
HAL Id: hal-02970888
https://hal.science/hal-02970888v1

Submitted on 20 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regenerative cooling using elastocaloric rubber:
Analytical model and experiments

Gaël Sebald, Atsuki Komiya, Jacques Jay, Gildas Coativy, Laurent Lebrun

To cite this version:
Gaël Sebald, Atsuki Komiya, Jacques Jay, Gildas Coativy, Laurent Lebrun. Regenerative cooling
using elastocaloric rubber: Analytical model and experiments. Journal of Applied Physics, 2020, 127
(9), pp.094903. �10.1063/1.5132361�. �hal-02970888�

https://hal.science/hal-02970888v1
https://hal.archives-ouvertes.fr


1 

 

Regenerative cooling using elastocaloric rubber: analytical model and 

experiments 

Gael Sebald1, Atsuki Komiya1,2, Jacques Jay3, Gildas Coativy4, Laurent 

Lebrun4 

1ELyTMaX UMI 3757, CNRS – Université de Lyon – Tohoku University, International 

Joint Unit, Tohoku University, 980-8577, Sendai, Japan 
2 Institute of Fluid Science, Tohoku University, 980-8577, Sendai, Japan. 
3Univ. Lyon, CNRS, INSA-Lyon, CETHIL, UMR5008, F-69621, Villeurbanne, France  
4Univ. Lyon, INSA-Lyon, LGEF, EA682, F-69621, Villeurbanne, France 

Corresponding author: gael.sebald@insa-lyon.fr 

Caloric materials exhibit significant entropy variations when applying 

appropriate excitation, pushing forward the development of solid-state cooling 

systems. Their development includes materials’ properties optimization, with a 

focus on their adiabatic temperature change when driven at their limit. In order to 

sustain the device development, an analytical model for regenerative cooling 

systems is presented in this work. It consists of a caloric material driven 

cyclically so that it exhibits harmonic temperature variations, whereas an 

oscillating fluid layer is exchanging heat with the caloric material, leading to a 

net heat flux along one given direction. The heat transfer equation was solved 

analytically for harmonic excitation along the direction perpendicular to caloric 

materials layers separated by fluid layers. In a second step, the problem was 

solved along an axis parallel to the layers. In order to validate the model, an 

experimental proof of concept was developed based on a natural rubber tube 

inside which water flows harmonically. The comparison between model and 

experiment is given, while the model highlights the importance of the thermal 

boundary layer, and how the geometry of the device compensates easily the low 

thermal conductivity of natural rubber. 

Keywords: solid-state cooling, regenerative cooling, natural rubber, caloric 

materials, elastocaloric 

1. Introduction 

From the last two centuries, four generations of refrigerant gases were successively used 

in refrigeration systems, each new generation solving a previous performance / 
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environmental issue. Continuous effort was being put in order to further improve this 

trade-off [1]. Alternatively, efforts were deployed on the development of solid state 

refrigeration systems [2,3] which might lead to high performance systems (coefficient 

of performance : COP>5), while allowing high miniaturization as well as suppressing 

high speed moving parts and vibrations from the cooling devices. Three types of 

materials have been more or less deeply investigated: magnetocaloric materials, 

electrocaloric materials and elastocaloric/barocaloric materials. Currently, a lot of works 

have been devoted to the magnetocaloric effect [4–6] and to the electrocaloric effect [7–

9]. They generally focused on the characterization techniques (indirect methods versus 

direct methods of measurement), and the enhancement of the effect by developing new 

materials or new strategies to drive them (i.e. their use near a phase transition).  

Fewer studies addressed the design of thermal machines based on the magnetocaloric 

effect, the electrocaloric effect, or elastocaloric effect. Caloric materials exhibit time 

variations of temperature, generated by the caloric effect. A cooling device therefore 

requires a system for converting time variations into spatial gradients. One 

straightforward solution is to put the caloric material in contact with the hot reservoir 

when the temperature is high, and then to move it in contact with the cold reservoir 

when its temperature is low. This constitutes the class of “single stage devices”. Several 

examples are available in the literature for electrocaloric [10–14] and elastocaloric 

effects [15,16].  

Alternatively, one of the most promising consists of active caloric regeneration, where a 

fluid is moving synchronously between or around caloric material generating cyclic 

temperature variations [3,17,18]. Several experimental prototypes were investigated, 

with for example the pioneering work by Brown [19] for magnetocalorics and Sinyavky 

[20–23] for electrocalorics, followed by numerous developments in recent years [24–
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30]. The design is not straightforward – especially the geometrical considerations – 

since the complex heat and mass transfer do not have simple solutions.  

In the elastocaloric materials family, some soft polymers exhibit rather large 

elastocaloric activity [31,32] due to the close link between entropy and elasticity. 

Natural rubber exhibits a very large effect, thanks to the strain induced crystallization 

[33]. In addition, the application of a pre-elongation allows a smaller relative strain, 

while keeping significant elastocaloric activity (adiabatic temperature change >2°C) 

[34]. Elastocaloric materials should be optimized not only in terms of the largest 

adiabatic temperature change, it should include also the thermal properties, such as 

specific heat and thermal conduction. As experimental testing of all possible solutions is 

not accessible in a comprehensive manner, modeling may bring a relevant tool for 

screening different design solutions. Finite Element Method [35,36] appears as a 

straightforward solution, as well as other 2D numerical solving schemes [37–40] or 

even 1D approximation [41,42], but allows hardly the definition of figures of merit. 

The key questions are therefore: How far the thermal properties of caloric materials 

affect the performances of a cooling device? To what extent geometrical optimization 

may counterbalance inadequate thermal properties? How to design a performant cooling 

device? 

