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Lorenzo Croissant 1 Marc Abeille 1 Clément Calauzènes 1

Abstract
In display advertising, a small group of sellers
and bidders face each other in up to 1012 auc-
tions a day. In this context, revenue maximisa-
tion via monopoly price learning is a high-value
problem for sellers. By nature, these auctions are
online and produce a very high frequency stream
of data. This results in a computational strain that
requires algorithms be real-time. Unfortunately,
existing methods inherited from the batch setting,
suffer O(

√
t) time/memory complexity at each

update, prohibiting their use. In this paper, we
provide the first algorithm for online learning of
monopoly prices in online auctions whose update
is constant in time and memory.

Introduction
Over the last two decades, online display advertising has
become a key monetisation stream for many businesses.
The market for the trading of these ads is controlled by
a very small (< 10) number of large intermediaries who
buy and sell at auction, which means that a seller-buyer
pair might trade together in 1010 to 1012 auctions per day.
Repeated auctions on this scale raise the stakes of rev-
enue maximisation, while making computational efficiency
a key consideration. In his 1981 seminal work on revenue
maximisation, Myerson described the revenue-maximising
auction when buyers’ bid distributions are known. In the
context of online display ads these distributions are private,
but the large volume of data collected by sellers on buyers
opens the way to learning revenue maximising auctions.

Optimal vs. tractable. The learning problem associated
with the Myerson auction has infinite pseudo-dimension
(Morgenstern & Roughgarden, 2015), making it unlearn-
able (Pollard, 1984). 2nd-price auctions with personalised
reserve prices (i.e. different for each bidder) stand as the
commonly accepted compromise between optimality and
tractability. They provide a 2-approximation (Roughgar-
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den & Wang, 2016) to the revenue of the Myerson auction
while securing finite pseudo-dimension.

Monopoly prices. 2nd-price auctions with personalised
reserves can be either eager or lazy. In the eager for-
mat, the item goes to the highest bidder amongst those who
cleared their reserve prices and goes unsold if none of them
did. In the lazy format, the item goes to the highest bidder if
he cleared his reserve price and goes unsold if he did not.
While an optimised eager version leads to better revenue
than an optimised lazy version, solving the eager auction’s
associated Empirical Risk Minimisation (ERM) problem
is NP-hard (Paes Leme et al., 2016) and even APX-hard
(Roughgarden & Wang, 2016). In contrast, solving the
ERM for the lazy version can be done in polynomial time
(Roughgarden & Wang, 2016): it amounts to computing
a bidder-specific quantity called the monopoly price. Not
only is the monopoly price the optimal reserve in the lazy
2nd-price auction, but it is also a provably good reserve in
the eager one (Roughgarden & Wang, 2016), and the opti-
mal reserve in posted-price (Paes Leme et al., 2016). This
makes learning monopoly prices for revenue maximisation
an important and popular research direction.

Online learning. Finding the monopoly price in a re-
peated 2nd-price auction is a natural sequential decision
problem based on the incoming bids. All three afore-
mentioned settings relating to the monopoly price have
been studied: posted-price (Amin et al., 2014; Blum et al.,
2004), eager (Cesa-Bianchi et al., 2014; Roughgarden &
Wang, 2016; Kleinberg & Leighton, 2003), and lazy which
we study (Blum & Hartline, 2005; Blum et al., 2004; Mohri
& Medina, 2016; Rudolph et al., 2016; Bubeck et al., 2017;
Shen et al., 2019). Each setting also corresponds to a differ-
ent observability structure. The offline problems are well
understood, but no online method offers theO(1) efficiency
crucial for real-world settings. We focus, therefore, on the
key problem of learning monopoly prices, online and effi-
ciently, in the stationary and non-stationary cases.

Structure of the paper. We propose a real-time first-
order algorithm which makes online learning of monopoly
prices computationally feasible, when interacting with sta-
tionary and non-stationary buyers. In Sec. 1, we detail the
setting and problem we consider. We review, in Sec. 2,
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the existing approaches and stress the challenges of the
problem including overcoming computational complexi-
ties. Our approach, based on convolution and the O(1)
Online Gradient Ascent algorithm, is described in Sec. 3.
We study performance for stationary bidders in Sec. 4 with
1/
√
t convergence rate to the monopoly price, and for non-

stationary bidders in Sec. 5 with O(
√
T ) dynamic regret.

1. Setting
A key property of a personalised reserve price in a lazy
second price auction is that it can be optimised separately
for each bidder (Paes Leme et al., 2016). For a bidder with
bid cdf F , the optimal reserve price is the monopoly price
r∗, i.e. the maximiser of the monopoly revenue defined as

ΠF (r) = r(1− F (r)) . (1)

Thus, without loss of generality, we study each bidder sep-
arately in the following repeated game: the seller sets a
reserve price r and simultaneously the buyer submits a bid
b ∈ [0, b̄] drawn from his private distribution F , whose pdf
is f . The seller then observes b which determines the in-
stantaneous revenue

p(r, b) = r1r≤b with EF [p(r, b)] = ΠF (r) . (2)

In this work, we consider two settings, depending whether
the bid distribution is stationary or not.

Stationary setting. Stationarity here means F is fixed for
the whole game. We thus have a stream of i.i.d. bids from
F , where the seller aims to maximise her long term revenue

lim
T→∞

1

T

T∑
t=1

p(r, bt) = ΠF (r) .

Or, equivalently, tries to construct a sequence of reserve
prices {rt}t≥1 given the information available so far en-
coded in the filtration Ft = σ(r1, b1, . . . , bt−1) such that
ΠF (rt)→ ΠF (r∗) as fast as possible.

Non-stationary setting. In real-world applications, bid
distributions may change over time based on the current
context. For example, near Christmas the overall value of
advertising might go up since customers spend more read-
ily, and thus bids might increase. The bidder could also
refactor his bidding policy for reasons entirely independent
of the seller. We relax the stationarity assumption by al-
lowing bids to be drawn according to a sequence of dis-
tributions {Ft}t≥1 that varies over time. As a result, the
monopoly prices {r∗t }t≥1 and optimal monopoly revenues
{ΠFt(r∗t )}t≥1 fluctuate and convergence is no longer de-
fined. Instead, we evaluate the performance of an adaptive

sequence of reserve prices by its expected dynamic regret

R(T ) = E

(
T∑
t=1

ΠFt(r∗t )−ΠFt(rt)

)
, (3)

and our objective is to track the monopoly price as fast as
possible to minimise the dynamic regret.

2. Related work, challenges and contributions
2.1. Related Work

Lazy 2nd-price auctions have been studied both in batch
(Mohri & Medina, 2016; Shen et al., 2019; Rudolph et al.,
2016; Paes Leme et al., 2016) and online (Blum & Hart-
line, 2005; Blum et al., 2004; Bubeck et al., 2017) settings.
All existing approaches aim to optimise, at least up to a
precision of 1/

√
t, the ERM objective

ΠF̂t(r) = r(1− F̂t(r)) =
1

t

t∑
i=1

r1r≤bi . (4)

However, regardless of how well-behaved ΠF is, ΠF̂t is
very poorly behaved for optimisation: it is non-smooth,
non-quasi-concave, discontinuous, and is increasing every-
where (see Fig.1, center, dashed). Thus direct optimisation
with first order methods is not applicable. Some attempts
have been made in the batch setting to optimise surrogate
objectives, but ended up with an irreducible bias (Rudolph
et al., 2016) or with hyper-parameters whose tuning is as
hard as the initial problem (Shen et al., 2019). The classi-
cal approach relies on sorting the bids {bi}ti=1 to be able to
enumerate ΠF̂t(.) linearly over {bi}ti=1 (Mohri & Medina,
2016; Paes Leme et al., 2016). A popular improvement in
terms of complexity, especially used in online approaches
(Blum et al., 2004; Blum & Hartline, 2005) consists in ap-
plying the same principle on a regular grid of resolution
1/
√
t, which in the end provides an update with complex-

ity O(
√
t) and a memory requirement of O(

√
t).

This idea of discretising the bid space was widely adopted
in partially observable settings – e.g. online eager or online
posted-price auctions – as it reduces the problem to a multi-
armed bandit with its well-studied algorithms (Kleinberg &
Leighton, 2003; Cesa-Bianchi et al., 2014; Roughgarden &
Wang, 2016) at the price of still suffering the same update
and memory complexities of O(

√
t).

Numerous approaches with adversarial bandits also fol-
lowed this discretisation approach to adapt Exp3/Exp4
(Kleinberg & Leighton, 2003; Cohen et al., 2016; Bubeck
et al., 2017) to all the settings. As a bonus, it also al-
lows to handle the case of non-stationary bidders. How-
ever, the work of Amin et al. (2014) stresses that bidders
cannot behave in an arbitrary way, as they optimise their
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own objective that is not incompatible with the seller’s1.
Hence, the non-stationarity mostly comes from the item’s
value changing over time. This suggest adapting a regu-
lar stochastic algorithms (ERM, UCB...), e.g. using slid-
ing windows (Garivier & Moulines, 2011; Lattimore &
Szepesvári, 2018).

