Real-Time Optimisation for Online Learning in Auctions - Archive ouverte HAL Access content directly
Conference Papers Year :

Real-Time Optimisation for Online Learning in Auctions

Optimisation en Temps Réel pour l'Apprentissage en Ligne des Enchères

Lorenzo Croissant
  • Function : Author
  • PersonId : 1079547
Marc Abeille
  • Function : Author
Clément Calauzènes


In display advertising, a small group of sellers and bidders face each other in up to 10 12 auctions a day. In this context, revenue maximisa-tion via monopoly price learning is a high-value problem for sellers. By nature, these auctions are online and produce a very high frequency stream of data. This results in a computational strain that requires algorithms be real-time. Unfortunately, existing methods inherited from the batch setting suffer O(√ t) time/memory complexity at each update, prohibiting their use. In this paper, we provide the first algorithm for online learning of monopoly prices in online auctions whose update is constant in time and memory.
Fichier principal
Vignette du fichier
Real-Time_Optimisation_for_Online_Learning_in_Auctions.pdf (706.67 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02971118 , version 1 (19-10-2020)



Lorenzo Croissant, Marc Abeille, Clément Calauzènes. Real-Time Optimisation for Online Learning in Auctions. International Conference on Machine Learning 2020, Jul 2020, Vienna, Austria. ⟨hal-02971118⟩
62 View
49 Download



Gmail Facebook Twitter LinkedIn More