In this framework, this article presents an analytical model for simulating an active 

regenerative caloric cooling using any caloric material. The objective is to determine 

figure of merit of the cooling device, from the properties of the active material and of 

the fluid, as well as the geometry of the system. It is based on a two-step solving of 

coupled thermomechanical diffusion equations in harmonic regime. In section 2 is 

presented the model with its assumptions and solving, keeping fully analytical solutions. 
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Key figures of elastocaloric cooling in a regenerative system are discussed. For model 

validation through comparison with experiments, several assumptions are waived, 

leading to a numerical solving and is detailed in section 3 of the article. The section 4 

then presents an experimental setup of a regenerative cooling proof of concept using 

natural rubber as elastocaloric materials. Some results are given along with their 

comparison with modelling results, and showing the validity of the model.  

2. Model definition 

2.1 Definition of the system to be modelled 

Let consider an active material exhibiting a caloric coupling, which could be 

electrocaloric, elastocaloric or magnetocaloric. It was assumed that it is driven with a 

harmonic solicitation of angular frequency   leading to a body heat source Qvol_i(t) 

inside the material writing 

_ ( ) j t

vol i iQ t q e   (1) 

As a result, in adiabatic mode, the temperature signal writes ( ) j ti
i

i

q
T t e

c

 , where ci is 

the volumetric heat capacity. The difference between maximum and minimum 

temperature defined as 

2 i
ad

i

q
T

c
 

 and corresponds to the peak-to-peak amplitude of 

temperature signal. 

The model did not consider the details of the excitation nor the losses of the solicitation 

(such as dielectric losses or mechanical losses in the case of electrocaloric or 

elastocaloric couplings). The active material was considered as a layer of infinite lateral 

dimensions (along axis x and y). It is surrounded by fluid layers, which constitute 

infinite layers subjected to a motion vi(x,t) along x axis 
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( ) j t

i iv t v e   (2) 

The problem formulation and solving was adapted from a model proposed for 

thermoacoustic refrigeration device, as described in [43–45] where the complex heat 

and mass transfer of resonant acoustic waves in a parallel layers system is solved in a 

two-step 1D solving scheme for simplifications in harmonic regime. 

The system to be modeled in displayed in Figure 1.  

 

Figure 1 : Configuration of the regenerative cooling system consisting of coplanar infinite layers of caloric material 

or fluid of thickness hi. 

2.2 Heat transfer equations and solutions 

The thickness of the layers is along z axis. For each layer i, a dedicated zi coordinate is 

used, with zi=0 at the center of the layer.  

The following assumptions are used: 

 Edge effect along y axis are neglected. 

 In the heat transfer equation, variations along z axis are assumed to be larger and 

faster than that along x axis. This implies that the general expression of the 

temperature may be written as 

     0, , j t

i i ai iT x z t T x T z e    (3) 
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 The spatial temperature gradient along x axis is therefore identical for all layers, 

and varying very slowly compared to the excitation period 2/. 

 Temperature and heat transfer along z axis are assumed to be continuous at the 

interface between two adjacent layers. Boundary condition therefore writes 

1
1 1

1
1 1

1

1

2 2

2 2

i i
i i i i

i i
i i i i

i i

i i

h h
T z T z

h h
T z T z

K K
z z


 


 





   
      

   

   
       

   
 

 

(4) 

where Ki is the thermal conductivity of layer i. 

The general formulation of heat transfer equation in incompressible media is given by 

[46] 

    . .i
i i i i i

S
T v grad S div K grad T

t

 
  

 
 

(5) 

where Si is the local specific entropy of layer i. 

Entropy variation dSi and heat exchanged dQi of a layer i are given by 

_i i i vol i i idQ T dS dQ c dT    (6) 

where _vol idQ  is the internal volumetric heat source infinitesimal increment of layer i. 

Assuming a homogenous and isotropic thermal conductivity, that the volume heat 

source is homogenous, and noticing that the motion of the material is along x axis only, 

the thermal equation yields [39] 
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( ) ( ) ( ) ( ) ( )i i i
i i i i

T T Q
c t v t t t K T t

t x t

   
    

   
 

(7) 

In order to avoid a space discretization of the problem to be solved, it is chosen to 

search analytical solution of Eq. (7). Using the general expression of the temperature 

and motion (2) and (3), and using harmonic balance method (keeping only terms j te  ) 

in (7) : 

2

0

2

ai
i ai i i i

i

T T
c j T v j q K

x z
 

  
   

  
 

(8) 

The partial derivative Eq. (8) includes static temperature gradient 0T

x




 as an external 

parameter at this stage. The problem solving along x-axis (cooling line direction) will 

link the net heat flux and the generated temperature gradient that results also from 

thermal boundary conditions (see section 3.3). Eq. (8) contains variation Tai and its 

second order derivative only, and the general solution is given by  

0cos sin i i
ai i i i i i i

i

q v T
T A k z B k z

c j x


   


 

(9) 

Where 

2

2 1i
i

i i

j c j
k

K





 
    

 
, 

2 i
i

i

K

c



  

(10) 

being the thickness of the thermal boundary layer 

Note that this general solution directly gives the distribution in space of the harmonic 

temperature variations. 

The application of boundary conditions yields 



8 

 

0

1 1 1 1 0
1 1 1 1

1
1 1 1 1 1

cos sin
2 2

cos sin
2 2

sin cos
2 2

sin co
2

i i i i
i i i i

i

i i i i
i i i i

i

i i
i i i i i i

i
i i i i i

h h q v T
A k B k

c j x

h h q v T
A k B k

c j x

h h
K k A k B k

h
K k A k B




   

   


    

   
       

   

   
      

   

    
       
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 
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2

i
i

h
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(11) 

For external layers (bottom and top locations along z axis), a Neumann condition is 

applied. 

1 1
1 1 1 1 1 1sin cos 0

2 2

sin cos 0
2 2

N N
N N N N N N

h h
K k A k B k

h h
K k A k B k

    
        

    

    
      

    

 

(12) 

A system of N layers, consisting of N-1 interfaces and 2 external layers results in 2N 

equations (2*(N-1)+2). A matrix system was written for solving this linear equations 

system and determining amplitudes Ai and Bi for a given static temperature gradient 

0T

x




. 

