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Abstract 

Recent works demonstrated the abilities of magneto rheological elastomers (MREs) for 

mechanical to electrical energy conversion. This class of materials consists of composites 

composed of a soft elastic matrix filled by ferromagnetic particles. In this work we focus 

primarily on anisotropic MREs featuring particles that are non-homogenously dispersed in the 

matrix but form of chains of particles. Such anisotropic MRE are good candidates for energy 

conversion and harvesting purpose because of the coupling between high magnetization of the 

soft ferromagnetic particles and low elastic modulus of the matrix; thus, the anisotropic MREs 

can convert a mechanical cyclic deformation into electric signal. In the framework of 

magnifying the conversion capabilities of such materials, this study reports the investigation of 

different filling factors of particles, submitted to various magnetic excitations and amplitudes 

of mechanical deformation. The multiscale analysis provided by this work, from local effect to 

global characterization, shows that optimal conditions depend on intrinsic material parameters 

(e.g., filling factor) as well as external conditions (mainly bias magnetic flux density and 

applied mechanical solicitation). 

Keywords: magneto rheology, composite, effective properties, energy conversion, filling factor 

 

1. Introduction 

Smart materials form a class of materials used because of 

their (multi-)coupled properties, as magnetic/mechanical 

responses for magnetorheological behavior. They can be used 

as sensors or actuators for instance. Magneto Rheological 

Elastomers (MREs) are composites that belong to the smart 

material class as they provide coupled properties between 

magnetic and mechanical domains. Specifically, MREs 

combine high magnetization of the magnetic fillers and 

mechanical softness of the matrix host. Most common MREs 
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consist of an elastomeric matrix embedding magnetic 

particles, which are often magnetically soft iron (exhibiting 

small hysteresis and high permeability) [1]. MREs are then 

becoming attractive for their magnetically tunable mechanical 

properties [2], where the magnetic interaction between 

particles directly affects the composite mechanical modulus 

[3], bridging the gap for low frequency, high strain 

applications. Their tunable stiffness therefore allows the 

design of damping systems for instance [1-2, 4-5]. Similarly, 

MREs can be deformed by applying a magnetic field [6-8].  

Many elastomers are obtained by chemical reaction at 

temperature higher than room temperature: this step is known 

as "curing". Such composites have then the possibility to be 

manufactured as anisotropic or isotropic materials. The former 

case is obtained by applying a constant magnetic field during 

the curing of the elastomer [1], the distribution of the particles 

inside the composite changes, while without magnetic field, 

the particles are randomly dispersed in the matrix. The 

application of such a field yields the formation of elongated 

particle-structures strongly oriented (called hereafter chains) 

along the direction of the magnetic field. This anisotropy is 

expected to drastically increase the effect of magnetic field on 

mechanical properties [9], magnetic permeability [10], 

magnetic field-induced deformation [11], conductivities [12-

13], etc. Because of the strong coupling between magnetic and 

mechanical properties, these materials open new applications, 

such as magnetically tuned dampers [14], or provide new 

alternatives to existing devices like sensors and/or actuators 

[15].  

Recently [16-18], MREs were demonstrated to be effective 

materials for mechanical to magnetic (and then possibly 

electrical) energy conversion. In such applications, these 

materials are composed of a soft elastic silicone rubber filled 

with carbonyl iron particles, and present anisotropy due to the 

alignment of the magnetic particles during curing (through the 

application of a bias magnetic field). Anisotropic MREs, once 

placed in the air-gap of an electromagnet used to apply a 

controlled constant static magnetic flux density B0, were 

experiencing a varying mechanical shear strain, 

perpendicularly to the magnetic anisotropy. Such relative 

displacement of the particles is known to modify their 

interactions, which in turn changes the MRE shear modulus G 

under magnetic field B, defined as: ΔG(B)/G(B=0)=[G(B≠0)-

G(B=0)]/ G(B=0); this ratio is the so-called "MR effect" [3, 

14, 19]. However, in the framework of energy harvesting, the 

shear strain (γ(t)) can be used as the way to modify the particle 

magnetic states and therefore to induce a magnetic flux 

density fluctuation ΔB(γ(t),t)=[B(γ≠0)-B(γ=0)] of the whole 

magnetic circuit. This change of flux is then converted into an 

electrical signal V(t) through a "search" coil.  

A previous study [16] has investigated the effect of the 

matrix softness, G(B=0), on the direct and converse 

conversion effects, ΔB(γ) and ΔG(B). Two composite 

materials were manufactured with the same filling factor: one 

with silicone oil to soften the composite (G(B=0)=34 kPa) and 

one without oil (G(B=0)=250 kPa). Results showed same 

absolute change in shear modulus (ΔG(B)~160kPa) for both 

composite, but, for different relatively one 

(ΔG(B)/G(B=0)=+470% for composite with oil while 

ΔG(B)/G(B=0)=+60% without oil). Similarly, by shearing the 

two MREs, a flux density change of ΔB(γ=50%)~-10mT was 

measured for both composites. This shows that ΔB(γ) does not 

depend on the softness of the matrix but on the amplitude of 

strain. As the latter variation (ΔB(γ)) is aimed to be converted 

into an electrical signal, maximal value of ΔB(γ) is desired. 

