, before smoothing to obtain a surrogate.

Properties of the monopoly revenue

The standard assumptions of auction theory are made to guarantee that the monopoly price exists -and that the optimisation problem is well-posed. This is generally stated as "the monopoly revenue is quasi-concave". We refine this characterisation by translating the assumptions we make into specific concavity properties of the monopoly revenue in Prop 1. ). F is strictly regular on its domain of definition i.e. the virtual value

(A1). F ∈ C 2 [0, b] and f = F > 0 on (0, b). ( A2 
ψ(b) = b -1-F (b) f (b) is increasing. (A3).
F has strongly increasing hazard rate on its domain i.e. the hazard rate λ

(b) = f (b) 1-F (b) satisfies: ∀0 ≤ b 1 ≤ b 2 ≤ b, λ(b 2 ) -λ(b 1 ) ≥ µ(b 2 -b 1 ).
(A1) is made for ease of exposition. (A2) is a standard auction theory assumption (see [START_REF] Krishna | Auction theory[END_REF] for a review), and implies a pseudo-concave revenue, as shown by Prop 1. (A2) is satisfied by common distributions, exhaustively listed in [START_REF] Ewerhart | Regular type distributions in mechanism design and ρ-concavity[END_REF] and by real-world data -see e.g. [START_REF] Ostrovsky | Reserve prices in internet advertising auctions: A field experiment[END_REF]. ( A3) strengthens (A2) by requiring a minimum curvature around the maximum.

Proposition 1. Let F satisfy (A1) and Π F be its associated monopoly revenue. Then,

Π F ∈ C 2 [0, b] , Π F > 0 on (0, b
) and:

• under (A2), Π F is strictly pseudo-concave,

• under (A3), Π F is µ-strongly log-concave, i.e. log Π F is µ-strongly concave on (0, b).

A Method Based on Smoothing

Prop. 1 ensures that the first condition for the convergence of OGA is met under standard assumptions (A2) or (A3).

The main difficulty in the way of using OGA for revenue optimisation -it must be stressed -lies in the undesirable shape of the instantaneous revenue p. Indeed, p is nonsmooth (discontinuous even) and cannot be used to construct an unbiased estimate of ∇Π F (r), which is necessary for first order-methods.

Mohri & Medina (2016) suggests replacing p(•, b) by a continuous upper bound. This surrogate can be used for OGA, but it has potentially large areas of zero-gradient, which means it doesn't learn from all samples. We give a general surrogate construction (based on convolutional smoothing) which 1) can approximate the original monopoly revenue to arbitrary accuracy, 2) preserves the concavity properties of Π F , 3) offers the desired level of smoothness, and 4) exhibits no areas of zero gradient.

Formally, given a kernel k (a metaparameter), we use convolution smoothing to create surrogates for p and Π F :

p k (r, b) = (p(•, b) k)(r) , Π F k (r) = (Π F k)(r). (5)
This smoothing guarantees that ∇p k (•, b) is an unbiased estimate of ∇Π F k . On Fig. 1, we illustrate the effect of this smoothing on p, Π Ft , and Π F . We introduce a set K of admissible kernels which contains all strictly positive, strictly log-concave, C 1 (R), L 1 (R), normalised (i.e. R k(x)dx = 1) functions. K contains a large family of kernels, including standard smoothing ones such as Gaussians and mollifiers. Prop. 2 shows that convolution with elements of K preserves pseudo-and log-concavity.
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Figure 1. The effect of smoothing the monopoly revenue of a bidder with F a Kumaraswamy4 (1,0.4) distribution with a Gaussian kernel. Left: smoothing of p(r, b) for b = 0.7. Center: smoothing of the empirical revenue Π F t (r) for some random bt. Right: smoothing of the expected revenue (Π F k vs Π F ). Note the difference in the optima (i.e. the surrogate bias).

Proposition 2. Let F satisfy (A1) and Π F be its associated monopoly revenue. Let k ∈ K, then:

• Π F k and p k are C 1 (R), • Π F k (r)=E F p k (r, b) and ∇Π F k (r)=E F ∇p k (r, b) , • under (A2), Π F k is strictly pseudo-concave on R, • under (A3), Π F k is strictly log-concave on R. Proof. See App. B.2. Algorithm 1: CONV-OGA input: r 0 , {γ t } t∈N , k ∈ K, C ⊂ [0, b] for t = 1 to +∞ do observe b t r t ← proj C (r t-1 + γ t ∇p k (r t-1 , b t ))
Prop. 2 guarantees that the surrogate satisfies the pseudoconcavity and unbiased gradient conditions of OGA. Applying OGA to the surrogate Π F k gives Alg. 1. Note that as a property of convolution, ∇p k (•, b) = p(•, b) ∇k, which is a simple (generally closed-form) computation.

Prop. 3 will show that the bounded variance condition of OGA also holds. Since OGA's three conditions are satisfied, we can guarantee convergence to the maximum r * k of Π F k (see e.g. [START_REF] Bottou | Online learning and stochastic approximations[END_REF]). However, in general r * k is not the monopoly price r * and the surrogate is biased. Prop. 3 also gives a control on this bias in terms of the L1 distance between the cdf K of k and the cdf 1 R + of the Dirac mass δ 0 , which is the only kernel to guarantee r * δ0 = r * . Proposition 3. Let F satisfy (A1), k ∈ K. Let r * and r * k be the monopoly prices associated with Π F and Π F k . Then, the bias

B k = |Π F (r * ) -Π F (r * k )| and the instantaneous convolved gradient second moment V k = max r≥0 E b∼F |∇p k (r, b)| 2 are upper bounded by • B k ≤ 2 ∇Π F ∞ K -1 R + 1 , • V k ≤ 1 + b 1 + ∇Π F ∞ k ∞ .
If one chooses a family of kernels, these bounds can be expressed in terms of its parameters. For instance, when k is zero-mean Gaussian with variance σ 2 , one easily recovers:

K -1 R + 1 = σ 2/π , k ∞ = ( √ 2πσ) -1 . (6)
CONV-OGA converges only to r * k . To remedy this, we would like to decrease B k over time by letting k → δ 0 . However, since k ∞ diverges as k → δ 0 , we will have to tread carefully in our analysis which occupies the next section.

Convergence with Stationary Bidder

To decrease B k over time, we introducing a decaying kernel sequence {k t } t∈N into CONV-OGA, giving V-CONV-OGA (Alg. 2). This section will demonstrate its consistency and convergence by controlling the trade-off between bias B k and variance V k , as B k is reduced to zero over time. This trade-off decomposes the total error as:

Π F (r * )-Π F (r t ) = Π F (r * ) -Π F (r * k ) (surrogate bias) + Π F (r * k ) -Π F (r t ) (estimation) 
.