From the amplitudes of the temperature variations in passive and active layers, it was 

computed the instantaneous heat flux along x axis per unit of surface  

     

     

0

0

Re Re

Re Re Re

j t j t j t

x i i i i ai

j t j t j t j t

i i i ai i i

p t v e q e c T c T e

v e q e c T e v e c T

  

   

   

    
 

(13) 

The second term of (13) being purely harmonic, its average over one period is null. 

The averaging over one period of the left term is given by [47] 
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  
1

( ) Re
2

x i i i aip t v q c T   
(14) 

The total heat flux (per unit of width, W.m-1) through the cross-section of the layers is 

 
0

tot

x xP p t dz   
(15) 

Note that Eq. (15) accounts for the hydrodynamic transport of the heat, resulting from 

the harmonic motion of the fluid, and from the heat conduction as well as fluid velocity 

whose exact profile is considered as known. 

The maximum achievable temperature gradient along x axis may be estimated by 

setting a total heat flux along x axis to be zero, after adding the passive heat flux 

through the layers 

0 0x

tot

T
K dz P

x


  

   
(16) 

2.3 Example of result 

In these simulations, only three layers were considered. The properties set in the 

simulation are given in Table 1. 

Property Symbol Value Unit 

Specific heat of natural rubber crubber 2x106 J.m-3.K-1 

Specific heat of fluid layer (water) cfluid 4.18x106 J.m-3.K-1 

Thermal conductivity of natural rubber Krubber 0.184 W.m-1.K-1 

Thermal conductivity of fluid layer (water) Kfluid 0.6 W.m-1.K-1 

Adiabatic temperature variation of natural rubber  Tad 2 °C 



10 

 

Amplitude of fluid motion  u 1 cm 

Table 1 : Parameters used in the simulation of a three layers configuration 

 

For each simulation, the static spatial temperature gradient along x axis was varied from 

-2°C/cm to 2°C/cm, in order to compute the net heat transfer along x axis as a function 

of the static spatial temperature gradient. The temperature amplitudes in each layer were 

first determined by the application of the boundary conditions. The amplitudes of Tai(z) 

are  complex numbers, whose amplitude and phase is given by solving equation system 

(11) and (12).  From these amplitudes, the net heat flux along x axis is calculated by the 

integral given in Eq. (14) and (15). 

 

 

Figure 2 : Typical result of the simulation for a 1Hz excitation and 1mm fluid layer thickness: a) amplitude and 

phase of the temperature variations for both rubber (located -1.5mm <z <-0.5mm and 0.5mm > z > 1.5mm) and fluid 

(located -0.5mm > z > 0.5mm), and for a temperature gradient of -2°C/cm, b) for 0°/cm and c) for +2°C/cm. In d), 

the overall heat flux (per unit of width) is plotted against the temperature gradient, thus highlighting the maximum 

heat flux (for null temperature gradient), and the maximal temperature gradient fort when the heat flux becomes null. 

The slope of this curve corresponds to the effect of the thermal conductivity. 
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In Figure 2 is shown a typical result for a 1 Hz excitation and a fluid and rubber 

thickness of 1 mm. The temperature variation amplitude profile is shown for different 

temperature gradients, and the resulting plot of total heat flux versus gradient 0T

x




 is 

given. The space variable z refers to the axis perpendicular to the rubber and fluid 

layers. The motion of fluid is along x axis. The fluid is between two rubber layers, and 

the outer surface of rubber layers are located at z=1.5mm and z=-1.5mm. In the 

simulation, the adiabatic temperature change of the rubber was set to 2°C, that is to say 

1°C harmonic amplitude. This temperature amplitude is naturally found on the external 

edges of the rubber, which are not or weakly influenced by the fluid motion. On the 

contrary, close to this boundary (at z=-0.5mm and z=0.5mm), the fluid temperature 

variations generate additional temperature variation in the rubber as the result of the 

heat conduction and the continuity of temperature and heat flow at the interface. The 

fluid temperature variations have two origins. The first one is the temperature spatial 

gradient 0T

x




 multiplied by the harmonic displacement of the fluid, resulting in time 

variations at a fixed location x of the cooling line. It should be noted that the phase of 

the fluid layer temperature variation is naturally reversed when the temperature gradient 

has an opposite sign. The second origin of the fluid temperature variation is the 

influence of the rubber layer exhibiting elastocaloric effect. At zero gradient 0T

x




, the 

temperature variation of the fluid is solely due to the rubber temperature variations. It is 

confined near the interface (i.e. a few hundreds of micrometers), consistently to the 

thermal boundary layer thickness 
2 i

i

i

K

c



  in the fluid. 

By integrating the temperature variation of the fluid by its velocity (Eq. (14), (15), 

(16)), it was calculated the resulting net heat flux, which of course depends on the 
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temperature gradient 0T

x




. In the absence of elastocaloric effect, the slope would be 

decreasing and crossing the origin of the graph heat flux versus temperature gradient. 

Indeed, when the temperature gradient is positive, heat flux appears towards decreasing 

x coordinate. The elastocaloric effect combined with the fluid motion results in a net 

heat flux along x direction (Eq. (16)), and hence in a translation of the total heat flux. 

The quarter with positive temperature gradient and heat flux may be seen as the heat 

engine characteristic: without temperature gradient the heat flux is maximum, and the 

heat flux vanishes when the cooling power is totally counterbalanced by the heat 

conduction along x axis. 

In a second step, the influence of the total number of layers was investigated (N layers 

of fluid and N+1 layers of rubber). The total number of layers (2N+1) is varied between 

3 and 3x103. For the sake of comparison, the cooling power is normalized with regards 

of the total thickness of the layered system, thus leading to a surface power (W.m-2). 

Parameters are the same as in Table 1, thickness of the layers are all 1mm, and the 

frequency is set to 1Hz.  