The softness of the anisotropic MRE was demonstrated to be 

not crucial for the electric signal [16]. Also important in the 

framework of electric signal conversion, this work [16] has 

also pointed out others key parameters to get the best ΔB: 

largest strain amplitude (up to γ=50%) was leading to largest 

ΔB it behaves as ΔB ~ γ2. Beside, the effect of the applied field 

was also studied and revealed the existence of an optimal 

applied field around 0.2-0.3 T. An important material 

parameter is the anisotropy of MRE: the flux density variation 

ΔB produced by anisotropic MRE was larger than the one 

produced by isotropic MRE, meaning that the electric signal 

was largest by using isotropic MREs; demonstrating the 

interest for anisotropic MREs in this application.  

However, the study [16] used a single value of filling factor 

ϕ~24 %. Hence, in the present study, we propose to investigate 

the effect of different filling factor ϕ. The internal structure of 

the MRE (size of particles chain and typical distance between 

the particles within the chain) are extracted from 

measurements, and distance between chains are then 

estimated. These anisotropic MREs are then subjected to 

magneto-mechanical characterizations for several bias flux 

densities B0 and shear amplitudes γ0. These measurements also 

provide some indication on the magnetic state of the particles, 

and allow validating the values of the parameters 

corresponding to particles magnetic saturation. The electric 

signal production is then presented as a function of the 

parameters ϕ, B0 and γ0. All electrical measurements show 

optimal pseudo-Villari effect around 0.2T of bias flux density. 

By extracting particles magnetization curves from the MR 

effect assessment, the role of the particles magnetic behavior 

is revealed as a key parameter for energy harvesting system 

because their saturation arises near to the optimal field for 

electric signal generation. 

2. Experimental procedure 

Composites are prepared with Silicon Rubber (SR) KE-

1241 combined with a curing agent CLA-9 purchased from 

Shin-Etsu Chemical Co. Ltd. (Tokyo, Japan). The magnetic 

spherical particles are Carbonyl Iron (CIP) from BASF, with 

average diameter of 2a= 6-7 µm. Composites are fabricated by 

mixing these elements with different volume filling factors for 
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each sample (Table 1). After mixing and stirring the solution, 

the mixture was degassed by pumping the air. The final 

mixture was then injected in a 2 mm thick, 65 mm long and 

12 mm wide mold which was placed in an electromagnet 

applying a constant flux density of 0.3 T, along the sample 

thickness: the samples were cured in such conditions, creating 

anisotropic MREs. Obtained sheets were then cut into 2 mm 

thick, 50 mm long and 12 mm wide samples and placed inside 

the device.  

 

 

Table 1. Experimental samples composition 

Samples Carbon Iron 

Particles volume 

fraction (%) 

Silicon Rubber 

volume fraction 

(%) 

MRE05 5 95 

MRE10 10 90 

MRE15 15 85 

MRE20 20 80 

MRE25 25 75 

 

 

 
Fig.1. Schematics of the characterization device 

 

The global device is represented in Fig.1. It is composed of 

a soft ferromagnetic circuit with cross section A of 50*12 mm2 

with a length of 200 mm plus a 5 mm air gap. Around this soft 

ferromagnetic material, two coils are winded: one excitation 

coil (Np=1560 turns) in order to apply a controllable static 

magnetic flux density B0, and another one (NS=300 turns) to 

pick up the electrical signal produced by the variation of 

magnetic flux in the circuit. Magnetic flux was calibrated as 

described in [16]: the excitation coil was supplied by a 

constant current and induction was determined by a fluxmeter 

(FM-3001, Denshijiki Industry Co.). Relationship between 

current and induction was calibrated for each sample. The 

circuit gap is filled with two samples separated by a 1 mm in 

thickness steel blade. The steel blade is magnetized as the 

magnetic field is applied in the system. This, actually helps to 

canalize the magnetic flux in the whole circuit. If the blade 

wasn’t magnetic, the flux circuit would exhibit larger leakage, 

and the field experienced by the MREs would be slightly 

lower. 

Each samples are submitted to transverse shear strain 

applied through a displacement Δx of the steel blade. The 

displacement amplitudes were set to Δx= 0.2, 0.4, 0.6, 0.8 and 

1 mm corresponding to respective maximal amplitude of shear 

strain of γ0= 10, 20, 30, 40 and 50% of the two 2 mm thick 

samples. This imposed strain has a sinewave shape with a 

frequency f of 1 Hz:  

𝛾(𝑡) = 𝛾0𝑠𝑖𝑛⁡(2𝜋𝑓𝑡) (1) 

 

Displacement, stress and voltage were recorded every 

millisecond for two periods, by means of a strain gauge, a 

stress cell force and an oscilloscope connected to the search 

coil. Applied flux density was changed from 0 to 0.7 T (except 

for MRE05 and MRE10, where the maximal value was 0.6 T). 

