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Polynomial programming prevents aircraft (and other) conflicts

Martina Cerulli, Leo Liberti

LIX - CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91128,France

Abstract

Using a known algebraic result, we obtain a finite polynomial programming reformulation
of a semi-infinite program modeling the aircraft deconfliction problem via subliminal speed
regulation. Solving the reformulation often yields better results than the state of the art.

Keywords: semi-infinite programming, quadratic programming, aircraft deconfliction,
distance constraint

1. Introduction

In air traffic management, the aircraft deconfliction problem (ADP) aims at ensuring
the respect of a required distance among flying aircraft, while optimizing a certain ob-
jective function. Several strategies are available to pursue this goal: changing aircraft
altitudes, heading angles, or speed. All of them are mainly implemented by human air
traffic controllers (ATC) who are in charge of detecting and solving potential conflicts
among aircraft flying in a restricted airspace.

Nowadays, given the progressive increase in air traffic, it is increasingly interesting to
introduce automation in aircraft deconfliction, as well as in urban air mobility. The speed
regulation (SR) strategy, in particular, has been studied in the context of the European
project ERASMUS [1], which introduced the concept of subliminal speed control. This
consists in slightly modifying aircraft speed in an imperceptible way for ATC, but in such
a way that the number of conflicts is reduced upstream of the control, thus reducing
ATC’s workload.

In this paper, we focus on ADP via subliminal SR and formulate it using Semi-Infinite
Programming (SIP). In order to address the issue of uncountably many constraints, we
reformulate it using Polynomial Programming (PP).

SR is one of the most used strategies for aircraft deconfliction by Mathematical Pro-
gramming. In Section 4, we compare our approach with the one proposed in [2], where a
Mixed Integer Nonlinear Programming (MINLP) formulation for ADP via SR in 2 dimen-
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sions is considered, and small instances of the problem are solved to global optimality by
means of an existing exact solver, while for bigger instances a heuristic procedure (where
the problem is decomposed and locally exactly solved) is proposed. In [3] another MINLP
formulation of the same problem is proposed and solved using a feasibility pump heuristic.
This algorithm, at each iteration, solves alternatively two subproblems obtained by two
relaxations of the original problem, minimizing the distance between their solutions. In
[4], two Mixed Integer Linear Programming formulations are presented: one using only
speed changes, and the other on heading angles changes (HAC). Both [5] and [6] focus
only on this last strategy. In particular, in [5] trajectories are modeled with B-splines
and a SIP formulation of ADP via HAC is presented, reformulated with an exact penalty
function, and solved using local optimization methods. A two-step approach is presented
in [6]. The first step consists of a nonconvex MINLP model based on geometric construc-
tions, which aims to minimize the weighted HAC to obtain the new conflict-free flight
configuration. The second step consists of a set of unconstrained quadratic optimization
models solved as a post-processing step to return each aircraft to its original flight plan as
soon as possible after conflict resolution. In fact, SR strategy cannot to solve face-to-face
conflict, and it may not be enough to guarantee safety if speed bounds are tight. That
is why a lot of works in the literature focus on combined maneuvers too. For instance,
in [7] a complex number formulation with disjunctive linear constraints is introduced to
model ADP using both SR and HAC; different relaxations of the resulting MINLP are
then proposed, solved, and compared.

The application scope of our new PP reformulation for SIP model of ADP extends to all
application settings where distance constraints must be imposed at each of uncountably
many time instants. We offer three examples. Trajectories in a fleet of underwater
autonomous vehicles cannot come exceedingly close [8] during the time horizon of the
operation. In reservoir engineering the (ramified) geometry of the underground pipes
must be decided in such a way that branches from different wells are positioned at any
point of a given trajectory depending on the ramification structure, but not too close
to each other [9]. When we focus on a three-dimensional space, our approach is more
relevant in the context of urban air mobility. In fact, Unmanned Aerial Vehicles have
different dynamics w.r.t aircraft and the minimum distance between them can be ensured
by using SR also during altitude changes (therefore the need of a third dimension to take
into account). Values of k larger than three may be useful in modelling other aircraft
coordinates impacting the trajectory, such as load, engine power, and other controls; or
fleets of objects with pairwise distances.

The fact that such SIP problems could be reformulated to PP ones (either via Lasserre-
type semidefinite relaxations [10] or kinetic distance matrices [11]) was previously known.
Previous results, however, only offered relaxations, because of the large size and polyno-
mial degree of the corresponding (nonconvex) formulations. In this paper, on the other
hand, we provide a reasonably small PP formulation having the same polynomial degree
as the original SIP problem, which can be solved in practice to derive feasible solutions.

The rest of this paper is organized as follows. In Section 2 we introduce the SIP
formulation of the ADP via SR. In Section 3 we propose our new PP reformulation of
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the SIP problem. In Sect 4 we present some computational results showing the practical
applicability of our PP reformulation.