As shown in Figure 3, both surface power and temperature gradient reaches a plateau 

from about ~50 layers (i.e 25 layers of rubber and 24 layers of fluid). The temperature 

gradient is almost the same for all tested number of layers, whereas the cooling power 

increases quickly and reaches 90% of its maximum from 10 layers. From a large 

number of layers, all of them exhibit very close temperature variations. In this case, the 

edge effects on the two outer layers becomes negligible, and this result serves as a basis 

of further simplification of the problem as shown hereafter. 
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Figure 3 : Effect of the total number of layers of fluid and elastocaloric material on the cooling power and maximum 

temperature gradient 

2.4 Model for an infinite repetition of rubber / fluid layering 

The model was then defined as two layers (one of rubber, one of fluid), where the 

boundary conditions are set so that the upper layer have thermal exchange with a 

virtuous layer identical to the bottom one. The layer ‘1’ is the rubber one, subjected to a 

heat source q1 and no motion (v1=0), whereas the second layer is made of fluid, without 

heat source (q2=0), but subjected to speed along x of speed v2. 

It should be noted that the assumption of a homogeneous flow is not realistic, and is 

used up to this point as a way to keep analytical solutions. It should be noted that in 

section 3.2 the influence of inhomogeneous flow will be discussed. The error introduced 

by the consideration of a homogeneous flow is not negligible and lead eventually to an 

overestimation of a factor two on the cooling power. Nevertheless, it is considered that 

the tendencies are kept, and that the figures of merit from the elastocaloric material 

point of view remain valid. 

The continuity of temperature and heat flux is ensured at the middle interface (z1=h1/2 

for layer ‘1’, corresponding to z2=-h2/2 for layer ‘2’). In addition, the lower surface of 

layer ‘1’ (z1=-h1/2) is considered in contact with the upper surface of layer ‘2’ (z2=h2/2), 

thus simulating the infinite repetition of layers.  
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Equation system therefore writes 
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1 1 2 2
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Solving the equation system leads to 
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(18) 

Using (14), and noticing that only fluid layer (‘2’) can lead to a non-zero heat flux, the 

time average heat flux along x axis yields 
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(19) 

Considering that the last term on the right hand is purely imaginary, and integrating 

along the thickness of layer 2 between –h2/2 and h2/2 : 
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In Eq. (20), when the thickness of the rubber and fluid layers are much smaller 

compared to the corresponding thermal boundary layers, 
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, and the power tends to zero. 

Alternatively, the thicknesses of the layers were then assumed to be much larger than 

the thermal boundary layer thicknesses , 
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(22) 

The speed of the fluid layer is a complex number, function of the phase shift between 

motion of the fluid compared to the excitation of the caloric effect. The fluid layer is 

subjected to a displacement written 
2 0( ) j j tu t u e e  , its speed is then written 

2 0 0( ) j j t j j tv t j u e e jv e e     , thus 2

2 0

j

v v e



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  . The expression of the cooling 

power further simply into 
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It is rewritten as 
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P0 the surface cooling power generated by the system over all the layers, and Kactive is a 

thermal conductivity resulting from the motion of the fluid.  

Using (16), the maximal temperature gradient is given by 
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(27) 

2.5 Parametric study of the regenerative system performance  

In the following simulations, different fluid thicknesses were tested for 0.1 Hz and 1 Hz 

excitations with a phase shift =0. In Figure 4 are shown the results for both 

frequencies and for different fluid layer thicknesses. It appeared that an optimal fluid 

layer thickness exists. A larger thickness maximizes the total cooling power reaching a 

plateau, but as the thickness increases, the surface cooling power P0 decreases. 

However, the temperature gradient decreases quickly due to the higher passive heat 

conduction in the fluid layer. The performances are kept close to maximum for a wide 

range of thicknesses (between 300µm and 3mm). Finally, increase of the frequency 

decreases the value of the optimal fluid layer thickness, in agreement with the decrease 
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of the thermal boundary layer thickness. The cooling power however increases 

significantly with the frequency.  

Unsurprisingly, the analytical approximation is very accurate for very large thickness, 

where the assumption h>> is reasonable. Below 1mm, the thermal boundary layer 

thickness is closer to the fluid layer thickness, or even larger. Therefore, the analytical 

approximation is unable to catch the optimum layer thickness. Nevertheless, it is shown 

that from 1mm and above, the accuracy of the analytical approximation is rather good. 

It was also observed that changing the thickness of rubber layer resulted in very similar 

results. 

In Table 2 are given the set of properties used for checking the effect of fluid thermal 

conductivity. 

 

 

Property Symbol Value Unit 

Specific heat of natural rubber crubber 2x106 J.m-3.K-1 

Specific heat of fluid layer cfluid 4.18x106 J.m-3.K-1 

Thermal conductivity of natural rubber Krubber 0.184 W.m-1.K-1 

Thermal conductivity of fluid layer Kfluid 10-2~101 W.m-1.K-1 

Adiabatic temperature variation of natural rubber  Tad 2 °C 

Amplitude of fluid motion  u 1 cm 

Layers thickness (both rubber and fluid) h 1 mm 

Frequency of excitation f 1 Hz 

Phase shift   0 rad 

Table 2 : Parameters used in the simulation for testing the effect of thermal conductivity 
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Figure 4 : Effect of the thickness of fluid layer on cooling performances at 0.1Hz: a) surface cooling power and b) 

maximal temperature gradient along x axis. For a frequency of 1Hz: c) surface cooling power and d) maximal 

temperature gradient. On each graph, the black curve is obtained using Eq. (20) (no assumption on the layers 

thicknesses), whereas dotted red line is resulting from Eq. (25) (layers thicknesses much larger than the thermal 

boundary layer thickness). 

 

Figure 5 : Effect of thermal conductivity of fluid layer on the cooling power (a) and on the temperature gradient (b) 

In Figure 5 are shown the main results. The cooling power increases significantly with 

the thermal conductivity while the temperature gradient remains almost constant. Above 

3W.m-1.K-1, a plateau is reached for the cooling power, because the thermal boundary 

layer thickness becomes too close to the thickness of the layer (for 3W.m-1.K-1, 
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~500µm). 