From these measurements, the shear modulus was determined 

for different applied fields and strain amplitudes. 

The permeability of MRE samples was measured using a 

Magnetic Permeability Meter Ferromaster from Stefan Mayer 

Instruments. This instrument is capable of measuring the 

relative permeability in the range of µr = 1 to 2 with an 

accuracy of 0.001. 

3. Results and discussion 

3.1 Anisotropic composite characterization 

The time-dependent shear strain induces a time-varying 

MRE magnetic permeability through the interaction of the 

mechanical solicitation of the composite with the magnetic 

fillers. More precisely, the magnetic permeability of such 

composite, µMRE=µ0µr (with µ0 the vacuum permeability µ0 

=4π10-7 H/m and µr the relative permeability), strongly 

depends on the inter-particle distance, which is in turn related 

to the shear strain amplitude. In anisotropic composites with 

chain-like structures, the inter-particle distance is much 

smaller within the chains than between neighboring chains. 

Hence, interactions within the chains are expected to dominate 

the magnetization process of the ferromagnetic particles in the 

anisotropic MRE. The relative permeability component taken 

along the chain axis is expressed, at rest (γ=0), by [18]: 

μ𝑟(𝜙, 𝛾 = 0) = 1 +
3𝜙

1 − (𝜙 + 4𝑆 (
𝑎
𝑑
)
3
)

= 1 +
3𝜙

1 − (𝜙 + 4𝑆(2ℎ)−3)
 

(2) 

where ϕ is the composite filling factor, d is the initial inter-

particle distance inside the chain, a is the particle radius and 

S=1.202 refers to a coefficient for summation over an infinite 

perfectly aligned particles chain [18] and h= d/2a is the ratio 

between the inter-particle distance within a chain to the 

particle diameter. Setting a structure constant as 2D = 

4S(a/d)3, for D=0, equation (2) becomes the well-known 
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expression for a dilute random dispersion of ferromagnetic 

particles in a non-magnetic matrix, namely the Maxwell 

Garnett (MG) permeability µr(ϕ)=1 +3ϕ/(1- ϕ) [19] which is 

independent from the strain. This therefore highlights the 

benefit in using anisotropic MREs for coupling mechanical 

and magnetic domains, as such configuration allows breaking 

the randomness. 

 
Fig.2. Experimental relative permeability of anisotropic 

composites versus filling factor, theoretical  permeability 

using equation (2) with h=1.12, theoretical Maxwell 

Garnett for dilute isotropic composite [19] and numerical 

anisotropic composite from Martin [20] 

 

Such unstrained permeabilities were measured for different 

composite filling factors ϕ = 5, 10 and 15% as µr= 1.33, 1.65 

and 2.04 as shown in Fig.2. Higher filling factor were out of 

range of the permeability meter. We also added, the 

corresponding predicted isotropic MG permeabilities as µr= 

1.16, 1.33 and 1.52 to demonstrate the higher permeability 

offered by a structured MRE from the measurements (this 

work) or using the anisotropic relative permeability 

numerically calculated by Martin as µr(ϕ)=1 +3ϕ/{1- (ϕ-

2Ψ(ϕ))} [20] which is also independent from the strain but has 

a structure term 2Ψ(ϕ) which vary with the filling factor. 

Calculated Martin permeabilities are µr= 1.35, 1.73 and 2.16 

for the filling factors ϕ = 5, 10 and 15% respectively. 

From these measurements and using equation (2), it is 

possible to extract the initial ratio of inter-particle distance to 

particle radius, h for each composite as:  

h =
1

2
[

−4𝑆

3𝜙
μ𝑟(𝜙, 𝛾 = 0) − 1

− 1 + 𝜙
]

1/3

 (3) 

 

And the results are inserted in Table 2. Such results show that 

the average distance between particles in the chains is very 

small as expected. As an example, we plotted the permeability 

versus filling factor curve using equation (2) with h=1.12.  

From the calculated h values in Table 2, we can estimate 

the inter-chain distance by defining a unit cell that contains a 

single particle with the dimensions constrained by the filling 

factor ϕ. Assuming this unit cell height is d while width and 

depth are w, as seen in the inset of Fig. 3, then the following 

relationship holds:  

𝜙 =

4
3𝜋𝑎

3

𝑑𝑤2
 

(4) 

 

By injecting the measured d = 2ha, then the inter chain 

distance w can be estimated as:  

𝑤

𝑎
= √

4𝜋

6ℎ

1

𝜙
 (5) 

In this case, we used d =2.14a, 2.21a and 2.25a then we 

obtain w = 6.26a, 4.35a and 3.52a for ϕ = 5%, 10% and 15 % 

respectively. Similar tendency was found using the 

permeabilities of Martin and equation (2) and (5) for 

corresponding filling factor; extracted data are added in Fig.3. 