This stresses that the kernel should converge to δ 0 fast enough to cancel the bias B k , yet slowly enough to control V k and preserve the convergence speed of OGA.

General Convergence Result

Thm. 1 provides sufficient conditions on the schedules of k t and γ t that guarantees V-CONV-OGA converges a.s. to r * . It is derived by adapting stochastic optimisation results (see e.g. [START_REF] Bottou | Online learning and stochastic approximations[END_REF]) to the changing objective Π F kt .

Algorithm 2: V-CONV-OGA

input: r 0 , {γ t } t∈N , {k t } t∈N ∈ K N , C ⊂ [0, b] for t = 1 to +∞ do observe b t r t ← proj C (r t-1 + γ t ∇p kt (r t-1 , b t ))
Theorem 1. Let F satisfy (A1) and (A2) and {k t } t∈N ∈ K N . Then, by running V-CONV-OGA with C = [0, b], we have r t a.s.

--→ r * as long as

+∞ t=1 γ t = +∞, +∞ t=1 γ t K t -1 R + 1 < +∞ and +∞ t=1 γ 2 t k t ∞ < +∞.
Proof Sketch. The proof relies on decomposing the error r tr * 2 into three terms related respectively to the pseudo-concavity of Π F , the bias B kt , and the instantaneous gradient second moment V kt . Then, following Bottou (1998), we use a quasi-martingale argument to ensure the convergence of the stochastic error process. The full proof is available in App. C.1.

If a constant kernel sequence were to be used in V-CONV-OGA, we would recover the usual stochastic approximation conditions on the step size γ t , namely that ∞ t=1 γ t = +∞ and ∞ t=1 γ 2 t < +∞. This suggests setting γ t ∝ 1/t. For such a choice of step-size, Thm. 1 asserts convergence if

∞ t=1 γ t K t -1 R + 1 < +∞, which is guaranteed by k t → δ 0 . This means k ∞ → ∞ as t → ∞, but +∞ t=1 γ 2
t k t ∞ < +∞ tells us explicitly how slow our decay must be in terms of the family of kernels. For example in the case of a Gaussian kernel, (6) implies that a suitable choice of kernel variance is σ t ∝ t -α for α ∈ (0, 1).

Finite-time Convergence Rates

While Thm. 1 provides sufficient conditions on the kernel sequence {k t } t∈N for V-CONV-OGA to be consistent, it does not characterise the rate of the convergence, and thus cannot be leveraged to optimise the step size γ t and the decay rate of the kernel.

To obtain finite time guarantees on the rate of convergence, we must impose stronger conditions on the monopoly revenue Π F . Recall that under (A2), Π F is strictly pseudoconcave. It is well known that such functions can have large areas of arbitrarily small gradient. Since they can make first order methods arbitrarily slow, no meaningful rate can be obtained for them. Strengthening the assumption to (A3), i.e. excluding vanishing gradients by ensuring Π F is µstrongly log-concave (see Prop. 1), will give a rate in Thm. 2 under the further technical assumption (A4).

(A4). The seller is given a compact subset C ⊆ [0, b] and a constant c > 0 such that r * ∈ C and for all r ∈ C, Π F (r) ≥ c.

(A4) ensures that the seller can lower bound revenue on a compact subset of [0, b]. It should be understood as prior knowledge of the seller based on the format of the auction and the type of item sold. C exists for any c < Π F (r * ), so this hypothesis is not restrictive relative to (A3).

Theorem 2. Let F satisfy (A1) and (A3), let C and c as in (A4) be given, and let {k t } t∈N ∈ K N such that there are

ν 1 , ν ∞ , α 1 , α ∞ with K t -1 R + 1 ≤ ν 1 t -α1 and k t ∞ ≤ ν ∞ t α∞ .
Then, by running V-CONV-OGA on C for γ t = νt -α with ν ≤ (2cµ) -1 , we have for all t ≥ 2,

α = 1 : E( r t -r * 2 ) = Õ t -α1 + t α∞-1 + t -2µcν α ∈ (0, 1) : E( r t -r * 2 ) = Õ t -α1 + t α∞-α + Õ t 1-α-α1 + t 1+α ∞ -2α e -µcνt 1-α
where Õ potentially hides a logarithmic term depending on the values of α, α 1 , and α ∞ .

Proof Sketch. The extended statement of Thm. 2 with explicit constants and its proof are detailed in App. C.2. The proof builds on Bach & Moulines (2011, Thm.2), derived for log-concave functions, and is adapted to our varying kernel approach and its changing objective. In contrast with the proof of Thm. 1, where we only leveraged pseudoconcavity, we show here that (A3), together with (A4), guarantees more refined control on the curvature of Π F around r * :

∀r ∈ C, (r -r * )∇Π F (r) ≤ -µc r * -r 2 . (7)
This way we can better control the stochastic process { r tr * 2 } t∈N : like for Thm. 1, we decompose the error into three terms related to concavity (Eq. 7), bias B kt , and instantaneous gradient smoothness V kt . The error is then bounded in expectation by manipulating finite series.

Thm. 2 show two distinct regimes for both choices of α: transient (t -2µcν and e -µcνt 1-α resp.) and stationary (t -α1 + t α∞-α and t -α1 + t α∞-1 resp.). On Fig. 2 (top), the transient phase is visible up to 2 × 10 3 steps. Since the transient regime's rate depends only on ν = γ 0 , c known from (A4), and µ known from (A3), we can set ν to make the stationary regime the driver of the rate.

To optimise the stationary regime we face a bias-variance trade-off. Like Thm. 1, Thm. 2 requires that k → δ 0 (via α 1 > 0) while imposing a bound on the growth speed 10 2 10 3 10 4 10 5 time t of V k (via α ∞ < α). This time, however, we have exact rates which we can use to determine optimal parameters for the trade-off, taking into account the antagonistic effects of α 1 and α ∞ . From Thm. 2, we recover that the optimal learning rate is γ t ∝ 1/t. To tune the kernels it is sensible to fix a parametric family and tune its parameter(s). For zero-mean Gaussian kernels, we have Cor. 1.

10 -4 10 -3 error Π F (r * ) -Π F (r t ) σ t = 0.1 σ t = t -1 4 σ t = t -1 2 σ t = t -
σ t = t -1 4 σ t = t -1 2 σ t = t -
Corollary 1. If we fix γ t ∝ 1/t, and let {k t } t∈N be Gaussian (0, 1/t) kernels in Thm. 2 we have for all t ≥ 2 that:

E r t -r * 2 = Õ t -1/2 .
This rate is optimal up to logarithmic factors.