From the previous simulations, it is noticeable that geometry of the system can be 

adjusted according to the properties of the materials, in order to obtain a good matching 

between thermal boundary layer and layers thicknesses. 

2.6 Towards an elastocaloric figure of merit 

The analytical solution given in (25) was further simplified in order to be able to catch a 

relevant combination of both active and passive materials properties. From the 

expression of cooling power (27), the terms related to active and passive heat 

conductivities were compared for 1 Hz excitation and a displacement of fluid of 1cm. 

Heat capacity were taken from Table 2. In Figure 6 is shown the comparison between 

active and passive heat conductivities, where both rubber and fluid layers heat 

conductivities are identical and varied between 10-2 and 101 W.m-1.K-1. Although the 

motion of fluid is rather small (1cm), it is found that the active thermal conductivity is 

always much larger than that of passive layers, with at least one decade higher value 

even for a passive thermal conductivity of 10W.m-1.K-1.  

 

Figure 6 : Comparison between active and passive heat conductivities in case of an infinite repetition of elastocaloric 

material layer and fluid layer 

The surface cooling power and temperature gradient were then simplified neglecting 

passive thermal conductivity with regard to the active one. In addition, in the view of 
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defining a figure of merit, the phase shift between excitation of the caloric effect and 

fluid motion is set to zero. Finally, recalling that the adiabatic temperature change of 

rubber writes 1

1

2ad

q
T

c
  , and that the fluid displacement amplitude is 0

0

v
u


 , the 

expressions simplifies into 

 

0 2 2

0

2 2
1 2

1 1

2

4 1

adT u K c
P

K c
h h

K c




 
  

 

 
(28) 

The temperature gradient is given by 
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(29) 

The previous simplified results are compared to non-simplified model in Figure 7. 

 

Figure 7 : Comparison between simplified expressions and complete model in case of an infinite repetition of 

elastocaloric material layer and fluid layer  

From these results, the following conclusions have been drawn: 

 Under these assumptions, the temperature gradient amplitude is directly given 

by the adiabatic temperature change divided by the fluid displacement. 

 From the expression of cooling power given in (28), a clear figure of merit can 

be hardly obtained. The limiting factor is a combination of passive and active 
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layers. Two limit cases are tested: 

o 2 2

1 1

K c

K c
>>1 (rubber layer is much less conductive than fluid layer). The 

cooling power then simplifies into 
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0 1 1
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o 2 2
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<<1 (rubber layer is much more conductive than fluid one). The 

cooling power then simplifies into 
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of merit combines both rubber and fluid properties 

2 22fluid adFOM T K c   

The results presented above suggest that the limiting factor in terms of cooling power is 

given by either the caloric material or the fluid. Increasing both heat capacity and 

thermal conductivity have beneficial effects. However, one should keep in mind that the 

thickness of the layers should be larger than the thermal boundary layer thickness in 

each type of material, which add constraints on the frequency of operation. Considering 

water as working fluid and natural rubber, and their thermal properties, the thermal 

boundary layer range is between 600µm @0.1Hz and 200µm @1Hz for both. Such 

thickness is compatible with practical constraints in term of geometrical design of a 

cooling device. 

Replacing natural rubber by shape-memory alloy (such as NiTi alloy exhibiting very 

large elastocaloric activity [48]) would allow larger thickness of active material (up to a 

few mm), while the performance will remain limited by that of working fluid. 
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3. Model for complex geometries 

The previous conclusions needed to be confirmed by the validation of the model 

through comparison with experimental result. The rather simple geometry presented 

previously was however impractical for experimental testing, and a cylindrical 

geometry was preferred. The model was therefore adapted to an axisymmetric 

configuration. 

3.1 Cylindrical geometries 

It was considered a system composed on concentric tubes of elastocaloric material or 

fluid moving along the axis of the tubes.  

Compared to the planar case solved previously, equation (8) is modified as 

2

0

2

i ai ai

i ai i i i

T K T T
c j T v j q K

x r r r
 

   
    

   
 

(30) 

The solution is given by Bessel functions: 
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where J0 and Y0 are Bessel’s function of first kind and second kind of 0th order 

respectively, and where 
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i  being the thickness of 

the thermal boundary layer. 

The application of boundary conditions, at the interface between two tubes at radius ri-1, 

yields 
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(32) 

where J1 and Y1 are Bessel’s function of first kind and second kind of 1st order 

respectively 

For the cylindrical tube at the center, as well at the outer tube, the conditions write 
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Similarly to the planar case, the boundary conditions lead to a set of 2N linear 

equations and 2N amplitudes to be determined. 

From the knowledge of the temperature variation amplitudes, the cooling power 

was computed by integrating the heat flux along the radius, and by summing on all the 

considered layers. Recalling that the local mean heat flux along x-axis is given by 
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The calculation of temperature variations amplitudes (Eq. (32) and (33)) was done for 

different static temperature gradient amplitudes. After the calculation of the cooling 

power, the power versus temperature gradient is obtained (similarly to Figure 2d). From 

this result, the cooling power PMAX and the equivalent active thermal conductivity Kactive 

(given by the slope of the curve) was deduced. 
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3.2 Inhomogeneous fluid motion 

As the motion profile of the fluid is not homogeneous inside the tube, it was assumed to 

be given by a Poiseuille flow. Therefore, the velocity front is parabolic, with a speed 

being nill at the contact with the elastocaloric material. For simulation purposes, the 

inner tube was divided into N concentric tubes, all made of fluid with different speed 

profiles in order to reconstruct the Poiseuille flow. An example with N=9 is given in 

Figure 8a. In subsequent simulations, N=150 was preferred in order to have a 

continuous fluid velocity profile. 

