
HAL Id: hal-02971109
https://hal.science/hal-02971109v1

Preprint submitted on 19 Oct 2020 (v1), last revised 12 Feb 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial programming prevents aircraft (and other)
crashes

Martina Cerulli, Leo Liberti

To cite this version:
Martina Cerulli, Leo Liberti. Polynomial programming prevents aircraft (and other) crashes. 2020.
�hal-02971109v1�

https://hal.science/hal-02971109v1
https://hal.archives-ouvertes.fr


Polynomial programming prevents aircraft (and other) crashes

Martina Cerulli1, Leo Liberti1

1 LIX, École Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
Email:{mcerulli,liberti}@lix.polytechnique.fr

August 24, 2020

Abstract

Using a known algebraic result, we obtain a finite (if nonconvex) polynomial programming refor-
mulation of a semi-infinite program modelling the aircraft deconfliction problem via subliminal speed
regulation. Solving the reformulation often yields better results than the state of the art.
Keywords: semi-infinite programming, quadratic programming, distance constraint.

1 Introduction

In air traffic management, the aircraft deconfliction problem (ADP) aims at ensuring the respect of a
required distance among flying aircraft, while optimizing a certain objective function. Several strategies
are used to pursue this goal: changing aircraft altitudes, trajectories, heading angle, or speed. All of
them are mainly implemented by human air traffic controllers (ATC) who are in charge of detecting and
solving potential conflicts among aircraft flying in a restricted airspace.

Nowadays it is increasingly interesting to introduce automation in aircraft deconfliction, as well as in
urban air mobility. The speed regulation strategy, in particular, has been studied in the context of the
European project ERASMUS [9], which introduced the concept of subliminal speed control. This consists
in slightly modifying aircraft speed in an imperceptible way for ATC, but in such a way that the number
of conflicts is reduced upstream of the control.

In this paper, we focus on ADP via subliminal speed regulation (SRADP) and formulate it using
Semi-Infinite Programming (SIP). In order to address the issue of uncountably many constraints, we
reformulate it using Polynomial Programming (PP).

The application scope of our new PP reformulation for SIPs extends to all application settings where
distance constraints must be imposed at each of uncountably many time instants or space points on a
curve. We offer two examples. Trajectories in a fleet of underwater autonomous vehicles cannot come
exceedingly close [1] during the time horizon of the operation. In reservoir engineering the (ramified)
geometry of the underground pipes must be decided in such a way that branches from different wells are
positioned at any point of a given trajectory depending on the ramification structure, but not too close
to each other [6].

The fact that such SIPs could be reformulated to PPs (either via Lasserre-type semidefinite relax-
ations [11] or kinetic distance matrices [8]) was previously known. Previous results, however, only offered
relaxations, because of the large size and polynomial degree of the corresponding (nonconvex) formula-
tions. In this paper, on the other hand, we provide a reasonably small PP having the same polynomial
degree as the original SIP, which can be solved in practice to derive feasible solutions.

The rest of this paper is organized as follows. In Sect. 2 we introduce the SIP formulation of the
SRADP. In Sect. 3 we propose our new PP reformulation of the SIP. In Sect 4 we present some compu-
tational results showing the practical applicability of our PP reformulation.



2 SEMI-INFINITE FORMULATION 2

2 Semi-infinite formulation

In this section we formulate the SRADP using Mathematical Programming (MP). The decision variables
quantify the speed changes. The objective function consists in minimizing the total speed changes. An
uncountable set of constraints guarantee the safety distance on each pair of aircraft flying in the airspace
considered during the given time horizon. The following natural formulation of the SRADP was already
presented in [4].

The index sets, parameters and decision variables are involved in all of the formulations presented in
this paper (not only the SIP one). We remark that they are the same as in [3].

• Sets:

– A = {1, . . . , i, . . . , n} is the set of aircraft flying in a shared airspace;

– K = {1, . . . , kmax} is the set of dimension indices.

