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Abstract: One of the greatest current threats to biodiversity is climate change. Yet, an 17 

understanding of organismal responses to fluctuations in both temperature and water availability 18 

is currently lacking, especially during fundamental life-history stages such as reproduction. To 19 

further explore how temperature and water availability impact maternal physiology and 20 

reproductive output, we used the viviparous form of the European common lizard (Zootoca 21 

vivipara) in a two-by-two factorial design manipulating both hydric and thermal conditions for 22 

the first time. We collected blood samples and morphological measurements during early 23 

pregnancy and post-parturition to investigate how water availability, temperature, and a 24 

combination of the two influences maternal phenology, morphology, physiology and 25 

reproductive output. We found, that dehydration during gestation negatively affects maternal 26 

physiological condition (lower mass gain, higher tail reserve mobilization) but has little effect on 27 

reproductive output. We found that these effects are mainly additive to temperature regimes with 28 

a proportional increase in maternal costs in warmer environments. Our study demonstrates the 29 

importance of considering combined effects of water and temperature when investigating 30 

organismal responses to climate changes, especially during periods crucial for species survival 31 

such as reproduction.   32 
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1. Introduction 33 

Predicting how organisms will be impacted by global climate change is frequently viewed in the 34 

context of thermal effects on biological and ecological processes (Huey et al., 2012; Kearney et 35 

al., 2009; Nowakowski et al., 2018; Parmesan, 2006). However, it is equally important to 36 

consider the effects of water availability on biodiversity because water is a fundamental resource, 37 

rainfall events are forecasted to be less reliable resulting in reduced water availability for many 38 

species (Marvel et al., 2019; Schlaepfer et al., 2017), and predicted changes in ambient 39 

temperatures are inextricably linked to changes in precipitation (Alexander et al., 2006). For 40 

example, during periods of prolonged drought, increasing temperatures and decreasing water 41 

availability frequently covary (Rahmstorf and Coumou, 2011), which can have a pronounced 42 

effect on hydration and survival (McLaughlin et al., 2002; Riddell et al., 2019). These combined 43 

effects are especially relevant in ectotherms who rely on behavioral or physiological selection of 44 

optimal body temperatures that maximize performance, survival, and reproduction (Huey, 1982; 45 

Angilletta et al., 2002; Huey et al., 2012; Sinervo et al., 2010) but risk losing greater volumes of 46 

water when maintaining higher body temperatures (Claussen 1967; Munsey 1972). Even though 47 

dual changes in temperature and water availability are predicted across the globe, it remains 48 

largely unknown if and how fundamental life-history stages, such as reproduction, will be 49 

affected by these combined changes (Rozen-Rechels et al. 2019). 50 

 In many environments, precipitation is already unevenly distributed throughout the year 51 

or water is rare, and water availability can therefore be limited during periods of reproductive 52 

investment (Hao et al., 2018). Previous research has found that changes in rainfall patterns, 53 

independent of temperature shifts, are currently challenging reproductive strategies (Visser and 54 

Both, 2005) and can have negative impacts on entire ecosystems (McCluney et al., 2012). In 55 

juxtaposition, shifts in temperature, independent of altered rainfall patterns, can drastically 56 

reduce fitness (Deutsch et al., 2008) and unpredictable temperature regimes have been implicated 57 

in large-scale extirpation events (Valladares et al., 2014). The negative effects of fluctuating 58 

temperature and water availability may have interactive, detrimental consequences on 59 

reproductive events. The physiological impacts of maternal hydration before and after pregnancy 60 

have been previously explored (Nelson et al., 1989; Hanson et al., 1994; Gesquiere et al., 2008; 61 

Bukovetzky et al., 2012), but far less is known about the direct consequences of hydration during 62 

gestation on maternal physiology and reproductive output. Some recent studies have found that 63 
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reproductive females with limited access to water are able to tolerate dehydration (i.e., 64 

hyperosmolarity, Brusch et al., 2017; Dupoué et al., 2018a) or can utilize alternative hydric 65 

resources during gestation (e.g., bound water, Brusch et al., 2018) to buffer themselves from 66 

changes in water availability. However, these past studies focused on a single physiological 67 

challenge, water deprivation, and it is unclear how multiple, concurrent challenges, as predicted 68 

under climate change scenarios, may influence maternal physiology during reproduction. Recent 69 