Fig. 2 demonstrates this optimality: the σ t = 1/ √ t (blue) curve is the optimal rate on the top pane, and attains the rate of Cor. 1. The bottom pane illustrates the bias variance trade-off at hand in Thm. 2. If the kernel decays slower that 1/ √ t (red), the learning rate shrinks much faster and convergence is very slow but very smooth. If σ t decreases too fast (green) the variance becomes overwhelming and noise swallows the performance.

The novel analysis of V-CONV-OGA showed its a.s. convergence under (A2), and that with a bit of curvature (A3) and the technical (A4) we could fully characterise its convergence rates. We could thus derive optimal learning rates and place conditions on optimal kernel decay rates. We made the optimal decay rate explicit for Gaussian kernels. This concludes the primary discussion on V-CONV-OGA, and we now move to the non-stationary setting.

Tracking a Non-stationary Bidder

In practical applications of online auctions, such as display advertising, bidders might change their bid distribution over time. These changes often result from non-stationarity in the private information of bidders. It is therefore beneficial to be able to effectively adapt one's reserve price over time to track changing bid distributions {F t } t∈N . We use the dynamic regret R(T ) to measure the quality of an algorithm's tracking.

The difficulty in the non-stationary setting is to trade-off adaptability (how fast a switch is detected) vs. accuracy (how accurate one is between switches). Convergent algorithms like ERM or V-CONV-OGA will have high accuracy in the first phase, but then suffer as they try to adapt to changes later on, when their learning rate is very small. Windowed methods are more adaptable but still carry with them a lag, directly dependent on their window size. Firstorder methods like CONV-OGA (with constant learning rate γ) are much more adaptable, but their convergence rate (O(1/ √ t)) hurts their accuracy. Nevertheless, we show that CONV-OGA is effective, with O( √ T ) regret.

The dynamic regret R(T ) cannot be meaningfully controlled for arbitrary sequences {F t } t∈N . As such it is customary to assume (A5) that {F t } t∈N contains at most τ -1 switches up to a horizon T (see e.g. [START_REF] Garivier | On upper-confidence bound policies for switching bandit problems[END_REF][START_REF] Lattimore | Bandit algorithms[END_REF]). This corresponds to approximating a slowly changing sequence of F t (e.g. Lipschitz) by a piece-wise constant sequence.

(A5). Given some horizon T , there exists τ ≤ T such that

T -1 t=1 1 Ft =Ft+1 ≤ τ -1.
Under (A5), the game (up to T ) decomposes into τ phases. The first step towards controlling the regret is to bound the tracking performance in each phase. We do this in Thm. 3, which shows an incompressible assymptotic error (the bias of our surrogate plus the variance) and a transient phase with exponential decay.

Theorem 3. Let F satisfy (A1) and (A3) with parameter µ, let C and c be as in (A4) and k ∈ K. Then, by running CONV-OGA on C with a constant stepsize γ > 0, for any (1, 1) resp.) with different Gaussian kernels and learning rates.

t ≥ 1 we have

E( r t -r * k 2 ) ≤ b2 + C(γ, k)(t -1) e -µcγ 2 t + 2C(γ, k) µc where C(γ, k) = O γ K -1 R + 1 + γ 2 k ∞ .
Thus, immediately after a switch there will be a transient regime of order te -µcγ 2 t (high adaptability), but afterwards r t will oscillate in a band of size 2C(γ,k) µc around r * k (low accuracy). We can then use Thm. 3 to derive a sub-linear regret bound given T, τ (Cor. 2).

Corollary 2. Let {F t } t≥1 satisfy (A1), (A3), (A4), (A5) and k ∈ K. Then, there exists Ξ(k, γ) and Ω(k, γ) such that CONV-OGA has a non-stationary regret of

R(T ) ≤ Ξ(k, γ)T + Ω(k, γ)τ .
Further, if the horizon T is known in advance, running CONV-OGA with γ = T -1 2 and k a kernel with

K - 1 R + 1 ≤ T -1 2 and k ∞ ≤ T 1 2 , then R(T ) = O( √ T ).
Proof. See App. D.

Figure 3 illustrates the behaviour of CONV-OGA in a nonstationary environment. In agreement with Thm. 3 and Cor. 2, γ controls the length of the transient regime due to the e -µcγ 2 t term. Increasing γ shortens it but increases the width of the band of the asymptotic regime as C(γ, k) increases with γ (blue vs. green curves). For a fixed γ, the stationary regime in terms of k exhibits a bias-variance trade-off: K -1 R + 1 corresponds to the bias and k ∞ to the variance (see Prop. 3). In the case of a Gaussian kernel, increasing σ reduces variance but increases bias (green vs. red curve).

CONV-OGA with a constant learning rate is an efficient real-time algorithm for tracking monopoly prices of nonstationary bidders. It incurs O( √ T ) regret given the horizon and τ , by tuning γ and k, while maintaining the computational efficiency of online methods.

Discussion

In this paper we introduced V-CONV-OGA, the first real-time (O(1) update-time and memory) method for monopoly price learning. We first gave some theoretical results bridging auction theory and optimisation. We then showed how to fix the biased gradient problem with smooth surrogates, giving CONV-OGA. Next, we let the smoothing decrease over time in V-CONV-OGA, for whom we showed convergence of O(1/ √ t). Finally, we adapted CONV-OGA to perform tracking of non-stationary bid distributions with O( √ T ) dynamic regret.

Towards optimal rates. In the context of high-frequency auctions, computational efficiency trumps numerical precision, so we traded O( √ t) complexity and O(1/t) speed for O(1) complexity and O(1/ √ t) speed. Whether or not it is possible to reach the optimal rate with a real-time algorithm remains an open question. We conjecture this to be impossible in general, but we know it is possible in some instances. If F is a symmetric distribution, then CONV-OGA with a constant symmetric kernel has no bias and O(1/t) convergence. Adapting the choice kernel to some a priori knowledge on F is a possible direction to match the optimal rate.

Extension to stationary bandit. The second question concerns the extension to partially observable settings, such as online eager auctions, when the seller does not observe bids under the reserve. Obviously, extensions using a reduction to multi-armed bandits (UCB, Exp3, Exp4, etc.) via a discretisation of the bid space cannot be real-time: the discretisation creates a need for O( √ t) in memory and the same for the update. Yet, it is possible to obtain a straitforward extension of V-CONV-OGA in this setting, by plugging it into an Explore-The-Commit (ETC) [START_REF] Perchet | The multi-armed bandit problem with covariates[END_REF] algorithm: V-CONV-OGA learns an estimate of the monopoly price during the exploration period, which is then used during the exploitation period. As for other algorithms, by using a doubling trick to handle an unknown horizon, ETC+V-CONV-OGA exhibits a sub-linear regret. Unfortunately, like in the lazy auction setting, the regret is not optimal and the question of whether a realtime algorithm can match this optimal regret is still open.