This confirms that the average distance between particles 

inside the chain is much smaller than the distance between 

chains as initially supposed. Since the dipole-dipole 

interaction behaves as the inverse of the cubic distance, the 

chains can be considered almost isolated. Calculated unit cell 

dimensions are plotted in Fig.3, as a function of the filling 

factor. It can be also noted that the height remains smaller 

compared to the width and depth. 

 

 
Fig.3.  Distance d/a with the estimation of the distance 

between chain w/a from equations (3) and (5). 

 

As it can be seen from Fig.3, the anisotropy degree is 

obviously decreasing with increasing the filling factor. 

Assuming that the distance d is linearly increasing with ϕ 

while w is decreasing as w~ ϕ-1/2 (as in equation 5), an 

intersection can be found at a filling factor of ϕ ~0.32-0.33, 
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which is close to the observed value of 0.33 by magnetic 

characterization [21] or by image analysis [22]. Furthermore, 

we can notice that this limit occurred before the theoretical 

maximal packing ϕ =π/6~0.52 of the simple cubic unit cell 

with d=w=2a when particles are in contact. 

 

Table 2. Parameters h of the fitted curves in Fig.2 using 

equation (3), the corresponding d and w using equation (5) for 

each sample, and parameters q of the fitted curves in Fig.5 

using equation (7) for each sample. 

 MRE05 MRE10 MRE15 MRE20 MRE25 

h (a) 1.07 1.11 1.13 - - 

d (a) 2.14 2.21 2.25   

w (a) 6.26 4.35 3.52   

q (-) 8.82 6.82 6.57 6.02 6.87 

 

 

The mechanical reinforcement of the composites with 

different filling factor is presented in Fig. 4 depicting the 

stress-strain curves obtained at γ0 =10% without magnetic 

field (B0=0.0 T). The increase of the inclination of these 

elliptic-shaped curves clearly shows that the samples are 

getting stiffer as the filling factor increases. By assuming that 

each stress-strain curves (τ versus γ) is a perfect ellipse, we 

can quantify the composite stiffness. The measured stress has 

a sine form as:  

𝜏 = 𝜏0sin⁡(2𝜋𝑓𝑡 + 𝛿) (6) 

 

where τ0 is the maximal amplitude of measured stress and δ is 

a phase difference between stress and strain.  

 

 
Fig.4. Stress-strain curves obtained at γ0 =10% for each 

sample without magnetic field B0 =0.0 T. 

 

We used a classical linear viscoelastic model [16, 23] to fit 

these curves in order to estimate separately the elastic modulus 

G’(ϕ, B0) and loss modulus G”(ϕ, B0), as:  

𝐺′ =
𝜏0
𝛾0

cos(𝛿) ;⁡𝐺′′ =
𝜏0
𝛾0

sin(𝛿) (7) 

 

In general, G’ is function of frequency f, strain magnitude 

γ0, filling factor ϕ, and bias flux density B0 where dependency 

can be modeled by power-law functions. In Fig.5, extracted 

values of G’ are then plotted versus the filling factor ϕ, for 

f=1 Hz, γ0 =10% and B0=0.0 T.  Because these anisotropic 

composites contain long chains of particles, we use the model 

of Guth [24] for random dispersion of elongated particles 

(with aspect ratio q >>1) in a matrix. This model is expressed 

as:  

𝐺′(𝜙) = 𝐺0
′(1 + 0.67𝑞𝜙 + 1.62𝑞2𝜙2) (8) 

where G’0 is the pure matrix shear modulus and q the chain 

of particles aspect ratio. Example of such reinforcement using 

G’0 =38.5 kPa and q=6.6 is plotted in Fig.5. The Guth and 

Gold mechanical modulus for isotropic materials [25] 

considering the random dispersion of spherical particles in a 

matrix and expressed as G’= G’0(1+2.5ϕ +14.2ϕ2), is also 

plotted using the same shear modulus (G’0 =38.5 kPa) in Fig. 

5 to highlight the anisotropy of these composites. Flandin [26] 

has used this equation (8) for carbon black-filled ethylene–

octene elastomer composites with filling factor ranging from 

0 up to 25% found a value of q =4.85 [26] which validated our 

approach. So, keeping the value of G’0 fixed, more precise 

evaluations of q are extracted for each MRE and results are 

presented in Table 2 with values are ranging between 6 to 8.  

 

 
Fig.5. Storage shear modulus curves obtained without 

magnetic field B0 at γ0 =10% versus sample filling factor. 