• Parameters:

– [0, T ] is the time horizon taken into account, with T expressed in hours;

– d is the safety distance between aircraft [Nautical Miles NM, 1 NM = 1852 m];

– x0ik is the k-th component of the initial position of aircraft i;

– vi is the initially planned speed of aircraft i [NM/h];

– uik is the k-th component of the direction of aircraft i;

– qmin
i and qmax

i define the feasible range of the speed modification ratios of aircraft i s.t.
qmin
i < 1 < qmax

i .

• Variables: qi is the ratio of the implemented speed to the initially planned speed of aircraft i:
qi = 1 if the speed is equal to the initially planned one, qi > 1 if it is increased, qi < 1 if it is
decreased. We assume that qi is constant in the time horizon considered, namely that each aircraft
starts flying with the new implemented speed.

We now present objective function and constraints.

min
qmin≤q≤qmax

∑
i∈A

(qi − 1)2 (1a)

∀i < j ∈ A, ∀t ∈ [0, T ]
∑
k∈K

[
(x0ik − x0jk) + t(qiviuik − qjvjujk)

]2 ≥ d2. (1b)

We remark that Eq. (1b) contains uncountably many constraints quantified over a continuous time symbol
t. Eq. (1b) ensures aircraft separation requiring that the squared Euclidean distance between each pair
of aircraft (i, j) to be greater than or equal to d2 at each instant t in [0, T ].

2.1 Polishing the polynomial

For each i < j ∈ A, we define the polynomial:

pij(t) :=
∑
k∈K

[
(x0ik − x0jk) + t(qiviuik − qjvjujk)

]2 − d2



3 REFORMULATION TO POLYNOMIAL PROGRAMMING 3

in function of t. We have:

pij(t) =
∑
k∈K

[
(x0ik − x0jk) + t(qiviuik − qjvjujk)

]2 − d2
=

∑
k∈K

[(x0ik − x0jk)2 + t2q2i (viuik)2 + t2q2j (vjujk)2 − 2t2(viuik)(vjujk)qiqj

+2t(x0ik − x0jk)(viuik)qi − 2t(x0ik − x0jk)(vjujk)qj ]− d2

=
∑
k∈K

(x0ik − x0jk)2 + t2q2i
∑
k∈K

(viuik)2 + t2q2j
∑
k∈K

(vjujk)2 − 2t2qiqj
∑
k∈K

(viuik)(vjujk)

+2tqi
∑
k∈K

(x0ik − x0jk)(viuik)− 2tqj
∑
k∈K

(x0ik − x0jk)(vjujk)− d2

= (Biq
2
i +Bjq

2
j − 2Cijqiqj)t

2 + 2(Di
ijqi −D

j
ijqj)t+Aij − d2,

where Aij , Bi, Bj , Cij , D
i
ij , D

j
ij are constant (w.r.t. t) defined as follows:

Aij :=
∑
k∈K

(x0ik − x0jk)

Bi :=
∑
k∈K

(viuik)2

Bj :=
∑
k∈K

(vjujk)2

Cij :=
∑
k∈K

(viuik)(vjujk)

Di
ij :=

∑
k∈K

(x0ik − x0jk)(viuik)

Dj
ij :=

∑
k∈K

(x0ik − x0jk)(vjujk).

Thus,
pij(t) = (Biq

2
i +Bjq

2
j − 2Cijqiqj)t

2 + 2(Di
ijqi −D

j
ijqj)t+Aij − d2 (2)

is a polynomial of second degree in t.

We can now rewrite the SIP formulation in (1a)–(1b) as:

min
qmin≤q≤qmax

∑
i∈A

(qi − 1)2

∀i < j ∈ A, ∀t ∈ [0, T ] pij(t) ≥ 0.

}
(3)

Eq. (3) is the minimization of
∑
i∈A(qi − 1)2 subject to the second degree polynomial pij(t) being non-

negative on t ∈ [0, T ].

3 Reformulation to polynomial programming

We introduce now a reformulation of Eq. (3) based on a result from [12]. This allows us to obtain a
(finite) PP problem of the same degree of the original formulation (3).

In particular, the following proposition is an immediate corollary of [12, Lemma 2.1].