Extension to non-stationary bandit. The question of the partially observable setting also applies to nonstationary bidders. In this case, extending CONV-OGA with ETC is no longer straight-forward, as the switching times are unknown. Thus, it is not obvious when to retrigger an exploration phase of ETC to adapt to the change of the bidder's distribution. A potential way to tackle this problem could be to use randomised resets for the algorithm [START_REF] Allesiardo | The nonstationary stochastic multi-armed bandit problem[END_REF] or change-point detection algorithms to trigger exploration [START_REF] Hartland | Multi-armed Bandit, Dynamic Environments and Meta-Bandits[END_REF].

This section is a stand-alone reminder and does not share notations with the rest of the paper.

A.1. Pseudo-Concavity Definition 1. A function f : X → R, f ∈ C 1 (X ), is pseudo-concave on X if ∀(x, y) ∈ X 2 , ∇f (x) T (x -y) ≥ 0 ⇒ f (x) ≥ f (y). Definition 2. A function f : X → R, f ∈ C 1 (X )
, is strictly pseudo-concave on X if it is pseudo-concave and has at most one critical point.

A.2. Log-Concavity Definition

3. A function f : X → R is log-concave on X if ∀α ∈ [0, 1], ∀(x, y) ∈ X 2 , f (αx + (1 -α)y) ≥ f (x) α f (y) (1-α) Note that if f : X → R + * this is equivalent to saying f = e -ϕ where ϕ is a convex function on X . Definition 4. A function f : X → R is strictly log-concave on X if ∀α ∈ (0, 1), ∀(x, y) ∈ X 2 s.t. x = y, f (αx + (1 -α)y) > f (x) α f (y) (1-α) Note that if f : X → R + * this is equivalent to saying f = e -ϕ where ϕ is a strictly convex function on X . Definition 5. A function f : X → R is µ-strongly log-concave on X if x → f (x)e -µx 2 is log-concave. Note that if f : X → R + * this is equivalent to saying f = e -ϕ
where ϕ is µ-strongly convex on X .

We also recall a useful technical result for any log-concave function f , that is a straightforward consequence from the concavity characterization of log(f ). Proposition 4. Let f be a real strictly positive strictly log-concave function. Then, for all u > v, for all δ > 0,

f (v + δ) f (v) > f (u + δ) f (u) .
Proof of Prop. 4. The proof is a straightforward application of properties of strictly concave functions applied to log(f ).

Let F (x, y) = log f (x)-log f (y)

x-y

, then F is strictly decreasing in x for every fixed y (and vice-versa). Thus,

F (v + δ, v) > F (v + δ, u) > F (u + δ, u) ⇒ log f (v + δ) -log f (v) > log f (u + δ) -log f (u) ⇒ f (v + δ) f (v) > f (u + δ) f (u) .

A.3. Stability through Convolution

Theorem 4 [START_REF] Ibragimov | On the composition of unimodal distributions[END_REF]). Let f : X ⊂ R → R + be pseudo-concave on X , C 1 (X ), L 1 (X ) and g : R → R + be L 1 (R) and log-concave. Then, f g is pseudo-concave on R.

We extend this theorem to strict pseudo-concavity.

Lemma 1 (Extension of [START_REF] Ibragimov | On the composition of unimodal distributions[END_REF]). Let f : X ⊂ [x 1 , x 2 ] → R + be a strictly pseudo-concave on X , C 1 (X ), L 1 (X ) such that lim x→x1,2 f (x) = 0 and g : R → R + be L 1 (R) and strictly log-concave. Then, f g is strictly pseudo-concave on R.

Proof. The proof is conducted in two steps: 1) we show f g admits a maximum on the interior of its domain (which is a critical point) and we denote it x * . 2) we show that f g is strictly increasing on (-∞, x * ) and strictly decreasing on (x * , +∞) which immediately proves the strict pseudo-concavity (including unicity of x * ).

1. Since f and g are C 1 and L 1 , the convolution f g is well defined, C 1 (R), L 1 (R) and positive (since f and g are positive). As a result, f g(x) → 0 when |x| → ∞ and Rolle's theorem guarantees that there exists at least one point x ∈ R such that f g(x * ) ≥ f g(x) for all x ∈ R. Furthermore, Ibragimov's theorem (Thm. 4) ensures that f g is pseudo-concave, hence ∇ f g (x * ) = 0.

2. Using the differentiation property of the convolution, one has that for all x ∈ R,

∇ f g (x) = ∞ -∞ f (t)∇g(x -t)dt = x2 x1 ∇f (t)g(x -t)dt, (8) 
where we used the fact that lim x→x1,2 f (x) = 0. Let x * be a critical point of f g. Taking Eq. 8 at x = x * leads to:

0 = x2 x1 ∇f (t)g(x * -t)dt.
Moreover, let y * ∈ (x 1 , x 2 ) be the unique (by pseudo-concavity) critical point of f , whose existance is guaranteed by Rolle's theorem (lim x→x1,2 f (x) = 0). We now split the integral in Eq. 8 to obtain:

∇ f g (x) = y * x1 ∇f (t)g(x -t)dt + x2 y * ∇f (t)g(x -t)dt. (9) 
The core of the proof consists in proving that ∇ f g (x * + δ) > 0 for all δ > 0 and ∇ f g (x * + δ) < 0 for all δ < 0. Since the derivation is similar in both cases, we only display here the case δ > 0. From Eq. 9, we have:

∇ f g (x * + δ) = y * x1 ∇f (t)g(x * + δ -t)dt + x2 y * ∇f (t)g(x * + δ -t)dt = y * x1 ∇f (t)g(x * -t) g(x * + δ -t) g(x * -t) dt + x2 y * ∇f (t)g(x * -t) g(x * + δ -t) g(x * -t) dt.
We now provide upper and lower bounds for g(x * +δ-t) g(x * -t) respectively on [x 1 , y * ] and [y * , x 2 ]. Let

t * = argmax t∈[x1,y * ] g(x * + δ -t) g(x * -t)
which exists since by our hypotheses on g. Then,

∀t ∈ [x 1 , y * ], g(x * + δ -t) g(x * -t) ≤ g(x * + δ -t * ) g(x * -t * ) .
Moreover, applying Prop. 4, we have for almost all t ∈ [y * , x 2 ),

g(x * + δ -t) g(x * -t) > g(x * + δ -t * ) g(x * -t * ) .
Since f is strictly pseudo-concave, ∇f (t) > 0 on [x 1 , y * ) and ∇f (t) < 0 on (y * , x 2 ], we obtain

∇ f g (x * + δ) = y * x1 ∇f (t)g(x * -t) g(x * + δ -t) g(x * -t) dt + x2 y * ∇f (t)g(x * -t) g(x * + δ -t) g(x * -t) dt < y * x1 ∇f (t)g(x * -t) g(x * + δ -t * ) g(x * -t * ) dt + x2 y * ∇f (t)g(x * -t) g(x * + δ -t * ) g(x * -t * ) dt < g(x * + δ -t * ) g(x * -t * ) ∇ f g (x * ) = 0,
which proves the desired result.