The solid red fitting curve corresponds to the Guth model 

[24] of random dispersion of particles in a matrix with 

aspect ratio q=6.6 for mechanical modulus and dash line 

stands for Guth and Gold [25] model for mechanical 

modulus of isotropic composites. 
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The experimental moduli are indeed larger than isotropic 

composites moduli for the same filling factor. From the non-

strained permeability measurements and the zero field 

mechanical characterization, the anisotropic composite is 

schematically pictured as a random dispersion of chains where 

the intra-chain distance between particles, is nearly 2.24 times 

the particles radius (the distance between particles edge is 0.24 

times the particles radius) and with an approximate chain 

aspect ratio of 7. 

 

 3.2 Magneto mechanical characterization 

The application of a magnetic field to the composite 

induces a magnetic moment in each ferromagnetic particle and 

each of these particles then interacts each other. The 

magnetization of the particles creates a body force inside the 

volume of the whole composite. This force is known to be 

responsible for the apparent magnetostriction if the sample is 

free to deform, otherwise this force results in an increase in 

the shear modulus. In Fig. 6, the stress-strain curves are 

plotted for a small applied shear strain (γ0 =10%) and for 

different magnetic fields. Mechanical reinforcement is shown 

to be stronger with increasing applied field.  

 

 
Fig.6. Stress-strain curves obtained at γ0 =10% for each 

sample at given value of magnetic field. 

 

As an example, MRE25 sample reaches a stress value 

around 29 kPa for B0 =0.0 T and 34 kPa for B0 =0.7 T, 

respectively.  In fact, the shear modulus is usually split into a 

non-magnetic part and a magnetic contribution as: 

𝐺′(𝜙, 𝐵0) = 𝐺′(𝜙, 𝐵0 = 0) + ∆𝐺′(𝜙, 𝐵0) (9) 

 

The first term, G’(ϕ, B0=0.0 T), corresponds to the 

mechanical behavior of the matrix reinforced by the particles, 

as plotted in Fig. 5, while ΔG’(ϕ, B0) accounts for the magnetic 

interactions of the fillers and is referred as MR effect. The 

extracted values of each anisotropic MRE ΔG’(ϕ, B0) is 

plotted versus applied field in Fig. 7.  

 

 
Fig.7. ΔG’(ϕ, B0) dependence with applied flux density. 

 

 

For large enough magnetic fields, the value of ΔG’(ϕ, B0) 

tends to a constant value ΔG’sat(ϕ, B0). The larger filling factor 

of the composite, the larger ΔG’sat(ϕ, B0). Jolly [3] derived the 

change of shear modulus ΔG’(ϕ, B0) from the calculation of 

the magnetic force between two magnetized particles, which 

are experiencing a small pure shear strain (γ0 <10%), and 

proposed the following relationship: 

∆𝐺′(𝜙, 𝐵0) =
𝜙𝑀𝑝

2

2𝜇0ℎ
3
 

(10) 

 

where ϕ is the composite filling factor, h= d/2a with d the 

initial inter-particle distance inside the column and a the 

particle radius, Mp is the magnetization state of a particle 

(magnetization of each particle is assumed to be identical 

because of the very small shear). At sufficiently large B0, the 

magnetization state of particles is reaching the saturation Mp ~ 

Msat_p (µ0Msat_p =2.14 T), which in turn explains the 

mechanical property saturation ΔG’sat. From the experimental 

conditions, the largest applied field for all samples is B0 = 0.6 

T, and we assumed that the values ΔG’(B0 = 0.6 T) ~ ΔG’sat. 

Then, from this relationship, we can extract the magnetization 

state of particles as: Mp(ϕ, B0)/Msat_p = (ΔG’(ϕ, B0)/ΔG’sat)1/2. 

Resulting curve is plotted in Fig.8.  
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Fig.8. Relative magnetization of the particles at different 

value of magnetic field. 

 

A satisfactory fit of a non-linear magnetization curve is 

given by f(x)=cx/(1+[cx/p]α)1/α where f(x)~cx for x<<1 and 

f(x)~p for x>>1, where c represents here the initial magnetic 

susceptibility (c~χ), p the saturation state of the magnetization 

(p~Msat_p) and α is a curvature parameter. The magnetization 

of a particle versus applied magnetic field is then written as: 

𝑀𝑝(𝐻0) =
𝜒𝐻0

(1 + [
𝜒𝐻0
𝑀𝑠𝑎𝑡_𝑝

]
𝛼

)
1/𝛼

 
(11) 

 

This figure reveals two important points. Firstly, the 

particles are clearly reaching their magnetic saturation within 

the range of experimental applied field. Moreover, it appears 

that the linear behavior of the magnetic particles is limited to 

a relatively small range of applied field. Such a linear behavior 

is characterized by the magnetic susceptibility of materials. 

Then, the extracted susceptibilities using fitted curves in Fig.8 

are presented in Table 3. 