Non-smooth or non-differentiable objectives such as ΠF̂

have been studied in both stochastic and 0-order optimisa-
tion. In both, convolution smoothing has been employed to
circumvent these problems. In Duchi et al. (2012) stochas-
tic gradient with decreasing convolution smoothing is stud-
ied for the convex case. Unfortunately, very few distribu-
tions yield a concave ΠF . In 0-order optimisation, the only
feedback received for an input is the value of the objective
at that input. In this setting, Flaxman et al. (2005) perturb
their inputs to estimate a convolved gradient. In contrast,
we obtain a closed form and do not need to perturb inputs.

2.2. Challenges

The directing challenge of our line of work is to devise an
online learning algorithm for monopoly prices with mini-
mal cost, to handle very large real-world data streams. With
1010 daily interactions in one seller-bidder pair, it is accept-
able to forfeit some convergence speed in exchange for fea-
sibility of the algorithm. It is not possible to accept update
complexity or memory requirement scaling with t. Our ob-
jective is thus to find a method that 1) converges to r∗ in
the stationary setting or has a low regret R(T ) in the non-
stationary one, 2) has O(1) memory footprint, and 3) com-
putes the next reserve rt+1 with O(1) computations.

Computational Complexity. Unfortunately, none of the
previously proposed methods fit these requirements. On
one hand, all methods based on solving ERM by sorting
(Cesa-Bianchi et al., 2014; Roughgarden & Wang, 2016)
need to keep all past bids in memory (O(t) dependency)
and their update steps require at best O(

√
t) computations.

On the other hand, adversarial methods such as Exp3 or
Exp4 (Cohen et al., 2016; Bubeck et al., 2017) are designed
for finite action space and thus need to discretise [0, b̄] into√
t intervals (to keep their regret guarantees), also leading

to a complexity of O(
√
t) from sampling to compute rt+1.

Gradient bias. First order methods (e.g. Online Gradi-
ent Ascent a.k.a. OGA) are standard tools in online learn-
ing and enjoy O(1) update and memory. This makes them
great candidates for our problem. OGA requires 3 ingredi-
ents to converge: an objective whose gradients always point
towards the optimum2, a gradient estimator with bounded

1An auction is not a zero-sum game: if the item goes unsold,
neither player receives payoff.

2Pseudo-concave or variationally coherent.

variance, and which is unbiased. Unfortunately, disconti-
nuity of p makes∇p a biased estimator of∇ΠF . A natural
approach is to construct a surrogate for p which has unbi-
ased gradients and preserves the other two conditions.

Surrogate consistency. Optimising a surrogate objective
inherently creates a bias, which has to be reduced over-
time. To do so without breaking the convergence of OGA,
we must conduct a careful finite time analysis of the al-
gorithm, which is an analytical challenge. We must re-
analyse classical results (e.g. Bach & Moulines (2011);
Duchi et al. (2012)) for varying objectives: the challenge
is to design a bias reduction procedure, and then integrate
it into these proofs to show we preserve consistency.

Non-stationarity. Resolving the above challenges is suf-
ficient to achieve efficient convergence in the stationary set-
ting. However, it is not sufficient in order to track non-
stationary bid distributions. Taking a constant surrogate
and learning rate, it is possible to adapt the stationary solu-
tion to the non-stationary case and keep its computational
efficiency. The challenge is to devise this adaptation, and
then to derive (sub-linear) regret for it.

2.3. Contributions

We propose a smoothing method for creating surrogates in
pseudo-concave problems with biased gradients. We use
it to create a first-order real-time optimisation algorithm
which reduces the surrogate’s bias during optimisation. We
prove convergence and give rates in the stationary setting
and dynamic regret bounds for tracking. In more detail:

Smooth surrogates for first order methods. We first
translate standard auction theory assumptions (e.g. increas-
ing virtual value) into properties of generalised concavity
of the monopoly revenue (Prop. 1). Next, we introduce
our smoothing method and show (in Prop. 2) that it pre-
serves the properties from Prop. 1 while offering arbitrary
smoothness, which fixes the biased gradient problem. Fi-
nally, we provide controls, via the choice of the kernel, on
the bias and variance of the gradient estimates of our sur-
rogate, which is now ready for OGA (Prop. 3).

Consistent algorithm for stationary bidders. We con-
struct an algorithm (V-CONV-OGA) which performs gra-
dient ascent while simultaneously decreasing the strength
of the smoothing over time, reducing the bias to zero.
As a result our algorithm almost surely converges to the
monopoly price (Thm. 1) while enjoying computational ef-
ficiency. Further, under a minimum curvature assumption,
we provide the rate of convergence and optimal tuning pa-
rameters (Thm. 2 and Cor. 1). At the cost of a slight degra-
dation in convergence speed (from O(1/t) to O(1/

√
t)),
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our algorithm has update and memory complexity of O(1)
which is vital for real-world applications. Results are sum-
marised in Table 1.

Update Memory Convergence
ERM O(t) O(t) O(1/t)

Discrete ERM O(
√
t) O(

√
t) O(1/t)

V-CONV-OGA O(1) O(1) O(1/
√
t)

Table 1. Comparison of our method (V-CONV-OGA) against do-
ing ERM at each step and ERM discretised on a grid of res-
olution 1/

√
t, in terms of complexity and convergence – i.e.

‖ΠF (rt)−ΠF (r∗)‖.

Tracking for non-stationary bidders. Contrary to the
stationary setting, when tracking we do not decrease the
strength of the smoothing over time. When the bias created
is smaller than the noise, our algorithm can still achieve
sub-linear dynamic regret when tracking changing bid dis-
tributions. For reasonably varying distribution, we show a
regret bound of O(

√
T ) (see Thm. 3 and Cor. 2).

3. Smooth Surrogate for First Order Methods
Our objective, to reiterate, is to design an online optimisa-
tion procedure to learn or track the optimal reserve price
whose updates require O(1) computational and memory
cost. To this end, we focus on first order method and con-
sider vanilla Online Gradient Ascent. Unfortunately, the
specific problem of learning a monopoly price doesn’t pro-
vide a way to compute unbiased gradient estimates for ΠF

from bid samples. We therefore want to design a surro-
gate that makes p sufficiently smooth so that differentiation
and integration commute. This is a well known property of
convolutional smoothing, suggesting its use. In addition,
we must ensure our surrogate preserves the optimisation
properties that ΠF already has. These must thus be studied
first, before smoothing to obtain a surrogate.

3.1. Properties of the monopoly revenue

The standard assumptions of auction theory are made to
guarantee that the monopoly price exists – and that the op-
timisation problem is well-posed. This is generally stated
as “the monopoly revenue is quasi-concave”. We refine this
characterisation by translating the assumptions we make
into specific concavity properties of the monopoly revenue
in Prop 1.

(A1). F ∈ C2
(
[0, b̄]

)
and f = F ′ > 0 on (0, b̄).

(A2). F is strictly regular on its domain of definition i.e.
the virtual value ψ(b) = b− 1−F (b)

f(b) is increasing.

(A3). F has strongly increasing hazard rate on its domain

i.e. the hazard rate λ(b) = f(b)
1−F (b) satisfies:

∀0 ≤ b1 ≤ b2 ≤ b̄, λ(b2)− λ(b1) ≥ µ(b2 − b1).

(A1) is made for ease of exposition. (A2) is a standard auc-
tion theory assumption (see Krishna (2009) for a review),
and implies a pseudo-concave revenue, as shown by Prop
1. (A2) is satisfied by common distributions, exhaustively
listed in (Ewerhart, 2013) and by real-world data – see e.g.
(Ostrovsky & Schwarz, 2011). (A3) strengthens (A2) by
requiring a minimum curvature around the maximum.

Proposition 1. Let F satisfy (A1) and ΠF be its associated
monopoly revenue. Then, ΠF ∈ C2

(
[0, b̄]

)
, ΠF > 0 on

(0, b̄) and:

• under (A2), ΠF is strictly pseudo-concave,

• under (A3), ΠF is µ-strongly log-concave, i.e. log ΠF

is µ-strongly concave on (0, b̄).

3.2. A Method Based on Smoothing

Prop. 1 ensures that the first condition for the convergence
of OGA is met under standard assumptions (A2) or (A3).
The main difficulty in the way of using OGA for revenue
optimisation – it must be stressed – lies in the undesirable
shape of the instantaneous revenue p. Indeed, p is non-
smooth (discontinuous even) and cannot be used to con-
struct an unbiased estimate of∇ΠF (r), which is necessary
for first order-methods.

Mohri & Medina (2016) suggests replacing p(·, b) by a con-
tinuous upper bound. This surrogate can be used for OGA,
but it has potentially large areas of zero-gradient, which
means it doesn’t learn from all samples. We give a general
surrogate construction (based on convolutional smoothing)
which 1) can approximate the original monopoly revenue
to arbitrary accuracy, 2) preserves the concavity properties
of ΠF , 3) offers the desired level of smoothness, and 4)
exhibits no areas of zero gradient.