In terms of cooling performance, it should be noted from Eq. (14) that cooling power is 

given by the product of the fluid speed by its cyclic temperature variations. The speed 

of the fluid is maximum at the center of the tube in case of a Poiseuille flow, where the 

temperature variations are the lowest. As a consequence, the output power is decreased 

significantly for low values of fluid thermal conductivity. A comparison between 

Poiseuille flow and a homogeneous speed flow is given in Figure 8b. For larger thermal 

conductivity, it should be noted that an inhomogeneous flow gives slightly higher 

cooling power. In this case, the thermal boundary layer is larger than the diameter of the 

tube, and if the cooling power is a nonlinear function of the speed of the fluid, it can 

lead to a higher value compared to a homogeneous flow case. In any case, the 

drastically increased active thermal conductivity is responsible for a decrease by a 

factor of 2 of the maximum achievable temperature gradient as shown in Figure 8c. 
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Figure 8: Simulation of Poiseuille flow using successive concentric tubes of fluid at different speeds. a) Resulting 

speed and temperature variation amplitude. The comparison between homogeneous flow and Poiseuille flow is given 

for the cooling power (b) and temperature gradient (c), and are plotted against the thermal conductivity 

3.3 Heat loss along the tubes 

For a complete refrigeration device, numerous parallel tubes are necessary to obtain a 

significant total cooling power. In this case, each tube is surrounded with other tubes, so 

that the heat exchange between the tubes is limited since all are subjected to the same 

temperature variations. The only tubes at the boundary of the whole system will exhibit 

heat exchange with outer medium, which might be negligible for a large number of 

tubes. On the contrary, for a single tube configuration, it is necessary to consider heat 

loss along the tube. This configuration is close to laboratory test conditions, and 

important for the comparison between model and experiment.  

The model for the cooling along the x-axis (axis of the tube) starts from the result of the 

cooling power PMAX and the total thermal conductivity along the tube. The general heat 
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transfer equation along x-axis then writes  
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where 
0S , 

0l , h  and ctot  are the cross section of the tube, its perimeter, convective heat 

transfer coefficient with outer medium, and total heat capacity per unit of length 

respectively. Ktot is the total thermal conductivity, sum of the passive thermal 

conductivity Kpassive in rubber and fluid layers, and of the active thermal conductivity 

Kactive. Their expressions in case of planar configuration are given by Eq. (26) and (27), 

whereas in case of axisymmetric configuration, it is computed numerically. 

General solution of Eq. (35) in steady state  (T0 constant with time) is  
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The total temperature difference between both ends of the tube is finally calculated 
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(38) 

4. Experimental setup and results 

An experimental proof of concept was developed in the objective of both proposing an 

experimental evidence of the elastocaloric cooling of natural rubber, and to give 
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reference experimental data that can be compared to the modelling results. It consists of 

a single rubber tube of initial diameter of 5mm and initial length of 25mm, stretched 

until an elongation of 6, leading to a length of 150mm, and outer diameter of 2mm and 

inner diameter of 1.47mm. The rubber tube is a purified polyisoprene rubber, purchased 

to Graham-Field Health Products, Inc., Atlanta, USA (item 3931 series). 

It is fixed at both ends to ABS parts that are mounted onto a large displacement 

actuator on one end (model RSDG312, Misumi Group Inc. Tokyo, Japan), and a fixed 

point at the other hand. At both ends of the tube, pistons are mounted for pumping fluid 

into the tube (allowing a maximum pumped volume of 5ml), and fixed onto small 

actuators (model RSD112 , Misumi Group Inc. Tokyo, Japan). The three actuators, 

based on ball screws driving with internal displacement feedback and a precision of +/-

20µm, are controlled using Matlab® Instrument control toolbox ensuring the 

synchronization of the actuators commands and the precise control of their 

displacements. In practical operation, acceleration, speed and positioning are set in 

order to be as close as possible to a half sine wave. 

The temperature is monitored using an infrared camera (model Optris PI 400i, 

optical lens 29° x 22° / f=12,7 mm, Optris GmbH, Berlin, Germany), with a resolution 

of 80mK and 80 Hz operation frequency. 

A schematic of the experimental setup and a photograph are given in Figure 9. 
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Figure 9: Experimental setup of the regenerative elastocaloric cooling system using natural rubber: schematic (a) 

and photograph (b) 

As an example of operation, the rubber was stretched from an elongation of 5 to 

6, leading to an adiabatic temperature change of around 1°C monitored in the absence 

of fluid. At an operating frequency of 0.3 Hz, and a fluid displacement of 1.6cm in 

phase with the rubber stretching, the temperature at two points distant of 57mm on the 

outer edge of the rubber tube was recorded and plotted in Figure 10a. When starting the 

system, both temperatures starts to oscillate due to the elastocaloric property of rubber. 

Thanks to the fluid motion, the base line moves exponentially in opposite directions for 

both points, leading to an overall temperature difference of 1.2°C is steady state. When 

switching off the system, both temperatures moves back to room temperature. In 

addition, the temperature as a function of x position was found to be almost linear 

whatever the testing conditions. 

Using the same parameters as for the experiment, the model was computed 

starting by the determination of the net heat flux along x-axis and the total heat transfer 

leading to the numerical values of cooling power PMAX and the total thermal 
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conductivity along the tube Ktot. Then, Eq. (35) was solved using a finite-difference 

scheme, assuming adiabatic condition on both edges of the cooling line. At one end of 

the cooling line, the base line of the temperature increases exponentially to a maximum 

value (corresponding to the solid slowly moving temperature signal in Figure 10b) and 

decreases to room temperature when the system is switched off. From the temperature 

amplitudes along the radius of the pipe, the harmonic amplitudes are used to compute 

the cyclic temperature time variations and are added to the previous simulated base 

temperature. The total temperature signal on the outer edge of the rubber tube is thus 

obtained as a function of time, for the same location on the x-axis as for the experiment. 

The resulting temperature profiles are plotted in Figure 10b. 