work has started to emphasize potential interactions between temperature and water availability 70 

in ectotherms (Dupoué et al., 2020a; Rozen-Rechels et al., 2019). Yet, a combined, experimental 71 

approach exploring the relationship between thermo- and hydro-regulation during reproduction is 72 

currently lacking. 73 

To further explore how temperature and water availability impact maternal physiology 74 

and reproductive output, we used the viviparous form of the European common lizard (Zootoca 75 

vivipara) in a two-by-two factorial design manipulating jointly hydric and thermal conditions for 76 

the first time. We investigated how water availability (± water restrictions), temperature (hot or 77 

cold daily cycle), or a combination of the two throughout gestation, influences maternal 78 

physiology and reproductive output. Unique to our experimental design relative to most thermal 79 

biology studies, we used similar water vapor deficits between temperature treatments to 80 

eliminate the possibility of increased desiccation at higher temperatures, and therefore only 81 

temperature was manipulated. The common lizard is wide-ranging, cold-adapted squamate that is 82 

sensitive to water deprivation (Lorenzon et al., 1999; Reichling, 1957). Higher temperatures may 83 

accelerate embryonic development, as it does in other viviparous lizards (Deeming, 2004; Du 84 

and Shine, 2015), while simultaneously increasing metabolic and subsequent water loss rates of 85 

gravid females and consequently negatively impacting maternal physiological condition if they 86 

are not able to compensate with greater food intake (Dillon et al., 2010; Lourdais et al., 2017). 87 

Conversely, if lower temperatures delay embryonic development, the prolonged gestational 88 

period may exacerbate the effects of water restrictions and similarly reduce maternal conditions. 89 

To ground truth our study in ecological relevance, we used contrasting water availability 90 

treatments that mimic the natural conditions of wild populations with either limited or permanent 91 

access to water (Dupoué et al. 2017; Lorenzon et al., 1999). We also selected temperature 92 

treatments that reflect either warm, favorable daily conditions for embryonic development (long 93 

access to preferred temperature without thermal stress) or cold, suboptimal daily conditions 94 



5 

(short access to preferred temperature), and which correspond to the thermal environments 95 

experienced by this species in their typical range excluding extremely hot or cold environments. 96 

We tested the hypothesis that contrasted temperature regimes and water availability will 97 

differentially impact aspects of maternal physiological condition and reproductive output. We 98 

used body mass and condition, tail width, plasma osmolality, oxidative stress, antioxidant 99 

capacity, and food consumption as measures to evaluate maternal physiological condition. We 100 

used gestation length to evaluate reproductive phenology. Finally, we used total litter size and 101 

mass, and individual offspring size and mass as measures for reproductive output. We made the 102 

following predictions: (1) water restrictions will negatively affect maternal traits but will not 103 

impact reproductive output; (2) high temperatures will shorten pregnancy duration but negatively 104 

impact maternal physiological condition; and (3) a combination of high temperature and water 105 

restrictions during pregnancy will negatively affect both maternal traits and reproductive output. 106 

 107 

2. Materials and methods 108 

2.1 Study species  109 

Zootoca vivipara is a small-bodied lizard species (adult snout-vent length, SVL 50-75 mm) in 110 

the family Lacertidae with the widest geographic range of all terrestrial reptiles (Dely and 111 

Böhme, 1984). The species is predominately found in cooler, mesic habitats with permanent 112 

access to water across northern Eurasia and occurs in both viviparous and oviparous forms. At 113 

our study sites, all females were viviparous. As lecithotrophic viviparous species, the majority of 114 

maternal energetic investment occurs during vitellogenesis (Blackburn, 2015). After ovulation 115 

embryos remain enveloped in a thin membrane throughout gestation (Heulin, 1990; Panigel, 116 

1956), which supports important maternal water transfers (Dauphin-Villemant et al. 1986) and 117 

also calcium, and some micronutrients to the developing embryos (Stewart, 1992; van Dyke and 118 

Beaupre, 2012). The young of viviparous females are usually born in the membranes and hatch 119 

within 1–2 hours of parturition (Lorenzon et al., 2001). Females emerge from over-wintering in 120 

late April to early May, with mating and fertilization occurring shortly thereafter (Bleu et al., 121 

2013). Parturition occurs from late June through July and females typically give birth to 6 122 

neonates (range 1-12) depending on their body size (Dupoué et al., 2018a; Foucart et al. 2014). 123 