Formally, given a kernel k (a metaparameter), we use con-
volution smoothing to create surrogates for p and ΠF :

pk(r, b) = (p(·, b) ? k)(r) , ΠF
k (r) = (ΠF ? k)(r). (5)

This smoothing guarantees that ∇pk(·, b) is an unbiased
estimate of ∇ΠF

k . On Fig. 1, we illustrate the effect of
this smoothing on p, ΠF̂t , and ΠF . We introduce a set
K of admissible kernels which contains all strictly posi-
tive, strictly log-concave, C1(R), L1(R), normalised (i.e.∫
R k(x)dx = 1) functions. K contains a large family of

kernels, including standard smoothing ones such as Gaus-
sians and mollifiers. Prop. 2 shows that convolution with
elements of K preserves pseudo- and log-concavity.
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r

p (r,0.7)

pk (r,0.7)

r

ΠF̂
t (r)

ΠF̂
k,t(r)

r r∗r∗k

ΠF(r)

ΠF
k (r)

Figure 1. The effect of smoothing the monopoly revenue of a bidder with F a Kumaraswamy4(1,0.4) distribution with a Gaussian kernel.
Left: smoothing of p(r, b) for b = 0.7. Center: smoothing of the empirical revenue ΠF̂

t (r) for some random bt. Right: smoothing of
the expected revenue (ΠF

k vs ΠF ). Note the difference in the optima (i.e. the surrogate bias).

Proposition 2. Let F satisfy (A1) and ΠF be its associated
monopoly revenue. Let k ∈ K, then:

• ΠF
k and pk are C1(R),

• ΠF
k (r)=EF

(
pk(r, b)

)
and ∇ΠF

k (r)=EF
(
∇pk(r, b)

)
,

• under (A2), ΠF
k is strictly pseudo-concave on R,

• under (A3), ΠF
k is strictly log-concave on R.

Proof. See App. B.2.

Algorithm 1: CONV-OGA

input: r0, {γt}t∈N, k ∈ K, C ⊂ [0, b̄]
for t = 1 to +∞ do

observe bt
rt ← projC (rt−1 + γt∇pk(rt−1, bt))

Prop. 2 guarantees that the surrogate satisfies the pseudo-
concavity and unbiased gradient conditions of OGA. Ap-
plying OGA to the surrogate ΠF

k gives Alg. 1. Note that as
a property of convolution, ∇pk(·, b) = p(·, b) ?∇k, which
is a simple (generally closed-form) computation.

Prop. 3 will show that the bounded variance condition of
OGA also holds. Since OGA’s three conditions are satis-
fied, we can guarantee convergence to the maximum r∗k of
ΠF
k (see e.g. (Bottou, 1998)). However, in general r∗k is not

the monopoly price r∗ and the surrogate is biased. Prop. 3
also gives a control on this bias in terms of the L1 distance
between the cdf K of k and the cdf 1R+ of the Dirac mass
δ0, which is the only kernel to guarantee r∗δ0 = r∗.

Proposition 3. Let F satisfy (A1), k ∈ K. Let r∗

and r∗k be the monopoly prices associated with ΠF and
ΠF
k . Then, the bias Bk = |ΠF (r∗) − ΠF (r∗k)| and the

4This distribution satisfies our concavity assumptions and can
display highly eccentric behaviour for easy visualisation of the
impact of the surrogate.

instantaneous convolved gradient second moment Vk =
maxr≥0 Eb∼F

(
|∇pk(r, b)|2

)
are upper bounded by

• Bk ≤ 2‖∇ΠF ‖∞‖K − 1R+‖1,

• Vk ≤ 1 + b̄
(
1 + ‖∇ΠF ‖∞

)
‖k‖∞.

If one chooses a family of kernels, these bounds can be ex-
pressed in terms of its parameters. For instance, when k is
zero-mean Gaussian with variance σ2, one easily recovers:

‖K − 1R+‖1 = σ
√

2/π , ‖k‖∞ = (
√

2πσ)−1. (6)

CONV-OGA converges only to r∗k. To remedy this, we
would like to decrease Bk over time by letting k → δ0.
However, since ‖k‖∞ diverges as k → δ0, we will have
to tread carefully in our analysis which occupies the next
section.

4. Convergence with Stationary Bidder
To decrease Bk over time, we introducing a decaying ker-
nel sequence {kt}t∈N into CONV-OGA, giving V-CONV-
OGA (Alg. 2). This section will demonstrate its consis-
tency and convergence by controlling the trade-off between
biasBk and variance Vk, asBk is reduced to zero over time.
This trade-off decomposes the total error as:

ΠF(r∗)−ΠF(rt) = ΠF(r∗)−ΠF(r∗k)︸ ︷︷ ︸
(surrogate bias)

+ ΠF(r∗k)−ΠF(rt)︸ ︷︷ ︸
(estimation)

.

This stresses that the kernel should converge to δ0 fast
enough to cancel the bias Bk, yet slowly enough to con-
trol Vk and preserve the convergence speed of OGA.

4.1. General Convergence Result

Thm. 1 provides sufficient conditions on the schedules of
kt and γt that guarantees V-CONV-OGA converges a.s. to
r∗. It is derived by adapting stochastic optimisation results
(see e.g. Bottou (1998)) to the changing objective ΠF

kt
.
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Algorithm 2: V-CONV-OGA

input: r0, {γt}t∈N, {kt}t∈N ∈ KN, C ⊂ [0, b̄]
for t = 1 to +∞ do

observe bt
rt ← projC (rt−1 + γt∇pkt(rt−1, bt))

Theorem 1. Let F satisfy (A1) and (A2) and {kt}t∈N ∈
KN. Then, by running V-CONV-OGA with C = [0, b̄], we
have

rt
a.s.−−→ r∗

as long as
∑+∞
t=1 γt = +∞,

∑+∞
t=1 γt‖Kt−1R+‖1 < +∞

and
∑+∞
t=1 γ

2
t ‖kt‖∞ < +∞.

Proof Sketch. The proof relies on decomposing the er-
ror ‖rt − r∗‖2 into three terms related respectively to the
pseudo-concavity of ΠF , the bias Bkt , and the instanta-
neous gradient second moment Vkt . Then, following Bot-
tou (1998), we use a quasi-martingale argument to ensure
the convergence of the stochastic error process. The full
proof is available in App. C.1.

If a constant kernel sequence were to be used in V-CONV-
OGA, we would recover the usual stochastic approxima-
tion conditions on the step size γt, namely that

∑∞
t=1 γt =

+∞ and
∑∞
t=1 γ

2
t < +∞. This suggests setting γt ∝ 1/t.

For such a choice of step-size, Thm. 1 asserts convergence
if
∑∞
t=1 γt‖Kt − 1R+‖1 < +∞, which is guaranteed by

kt → δ0. This means ‖k‖∞ → ∞ as t → ∞, but∑+∞
t=1 γ

2
t ‖kt‖∞ < +∞ tells us explicitly how slow our de-

cay must be in terms of the family of kernels. For example
in the case of a Gaussian kernel, (6) implies that a suitable
choice of kernel variance is σt ∝ t−α for α ∈ (0, 1).

4.2. Finite-time Convergence Rates

While Thm. 1 provides sufficient conditions on the kernel
sequence {kt}t∈N for V-CONV-OGA to be consistent, it
does not characterise the rate of the convergence, and thus
cannot be leveraged to optimise the step size γt and the
decay rate of the kernel.

To obtain finite time guarantees on the rate of convergence,
we must impose stronger conditions on the monopoly rev-
enue ΠF . Recall that under (A2), ΠF is strictly pseudo-
concave. It is well known that such functions can have large
areas of arbitrarily small gradient. Since they can make first
order methods arbitrarily slow, no meaningful rate can be
obtained for them. Strengthening the assumption to (A3),
i.e. excluding vanishing gradients by ensuring ΠF is µ-
strongly log-concave (see Prop. 1), will give a rate in Thm.
2 under the further technical assumption (A4).

(A4). The seller is given a compact subset C ⊆ [0, b̄] and
a constant c > 0 such that r∗ ∈ C and for all r ∈ C,
ΠF (r) ≥ c.

(A4) ensures that the seller can lower bound revenue on a
compact subset of [0, b̄]. It should be understood as prior
knowledge of the seller based on the format of the auction
and the type of item sold. C exists for any c < ΠF (r∗), so
this hypothesis is not restrictive relative to (A3).

Theorem 2. Let F satisfy (A1) and (A3), let C and c as
in (A4) be given, and let {kt}t∈N ∈ KN such that there are
ν1, ν∞, α1, α∞ with

‖Kt − 1R+‖1 ≤ ν1t
−α1 and ‖kt‖∞ ≤ ν∞tα∞ .

Then, by running V-CONV-OGA on C for γt = νt−α with
ν ≤ (2cµ)−1, we have for all t ≥ 2,

α = 1 : E(‖rt − r∗‖2) = Õ
(
t−α1 + tα∞−1 + t−2µcν

)
α ∈ (0, 1) : E(‖rt − r∗‖2) = Õ

(
t−α1 + tα∞−α

)
+Õ
((
t1−α−α1 + t1+α∞−2α

)
e−µcνt

1−α
)

where Õ potentially hides a logarithmic term depending on
the values of α, α1, and α∞.

Proof Sketch. The extended statement of Thm. 2 with ex-
plicit constants and its proof are detailed in App. C.2. The
proof builds on Bach & Moulines (2011, Thm.2), derived
for log-concave functions, and is adapted to our varying
kernel approach and its changing objective. In contrast
with the proof of Thm. 1, where we only leveraged pseudo-
concavity, we show here that (A3), together with (A4),
guarantees more refined control on the curvature of ΠF

around r∗:

∀r ∈ C, (r − r∗)∇ΠF (r) ≤ −µc‖r∗ − r‖2. (7)

This way we can better control the stochastic process
{‖rt − r∗‖2}t∈N: like for Thm. 1, we decompose the error
into three terms related to concavity (Eq. 7), bias Bkt , and
instantaneous gradient smoothness Vkt . The error is then
bounded in expectation by manipulating finite series.