 

Table 3. Parameters of the fitted curves in Fig.8, using 

equation (8); Msat_p=1.76 106 A/m for all iron particles. 

 MRE05 MRE10 MRE15 MRE20 MRE25 

χ (-) 11.35 10.69 10.01 10.47 9.32 

α (-) 1.83 2.07 2.30 2.06 2.23 

µ0Hsat_p 

(T) 
0.19 0.20 0.22 0.21 0.23 

 

The extracted particle susceptibilities where around 10, 

which is larger than the usual isolated spherical ferromagnetic 

particle susceptibility of χ ~ 3, which corresponds to the 

second notable point. Interestingly, the chains of particles 

were modeled [17] as segment having a susceptibility of 9.09 

for a MRE with ϕ =26.3%, which shows good agreement with 

our experimental data. The apparent susceptibility of an 

isolated iron particle is χ ~ χFe /(NχFe +1) where iron has a 

typical magnetic susceptibility χFe ~1000. As the 

demagnetizing factor for a sphere is N=1/3, the apparent 

susceptibility is χ ~ 3. Using these expressions, we can 

confirm that these chains of particles behave as elongated 

particles (N<1/3) yielding the enhanced susceptibility. From 

the susceptibilities listed in Table 3, we can obtain effective 

demagnetizing factor of N~ 1/χ ~0.1 which corresponds to an 

aspect ratio around q~ 4 [27], which is a little smaller than 

extracted values from Fig. 5 (q=6.6). This aspect ratio value 

of 4 is found by the magnetic part of the shear modulus 

whereas the value 6.6 is found by the non-magnetic part of the 

shear modulus. Both methods are nonetheless pointing to the 

same order of on the elongated aspect ratio of the chains.   

As chains exhibit larger susceptibility than isolated 

particles, they reach a magnetic saturation at lower applied 

magnetic field. A useful parameter to quantify the saturation 

effect is the saturating field, defined as Hsat_p = Msat_p/χ. Then 

µ0Hsat_p =4π10-7x1.76 106/3~ 0.7 T for the isolated particle. 

Table 3 provides the values for the tested MREs. Values are 

mostly around 0.2 T which indicates that the MRE particles 

reach a magnetic saturation at lower field than isolated ones. 

Increasing the filling factor in the MREs seems to lower their 

particles susceptibilities, hence increasing the saturating field 

Hsat_p. An explanation of this effect lies in the decrease of 

anisotropy with the increase of the filling factor, as explained 

in Section 3.1. Moreover, clusters of particle chains appears 

with the increase of the filling factor [22, 28-29]. 

 

3.3 Electrical signal characterization 

One major application of the MRE in the framework of this 

investigation is the electrical signal production, for sensing or 

energy harvesting purposes for instance. In this analysis, 

different experimental parameters are considered for 

optimizing such targets. When the (anisotropic) MREs are 

submitted to a shear strain applied perpendicularly to the 

columnar structure, their permeabilities change, due to the 

rearrangement of the magnetic particles. That change of 

permeability induces a change of flux flowing in the magnetic 

circuit, producing in turn an electrical signal in the pick-up 

coil, as shown in Fig. 9 for MRE20, submitted to a to shear 

strain of γ0=30%, with B0=0.3 T. Considering an applied strain 

with a period of 1 s (f= 1 Hz), the voltage signal exhibits a 

period of 0.5 s so that the voltage frequency is twice that of 

the applied strain. 
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Fig.9. Voltage across the pick-up coil versus time 

considering MRE20 sample, submitted to γ0=30% shear 

strain (solid line) with a bias flux density of B0=0.3 T. 

 

By fitting the electrical signal with a sinewave function, the 

electric signal amplitude Vs for each MRE can be determined. 

Such data are obtained for various combinations of 

experimental conditions, namely the shear strain maximal 

amplitude (γ0) and the value of the applied field (B0). Resulting 

Vs are then plotted as a function B0 for all MRE samples at 

given γ0. As it can be observed from Fig. 10, the voltages 

behave similarly for all filling factors. As the applied strain γ0 

increases, the measured voltage also increases whatever the 

filling factor. The effect of the applied field B0 is however 

more complex: as B0 increases, Vs first increases, then reaches 

an optimal value and eventually decreases to zero. That 

optimal value Vs appears for B0=Bopt. The value of Bopt 

depends on the filling factor and strain maximal amplitude. 

For example, the Vs vs B0 curves for MRE05 (ϕ =5%) presents 

an optimal value Bopt=0.1 T for all γ0. At increasing filling 

factor, Bopt value changes, depending on γ0. For MRE10 (ϕ 

=10%), Bopt=0.1 T if γ0 < 50% and Bopt=0.2 T if γ0 = 50%. For 

MRE15 (ϕ =15%), for strain amplitude up to γ0 = 20%, 

optimum value is Bopt=0.1 T, but moves to Bopt=0.2 T for larger 

γ0. For MRE20 (ϕ =20%) the value Bopt =0.1 T appears only 

for γ0 = 10% and then Bopt=0.2 T for other considered strain 

amplitudes. Finally, for the largest tested filling factor, 

MRE25 (ϕ =25%), Bopt=0.2 T, almost independently of strain 

amplitude. 