 

Figure 10: Example of operation of the elastocaloric rubber cooling device for a 0.3Hz operation and a fluid 

displacement of 1.6cm. The rubber was elongated cyclically between elongations of 5 and 6.a) experimental result 

and b), simulated result 

 

 

 

 

Several experimental conditions were then tested, and corresponding simulations were 

completed accordingly. The experimental conditions are summarized in Table 3. 
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Property Symbol Value Unit 

Rubber tube external diameter rext 2 mm 

Rubber tube internal diameter rint 1.47 mm 

Rubber tube length L 12.5 Cm 

Fluid displacement amplitude U 1 ~ 5 cm 

Adiabatic temperature variation of natural rubber  Tad 2 °C 

Specific heat of natural rubber crubber 2x106 J.m-3.K-1 

Specific heat of fluid layer cfluid 4.18x106 J.m-3.K-1 

Thermal conductivity of natural rubber Krubber 0.2 W.m-1.K-1 

Thermal conductivity of fluid layer Kfluid 0.6 W.m-1.K-1 

Frequency of excitation f 0.1 ~ 1 Hz 

Phase shift   0 rad 

Surface heat exchange coefficient  h 10 W.m-2.K-1 

Table 3: Experimental conditions and parameters for the corresponding simulations 

The effect of the fluid displacement was tested with values ranging 5mm to 5 

cm. For each test, the temperature difference between two points of the cooling line 

were recorded, and the difference in steady state was used to calculate the mean 

temperature gradient. The results are displayed in Figure 11. 

 

Figure 11: Experiment and simulation of the effect of the fluid displacement on the temperature gradient. The 

frequency was set to 0.3 Hz. Other parameters are given in Table 3. 
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It is observed that temperature gradient decreases with the increase of the fluid 

displacement, consistently with the increase of the active heat conduction given in Eq. 

(26) for a parallel layers system. It is reasonable to consider that the axisymmetric 

problem should also show an increase of the active heat conduction with the square of 

the fluid displacement, whereas the cooling power is proportional with the fluid 

displacement. Interestingly, the simulation revealed that the temperature gradient 

exhibit a maximum value. For very low fluid displacement, the cooling power being 

very small, the outer losses around the tube are responsible for a lower temperature 

gradient. It should be noted the experimental point for a fluid displacement of 6mm, 

which is far below the theoretical curve. From a practical point of view, such a small 

displacement of the pistons may lead to an inhomogeneous fluid motion inside the tube, 

which is flexible and tends to change diameter as a result of pressure change, especially 

when imperfections in the system exist, such as small air bubbles. Therefore, a higher 

fluid motion ensures a more homogenous fluid motion. The existence of an optimum 

fluid displacement amplitude was also observed by other groups, for example such as in 

[49] for electrocaloric regenerative cooling or in [17,50] for magnetocaloric 

regenerative cooling. In our experiment and simulation, the optimum displacement is 

found to be around 10% of the total length of the cooling system. 

Finally, the effect of operating frequency was investigated, for two fluid 

displacement amplitudes (16mm and 38mm). The result is displayed in Figure 12. The 

temperature gradient is found to decrease when decreasing the frequency, as a 

consequence of the heat losses along the tube. As the cooling power increases with the 

frequency (as foreseen from Eq.(28)), a higher temperature gradient may be achieved 

along the tube when increasing the frequency. It is observed also a slight decrease of the 

gradient for the higher frequencies, which is due to the increase of the active heat 

conduction along the line, as the speed of the fluid increases with the frequency, as well 
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as the decrease of the thermal boundary layer thickness. In addition, from Eq. (28) the 

cooling power is expected to increase linearly with the displacement amplitude of the 

fluid, but is associated to a decrease of the temperature gradient as shown in Eq. (29). In 

Eq. (38) corresponding to the axisymmetric problem, a similar tendency is obtained, 

where the decrease of the temperature gradient is resulting from the increase of Ktot (due 

to the active thermal conductivity) which is more important that the increase in cooling 

power PMAX.  

 

Figure 12: Experiment and simulation of the effect of frequency on the temperature gradient of the elastocaloric 

cooling system, for two fluid displacement amplitudes. Other parameters are given in Table 3. 

It is noticeable that the experimental data show similar trends as the simulation 

for both the effect of fluid displacement and frequency. It should be noticed that the 

model considered highly simplified boundary condition at both ends of the tube 

(adiabatic condition), and the heat losses as well a fluid mixing near the pistons are 

probably not considered correctly. More precisely, the control of the thermal boundary 

condition on both edges of the cooling line remains difficult. For large displacement of 

the fluid, performance is degraded because of a higher inactive fluid volume of the 

edges, but is enhanced because of a much higher heat exchange with the rubber tube, as 

well as possible some non-laminar – or at least unsymmetrical fluid flow – due to the 

geometry uncertainties. As a consequence, the locally turbulent motion of fluid in the 

vicinity of the rubber may be enhanced leading to a higher heat flux than expected. This 
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might explain the discrepancy between model and experiment for large fluid 

displacement amplitudes, although further investigation remains necessary to assess this 

discrepancy quantitatively. 

5. Conclusion 

To further develop regenerative cooling using caloric materials, the proposed analytical 

model gives clear indication about geometrical effects and the relative importance of the 

properties of the materials. In order to be kept analytical, the model had to be highly 

simplified and the heat and mass transfer equation was solved successively in a 

direction perpendicular to an assembly of caloric and fluid layers, and later along the 

cooling line axis. The use of the harmonic balance solving technique however assumed 

that the temperature variations reached the steady-state at the scale of the heat transfer 

along the thickness of the layers. Considering the thickness of thermal boundary layer 

(in the mm range), and typical characteristic value of thermal diffusivity of rubber and 

the Nusselt number of fluid, and through an analogy with a plane wall subjected to heat 

exchange on outer walls, the typical time constant for reaching thermal equilibrium is in 

the range of a few seconds. Therefore, under harmonic excitation, it is considered that a 

few periods (for frequency of 0.5Hz or below) are sufficient to reach the steady-state 

regime.  