Thm. 2 show two distinct regimes for both choices of
α: transient (t−2µcν and e−µcνt

1−α
resp.) and stationary

(t−α1 + tα∞−α and t−α1 + tα∞−1 resp.). On Fig. 2 (top),
the transient phase is visible up to 2× 103 steps. Since the
transient regime’s rate depends only on ν = γ0, c known
from (A4), and µ known from (A3), we can set ν to make
the stationary regime the driver of the rate.

To optimise the stationary regime we face a bias-variance
trade-off. Like Thm. 1, Thm. 2 requires that k → δ0
(via α1 > 0) while imposing a bound on the growth speed
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Figure 2. Stationary case. Numerical behaviour of V-CONV-
OGA for different σt on i.i.d samples from a Kumaraswamy (1,
0.4). Top: averaged convergence speeds of instant regret (log-log
scale). Bottom: representative reserve price trajectories.

of Vk (via α∞ < α). This time, however, we have exact
rates which we can use to determine optimal parameters for
the trade-off, taking into account the antagonistic effects of
α1 and α∞. From Thm. 2, we recover that the optimal
learning rate is γt ∝ 1/t. To tune the kernels it is sensible
to fix a parametric family and tune its parameter(s). For
zero-mean Gaussian kernels, we have Cor. 1.

Corollary 1. If we fix γt ∝ 1/t, and let {kt}t∈N be Gaus-
sian (0, 1/t) kernels in Thm. 2 we have for all t ≥ 2 that:

E
(
‖rt − r∗‖2

)
= Õ

(
t−1/2

)
.

This rate is optimal up to logarithmic factors.

Fig. 2 demonstrates this optimality: the σt = 1/
√
t (blue)

curve is the optimal rate on the top pane, and attains the rate
of Cor. 1. The bottom pane illustrates the bias variance
trade-off at hand in Thm. 2. If the kernel decays slower
that 1/

√
t (red), the learning rate shrinks much faster and

convergence is very slow but very smooth. If σt decreases
too fast (green) the variance becomes overwhelming and

noise swallows the performance.

The novel analysis of V-CONV-OGA showed its a.s. con-
vergence under (A2), and that with a bit of curvature (A3)
and the technical (A4) we could fully characterise its con-
vergence rates. We could thus derive optimal learning rates
and place conditions on optimal kernel decay rates. We
made the optimal decay rate explicit for Gaussian kernels.
This concludes the primary discussion on V-CONV-OGA,
and we now move to the non-stationary setting.

5. Tracking a Non-stationary Bidder
In practical applications of online auctions, such as display
advertising, bidders might change their bid distribution
over time. These changes often result from non-stationarity
in the private information of bidders. It is therefore benefi-
cial to be able to effectively adapt one’s reserve price over
time to track changing bid distributions {Ft}t∈N. We use
the dynamic regret R(T ) to measure the quality of an algo-
rithm’s tracking.

The difficulty in the non-stationary setting is to trade-off
adaptability (how fast a switch is detected) vs. accuracy
(how accurate one is between switches). Convergent algo-
rithms like ERM or V-CONV-OGA will have high accu-
racy in the first phase, but then suffer as they try to adapt
to changes later on, when their learning rate is very small.
Windowed methods are more adaptable but still carry with
them a lag, directly dependent on their window size. First-
order methods like CONV-OGA (with constant learning
rate γ) are much more adaptable, but their convergence rate
(O(1/

√
t)) hurts their accuracy. Nevertheless, we show

that CONV-OGA is effective, with O(
√
T ) regret.

The dynamic regret R(T ) cannot be meaningfully con-
trolled for arbitrary sequences {Ft}t∈N. As such it is cus-
tomary to assume (A5) that {Ft}t∈N contains at most τ −1
switches up to a horizon T (see e.g. (Garivier & Moulines,
2011; Lattimore & Szepesvári, 2018)). This corresponds
to approximating a slowly changing sequence of Ft (e.g.
Lipschitz) by a piece-wise constant sequence.

(A5). Given some horizon T , there exists τ ≤ T such that∑T−1
t=1 1Ft 6=Ft+1

≤ τ − 1.

Under (A5), the game (up to T ) decomposes into τ phases.
The first step towards controlling the regret is to bound the
tracking performance in each phase. We do this in Thm. 3,
which shows an incompressible assymptotic error (the bias
of our surrogate plus the variance) and a transient phase
with exponential decay.

Theorem 3. Let F satisfy (A1) and (A3) with parameter
µ, let C and c be as in (A4) and k ∈ K. Then, by running
CONV-OGA on C with a constant stepsize γ > 0, for any
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Figure 3. Non-stationary case. Tracking by CONV-OGA of three
Kumaraswamy distributions (with parameters (1, 4), (1, 0.4), and
(1, 1) resp.) with different Gaussian kernels and learning rates.

t ≥ 1 we have

E(‖rt − r∗k‖2) ≤
(
b̄2 + C(γ, k)(t - 1)

)
e−

µcγ
2 t +

2C(γ, k)

µc

where C(γ, k) = O
(
γ‖K − 1R+‖1 + γ2‖k‖∞

)
.

Thus, immediately after a switch there will be a transient
regime of order te−

µcγ
2 t (high adaptability), but afterwards

rt will oscillate in a band of size 2C(γ,k)
µc around r∗k (low

accuracy). We can then use Thm. 3 to derive a sub-linear
regret bound given T, τ (Cor. 2).

Corollary 2. Let {Ft}t≥1 satisfy (A1), (A3), (A4), (A5)
and k ∈ K. Then, there exists Ξ(k, γ) and Ω(k, γ) such
that CONV-OGA has a non-stationary regret of

R(T ) ≤ Ξ(k, γ)T + Ω(k, γ)τ .

Further, if the horizon T is known in advance, running
CONV-OGA with γ = T−

1
2 and k a kernel with ‖K −

1R+‖1 ≤ T−
1
2 and ‖k‖∞ ≤ T

1
2 , then R(T ) = O(

√
T ).

Proof. See App. D.

Figure 3 illustrates the behaviour of CONV-OGA in a non-
stationary environment. In agreement with Thm. 3 and
Cor. 2, γ controls the length of the transient regime due
to the e−

µcγ
2 t term. Increasing γ shortens it but increases

the width of the band of the asymptotic regime as C(γ, k)
increases with γ (blue vs. green curves). For a fixed γ,
the stationary regime in terms of k exhibits a bias-variance
trade-off: ‖K − 1R+‖1 corresponds to the bias and ‖k‖∞
to the variance (see Prop. 3). In the case of a Gaussian ker-
nel, increasing σ reduces variance but increases bias (green
vs. red curve).

CONV-OGA with a constant learning rate is an efficient
real-time algorithm for tracking monopoly prices of non-
stationary bidders. It incurs O(

√
T ) regret given the hori-

zon and τ , by tuning γ and k, while maintaining the com-
putational efficiency of online methods.

6. Discussion
In this paper we introduced V-CONV-OGA, the first
real-time (O(1) update-time and memory) method for
monopoly price learning. We first gave some theoreti-
cal results bridging auction theory and optimisation. We
then showed how to fix the biased gradient problem with
smooth surrogates, giving CONV-OGA. Next, we let the
smoothing decrease over time in V-CONV-OGA, for whom
we showed convergence of O(1/

√
t). Finally, we adapted

CONV-OGA to perform tracking of non-stationary bid dis-
tributions with O(

√
T ) dynamic regret.

Towards optimal rates. In the context of high-frequency
auctions, computational efficiency trumps numerical pre-
cision, so we traded O(

√
t) complexity and O(1/t) speed

for O(1) complexity and O(1/
√
t) speed. Whether or not

it is possible to reach the optimal rate with a real-time algo-
rithm remains an open question. We conjecture this to be
impossible in general, but we know it is possible in some
instances. If F is a symmetric distribution, then CONV-
OGA with a constant symmetric kernel has no bias and
O(1/t) convergence. Adapting the choice kernel to some a
priori knowledge on F is a possible direction to match the
optimal rate.

Extension to stationary bandit. The second question
concerns the extension to partially observable settings,
such as online eager auctions, when the seller does not ob-
serve bids under the reserve. Obviously, extensions using a
reduction to multi-armed bandits (UCB, Exp3, Exp4, etc.)
via a discretisation of the bid space cannot be real-time: the
discretisation creates a need for O(

√
t) in memory and the

same for the update. Yet, it is possible to obtain a strait-
forward extension of V-CONV-OGA in this setting, by
plugging it into an Explore-The-Commit (ETC) (Perchet &
Rigollet, 2013) algorithm: V-CONV-OGA learns an esti-
mate of the monopoly price during the exploration period,
which is then used during the exploitation period. As for
other algorithms, by using a doubling trick to handle an un-
known horizon, ETC+V-CONV-OGA exhibits a sub-linear
regret. Unfortunately, like in the lazy auction setting, the
regret is not optimal and the question of whether a real-
time algorithm can match this optimal regret is still open.