Similar stability properties through convolution are asserted for strictly and strongly log-concave functions. The first result is standard and can be derived from the Prépoka-Leindler inequality, the second can be retrieved from [START_REF] Saumard | Log-concavity and strong log-concavity: A review[END_REF].

Proposition 5. Let f : X ⊂ R → R + and g : R → R + be log-concave. Then, f g is log-concave.

Theorem 5 [START_REF] Saumard | Log-concavity and strong log-concavity: A review[END_REF], Thm. 6.6). Let f : X ⊂ R → R + and g : R → R + be µ and µ strongly logconcave respectively. Then, f g is µµ / µ 2 + µ 2 strongly log-concave. Further, the convolution of strictly log-concave functions is strictly log-concave.

B. Proofs of Sec. 3

B.1. Pseudo-and Log-Concavity of the monopoly revenue Proposition 1. Let F satisfy (A1) and Π F be its associated monopoly revenue. Then,

Π F ∈ C 2 [0, b] , Π F > 0 on (0, b)
and:

• under (A2), Π F is strictly pseudo-concave,

• under (A3), Π F is µ-strongly log-concave, i.e. log Π F is µ-strongly concave on (0, b).

Proof.

• Under (A2), ψ(r) = r -1-F (r) f (r) is stricly increasing. Moreover, for all r ∈ [0, b], ∇Π F (r) = 1 -F (r) -rf (r) = -ψ(r)f (r).
The objective is to show that for all (r 1 , r 2 )

∈ [0, b] 2 , ∇Π F (r 1 )(r 1 -r 2 ) ≥ 0 ⇒ Π F (r 1 ) ≥ Π F (r 2
) and that Π F has one critical point (by Rolle's theorem, since Π F (0) = Π F ( b) = 0). Without loss of generality, we only address the case where r 1 ≤ r 2 . Since ψ is strictly increasing, ψ(r 1 ) ≤ ψ(r 2 ), and as a result

∇Π F (r 1 ) ≤ 0 ⇔ ψ(r 1 ) ≥ 0 ⇒ ∀r ∈ [r 1 , r 2 ] , ψ(r) ≥ 0 ⇔ ∇Π F (r) ≤ 0 ⇒ Π F (r 2 ) -Π F (r 1 ) = r2 r1 ∇Π F (r)dr ≤ 0.
The case ∇Π F (r 1 ) ≥ 0 is treated in a similar fashion. Finally, since ψ is strictly increasing it can only cross 0 once, which immediately ensures the uniqueness of the critical point since f > 0 on (0, b).

• Under (A3), the hazard rate λ

(r) = f (r) 1-F (r) satisfies ∀0 ≤ r 1 ≤ r 2 ≤ b, λ(r 2 ) -λ(r 1 ) ≥ µ(r 2 -r 1 ). The objective is to show that log Π F (r) = log(r) + log(1 -F (r)) is µ-strongly concave. As log(r) is concave, we can simply show that log(1 -F (r)) is µ-strongly concave. Since F ∈ C 1 ([0, b]), we can use a characterisation of strong concavity of G(r) = log(1 -F (r)) based on its derivative: G is µ-strongly concave ⇔ ∀(r 1 , r 2 ) ∈ [0, β] 2 , (∇G(r 2 ) -∇G(r 1 )) T (r 2 -r 1 ) ≤ -µ r 2 -r 1 2
Without loss of generality, we consider the case where 0 ≤ r 1 ≤ r 2 ≤ b,

∇G(r 2 ) -∇G(r 1 ) = -f (r 2 ) 1 -F (r 2 ) - -f (r 1 ) 1 -F (r 1 ) = λ(r 1 ) -λ(r 2 ) ≤ -µ(r 2 -r 1 ).
Hence G is µ-strongly concave.

B.2. Unbiased gradient and preservation of concavity

Proposition 2. Let F satisfy (A1) and Π F be its associated monopoly revenue. Let k ∈ K, then:

• Π F k and p k are C 1 (R), • Π F k (r)=E F p k (r, b) and ∇Π F k (r)=E F ∇p k (r, b) , • under (A2), Π F k is strictly pseudo-concave on R, • under (A3), Π F k is strictly log-concave on R.
Proof. The proof is a straightforward application of the convolution's properties, the Fubini-Tonelli theorem and of the stability of concavity w.r.t. convolution detailed in App. A.3.

1. Since k ∈ C 1 (R) ∩ L 1 (R), and since Π F and p are L 1 , Π F k and p k are in C 1 ∩ L 1 .
2. Since p, Π F , and k are positive, so are Π F k and p k . Thus, the Fubini-Tonelli theorem ensures that

Π F k (r) = E b∼F p k (r, b) . Further, ∇Π F k (r) = E b∼F ∇p k (r, b) .
3. Under (A2), Π F is strictly pseudo-concave (Prop. 1) and k ∈ K is strictly log-concave. Further, Π F (0) = Π F ( b) = 0 and we can apply Lem. 1 to guarantee the strict pseudo-concavity of Π F k .

4. Under (A3), Π F is strictly log-concave and k ∈ K is strictly log-concave. Since the convolution preserves strictconcavity (see Thm. 5), Π F k is strictly log-concave. 

• B k ≤ 2 ∇Π F ∞ K -1 R + 1 , • V k ≤ 1 + b 1 + ∇Π F ∞ k ∞ .
Proof.

1. The bound on B k relies on Lem. 2, which guarantees that for all r ≥ 0,

|Π F (r) -Π F k (r)| ≤ ∇Π F ∞ ∞ -∞ |r|k(r)dr.
Decomposing B k as

B k ≤ Π F (r * ) -Π F k (r * ) + Π F k (r * ) -Π F k (r * k ) + Π F k (r * k ) -Π F (r * k ) ≤ Π F (r * ) -Π F k (r * ) + Π F k (r * k ) -Π F (r * k )
and applying two times Lem. 2 proves the desired result.