In order to validate the model, a dedicated experiment was prepared, using natural 

rubber as an elastocaloric material. The model was then adapted to an axisymmetric 

problem, with the heat transfer equation solving along the radius. Further additional 

effects were added, such as the fluid front profile, and the heat losses along the rubber 

tube. The model was then compared to key experiments, showing the influence of fluid 

displacement amplitude and frequency. Thanks to the reasonable agreement between 

experiments and model, and considering the model as valid, it was possible to further 
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simply it to reach some key figures of merit about material properties.  

The solution of the model given along the thickness of the fluid and active material 

layers is sufficient to determine the net heat flux along the cooling line direction and the 

maximum achievable temperature gradient if the only limitation is the heat conduction 

along the cooling line axis. This should to be seen as a limit performance, which is 

practically degraded by heat losses along the cooling line, and imperfect thermal 

conditions on the edges of the cooling line (where heat exchangers are placed). Keeping 

in mind these limitations of the presented approach, and switching back to a parallel 

layers configuration, an infinite repetition of rubber and water layers can be thus 

considered. This leads to much simpler – and fully analytical – solutions. The thermal 

boundary layer thickness is found to play a key role in the regenerative cooling system 

design. For a boundary layer much larger or much smaller than the thickness of the 

rubber and water layers, the cooling power drops to zero, showing that both should be 

of similar orders of magnitude. Natural rubber and water exhibit similar thermal 

properties, and lead to optimal thickness around 0.2~1mm, which is practically feasible. 

Further increase of the thermal conductivity will require geometry optimization (to keep 

the thermal boundary layer thickness compatible with those of materials’ thickness), 

and may allow to work with thicker active materials, thus simplifying the device design, 

although the passive thermal conductivity may degrade the performances.  

It should be noted that the model do not consider precisely the boundary conditions at 

both ends of the cooling line (only a purely adiabatic condition was considered), or the 

entry effect of the fluid in the tube, which are both difficult to assess in the model and to 

control experimentally, and that should be considered in future work. 

Finally, the experimental proof of concept – which was not the main objective of 

this work – proved however that the natural rubber works in a regenerative system. 
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Further optimization of the device configuration is still needed to increase both 

temperature gradient and cooling power. 

This work focused on harmonic excitation of the cooling system, as the simplest 

cyclic driving possibility. This allowed an analytical solving for simplified geometries 

and fluid flows, with the possibility to use numerical solutions of the equations for more 

complex geometry and realistic fluid flow profiles. For improving the cooling device 

performance, it may be preferred more efficient thermodynamic cycles, like Brayton 

cycle, Ericsson cycles, or its combination [51], that may bring higher performances. 

These are based on implementing phase shift and non-harmonic signals (like square 

shape). These signals can be decomposed in harmonic components, and in future work, 

it is foreseen that the model proposed in this article can compute the individual response 

of each of them, and then to assess the performances by summing up individual 

response.  
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Table captions 

Table 1 : Parameters used in the simulation of a three layers configuration 

Table 2 : Parameters used in the simulation for testing the effect of thermal conductivity 

Table 3: Experimental conditions and parameters for the corresponding simulations 

Figure captions 

Figure 1 : Configuration of the regenerative cooling system consisting of coplanar 

infinite layers of caloric material or fluid of thickness hi. 

Figure 2 : Typical result of the simulation for a 1Hz excitation and 1mm fluid layer 

thickness: a) amplitude and phase of the temperature variations for both rubber 

(located -1.5mm <z <-0.5mm and 0.5mm > z > 1.5mm) and fluid (located -

0.5mm > z > 0.5mm), and for a temperature gradient of -2°C/cm, b) for 0°/cm 

and c) for +2°C/cm. In d), the overall heat flux (per unit of width) is plotted 

against the temperature gradient, thus highlighting the maximum heat flux (for 

null temperature gradient), and the maximal temperature gradient fort when the 

heat flux becomes null. The slope of this curve corresponds to the effect of the 

thermal conductivity. 
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Figure 3 : Effect of the total number of layers of fluid and elastocaloric material on the 

cooling power and maximum temperature gradient 

Figure 4 : Effect of the thickness of fluid layer on cooling performances at 0.1Hz: a) 

surface cooling power and b) maximal temperature gradient along x axis. For a 

frequency of 1Hz: c) surface cooling power and d) maximal temperature 

gradient. On each graph, the black curve is obtained using full model with 31 

layers, whereas dotted red line is resulting from (24) and (27). 

Figure 5 : Effect of thermal conductivity of fluid layer on the cooling power (a) and on 

the temperature gradient (b) 

Figure 6 : Comparison between active and passive heat conductivities in case of an 

infinite repetition of elastocaloric material layer and fluid layer 

Figure 7 : Comparison between simplified expressions and complete model in case of 

an infinite repetition of elastocaloric material layer and fluid layer 

Figure 8: Simulation of Poiseuille flow using successive concentric tubes of fluid at 

different speeds. a) Resulting speed and temperature variation amplitude. The 

comparison between homogeneous flow and Poiseuille flow is given for the 

cooling power (b) and temperature gradient (c), and are plotted against the 

thermal conductivity 

Figure 9: Experimental setup of the regenerative elastocaloric cooling system using 

natural rubber: schematic (a) and photograph (b) 

Figure 10: Example of operation of the elastocaloric rubber cooling device for a 0.3Hz 

operation and a fluid displacement of 1.6cm. The rubber was elongated cyclically 

between elongations of 5 and 6.a) experimental result and b), simulated result 

Figure 11: Experiment and simulation of the effect of the fluid displacement on the 

temperature gradient. The frequency was set to 0.3 Hz. Other parameters are 

given in Table 3. 

Figure 12: Experiment and simulation of the effect of frequency on the temperature 

gradient of the elastocaloric cooling system, for two fluid displacement 

amplitudes. Other parameters are given in Table 3. 