Real-time Optimisation for Online Learning in Auctions

Extension to non-stationary bandit. The question of
the partially observable setting also applies to non-
stationary bidders. In this case, extending CONV-OGA
with ETC is no longer straight-forward, as the switching
times are unknown. Thus, it is not obvious when to re-
trigger an exploration phase of ETC to adapt to the change
of the bidder’s distribution. A potential way to tackle this
problem could be to use randomised resets for the algo-
rithm (Allesiardo et al., 2017) or change-point detection al-
gorithms to trigger exploration (Hartland et al., 2006).
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A. General Reminders on Pseudo- and Log-Concavity
This section is a stand-alone reminder and does not share notations with the rest of the paper.

A.1. Pseudo-Concavity

Definition 1. A function f : X → R, f ∈ C1(X ), is pseudo-concave on X if ∀(x, y) ∈ X 2,

∇f(x)T (x− y) ≥ 0 ⇒ f(x) ≥ f(y).

Definition 2. A function f : X → R, f ∈ C1(X ), is strictly pseudo-concave on X if it is pseudo-concave and has at most
one critical point.

A.2. Log-Concavity

Definition 3. A function f : X → R̄ is log-concave on X if

∀α ∈ [0, 1],∀(x, y) ∈ X 2, f(αx+ (1− α)y) ≥ f(x)αf(y)(1−α)

Note that if f : X → R+
∗ this is equivalent to saying f = e−ϕ where ϕ is a convex function on X .

Definition 4. A function f : X → R̄ is strictly log-concave on X if

∀α ∈ (0, 1),∀(x, y) ∈ X 2 s.t. x 6= y, f(αx+ (1− α)y) > f(x)αf(y)(1−α)

Note that if f : X → R+
∗ this is equivalent to saying f = e−ϕ where ϕ is a strictly convex function on X .

Definition 5. A function f : X → R̄ is µ-strongly log-concave on X if x 7→ f(x)e−µx
2

is log-concave.

Note that if f : X → R+
∗ this is equivalent to saying f = e−ϕ where ϕ is µ-strongly convex on X .

We also recall a useful technical result for any log-concave function f , that is a straightforward consequence from the
concavity characterization of log(f).
Proposition 4. Let f be a real strictly positive strictly log-concave function. Then, for all u > v, for all δ > 0,

f(v + δ)

f(v)
>
f(u+ δ)

f(u)
.

Proof of Prop. 4. The proof is a straightforward application of properties of strictly concave functions applied to log(f).
Let F (x, y) = log f(x)−log f(y)

x−y , then F is strictly decreasing in x for every fixed y (and vice-versa). Thus,

F (v + δ, v) > F (v + δ, u) > F (u+ δ, u)⇒ log f(v + δ)− log f(v) > log f(u+ δ)− log f(u)

⇒ f(v + δ)

f(v)
>
f(u+ δ)

f(u)
.

A.3. Stability through Convolution

Theorem 4 (Ibragimov (1956)). Let f : X ⊂ R → R+ be pseudo-concave on X , C1(X ), L1(X ) and g : R → R+ be
L1(R) and log-concave. Then, f ? g is pseudo-concave on R.

We extend this theorem to strict pseudo-concavity.
Lemma 1 (Extension of Ibragimov (1956)). Let f : X ⊂ [x1, x2] → R+ be a strictly pseudo-concave on X , C1(X ),
L1(X ) such that limx→x1,2 f(x) = 0 and g : R → R+ be L1(R) and strictly log-concave. Then, f ? g is strictly
pseudo-concave on R.

Proof. The proof is conducted in two steps: 1) we show f ? g admits a maximum on the interior of its domain (which is
a critical point) and we denote it x∗. 2) we show that f ? g is strictly increasing on (−∞, x∗) and strictly decreasing on
(x∗,+∞) which immediately proves the strict pseudo-concavity (including unicity of x∗).
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1. Since f and g are C1 and L1, the convolution f ? g is well defined, C1(R), L1(R) and positive (since f and g are
positive). As a result, f ? g(x)→ 0 when |x| → ∞ and Rolle’s theorem guarantees that there exists at least one point
x? ∈ R such that f ? g(x∗) ≥ f ? g(x) for all x ∈ R. Furthermore, Ibragimov’s theorem (Thm. 4) ensures that f ? g
is pseudo-concave, hence∇

(
f ? g

)
(x∗) = 0.

2. Using the differentiation property of the convolution, one has that for all x ∈ R,

∇
(
f ? g

)
(x) =

∫ ∞
−∞

f(t)∇g(x− t)dt =

∫ x2

x1

∇f(t)g(x− t)dt, (8)

where we used the fact that limx→x1,2
f(x) = 0. Let x∗ be a critical point of f ? g. Taking Eq. 8 at x = x∗ leads to:

0 =

∫ x2

x1

∇f(t)g(x∗ − t)dt.

Moreover, let y∗ ∈ (x1, x2) be the unique (by pseudo-concavity) critical point of f , whose existance is guaranteed by
Rolle’s theorem (limx→x1,2

f(x) = 0). We now split the integral in Eq. 8 to obtain:

∇
(
f ? g

)
(x) =

∫ y∗

x1

∇f(t)g(x− t)dt+

∫ x2

y∗
∇f(t)g(x− t)dt. (9)

The core of the proof consists in proving that ∇
(
f ? g

)
(x∗ + δ) > 0 for all δ > 0 and ∇

(
f ? g

)
(x∗ + δ) < 0 for all

δ < 0. Since the derivation is similar in both cases, we only display here the case δ > 0. From Eq. 9, we have:

∇
(
f ? g

)
(x∗ + δ) =

∫ y∗

x1

∇f(t)g(x∗ + δ − t)dt+

∫ x2

y∗
∇f(t)g(x∗ + δ − t)dt

=

∫ y∗

x1

∇f(t)g(x∗ − t)g(x∗ + δ − t)
g(x∗ − t) dt+

∫ x2

y∗
∇f(t)g(x∗ − t)g(x∗ + δ − t)

g(x∗ − t) dt.

We now provide upper and lower bounds for g(x
∗+δ−t)

g(x∗−t) respectively on [x1, y
∗] and [y∗, x2]. Let

t∗ = argmaxt∈[x1,y∗]

g(x∗ + δ − t)
g(x∗ − t)

which exists since by our hypotheses on g. Then,

∀t ∈ [x1, y
∗],

g(x∗ + δ − t)
g(x∗ − t) ≤ g(x∗ + δ − t∗)

g(x∗ − t∗) .

Moreover, applying Prop. 4, we have for almost all t ∈ [y∗, x2),

g(x∗ + δ − t)
g(x∗ − t) >

g(x∗ + δ − t∗)
g(x∗ − t∗) .

Since f is strictly pseudo-concave,∇f(t) > 0 on [x1, y
∗) and ∇f(t) < 0 on (y∗, x2], we obtain

∇
(
f ? g

)
(x∗ + δ) =

∫ y∗

x1

∇f(t)g(x∗ − t)g(x∗ + δ − t)
g(x∗ − t) dt+

∫ x2

y∗
∇f(t)g(x∗ − t)g(x∗ + δ − t)

g(x∗ − t) dt

<

∫ y∗

x1

∇f(t)g(x∗ − t)g(x∗ + δ − t∗)
g(x∗ − t∗) dt+

∫ x2

y∗
∇f(t)g(x∗ − t)g(x∗ + δ − t∗)

g(x∗ − t∗) dt

<
g(x∗ + δ − t∗)
g(x∗ − t∗) ∇

(
f ? g

)
(x∗) = 0,

which proves the desired result.
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Similar stability properties through convolution are asserted for strictly and strongly log-concave functions. The first result
is standard and can be derived from the Prépoka-Leindler inequality, the second can be retrieved from (Saumard & Wellner,
2014).

Proposition 5. Let f : X ⊂ R→ R+ and g : R→ R+ be log-concave. Then, f ? g is log-concave.

Theorem 5 (Saumard & Wellner (2014), Thm. 6.6). Let f : X ⊂ R → R+ and g : R → R+ be µ and µ′ strongly log-
concave respectively. Then, f ? g is µµ′/

√
µ2 + µ′2 strongly log-concave. Further, the convolution of strictly log-concave

functions is strictly log-concave.

B. Proofs of Sec. 3
B.1. Pseudo- and Log-Concavity of the monopoly revenue

Proposition 1. Let F satisfy (A1) and ΠF be its associated monopoly revenue. Then, ΠF ∈ C2
(
[0, b̄]

)
, ΠF > 0 on (0, b̄)

and:

• under (A2), ΠF is strictly pseudo-concave,

• under (A3), ΠF is µ-strongly log-concave, i.e. log ΠF is µ-strongly concave on (0, b̄).

Proof.

• Under (A2), ψ(r) = r − 1−F (r)
f(r) is stricly increasing. Moreover, for all r ∈ [0, b̄],

∇ΠF (r) = 1− F (r)− rf(r) = −ψ(r)f(r).

The objective is to show that for all (r1, r2) ∈ [0, b̄]2, ∇ΠF (r1)(r1 − r2) ≥ 0 ⇒ ΠF (r1) ≥ ΠF (r2) and that ΠF

has one critical point (by Rolle’s theorem, since ΠF (0) = ΠF (b̄) = 0). Without loss of generality, we only address
the case where r1 ≤ r2. Since ψ is strictly increasing, ψ(r1) ≤ ψ(r2), and as a result

∇ΠF (r1) ≤ 0 ⇔ ψ(r1) ≥ 0

⇒ ∀r ∈ [r1, r2] , ψ(r) ≥ 0 ⇔ ∇ΠF (r) ≤ 0

⇒ ΠF (r2)−ΠF (r1) =

∫ r2

r1

∇ΠF (r)dr ≤ 0.