2. For all (r, b) ∈ R + × [0, b], using properties of the convolution, one has:

∇p k (r, b) = ∞ -∞ p(τ, b)∇k(r -τ )dτ = b 0 τ ∇k(r -τ )dτ = -τ k(r -τ ) b 0 + b 0 k(r -τ )dτ = b 0 k(r -τ )dτ -bk(r -b).
Since k > 0, and k 1 = 1 it is clear that

-bk(r -b) ≤ ∇p k (r, b) ≤ 1 ⇒ |∇p k (r, b)| 2 ≤ max 1, b 2 k(r -b) 2 ≤ 1 + b 2 k(r -b) 2 .
Taking the expectation w.r.t. F (with pdf f ), one obtains:

E B [(∇p k (r, B)) 2 ] ≤ 1 + b 0 b 2 k(r -b) 2 f (b)db ≤ 1 + k ∞ b 0 b 2 f (b)k(r -b)db. Finally, under (A1), for all b ∈ [0, b], bf (b) = 1 -F (b) -∇Π F (b) ⇒ bf (b) ≤ 1 + ∇Π F ∞ < ∞.
As a result, we have that

E B [(∇p k (r, B)) 2 ] ≤ 1 + 1 + ∇Π F ∞ k ∞ b 0 bk(r -b)db ≤ 1 + b 1 + ∇Π F ∞ k ∞ .
The following intermediate results provide uniform bounds on the distance between the monopoly revenue (resp. gradient) and the convoluted monopoly revenue (resp. gradient).

Lemma 2. Let F satisfies (A1) and k ∈ K be a convolution kernel. For any r ∈ [0, b], we have

|Π F (r) -Π F k (r)| ≤ ∇Π F ∞ K -1 R + 1 = ∇Π F ∞ ∞ -∞ |r|k(r)dr
Proof. First, let's notice that since ∇Π F is continuous on the closed interval [0, b], it is bounded -i.e. ∇Π F ∞ < +∞. Thus, integrating by parts leads to

|Π F (r) -Π F k (r)| = (Π F (δ 0 -k))(r) ≤ Π F (t)(1 R + (r -t) -K(r -t)) +∞ -∞ =0 -∇Π F (1 R + -K)(r) ≤ ∇Π F (1 R + -K)(r) ≤ ∇Π F ∞ K -1 R + 1 (Young's convolution inequality)
Finally, a last integration by parts leads to

K -1 R + 1 = 0 -∞ K(r)dr + ∞ 0 1 -K(r) dr = rK(r) 0 -∞ - 0 -∞ rk(r)dr + r(1 -K(r)) ∞ 0 + ∞ 0 rk(r)dr = ∞ -∞ |r|k(r)dr.
Then, another bias that is important to control, is the one of the gradient.

Lemma 3. Assuming F satisfies (A1) and k ∈ K be a convolution kernel. For any r ∈ [0, b], we have

|∇Π F k (r) -∇Π F (r)| ≤ ∇ 2 Π F ∞ K -1 R + 1 = ∇ 2 Π F ∞ ∞ -∞ |r|k(r)dr
Proof. The proof is essentially the same as the one of Lemma 2. First, notice that since

∇ 2 Π F is continuous on the closed interval [0, b], it is bounded -i.e. ∇ 2 Π F ∞ < +∞. |∇Π F k (r) -∇Π F (r)| = (∇Π F (k -δ 0 ))(r) = ∇Π F (x)(K(r -x) -1 R + (r -x)) +∞ -∞ =0 -∇ 2 Π F (K -1 R + )(r) = ∇ 2 Π F (K -1 R + )(r) ≤ ∇ 2 Π F ∞ K -1 R + 1 (Young's convolution inequality) = ∇ 2 Π F ∞ ∞ -∞ |r|k(r)dr.
C. Proofs of Sec. 4

In this section we consider only a stationary F , and therefore, for simplicity, we will denote Π F simply by Π. --→ r * as long as

+∞ t=1 γ t = +∞, +∞ t=1 γ t K t -1 R + 1 < +∞ and +∞ t=1 γ 2 t k t ∞ < +∞.
Proof. The proof inherits a lot from classical methods, see e.g. [START_REF] Bottou | Online learning and stochastic approximations[END_REF]. The main difference lies in the type of "concavity" required. The proof in [START_REF] Bottou | Online learning and stochastic approximations[END_REF] is derived for variationally coherent functions i.e. those such that ∀t ∈ N, ∀ > 0, sup

(r-r * k t ) 2 > (r -r * kt ) T ∇Π kt (r) < 0.
However, such assumption is clearly violated here since ∇Π kt (r) → 0 as r → ∞. Nevertheless since Π kt is strictly pseudo-concave and strictly positive, one can obtain a similar result.

Following [START_REF] Bottou | Online learning and stochastic approximations[END_REF], we introduce the Lyapunov process h t = r tr * 2 . Using the fact that the projection operator is a contraction, one obtains:

h t+1 = (proj C r t + γ t ∇p kt (r t , b t ) -r * 2 ≤ (r t + γ t ∇p kt (r t , b t ) -r * ) 2 ≤ h t + 2γ t (r t -r * ) T ∇p kt (r t , b t ) + γ 2 t ∇p kt (r t , b t ) 2 .
Hence, h t satisfies the recursion:

h t+1 -h t ≤ 2γ t (r t -r * )∇p kt (r t , b t ) + γ 2 t ∇p kt (r t , b t ) 2
Taking the conditional expectation w.r.t. F t = σ(b 0 , . . . , b t-1 , r 0 , . . . , r t , γ 0 , . . . , γ t ), one obtains:

E h t+1 -h t F t ≤ 2γ t (r t -r * ) T E ∇p kt (r t , b t ) F t + γ 2 t E ∇p kt (r t , b t ) 2 F t ≤ 2γ t (r t -r * ) T ∇Π kt (r t )) + γ 2 t E ∇p kt (r t , b t ) 2 F t (10) 
as Prop. 2 provides that E ∇p kt (r t , b t ) F t = ∇Π kt (r t ). Then, we decompose the gradient term to isolate the gradient bias:

E h t+1 -h t F t ≤ 2γ t (r t -r * ) T ∇Π(r t ))
≤0 by pseudo-concavity

+ 2γ t (r t -r * ) T (∇Π kt (r t ) -∇Π(r t ))) bias + γ 2 t E (∇p kt (r t , b t )) 2 F t Bounded gradient (11) 
The first term in Eq. 11 is negative by the pseudo-concavity of Π (Prop. 1). The second term is bounded by

2γ t ∇ 2 Π ∞ K -1 R + 1 by Lem. 3. The third term is bounded by γ 2 t 1 + b(1 + ∇Π ∞ ) k ∞ by Prop.
3. Using the same quasi-martingale argument as in [START_REF] Bottou | Online learning and stochastic approximations[END_REF], we have that Eq. 11, together with γ

t K t -1 R + 1 < ∞ and γ 2 t k t ∞ < ∞, implies that h t a.s. → h ∞ < ∞, E h t+1 -h t F t < ∞.
Thus, using Eq. 10, we have that 0

≤ γ t (r * -r t ) T ∇Π(r t ) < ∞. (12) 
Suppose now that (r tr * ) a.s.