 

 
Fig.10. Amplitude of voltage Vs for each MRE, i.e. each 

filing factor, at different amplitude (γ0) and value of the 

applied DC field (B0). 

 

It can be noted that these curves are not symmetric: the 

decrease is smoother than the increase. To study the effect of 

the material properties, the change of magnetic induction 

ΔB(t) is extracted from the electrical signal by integrating the 

Lenz law: 

V(𝑡) = −𝑁𝑆𝐴
𝑑𝐵(𝑡)

𝑑𝑡
 

(12) 

 

with the constant NsA=0.18 m2 and removing the integration 

constant. The corresponding results are plotted in Fig. 11 

depicting ΔB(t) versus the applied shear strain. Fig. 11(a), 

which illustrates the variation in flux density for different 

amplitudes of the strain applied to MRE25, shows that the 

variation in induction is quadratic with the strain. Hence, the 

higher the applied strain, the larger the variation of induction 

and therefore the larger the output voltage. 

Fig. 11(b), showing ΔB versus γ for different amplitudes of 

the applied field for MRE25, demonstrates that ΔB increases 

with B0 up to 0.2 T. The ΔB curves are then smaller. This is 

consistent with the plot of Vs versus B0 for the MRE25 at γ0 = 

50%, exhibiting an optimal field of Bopt=0.2 T as seen in 

Fig.10. We can also notice the close relationship between Bopt 

and the saturation field Hsat_p as measured in Fig. 8, (see also 

Table 2).  
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(a) 

 
(b) 

 
(c) 

Fig.11. Change of induction versus the shear deformation, 

for different a) amplitudes of the shear deformation 

amplitude γ0, b) applied field B0 and c) filling factor ϕ. 

 

 

Lastly, in Fig.11.c, the evolution of ΔB versus γ is presented 

for different filling factors (and thus samples), considering γ0 

= 50% and B0 = 0.1 T (which is close to Bopt for all MRE 

samples). For increasing filling factor, ΔB tends to a similar 

value. For MRE05 (ϕ =5%) the absolute value of ΔB at γ = 

50% is around 5 mT whereas larger filling factors provide 

approximate values of ΔB at γ = 50% of 7 mT, 8 mT, 9 mT 

and 9 mT for ϕ =10%, 15%, 20% and 25% respectively. This 

is again consistent with the voltage amplitudes obtained with 

γ0 = 50% and B0 = 0.1 T (Vs= 5.2 mV, 8.4 mV, 9.7 mV, 9.4 

mV and 9 mV for ϕ =5%, 10%, 15%, 20% and 25% 

respectively; see Fig.10). This experimental data shows a flat 

produced voltage with larger filling factor within our 

experimental test range. Such an effect can be attributed to 

segment-segment interaction (which is negligible for low 

filling factors) as described above. 

 

3.4 Magneto Mechanical energy conversion 

Previous investigations highlighted that larger shear 

provided better output voltage, and that an optimal field 

around 0.1T - 0.2T also provides the best electric signal while 

larger filling factors did not provide significant improvement 

after a critical value. Such effects can also be considered from 

an energy point of view. To do this, we establish a definition 

of efficiency and calculate the values associated with the 

tested parameters.  

Efficiency is here calculated by the ratio of the energy 

output divided by the energy inputs during a cycle of shear 

strain. The considered energy input is the mechanical energy 

to strain the MRE, at given applied magnetic field. The energy 

output is the change of magnetic energy due to this shear. In 

this way, we mainly consider what is happening in the MRE 

material itself. More precisely, the way the bias field is 

created, the way actuators apply strain or the pick-up coil 

conversion efficiency are out of the scope of the analysis. 

These are device issues that can be optimized in future works.  

The change of magnetic density energy Emag due to the 

shear γ for a given constant field B0 is estimated as shown in 

diagrams in Fig. 12(a) ([16]). At given constant field B0 (here 

0.4 T) and a given strain γ, the MRE Emag is given by: 

𝐸𝑚𝑎𝑔 = 2 [∫ 𝐵(𝛾 ≠ 0)𝑑𝐻
𝐻0

0

−∫ 𝐵(𝛾 = 0)𝑑𝐻
𝐻0

0

]

=
2

𝜇0
∫ ∆𝐵(𝛾, 𝐵)𝑑𝐵0

𝐵0

0

 

(13) 

 

the factor of 2 arising from the fact that as γ is cycling between 

+γ0 to -γ0 over one period, so the ΔB curve is symmetric with 

the strain as seen in Fig. 11. Since the application of shear is 
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reducing the induction (Fig. 12(a)), ΔB is negative and the 

change of magnetic density energy Emag due to the shear is also 

negative. 