The case ∇ΠF (r1) ≥ 0 is treated in a similar fashion. Finally, since ψ is strictly increasing it can only cross 0 once,
which immediately ensures the uniqueness of the critical point since f > 0 on (0, b̄).

• Under (A3), the hazard rate λ(r) = f(r)
1−F (r) satisfies ∀0 ≤ r1 ≤ r2 ≤ b̄, λ(r2)− λ(r1) ≥ µ(r2 − r1). The objective

is to show that log ΠF (r) = log(r)+ log(1−F (r)) is µ-strongly concave. As log(r) is concave, we can simply show
that log(1 − F (r)) is µ-strongly concave. Since F ∈ C1([0, b̄]), we can use a characterisation of strong concavity of
G(r) = log(1− F (r)) based on its derivative:

G is µ-strongly concave ⇔ ∀(r1, r2) ∈ [0, β]2, (∇G(r2)−∇G(r1))
T

(r2 − r1) ≤ −µ‖r2 − r1‖2

Without loss of generality, we consider the case where 0 ≤ r1 ≤ r2 ≤ b̄,

∇G(r2)−∇G(r1) =
−f(r2)

1− F (r2)
− −f(r1)

1− F (r1)
= λ(r1)− λ(r2) ≤ −µ(r2 − r1).

Hence G is µ-strongly concave.
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B.2. Unbiased gradient and preservation of concavity

Proposition 2. Let F satisfy (A1) and ΠF be its associated monopoly revenue. Let k ∈ K, then:

• ΠF
k and pk are C1(R),

• ΠF
k (r)=EF

(
pk(r, b)

)
and ∇ΠF

k (r)=EF
(
∇pk(r, b)

)
,

• under (A2), ΠF
k is strictly pseudo-concave on R,

• under (A3), ΠF
k is strictly log-concave on R.

Proof. The proof is a straightforward application of the convolution’s properties, the Fubini-Tonelli theorem and of the
stability of concavity w.r.t. convolution detailed in App. A.3.

1. Since k ∈ C1(R) ∩ L1(R), and since ΠF and p are L1, ΠF
k and pk are in C1 ∩ L1.

2. Since p, ΠF , and k are positive, so are ΠF
k and pk. Thus, the Fubini-Tonelli theorem ensures that ΠF

k (r) =
Eb∼F

(
pk(r, b)

)
. Further,∇ΠF

k (r) = Eb∼F
(
∇pk(r, b)

)
.

3. Under (A2), ΠF is strictly pseudo-concave (Prop. 1) and k ∈ K is strictly log-concave. Further, ΠF (0) = ΠF (b̄) = 0
and we can apply Lem. 1 to guarantee the strict pseudo-concavity of ΠF

k .

4. Under (A3), ΠF is strictly log-concave and k ∈ K is strictly log-concave. Since the convolution preserves strict-
concavity (see Thm. 5), ΠF

k is strictly log-concave.

B.3. Bias and bounded gradient

Proposition 3. Let F satisfy (A1), k ∈ K. Let r∗ and r∗k be the monopoly prices associated with ΠF and ΠF
k . Then, the bias

Bk = |ΠF (r∗) − ΠF (r∗k)| and the instantaneous convolved gradient second moment Vk = maxr≥0 Eb∼F
(
|∇pk(r, b)|2

)
are upper bounded by

• Bk ≤ 2‖∇ΠF ‖∞‖K − 1R+‖1,

• Vk ≤ 1 + b̄
(
1 + ‖∇ΠF ‖∞

)
‖k‖∞.

Proof.

1. The bound on Bk relies on Lem. 2, which guarantees that for all r ≥ 0,

|ΠF (r)−ΠF
k (r)| ≤ ‖∇ΠF ‖∞

∫ ∞
−∞
|r|k(r)dr.

Decomposing Bk as

Bk ≤ ΠF (r∗)−ΠF
k (r∗) + ΠF

k (r∗)−ΠF
k (r∗k) + ΠF

k (r∗k)−ΠF (r∗k) ≤ ΠF (r∗)−ΠF
k (r∗) + ΠF

k (r∗k)−ΠF (r∗k)

and applying two times Lem. 2 proves the desired result.

2. For all (r, b) ∈ R+ × [0, b̄], using properties of the convolution, one has:

∇pk(r, b) =

∫ ∞
−∞

p(τ, b)∇k(r − τ)dτ =

∫ b

0

τ∇k(r − τ)dτ

=
[
− τk(r − τ)

]b
0

+

∫ b

0

k(r − τ)dτ =

∫ b

0

k(r − τ)dτ − bk(r − b).
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Since k > 0, and ‖k‖1 = 1 it is clear that

−bk(r − b) ≤ ∇pk(r, b) ≤ 1 ⇒ |∇pk(r, b)|2 ≤ max
(
1, b2k(r − b)2

)
≤ 1 + b2k(r − b)2.

Taking the expectation w.r.t. F (with pdf f ), one obtains:

EB [(∇pk(r,B))2] ≤ 1 +

∫ b̄

0

b2k(r − b)2f(b)db ≤ 1 + ‖k‖∞
∫ b̄

0

b2f(b)k(r − b)db.

Finally, under (A1), for all b ∈ [0, b̄],

bf(b) = 1− F (b)−∇ΠF (b) ⇒ bf(b) ≤ 1 + ‖∇ΠF ‖∞ <∞.

As a result, we have that

EB [(∇pk(r,B))2] ≤ 1 +
(
1 + ‖∇ΠF ‖∞

)
‖k‖∞

∫ b̄

0

bk(r − b)db ≤ 1 + b̄
(
1 + ‖∇ΠF ‖∞

)
‖k‖∞.

The following intermediate results provide uniform bounds on the distance between the monopoly revenue (resp. gradient)
and the convoluted monopoly revenue (resp. gradient).

Lemma 2. Let F satisfies (A1) and k ∈ K be a convolution kernel. For any r ∈ [0, b̄], we have

|ΠF (r)−ΠF
k (r)| ≤ ‖∇ΠF ‖∞‖K − 1R+‖1 = ‖∇ΠF ‖∞

∫ ∞
−∞
|r|k(r)dr

Proof. First, let’s notice that since ∇ΠF is continuous on the closed interval [0, b̄], it is bounded – i.e. ‖∇ΠF ‖∞ < +∞.
Thus, integrating by parts leads to

|ΠF (r)−ΠF
k (r)| =

∣∣(ΠF ? (δ0 − k))(r)
∣∣

≤
∣∣∣∣ [ΠF (t)(1R+(r − t)−K(r − t))

]+∞
−∞︸ ︷︷ ︸

=0

−∇ΠF ? (1R+ −K)(r)

∣∣∣∣
≤
∣∣∇ΠF ? (1R+ −K)(r)

∣∣
≤ ‖∇ΠF ‖∞‖K − 1R+‖1 (Young’s convolution inequality)

Finally, a last integration by parts leads to

‖K − 1R+‖1 =

∫ 0

−∞
K(r)dr +

∫ ∞
0

(
1−K(r)

)
dr

=
[
rK(r)

]0
−∞ −

∫ 0

−∞
rk(r)dr +

[
r(1−K(r))

]∞
0

+

∫ ∞
0

rk(r)dr

=

∫ ∞
−∞
|r|k(r)dr.

Then, another bias that is important to control, is the one of the gradient.

Lemma 3. Assuming F satisfies (A1) and k ∈ K be a convolution kernel. For any r ∈ [0, b̄], we have

|∇ΠF
k (r)−∇ΠF (r)| ≤ ‖∇2ΠF ‖∞‖K − 1R+‖1 = ‖∇2ΠF ‖∞

∫ ∞
−∞
|r|k(r)dr
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Proof. The proof is essentially the same as the one of Lemma 2. First, notice that since∇2ΠF is continuous on the closed
interval [0, b̄], it is bounded – i.e. ‖∇2ΠF ‖∞ < +∞.

|∇ΠF
k (r)−∇ΠF (r)| =

∣∣(∇ΠF ? (k − δ0))(r)
∣∣

=

∣∣∣∣ [∇ΠF (x)(K(r − x)− 1R+(r − x))
]+∞
−∞︸ ︷︷ ︸

=0

−∇2ΠF ? (K − 1R+)(r)

∣∣∣∣
=
∣∣∇2ΠF ? (K − 1R+)(r)

∣∣
≤ ‖∇2ΠF ‖∞‖K − 1R+‖1 (Young’s convolution inequality)

= ‖∇2ΠF ‖∞
∫ ∞
−∞
|r|k(r)dr.

C. Proofs of Sec. 4
In this section we consider only a stationary F , and therefore, for simplicity, we will denote ΠF simply by Π.

C.1. Almost Sure Convergence

Theorem 1. Let F satisfy (A1) and (A2) and {kt}t∈N ∈ KN. Then, by running V-CONV-OGA with C = [0, b̄], we have

rt
a.s.−−→ r∗

as long as
∑+∞
t=1 γt = +∞,

∑+∞
t=1 γt‖Kt − 1R+‖1 < +∞ and

∑+∞
t=1 γ

2
t ‖kt‖∞ < +∞.