3.1 Proposition
For any i < j ∈ A, the polynomial pij(t) is non-negative on [0, T ] iff there is a 2× 2 positive semidefinite
matrix

Mij =

(
M11
ij M12

ij

M21
ij M22

ij

)
� 0



4 COMPUTATIONAL RESULTS 4

(with M12
ij = M21

ij ) and a nonnegative scalar µij ≥ 0 such that:

pij(t) = (1 t)M ij

(
1
t

)
+ (T − t)tµij . (4)

We use Proposition 3.1 to introduce an exact reformulation of the SIP in Eq. (3), as shown in Theorem
3.2.

3.2 Theorem
The following formulation:

min
M,µ,q

∑
i∈A

(qi − 1)2

∀i < j ∈ A M22
ij − µij = (Biq

2
i +Bjq

2
j − 2Cijqiqj)

∀i < j ∈ A 2M12
ij + Tµij = 2(Di

ijqi −D
j
ijqj)

∀i < j ∈ A M11
ij = Aij − d2

∀i < j ∈ A (M12
ij )2 ≤ M11

ij M
22
ij

∀i < j ∈ A M11
ij ,M

22
ij , µij ≥ 0
qmin ≤ q ≤ qmax


(5)

is an exact reformulation of Eq. (1a)–(1b).

Proof. Note that pij(t) is given in two different forms Eq. (2) and Eq. (4). We can therefore match
coefficients of terms in t. This yields the following system:

∀i < j ∈ A M22
ij − µij = (Biq

2
i +Bjq

2
j − 2Cijqiqj)

∀i < j ∈ A 2M12
ij + Tµij = 2(Di

ijqi −D
j
ijqj)

∀i < j ∈ A M11
ij = Aij − d2,

which is independent of t by construction. We now have to impose the constraints M ij � 0 and µij ≥ 0
given in the statement of Prop. 3.1. For the former, we observe that a 2×2 matrix Γ is positive semidefinite
iff

(Γ12)2 ≤ Γ11Γ22

and Γ11,Γ22 ≥ 0, which yields the corresponding constraints in Eq. (5). The latter is simply copied from
Eq. (3) to Eq. (5). 2

We observe that Eq. (5) is a quadratic PP problem, and note that the degree is the same as in
the original formulation Eq. (1a)–(1b). We also observe that Eq. (5) is nonconvex in q because of the
constraints

∀i < j ∈ A M ij
22 − µij = (Biq

2
i +Bjq

2
j − 2Cijqiqj) =

∑
k∈K

(viuikqi − vjujkqj)2. (6)

We remark that a convex relaxation can be readily obtained by relaxing Eq. (6) to

∀i < j ∈ A M ij
22 − µij ≥ (Biq

2
i +Bjq

2
j − 2Cijqiqj). (7)

4 Computational results

We tested our new MP formulation in Eq. (5) of the SRADP in k dimensions on some 2D and 3D
instances.



4 COMPUTATIONAL RESULTS 5

The set of 2D instances, already used in [3], is taken from [2]. It consists of circle instances where
n aircraft are placed on a circle of a given radius r, and non-circle instances where aircraft move along
straight trajectories intersecting in nc conflict points.

The set of 3D instances is introduced in [4] and it includes both sphere instances, where n aircraft are
placed on a sphere of a given radius r, and instances in which aircraft move along straight 3D trajectories
(named non-sphere instances in Tab 1), which intersect in at least n

2 conflict points.

For the 2D and the sphere instances the planned speed is vi = 400 NM/h for each i ∈ A and parameters
x0ik and uik are given by

ui1 = cos(φi) sin(γi), ui2 = sin(φi) sin(γi), ui3 = cos(γi), x0ik = −r uik,

where γi is the angle that the vector of the direction ui forms with the axis k3 and φi is the angle between
the projection of ui onto the k1k2-plane and the axis k1. The bounds qmin

i and qmax
i are set to 0.94 and

1.03 respectively, following the weaker bounds proposed by the ERASMUS project [9].

We implemented the PP formulation (5) using the AMPL modeling language [5] and solved it with the
global optimization solver Baron [7] (B in the Table 1). For cases in which Baron exceeded its time-limit
(set to 3600 seconds), we used a Multistart algorithm (MS in Table 1), which performs 1000 calls to the
IPOPT [10] local NLP solver from randomly sampled starting points.