→ h ∞ = 0, then since γ t = +∞, it would lead to γ t (r *r t ) T ∇Π(r t ) = +∞ which is in contradiction with Eq. 12. As a result, (r tr * ) T ∇Π(r t ) a.s.

→ 0.

Finally, since (r tr * ) 2 a.s. → h ∞ < ∞, necessarily, ∇Π(r t ) a.s.

→ 0 and r t a.s.

→ r * .

C.2. Finite-time Convergence Speed

We provide here the full statement of Thm. 2, along with explicit rates and constants. The rates are expressed in terms of an auxiliary function ϕ, which allows us to handle all configurations of the step-size and kernel decay schedules. Depending on the value of α, α 1 , α ∞ , it may introduce some logarithmic term log(t). This explains the Õ notation used in the abridged version of Thm. 2 ( Sec. 4), which can easily be recovered from this extended version.

Theorem 2. Let F satisfy (A1) and (A3), C be given in (A4) and

{k t } t∈N ∈ K N such that K t -1 R + 1 ≤ ν 1 t -α1 and k t ∞ ≤ ν ∞ t α∞ .
Then, by running V-CONV-OGA on C with γ t = νt -α with ν ≤ (2cµ) -1 , we have for all t ≥ 2,

if α = 1 E( r t -r * 2 ) ≤ b2 + 2Cνν 1 ϕ 2µcν-α1 (t) + 2C ∞ ν 2 ν ∞ ϕ 2µcν+α∞-1 (t) t -2µcν if α ∈ (0, 1) E( r t -r * 2 ) ≤ b2 + C 1 νν 1 ϕ 1-α-α1 (t) + C ∞ ν 2 ν ∞ ϕ 1+α∞-2α (t) exp -µcνt 1-α + C 1 ν 1 µc t -α1 + C ∞ νν ∞ µc t α∞-α
as long as α, α 1 , α ∞ satisfy the condition of Thm. 1 i.e., α ≤ 1, α + α 1 > 1 and 2αα ∞ > 1. The function ϕ and the constant C 1 , C ∞ are given by

ϕ β (t) = log(t)1 β=0 + t β -1 β 1 β =0 ; C 1 = 2 b ∇ 2 Π ∞ ; C ∞ = 1 + b 1 + ∇Π ∞ .
Proof. The proof builds on Bach & Moulines (2011, Thm. 2) . The main differences are that 1) we don't require the local function p kt to be concave 2) we don't rely on the strong concavity of Π kt but on its strong log-concavity and one of its lower bounds 3) our objective function varies over time because of the sequence of convolution kernels {k t } t≥1 .

We first stress that (A3) together with the lower bounded revenue Π kt leads to some sort of local strong concavity of Π.

From Prop. 1, the strongly increasing hazard rate ensures that Π is strongly log-concave with parameter µ. Further, Π admits a unique maximum r * (since Π(0) = Π(β) = 0) such that r * ∈ C by assumption. As a result, for any r ∈ C,

(r -r * ) T ∇ log Π (r) -∇ log Π (r * ) ≤ -µ r * -r 2 ⇒ (r -r * ) T ∇Π(r)/Π(r) -∇Π(r * )/Π(r * ) ≤ -µ r * -r 2 ⇒ (r -r * ) T ∇Π(r) ≤ -Π(r)µ r * -r 2 ≤ -µc r * -r 2 .
We denote as μ = µc the quantity which plays the role of the strong-concavity parameter in Bach & Moulines (2011, Thm. 2).

As for the proof of Thm. 1, we introduce the Lyapunov process h t = r tr * 2 2 and its expectation ht = E(h t ). From Eq. 11, we have

E(h t+1 -h t )|F t ) ≤ 2γ t (r t -r * ) T ∇Π(r t ) + 2γ t b ∇ 2 Π ∞ K t -1 R + 1 + γ 2 t 1 + b 1 + ∇Π ∞ k ∞ .
Using the local strong-concavity of Π and that K

t -1 R + 1 ≤ γ 1 t , k t ∞ ≤ γ ∞ t , we obtain: E(h t+1 -h t )|F t ) ≤ 2μγ t h t + C 1 γ t γ 1 t + C ∞ γ 2 t γ ∞ t ,
where

C 1 = 2 b ∇ 2 Π ∞ and C ∞ = 1 + b 1 + ∇Π ∞ . 5
Taking the expectation leads to:

ht+1 ≤ (1 -2μγ t ) ht + C 1 γ t γ 1 t + C ∞ γ 2 t γ ∞ t . (13) 
In line with [START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF], we split the proof depending whether α = 1 or α ∈ (0, 1).

1. The case α = 1: using that 1x ≤ exp(-x) for all x ∈ R and applying the recursion t times in Eq. 13, we have

ht ≤ h1 exp -2μ t-1 s=1 γ s + C 1 t-1 s=1 γ s γ 1 s exp -2μ t-1 τ =s+1 γ τ + C ∞ t-1 s=1 γ 2 s γ ∞ s exp -2μ t-1 τ =s+1 γ τ ≤ h1 exp -2μν t-1 s=1 s -1 + C 1 νν 1 t-1 s=1 s -α-α1 + C ∞ ν 2 ν ∞ t-1 s=1 s -2α+α0 exp -2μν t-1 τ =s+1 τ -1 .
Further, for all t ≥ 2,

t-1 s=1 s -1 ≥ log(t) t-1 τ =s+1 τ -1 ≥ log(t/s + 1)
we obtain that (under μν ≤ 1/2):

ht

≤ h1 t -2μν + C 1 νν 1 t -2μν t-1 s=1 s -1-α1 (s + 1) 2μν + C ∞ ν 2 ν ∞ t -2μν t-1 s=1 s -2+α∞ (s + 1) 2μν ≤ h1 t -2μν + 2C 1 νν 1 t -2μν t-1 s=1 s 2μν-1-α1 + 2C ∞ ν 2 ν ∞ t -2μν t-1 s=1 s -2+α∞+2μν , ≤ b2 + 2C 1 νν 1 ϕ 2μν-α1 (t) + 2C ∞ ν 2 ν ∞ ϕ 2μν+α∞-1 t -2μν .
2. The case α ∈ (0, 1): applying the recursion t times in Eq. 13, we have ht ≤ h1

t-1 s=1

(1 -2μγ s )

A 1 t +C 1 t-1 s=1 γ s γ 1 s t-1 τ =s+1
(1 -2μγ τ )

A 2 t +C ∞ t-1 s=1 γ 2 s γ ∞ s t-1 τ =s+1
(1 -2μγ τ )

A 3 t ( 14 
)
5 Without loss of generality, we assume that ν∞ ≥ 1.