2. Semi-infinite formulation

In this section we formulate the ADP via SR using Mathematical Programming. The
decision variables quantify the speed changes. The objective function consists in mini-
mizing the total speed changes. An uncountable set of constraints guarantee the safety
distance on each pair of aircraft flying in the airspace considered during the given time
horizon. The following natural formulation of the ADP was already presented in [12].

The index sets, parameters and decision variables are involved in all of the formulations
presented in this paper (not only the SIP one). We remark that they are taken from [2].

• Sets:

– A = {1, . . . , i, . . . , n} is the set of aircraft flying in a shared airspace;

– K = {1, . . . , kmax} is the set of dimension indices.

• Parameters:

– [0, T ] is the time interval taken into account, with T expressed in hours;

– d is the safety distance between aircraft [Nautical Miles NM, 1 NM = 1852 m];

– x0ik is the k-th component of the initial position of aircraft i;

– vi is the initially planned speed of aircraft i [NM/h];

– uik is the k-th component of the direction of aircraft i;

– qmin
i and qmax

i define the feasible range of the speed modification ratios of aircraft
i s.t. qmin

i < 1 < qmax
i .

• Variables: qi is the ratio of the implemented speed to the initially planned speed
of aircraft i: qi = 1 if the speed is equal to the initially planned one, qi > 1 if it is
increased, qi < 1 if it is decreased. We assume that qi is constant in the time interval
considered, namely that each aircraft starts flying with the new implemented speed.

We now present objective function and constraints.

min
qmin≤q≤qmax

∑
i∈A

(qi − 1)2 (1a)

∀i < j ∈ A, ∀t ∈ [0, T ]
∑
k∈K

[
(x0ik − x0jk) + t(qiviuik − qjvjujk)

]2 ≥ d2. (1b)
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We remark that (1b) contains uncountably many constraints quantified over t. For this
reason formulation (1a)–(1b) is a SIP program. Constraints (1b) ensure aircraft separation
requiring that the squared Euclidean distance between each pair of aircraft (i, j) to be
greater than or equal to d2 at each instant t in [0, T ].

The classical approach to solve SIP problem like the one above presented consists in
discretizing with respect to the time t, i.e., replacing the set [0, T ] with a finite one and
solving a sequence of finite programming problems, by applying appropriate linear or
nonlinear programming algorithms,

2.1. Polishing the polynomial

For each i < j ∈ A, we define the polynomial:

pij(t) :=
∑
k∈K

[
(x0ik − x0jk) + t(qiviuik − qjvjujk)

]2 − d2
in function of t. We have:

pij(t) =
∑
k∈K

[
(x0ik − x0jk) + t(qiviuik − qjvjujk)

]2 − d2
=

∑
k∈K

[(x0ik − x0jk)2 + t2q2i (viuik)
2 + t2q2j (vjujk)

2 − 2t2viuikvjujkqiqj

+2t(x0ik − x0jk)(viuik)qi − 2t(x0ik − x0jk)(vjujk)qj]− d2

=
∑
k∈K

(x0ik − x0jk)2 + t2q2i
∑
k∈K

(viuik)
2 + t2q2j

∑
k∈K

(vjujk)
2 − 2t2qiqj

∑
k∈K

(viuikvjujk)

+2tqi
∑
k∈K

(x0ik − x0jk)(viuik)− 2tqj
∑
k∈K

(x0ik − x0jk)(vjujk)− d2

= (Biq
2
i +Bjq

2
j − 2Cijqiqj)t

2 + 2(Di
ijqi −D

j
ijqj)t+ Aij − d2,

where Aij, Bi, Bj, Cij, D
i
ij, D

j
ij are constant (w.r.t. t) defined as follows:

Aij :=
∑

k∈K(x0ik − x0jk) Cij :=
∑

k∈K viuikvjujk
Bi :=

∑
k∈K(viuik)

2 Bj :=
∑

k∈K(vjujk)
2

Di
ij :=

∑
k∈K(x0ik − x0jk)(viuik) Dj

ij :=
∑

k∈K(x0ik − x0jk)(vjujk).

Thus,
pij(t) = (Biq

2
i +Bjq

2
j − 2Cijqiqj)t

2 + 2(Di
ijqi −D

j
ijqj)t+ Aij − d2 (2)

is a polynomial of second degree in t.

We can now rewrite the SIP formulation (1a)–(1b) as:

min
qmin≤q≤qmax

∑
i∈A

(qi − 1)2

∀i < j ∈ A, ∀t ∈ [0, T ] pij(t) ≥ 0.