In all our tests, we considered a time horizon of T = 2 hours and safety distance d = 5 NM. All the
solvers were run with their default settings. The tests were performed on a 2.53GHz Intel(R) Xeon(R)
CPU with 48 GB RAM.

It is clear that the proposed formulation often improves the best available objective function value for
the instance, and is therefore useful.



REFERENCES 6

Table 1: Numerical results

Instances Literature SOS
n r Best obj obj time(s) solver

Circle
2 100 0.002531 0.002531 0.58 B
3 200 0.001667 0.001666 0.68 B
4 200 0.004009 0.004028 198 B
5 300 0.003033 0.003056 46.1 MS
6 300 0.006033 0.006058 962 MS
Non-circle
6 - 0.001295 0.001254 53.7 MS
7 - 0.001617 0.001591 72.4 MS
7 - 0.001579 0.001566 72.7 MS
8 - 0.002384 0.002384 83.5 MS
10 - 0.001470 0.001397 139 MS

Spheric
2 100 0.002220 0.002227 0.84 B
3 200 0.001404 0.001407 1.12 B
4 200 0.003703 0.003714 35.3 MS
5 300 0.002959 0.002959 47.8 MS
6 300 0.005847 0.005847 66.3 MS
7 500 0.002855 0.002856 80.7 MS
8 500 0.004549 0.004513 104 MS
9 500 0.006987 0.006987 127 MS
10 600 0.006410 0.006393 161 MS
12 700 0.008404 0.008380 222 MS
Non-spheric
2 - 0.000305 0.000305 0.09 B
4 - 0.003278 0.003282 3.00 B
6 - 0.006003 0.006004 52.1 MS
8 - 0.011704 0.011706 85.4 MS
10 - 0.001503 0.01503 203 MS

References

[1] A. Bahr, J. Leonard, and M. Fallon. Cooperative localization for autonomous underwater vehicles.
International Journal of Robotics Research, 28(6):714–728, 2009.

[2] S. Cafieri and C. D’Ambrosio. Feasibility pump for aircraft deconfliction with speed regulation.
Journal of Global Optimization, Springer Verlag, 71(3):501–515, 2018.

[3] M. Cerulli, C. D’Ambrosio, and L. Liberti. Flying safely by bilevel programming. Advances in Opti-
mization and Decision Science for Society, Services and Enterprises: ODS, Genoa, Italy, September
4-7, 2019, 3:197–206, 2019. Available at https://hal.archives-ouvertes.fr/hal-02869682.

[4] M. Cerulli, C. D’Ambrosio, L. Liberti, and M. Pelegŕın. Detecting and solving aircraft conflicts
using bilevel programming. Working paper, 2020. Available at https://hal.archives-ouvertes.

fr/hal-02869699.

[5] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical
Programming. Cengage Learning, 2002.



REFERENCES 7

[6] C. Lizon, C. D’Ambrosio, L. Liberti, M. Le Ravalec, and D. Sinoquet. A mixed-integer nonlin-
ear optimization approach for well placement and geometry. In Proceedings of the 14th European
Conference on the Mathematics of Oil Recovery, volume XIV of ECMOR, page A38, Houten, 2014.
EAGE.

[7] N. V. Sahinidis. BARON 17.8.9: Global Optimization of Mixed-Integer Nonlinear Programs, User’s
Manual, 2017.

[8] P. Tabaghi, I. Dokmanić, and M. Vetterli. Kinetic Euclidean distance matrices. IEEE Transactions
on Signal Processing, 68:452–465, 2020.

[9] J. Villiers. Automatisation du contrôle de la circulation aèrienne: “ERASMUS”, une voie conviviale
pour franchir le mur de la capacitè. Institut du Transport Aèrien, 58, 2004.

[10] A. Wächter and L. Biegler. On the implementation of a primal-dual interior point filter line search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106:25–57, 2006.

[11] L. Wang and F. Guo. Semidefinite relaxations for semi-infinite polynomial programming. Compu-
tational Optimization and Applications, 58:133–159, 2014.

[12] Y. Xu, W. Sun, and L. Qi. On solving a class of linear semi-infinite programming by SDP method.
Optimization, 64(3):603–616, 2015.