The derivation slightly differs from the case α = 1. Following [START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF], one has:

A 1 t ≤ exp -2μ t-1 s=1 γ s A 2 t ≤ γ 1 t/2 2μ + exp -2μ t-1 τ = t/2 γ τ t-1 s=1 γ s γ 1 s A 3 t ≤ γ t/2 γ ∞ t/2 2μ + exp -2μ t-1 τ = t/2 γ τ t-1 s=1 γ 2 s γ ∞ s .
Using the expression of γ, γ 1 and γ ∞ , where α 1 ≤ 1, together with ϕ 1-α (x)-ϕ 1-α (x/2) ≥ x 1-α /2 and ϕ 1-α (t) ≥ t 1-α /2 we have:

A 1 t ≤ exp -2μνϕ 1-α (t) ≤ exp -μνt 1-α , A 2 t ≤ ν 1 μ t -α1 + νν 1 exp -μνt 1-α t-1 s=1
s -α-α1 ≤ ν 1 μ t -α1 + νν 1 expμνt 1-α ϕ 1-α-α1 (t),

A 3 t ≤ νν ∞ μ t α∞-α + ν 2 ν ∞ exp -μνt 1-α t-1 s=1 s α∞-2α ≤ νν ∞ μ t α∞-α + ν 2 ν ∞ exp -μνt 1-α ϕ 1+α∞-2α (t).
Putting everything together, we obtain the final bound for α ∈ (0, 1):

ht ≤ b2 + C 1 νν 1 ϕ 1-α-α1 (t) + C ∞ ν 2 ν ∞ ϕ 1+α∞-2α (t) exp -μνt 1-α + C 1 ν 1 μ t -α1 + C ∞ νν ∞ μ t α∞-α .
D. Proof of Sec. 5

Theorem 3. Let F satisfy (A1) and (A3) with parameter µ, let C and c be as in (A4) and k ∈ K. Then, by running CONV-OGA on C with a constant stepsize γ > 0, for any t ≥ 1 we have

E( r t -r * k 2 ) ≤ b2 + C(γ, k)(t -1) e -µcγ 2 t + 2C(γ, k) µc where C(γ, k) = O γ K -1 R + 1 + γ 2 k ∞ .
Proof. Similarly to the one of Th.2, this proof builds on the one of [START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF].

Since Π F is µ-strongly log-concave, one has for all r ∈ C, (r tr * ) T ∇Π F (r) ≤ -Π F (r)µ rr * 2 ≤ -μ rr * 2 (15)

where μ = µc. As a result, although we do not assume the function to be strongly concave, it still enjoys a similar property in r * on the bounded subset C. Then, let h t = r tr * 2 be the Lyapunov process (similarly to the proof of Thm. 1). Since the projection operator over C is 1-Lipschitz, from Eq. 11, one has:

E h t+1 -h t F t ≤ 2γ(r t -r * ) T ∇Π F (r t ) + 2γ b ∇ 2 Π F ∞ K -1 R + 1 + γ 2 t 1 + b 1 + ∇Π F ∞ k ∞ . ( 16 
) Denoting C(γ, k) = 2γ b ∇ 2 Π F ∞ K -1 R + 1 + γ 2 1 + b 1 + ∇Π F
∞ k ∞ and ht = E(h t ), and then taking the expectation in Eq. 16, one obtains: ht+1 ≤ (1 -2γ t μ) ht + C(γ, k).

Further, Eq. 17 is exactly the same as Eq. 25 in [START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF] with different definitions for the constants, and the rest of the proof is identical. As a result, one has:

ht ≤ h0 + C(γ, k)(t -1) exp -μγ 2 t + 2C(γ, k) μ .

Corollary 2. Let {F t } t≥1 satisfy (A1), (A3), (A4), (A5) and k ∈ K. Then, there exists Ξ(k, γ) and Ω(k, γ) such that CONV-OGA has a non-stationary regret of R(T ) ≤ Ξ(k, γ)T + Ω(k, γ)τ .

Further, if the horizon T is known in advance, running CONV-OGA with γ = T -1 2 and k a kernel with

K -1 R + 1 ≤ T -1 2 and k ∞ ≤ T 1 2 , then R(T ) = O( √ T ).
Proof. Denoting {[s i , t i ]} τ i=1 the intervals on which the distribution is constant, we have

R(T ) = E T t=1 Π Ft (r * t ) -Π Ft (r t ) ≤ E T t=1 ∇ 2 Π Ft ∞ 2 r * t -r t 2 2 ≤ τ i=1 ∇ 2 Π Fs i ∞ 2 ti t=si E r * si -r t 2 2 ≤ τ i=1 ∇ 2 Π Fs i ∞ 2 ti-si+1 t=1 E r * si -r t+si-1 2 2
Applying Thm. 
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 32 Figure 2. Stationary case. Numerical behaviour of V-CONV-OGA for different σt on i.i.d samples from a Kumaraswamy (1, 0.4). Top: averaged convergence speeds of instant regret (log-log scale). Bottom: representative reserve price trajectories.

Figure 3 .

 3 Figure 3. Non-stationary case. Tracking by CONV-OGA of three Kumaraswamy distributions (with parameters (1, 4), (1, 0.4), and(1, 1) resp.) with different Gaussian kernels and learning rates.

B. 3 .

 3 Bias and bounded gradient Proposition 3. Let F satisfy (A1), k ∈ K. Let r * and r * k be the monopoly prices associated with Π F and Π F k . Then, the bias B k = |Π F (r * ) -Π F (r * k )| and the instantaneous convolved gradient second moment V k = max r≥0 E b∼F |∇p k (r, b)| 2 are upper bounded by

C. 1 .

 1 Almost Sure Convergence Theorem 1. Let F satisfy (A1) and (A2) and {k t } t∈N ∈ K N . Then, by running V-CONV-OGA with C = [0, b], we have r t a.s.

τ

  3 on E r * sir t+si-1 2 2 and denoting C(γ, k) = max i∈[τ ] 2γ b ∇ 2 Π Fs i ∞ K -1 R + 1 +γ 2 1+ b 1+ ∇Π Fs i ∞ k ∞ we obtain -µcγ 2 (ti-si) 1 + (t is i ) 1e -Getting R(T ) = O( √ T ) when T is known in advance just amounts to plugging γ = 1 √ T , K -1 R + 1 ∝ 1 √ T and k ∞ ∝ √T in the last equation.
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An auction is not a zero-sum game: if the item goes unsold, neither player receives payoff.

Pseudo-concave or variationally coherent.

This distribution satisfies our concavity assumptions and can display highly eccentric behaviour for easy visualisation of the impact of the surrogate.