 

 
(a) 

 
(b) 

Fig.12. a) Schematic curves of B(γ=0) and B(γ≠0) versus 

applied B0 (top) and corresponding ΔB (bottom); the area 

colored in green corresponds to Emag for field applied up to 

0.4 T. b) Stress-strain curves of MRE; the area colored in 

green corresponds to Emech. 

 

Such results were calculated for each MRE under different 

strain amplitudes and bias fields. Results are presented in Fig. 

13(a) as a function of the shear strain amplitude γ0 for each 

MRE (corresponding to a filling factor ϕ). For a given MRE, 

increasing shear strain γ0, increases Emag (in absolute value) as 

well. Similar to the shear strain effect, the field also enhances 

Emag because the integration upper limit in equation (12) is 

larger as seen in corresponding diagram of Fig. 12(a). 

However, the increase rate becomes smaller; for example, for 

MRE15 with γ0 =30%, the energy density values yield Emag ~ 

-160, -470, -770, -980, -1125 -1210 and 1240 J/m3 for B0=0.1, 

0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 T respectively. Emag also 

increases with the filling factor, but this increase is getting 

lower when ϕ is larger than 15%, as highlighted by the dashed 

line plot. 

 

 
(a) 

 
(b) 

Fig.13. a) Magnetic density energy converted due to the 

shear as defined in equation (13) for different the filling 

factors, applied shear strain amplitudes γ0 and applied field 

B0; b) Ratio between this magnetic energy and the 

mechanical energy. 

 

The input mechanical density energy is the loop area in the 

stress-strain curves shown in Fig. 12(b), estimated over one 

period as: 

𝐸𝑚𝑒𝑐ℎ = ∫ 𝜏
𝜕𝛾

𝜕𝑡
𝑑𝑡

1𝑠

0

 
(14) 

 

The ratio of the output magnetic density energy (equation 

(13)) by the mechanical energy (equation (14)) used to shear 

the MRE under different strain amplitudes and applied fields 

is presented in Fig. 13(b). It can be seen that as the amplitude 

of shear strain γ0 increases, this ratio is enhanced. In Fig.10, 
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an optimal value of field B0 was reported for the voltage 

amplitude Vs and the extracted change of flux density ΔB 

(Fig.11) is also marked by the same optimal value of applied 

field. These optima were found to be around the saturating 

field (Table 3) which also follow the same trend with 

increasing the filling factor. This optimal value was, to some 

extent, dependent on the amplitude of shear strain too. In the 

case of the ratio between the magnetic energy and the 

mechanical energy, Fig.13(b), for MRE05 (ϕ =5%) at given 

γ0, optimal values were increasing from 0.1 T for γ0 =10% to 

0.3 T for γ0 =50%. An interesting result is the good 

performance obtained for MRE15 (ϕ =15%) at γ0=50% and 

applied field of 0.7 T. As already mentioned, the largest filling 

factor does not lead to an improvement of the output voltage 

(Fig.10), so that increasing the filling factor does not seem to 

be a good solution to increase this ratio. The fact that the 

efficiency ratio is lower for ϕ =20% or 25% can be due to the 

strong mechanical energy increase with larger filling factor 

(equation (14)) as seen in Figs. 5-7. 

 

4. Conclusion 

In this paper, we present a deep parametric analysis of the 

output voltage and conversion efficiency of a device 

converting mechanical shear oscillation into electrical signal. 

This device uses two anisotropic Magneto Rheological 

Elastomers, which were placed into a magnetic circuit and 

submitted to shear strain. This causes a change of flux in the 

magnetic circuit which is then converted into output voltage. 

The output voltage depends then on: (i) the filling factor, (ii) 

the shear amplitude and (iii) the applied constant field. While 

the results revealed that voltage amplitude increases with 

applied shear, the effect of filling factor and applied bias field 

were less straightforward. It was found that the increase of 

filling factor over 15% did not improve the voltage so much 

and a maximum voltage was found at a specific optimal 

applied field Bopt. Best condition for the electric voltage 

amplitude was found using the MRE15, MRE20 or MRE25 

with Bopt =0.2T and applied shear amplitude of for γ0=50%.  

 From the magneto-mechanical measurements, we 

demonstrated that the magnetic particles are saturated at 

relatively low saturating field Hsat_p, because of their columnar 

structure, and this field Hsat_p and Bopt were relatively close to 

each other.  

As both the filling factor and applied constant field seem to 

have a limited impact on ΔB, the best way to improve ΔB is to 

increase the applied shear strain deformation. However, this 

was also predicted to have some limit because of the drastic 

reduction of magnetic interaction between particles, when 

inter-particle distance increases [18]. Other architectures 

might improve the effect and will be the subject of further 

works.   
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