}
(3)

Probl. (3) is the minimization of
∑
i∈A

(qi − 1)2 subject to the second degree polynomial

pij(t) being non-negative on t ∈ [0, T ].
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3. Reformulation to polynomial programming

We introduce now a reformulation of (3) based on a result from [13]. This allows us to
obtain a (finite) PP problem of the same degree of the original formulation (3).

In particular, the following proposition is an immediate corollary of [13, Lemma 2.1].

3.1 Proposition (corollary of Lemma 2.1 from [13])
For any i < j ∈ A, the polynomial pij(t) is non-negative on [0, T ] iff there is a 2 × 2
positive semidefinite matrix

Mij =

(
mij rij
rij gij

)
� 0

and a nonnegative scalar µij ≥ 0 such that:

pij(t) = (1 t)Mij

(
1
t

)
+ (T − t)tµij. (4)

We use Proposition 3.1 to introduce an exact reformulation of the SIP Probl. (3), as
shown in Theorem 3.1.

3.1 Theorem
The following formulation:

min
M,µ,q

∑
i∈A

(qi − 1)2

s.t. gij − µij = Biq
2
i +Bjq

2
j − 2Cijqiqj ∀i < j ∈ A

2rij + Tµij = 2(Di
ijqi −D

j
ijqj) ∀i < j ∈ A

mij = Aij − d2 ∀i < j ∈ A
(rij)

2 ≤ mijgij ∀i < j ∈ A
mij, gij, µij ≥ 0 ∀i < j ∈ A

qmin ≤ q ≤ qmax


(5)

is an exact reformulation of (1a)–(1b).

Proof. Note that pij(t) is given in two different forms in Eq. (2) and Eq. (4). We can
therefore match coefficients of terms in t. This yields the following system:

gij − µij = Biq
2
i +Bjq

2
j − 2Cijqiqj ∀i < j ∈ A

2rij + Tµij = 2(Di
ijqi −D

j
ijqj) ∀i < j ∈ A

mij = Aij − d2 ∀i < j ∈ A,

which is independent of t by construction. We now have to impose the constraints Mij � 0
and µij ≥ 0 given in the statement of Prop. 3.1. For the former, we observe that the 2×2
matrix Mij is positive semidefinite iff (rij)

2 ≤ mijgij and mij, gij ≥ 0, which yields the
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corresponding constraints in formulation (5). The latter is simply copied from formulation
(3) to (5). 2

We observe that Probl. (5) is a quadratic PP problem, and the degree is the same as
in the original formulation (1a)–(1b). We also observe that formulation (5) is nonconvex
in q because of the constraints

gij − µij = Biq
2
i +Bjq

2
j − 2Cijqiqj =

∑
k∈K

(viuikqi − vjujkqj)2 ∀i < j ∈ A. (6)

We remark that a convex relaxation can be readily obtained by relaxing Eq. (6) to

gij − µij ≥ Biq
2
i +Bjq

2
j − 2Cijqiqj ∀i < j ∈ A. (7)

4. Computational results

We tested the SIP formulation (1a)–(1b) using native solver [14] which implements
three types of discretization methods, but they could not solve most of the non-trivial
instances (n > 2). Then, we tested our new formulation (5) of the ADP in k dimensions
on some 2D and 3D instances.

The set of 2D instances, already used in [15], is taken from [2]. It consists of circle
instances where n aircraft are placed on a circle of a given radius r, and non-circle
instances where aircraft move along straight trajectories intersecting in nc conflict points.

The set of 3D instances is introduced in [12] – see the public repository https://

github.com/MartinaCerulli/SRADP – and it includes both sphere instances, where n
aircraft are placed on a sphere of a given radius r, and instances in which aircraft move
along straight 3D trajectories (named non-sphere instances in Table 1), which intersect
in at least n

2
conflict points.

For the 2D and the sphere instances the planned speed is vi = 400 NM/h for each i ∈ A
and parameters x0ik and uik are given by

ui1 = cos(φi) sin(γi), ui2 = sin(φi) sin(γi), ui3 = cos(γi), x0ik = −r uik,

where γi is the angle that the vector of the direction ui forms with the axis k3 and φi is
the angle between the projection of ui onto the k1k2-plane and the axis k1. The bounds
qmin
i and qmax

i are set to 0.94 and 1.03 respectively, following the weaker bounds proposed
by the ERASMUS project [1].