Proof. The proof inherits a lot from classical methods, see e.g. Bottou (1998). The main difference lies in the type of
“concavity” required. The proof in Bottou (1998) is derived for variationally coherent functions i.e. those such that

∀t ∈ N,∀ε > 0, sup
(r−r∗kt )

2>ε

(r − r∗kt)T∇Πkt(r) < 0.

However, such assumption is clearly violated here since ∇Πkt(r) → 0 as r → ∞. Nevertheless since Πkt is strictly
pseudo-concave and strictly positive, one can obtain a similar result.

Following Bottou (1998), we introduce the Lyapunov process ht = ‖rt − r∗‖2. Using the fact that the projection operator
is a contraction, one obtains:

ht+1 = (projC
(
rt + γt∇pkt(rt, bt)

)
− r∗

)2
≤ (rt + γt∇pkt(rt, bt)− r∗)2

≤ ht + 2γt(rt − r∗)T∇pkt(rt, bt) + γ2
t

(
∇pkt(rt, bt)

)2
.

Hence, ht satisfies the recursion:

ht+1 − ht ≤ 2γt(rt − r∗)∇pkt(rt, bt) + γ2
t

(
∇pkt(rt, bt)

)2
Taking the conditional expectation w.r.t. Ft = σ(b0, . . . , bt−1, r0, . . . , rt, γ0, . . . , γt), one obtains:

E
[
ht+1 − ht

∣∣Ft] ≤ 2γt(rt − r∗)TE
[
∇pkt(rt, bt)

∣∣Ft]+ γ2
t E
[(
∇pkt(rt, bt)

)2∣∣Ft]
≤ 2γt(rt − r∗)T∇Πkt(rt)) + γ2

t E
[(
∇pkt(rt, bt)

)2∣∣Ft] (10)

as Prop. 2 provides that E
[
∇pkt(rt, bt)

∣∣Ft] = ∇Πkt(rt). Then, we decompose the gradient term to isolate the gradient
bias:



Real-time Optimisation for Online Learning in Auctions

E
[
ht+1 − ht

∣∣Ft] ≤ 2γt(rt − r∗)T∇Π(rt))︸ ︷︷ ︸
≤0 by pseudo-concavity

+ 2γt(rt − r∗)T (∇Πkt(rt)−∇Π(rt)))︸ ︷︷ ︸
bias

+ γ2
t E
[
(∇pkt(rt, bt))2 ∣∣Ft]︸ ︷︷ ︸

Bounded gradient

(11)

The first term in Eq. 11 is negative by the pseudo-concavity of Π (Prop. 1). The second term is bounded by
2γt‖∇2Π‖∞‖K − 1R+‖1 by Lem. 3. The third term is bounded by γ2

t

(
1 + b̄(1 + ‖∇Π‖∞)‖k‖∞

)
by Prop. 3.

Using the same quasi-martingale argument as in Bottou (1998), we have that Eq. 11, together with
∑
γt‖Kt−1R+‖1 <∞

and
∑
γ2
t ‖kt‖∞ <∞, implies that

ht
a.s.→ h∞ <∞,

∑
E
[
ht+1 − ht

∣∣Ft] <∞.
Thus, using Eq. 10, we have that

0 ≤
∑

γt(r
∗ − rt)T∇Π(rt) <∞. (12)

Suppose now that (rt − r∗) a.s.→ h∞ 6= 0, then since
∑
γt = +∞, it would lead to

∑
γt(r

∗ − rt)T∇Π(rt) = +∞ which
is in contradiction with Eq. 12. As a result,

(rt − r∗)T∇Π(rt)
a.s.→ 0.

Finally, since (rt − r∗)2 a.s.→ h∞ <∞, necessarily, ∇Π(rt)
a.s.→ 0 and rt

a.s.→ r∗.

C.2. Finite-time Convergence Speed

We provide here the full statement of Thm. 2, along with explicit rates and constants. The rates are expressed in terms of an
auxiliary function ϕ, which allows us to handle all configurations of the step-size and kernel decay schedules. Depending
on the value of α, α1, α∞, it may introduce some logarithmic term log(t). This explains the Õ notation used in the
abridged version of Thm. 2 ( Sec. 4), which can easily be recovered from this extended version.

Theorem 2. Let F satisfy (A1) and (A3), C be given in (A4) and {kt}t∈N ∈ KN such that ‖Kt − 1R+‖1 ≤ ν1t
−α1 and

‖kt‖∞ ≤ ν∞tα∞ . Then, by running V-CONV-OGA on C with γt = νt−α with ν ≤ (2cµ)−1, we have for all t ≥ 2,

if α = 1 E(‖rt − r∗‖2) ≤
(
b̄2 + 2Cνν1ϕ2µcν−α1(t) + 2C∞ν

2ν∞ϕ2µcν+α∞−1(t)
)
t−2µcν

if α ∈ (0, 1) E(‖rt − r∗‖2) ≤
(
b̄2 + C1νν1ϕ1−α−α1(t) + C∞ν

2ν∞ϕ1+α∞−2α(t)
)

exp
(
− µcνt1−α

)
+ C1

ν1

µc
t−α1 + C∞

νν∞
µc

tα∞−α

as long as α, α1, α∞ satisfy the condition of Thm. 1 i.e., α ≤ 1, α + α1 > 1 and 2α − α∞ > 1. The function ϕ and the
constant C1, C∞ are given by

ϕβ(t) = log(t)1β=0 +
tβ − 1

β
1β 6=0; C1 = 2b̄‖∇2Π‖∞; C∞ = 1 + b̄

(
1 + ‖∇Π‖∞

)
.

Proof. The proof builds on Bach & Moulines (2011, Thm. 2) . The main differences are that 1) we don’t require the local
function pkt to be concave 2) we don’t rely on the strong concavity of Πkt but on its strong log-concavity and one of its
lower bounds 3) our objective function varies over time because of the sequence of convolution kernels {kt}t≥1.

We first stress that (A3) together with the lower bounded revenue Πkt leads to some sort of local strong concavity of Π.
From Prop. 1, the strongly increasing hazard rate ensures that Π is strongly log-concave with parameter µ. Further, Π
admits a unique maximum r∗ (since Π(0) = Π(β) = 0) such that r∗ ∈ C by assumption. As a result, for any r ∈ C,

(r − r∗)T
(
∇
(

log Π
)
(r)−∇

(
log Π

)
(r∗)

)
≤ −µ‖r∗ − r‖2

⇒ (r − r∗)T
(
∇Π(r)/Π(r)−∇Π(r∗)/Π(r∗)

)
≤ −µ‖r∗ − r‖2

⇒ (r − r∗)T∇Π(r) ≤ −Π(r)µ‖r∗ − r‖2 ≤ −µc‖r∗ − r‖2.
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We denote as µ̃ = µc the quantity which plays the role of the strong-concavity parameter in Bach & Moulines (2011,
Thm. 2).

As for the proof of Thm. 1, we introduce the Lyapunov process ht = ‖rt − r∗‖22 and its expectation h̄t = E(ht). From
Eq. 11, we have

E(ht+1 − ht)|Ft) ≤ 2γt(rt − r∗)T∇Π(rt) + 2γtb̄‖∇2Π‖∞‖Kt − 1R+‖1 + γ2
t

(
1 + b̄

(
1 + ‖∇Π‖∞

)
‖k‖∞

)
.

Using the local strong-concavity of Π and that ‖Kt − 1R+‖1 ≤ γ1
t , ‖kt‖∞ ≤ γ∞t , we obtain:

E(ht+1 − ht)|Ft) ≤ 2µ̃γtht + C1γtγ
1
t + C∞γ

2
t γ
∞
t ,

where C1 = 2b̄‖∇2Π‖∞ and C∞ = 1 + b̄
(
1 + ‖∇Π‖∞

)
.5 Taking the expectation leads to:

h̄t+1 ≤ (1− 2µ̃γt)h̄t + C1γtγ
1
t + C∞γ

2
t γ
∞
t . (13)

In line with Bach & Moulines (2011), we split the proof depending whether α = 1 or α ∈ (0, 1).

1. The case α = 1: using that 1− x ≤ exp(−x) for all x ∈ R and applying the recursion t times in Eq. 13, we have

h̄t ≤ h̄1 exp
(
− 2µ̃

t−1∑
s=1

γs

)
+ C1

t−1∑
s=1

γsγ
1
s exp

(
− 2µ̃

t−1∑
τ=s+1

γτ

)
+ C∞

t−1∑
s=1

γ2
sγ
∞
s exp

(
− 2µ̃

t−1∑
τ=s+1

γτ

)
≤ h̄1 exp

(
− 2µ̃ν

t−1∑
s=1

s−1
)

+
(
C1νν1

t−1∑
s=1

s−α−α1 + C∞ν
2ν∞

t−1∑
s=1

s−2α+α0

)
exp

(
− 2µ̃ν

t−1∑
τ=s+1

τ−1
)
.