We implemented the PP formulation (5) using the AMPL modeling language [16] and
solved it with the global optimization solver Gurobi [17] (G in the Table 1). For cases
in which Gurobi exceeded its time-limit (set to 36000 seconds), we used a multistart
algorithm (MS in Table 1), which performs 1000 calls to the IPOPT [18] local non-linear
programming (NLP) solver from randomly sampled starting points.
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The headings of Table 1 are the following: n number of aircraft; r radius in NM of the
circle or the sphere for 2D and 3D instances respectively; Literature Best obj is the best
objective value found by each model; cpu computing time in seconds; slv solver used

In Table 1, for 2D instances we compare the results obtained by testing our PP refor-
mulation on 2D instances with those that are obtained by solving the MINLP formulation
proposed in [2] with the global solver Couenne [19] — Gurobi can’t handle nonquadratic
nonlinear constraints —, with default options but again with a time limit of 36000 sec-
onds. Whenever this time limit is reached, we report in italics lower and upper bound
(inf when no feasible solution is found within the time limit) computed by Couenne.

The benchmarks for 3D instances are taken from the implementation of the approaches
proposed in our working paper [12], where the ADP is formulated using Bilevel Program-
ming and then reformulated into a single level non linear problem in three different ways.
We report in the second column of Table 1 the best results among those obtained by solv-
ing the three NLP reformulations proposed in [12] with Couenne — Gurobi can’t handle
nonquadratic nonlinear constraints —, when we use Gurobi for solving formulation (5),
or with the multistart algorithm when we use it for Probl.(5). Again, for the global solver
Couenne we set a time limit of 36000 seconds, which is the same that we set for Gurobi.
Whenever this time limit is reached, we report in italics lower and upper bound (inf when
no feasible solution is found within the time limit) computed by the solver.

In all our tests, run on NEOS Server [20, 21, 22], we considered a time interval of T = 2
hours and safety distance d = 5 NM.

The value of the objective function is always very low, given the tight speed variation
bounds imposed by ERASMUS project (q ∈ [qmin, qmax]). Best values are reported in
bold for each instance. We can note that the formulation (5) is the best for most of the
instances in terms of both solution quality and efficiency.

In particular, for 2D instances Couenne can find the global optimum only for small
instances, namely those with n ≤ 5; for the larger circle instances, it reaches the time
limit providing only a lower bound (LB), while for the non-circle ones, it provides a
feasible solution too. On the contrary, with our approach we can always find an optimal
solution within the time limit.

For 3D instances, when Couenne and Gurobi are used to solve NLP models proposed
in [12] and formulation (5) respectively, Gurobi always outperforms Couenne, which can-
not even find the global optimum for larger non-speric instances. When the multistart
algorithm is used, for half of the instances the value found with our approach is the best,
but we have no proof of global optimality.
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Table 1: Numerical results

Instances Literature Formulation (5)
n r Best obj/LB–UB time(s) solver obj time(s) solver

Circle
2 100 0.002531 0.09 Couenne 0.002531 0.07 G
3 200 0.001667 1.15 Couenne 0.001663 0.70 G
4 200 0.004019 237 Couenne 0.004021 19.0 G
5 300 0.003047 20698 Couenne 0.003049 46.1 G
6 300 0.005463 – inf Time Limit Couenne 0.006042 87.4 G
8 400 0.000479 – inf Time Limit Couenne 0.008247 34500 G
Non-circle
6 - 0.000521 – 0.001254 Time Limit Couenne 0.001251 12.0 G
7 - 0.000023 – 0.001617 Time Limit Couenne 0.001589 18.6 G
7 - 0.000009 – 0.002147 Time Limit Couenne 0.001565 24.0 G
8 - 0.002372 – 0.002384 Time Limit Couenne 0.002381 444 G
10 - 0.000000 – 0.001543 Time Limit Couenne 0.001395 1472 G

Spheric
2 100 0.002227 0.16 Couenne 0.002226 0.09 G
3 200 0.001408 11.4 Couenne 0.001405 0.98 G
4 200 0.003714 119 Couenne 0.003708 2.30 G
5 300 0.002976 4890 Couenne 0.002943 51.1 G
6 300 0.005320 67.5 MS 0.005847 59.1 MS
7 500 0.002857 161 MS 0.002855 209 MS
8 500 0.004566 672 MS 0.004513 104 MS
9 500 0.006457 91.0 MS 0.006987 127 MS
10 600 0.006333 443 MS 0.006393 161 MS
12 700 0.008448 1727 MS 0.008380 222 MS
Non-spheric
2 - 0.000305 0.16 Couenne 0.000304 0.33 G
4 - 0.003283 188 Couenne 0.003282 1.72 G
6 - 0.006004 6291 Couenne 0.006002 4.40 G
8 - 0.000258 – 0.011705 Time Limit Couenne 0.011703 3.91 G
10 - 0.000838 – 0.015025 Time Limit Couenne 0.015022 13.4 G
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[11] P. Tabaghi, I. Dokmanić, and M. Vetterli. Kinetic Euclidean distance matrices. IEEE
Transactions on Signal Processing, 68:452–465, 2020.

[12] M. Cerulli, C. D’Ambrosio, L. Liberti, and M. Pelegŕın. Detecting and solving aircraft
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