Further, for all t ≥ 2,
t−1∑
s=1

s−1 ≥ log(t)

t−1∑
τ=s+1

τ−1 ≥ log(t/s+ 1)

we obtain that (under µ̃ν ≤ 1/2):

h̄t ≤ h̄1t
−2µ̃ν + C1νν1t

−2µ̃ν
t−1∑
s=1

s−1−α1(s+ 1)2µ̃ν + C∞ν
2ν∞t

−2µ̃ν
t−1∑
s=1

s−2+α∞(s+ 1)2µ̃ν

≤ h̄1t
−2µ̃ν + 2C1νν1t

−2µ̃ν
t−1∑
s=1

s2µ̃ν−1−α1 + 2C∞ν
2ν∞t

−2µ̃ν
t−1∑
s=1

s−2+α∞+2µ̃ν ,

≤
(
b̄2 + 2C1νν1ϕ2µ̃ν−α1(t) + 2C∞ν

2ν∞ϕ2µ̃ν+α∞−1

)
t−2µ̃ν .

2. The case α ∈ (0, 1): applying the recursion t times in Eq. 13, we have

h̄t ≤ h̄1

t−1∏
s=1

(1− 2µ̃γs)︸ ︷︷ ︸
A1
t

+C1

t−1∑
s=1

γsγ
1
s

t−1∏
τ=s+1

(1− 2µ̃γτ )︸ ︷︷ ︸
A2
t

+C∞

t−1∑
s=1

γ2
sγ
∞
s

t−1∏
τ=s+1

(1− 2µ̃γτ )︸ ︷︷ ︸
A3
t

(14)

5Without loss of generality, we assume that ν∞ ≥ 1.
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The derivation slightly differs from the case α = 1. Following Bach & Moulines (2011), one has:

A1
t ≤ exp

(
− 2µ̃

t−1∑
s=1

γs

)
A2
t ≤

γ1
bt/2c

2µ̃
+ exp

(
− 2µ̃

t−1∑
τ=bt/2c

γτ

) t−1∑
s=1

γsγ
1
s

A3
t ≤

γbt/2cγ
∞
bt/2c

2µ̃
+ exp

(
− 2µ̃

t−1∑
τ=bt/2c

γτ

) t−1∑
s=1

γ2
sγ
∞
s .

Using the expression of γ, γ1 and γ∞, where α1 ≤ 1, together with ϕ1−α(x)−ϕ1−α(x/2) ≥ x1−α/2 and ϕ1−α(t) ≥
t1−α/2 we have:

A1
t ≤ exp

(
− 2µ̃νϕ1−α(t)

)
≤ exp

(
− µ̃νt1−α

)
,

A2
t ≤

ν1

µ̃
t−α1 + νν1 exp

(
− µ̃νt1−α

) t−1∑
s=1

s−α−α1 ≤ ν1

µ̃
t−α1 + νν1 exp

(
− µ̃νt1−α

)
ϕ1−α−α1

(t),

A3
t ≤

νν∞
µ̃

tα∞−α + ν2ν∞ exp
(
− µ̃νt1−α

) t−1∑
s=1

sα∞−2α ≤ νν∞
µ̃

tα∞−α + ν2ν∞ exp
(
− µ̃νt1−α

)
ϕ1+α∞−2α(t).

Putting everything together, we obtain the final bound for α ∈ (0, 1):

h̄t ≤
(
b̄2 + C1νν1ϕ1−α−α1(t) + C∞ν

2ν∞ϕ1+α∞−2α(t)
)

exp
(
− µ̃νt1−α

)
+ C1

ν1

µ̃
t−α1 + C∞

νν∞
µ̃

tα∞−α.

D. Proof of Sec. 5
Theorem 3. Let F satisfy (A1) and (A3) with parameter µ, let C and c be as in (A4) and k ∈ K. Then, by running
CONV-OGA on C with a constant stepsize γ > 0, for any t ≥ 1 we have

E(‖rt − r∗k‖2) ≤
(
b̄2 + C(γ, k)(t - 1)

)
e−

µcγ
2 t +

2C(γ, k)

µc

where C(γ, k) = O
(
γ‖K − 1R+‖1 + γ2‖k‖∞

)
.

Proof. Similarly to the one of Th.2, this proof builds on the one of Bach & Moulines (2011).

Since ΠF is µ−strongly log-concave, one has for all r ∈ C,

(rt − r∗)T∇ΠF (r) ≤ −ΠF (r)µ‖r − r∗‖2 ≤ −µ̃‖r − r∗‖2 (15)

where µ̃ = µc. As a result, although we do not assume the function to be strongly concave, it still enjoys a similar property
in r∗ on the bounded subset C. Then, let ht = ‖rt − r∗‖2 be the Lyapunov process (similarly to the proof of Thm. 1).
Since the projection operator over C is 1−Lipschitz, from Eq. 11, one has:

E
[
ht+1 − ht

∣∣Ft] ≤ 2γ(rt − r∗)T∇ΠF (rt) + 2γb̄‖∇2ΠF ‖∞‖K − 1R+‖1 + γ2
t

(
1 + b̄

(
1 + ‖∇ΠF ‖∞

)
‖k‖∞

)
. (16)

Denoting C(γ, k) = 2γb̄‖∇2ΠF ‖∞‖K − 1R+‖1 + γ2
(
1 + b̄

(
1 + ‖∇ΠF ‖∞

)
‖k‖∞

)
and h̄t = E(ht), and then taking the

expectation in Eq. 16, one obtains:
h̄t+1 ≤ (1− 2γtµ̃)h̄t + C(γ, k). (17)
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Further, Eq. 17 is exactly the same as Eq. 25 in (Bach & Moulines, 2011) with different definitions for the constants, and
the rest of the proof is identical. As a result, one has:

h̄t ≤
(
h̄0 + C(γ, k)(t− 1)

)
exp

(
− µ̃γ

2
t
)

+
2C(γ, k)

µ̃
.

Corollary 2. Let {Ft}t≥1 satisfy (A1), (A3), (A4), (A5) and k ∈ K. Then, there exists Ξ(k, γ) and Ω(k, γ) such that
CONV-OGA has a non-stationary regret of

R(T ) ≤ Ξ(k, γ)T + Ω(k, γ)τ .

Further, if the horizon T is known in advance, running CONV-OGA with γ = T−
1
2 and k a kernel with ‖K − 1R+‖1 ≤

T−
1
2 and ‖k‖∞ ≤ T

1
2 , then R(T ) = O(

√
T ).

Proof. Denoting {[si, ti]}τi=1 the intervals on which the distribution is constant, we have

R(T ) = E

(
T∑
t=1

ΠFt(r∗t )−ΠFt(rt)

)

≤ E

(
T∑
t=1

‖∇2ΠFt‖∞
2

‖r∗t − rt‖22

)

≤
τ∑
i=1

‖∇2ΠFsi‖∞
2

ti∑
t=si

E
(
‖r∗si − rt‖22

)
≤

τ∑
i=1

‖∇2ΠFsi ‖∞
2

ti−si+1∑
t=1

E
(
‖r∗si − rt+si−1‖22

)
Applying Thm. 3 on E

(
‖r∗si − rt+si−1‖22

)
and denoting C̄(γ, k) = maxi∈[τ ] 2γb̄‖∇2ΠFsi‖∞‖K−1R+‖1 +γ2

(
1+ b̄

(
1+

‖∇ΠFsi‖∞
)
‖k‖∞

)
we obtain

R(T ) ≤
τ∑
i=1

‖∇2ΠFsi‖∞
2

ti−si+1∑
t=1

((
b̄2 + C̄(γ, k)(t− 1)

)
e−

µcγ
2 t +

2C̄(γ, k)

µc

)

≤ 1

2
max
i∈[τ ]
‖∇2ΠFsi‖∞

(
2C̄(γ, k)

µc
T +

τ∑
i=1

ti−si+1∑
t=1

b̄2e−
µcγ
2 t + C̄(γ, k)(t− 1)e−

µcγ
2 t

)

≤ 1

2
max
i∈[τ ]
‖∇2ΠFsi‖∞

(
2C̄(γ, k)

µc
T +

τ∑
i=1

ti−si∑
t=0

b̄2e−
µcγ
2 (t+1) + C̄(γ, k)te−

µcγ
2 (t+1)

)

≤ 1

2
max
i∈[τ ]
‖∇2ΠFsi‖∞

(
2C̄(γ, k)

µc
T +

τ∑
i=1

(
b̄2e−

µcγ
2

1− e−µcγ2
+

ti−si∑
t=0

C̄(γ, k)te−
µcγ
2 (t+1)

))

≤ 1

2
max
i∈[τ ]
‖∇2ΠFsi‖∞

(
2C̄(γ, k)

µc
T +

(
b̄2

e
µcγ
2 − 1

τ + C̄(γ, k)e−µcγ
τ∑
i=1

1− e−µcγ2 (ti−si)
(
1 + (ti − si)

(
1− e−µcγ2

))(
1− e−µcγ2

)2
))

≤ 1

2
max
i∈[τ ]
‖∇2ΠFsi‖∞

(
2C̄(γ, k)

µc
T +

(
b̄2

e
µcγ
2 − 1

τ +
C̄(γ, k)e−µcγ(
1− e−µcγ2

)2 τ
))

≤ 1

2
max
i∈[τ ]
‖∇2ΠFsi‖∞

(
2C̄(γ, k)

µc
T +

(
b̄2

e
µcγ
2 − 1

+
C̄(γ, k)(
e
µcγ
2 − 1

)2
)
τ

)

Getting R(T ) = O(
√
T ) when T is known in advance just amounts to plugging γ = 1√

T
, ‖K − 1R+‖1 ∝ 1√

T
and

‖k‖∞ ∝
√
T in the last equation.