 124 

2.2 Experimental design 125 
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Females used for this study were captured in the first week of June 2018 from five different sites 126 

on the Plateau de Millevache (Limousin, France) separated by a maximum distance of 30 km 127 

(Table S1). Gravid females (N = 97) were captured by hand and reproductive status was 128 

confirmed using abdominal palpation. Non-reproductive females were immediately released at 129 

the site of capture. Within 72 h of capture, all females were moved to the Centre d’Etudes 130 

Biologiques de Chizé, France. Mass and SVL of lizards were recorded, after which all visible 131 

ectoparasites were removed with forceps and females were treated with an anti-parasite spray of 132 

Frontline (Merial Inc. Duluth, GA, USA). Females were then housed individually with an 133 

12L:12D light regimen in opaque containers (30 × 18 × 10 cm) filled with approximately 1 cm of 134 

soil and two different shelters and provided ad libitum access to food (Acheta domestica) and 135 

water. During the 8 h light cycle, a subsurface heating element was provided below one end of 136 

each cage to create a thermal gradient (20° – 40°C). All females were held in these conditions for 137 

ca. seven days prior to the start of the experiment after which an initial blood sample and 138 

scanned image were collected (see below). 139 

The experiment was performed from 15-June until parturition for all females so as to 140 

mimic stable and consistent differences in temperature and water availability throughout the 141 

majority of gestation. Pregnant females maintain stable body temperatures during the day (range: 142 

29° – 33°C) by selecting appropriate micro-climates (Le Galliard et al., 2003; Dupoué et al. 143 

2017, 2018b). We assigned lizards of similar mean body size to one of two water regimens with 144 

permanent access to water or a water restriction (hereafter referred to as wet and dry, 145 

respectively) following similar protocols used in previous studies (Dupoué et al., 2018a; 146 

Lorenzon et al. 1999). Females in the wet group (n = 49) were provided with water ad libitum 147 

and water was sprayed twice per day (morning and afternoon) on one wall of each container so 148 

that drops could be used for drinking up to 1 h after spraying. Females assigned to the dry group 149 

(n = 48) were only provided with water once per day (morning) by similarly spraying one wall of 150 

each container. Lizards were further divided into one of two temperature regimens, hereafter 151 

called “cold” or “hot”. Each day of the experiment, females in the cold group (n = 49) were held 152 

overnight (17h00 to 9h00; 16 hours) at 15°C, during a portion of the day (11h00 to 15h00; 4 153 

hours) at 31°C, and spent 4 hours where temperatures were either gradually increasing or 154 

decreasing to avoid abrupt changes. Females in the hot group (n = 48) were held overnight 155 

(19h00 to 07h00, 12 hours) at 22°C instead of 15°C, during a majority of the day (09h00 to 156 
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17h00, 8 hours) at 31°C, and similarly were held for the remaining four hours with temperatures 157 

either gradually increasing or decreasing (Fig. 1). Final treatment groups of the factorial design 158 

were thus hot and dry (n = 24), hot and wet (n = 24), cold and dry (n = 24), or cold and wet (n = 159 

25). Stable temperatures were maintained by housing females of similar treatment groups in 160 

climatic chambers (Vötsch VP 600, Balingen, Germany). The relative humidity in each chamber 161 

was adjusted depending on the temperature so that the water vapor deficit remained constant 162 

around 1 kPa (equivalent to 60% RH at 20°C). 163 

During the study, each female was provided with live crickets (400 ± 20mg) every other 164 

day which were dusted with vitamin powder containing calcium and vitamin D3. During 165 

feedings any remaining crickets were removed and counted in order to quantify the total number 166 

and ratio of crickets consumed (i.e., number of crickets consumed / crickets offered) throughout 167 

the study. Females were weighed once per week and each cage was visually inspected twice per 168 

day for parturition. After parturition, females and their litter (total mass of living and stillborn 169 

offspring) were weighed, and a final blood sample and scanned image were collected. Offspring 170 

were classified as either living or stillborn in order to quantify the proportion of stillborn (i.e., 171 

number of stillborn / total offspring) for each female. Living neonates were also individually 172 

weighed and scanned. Females and neonates were placed into separate individual containers, 173 

provided a thermal gradient (20° – 40°C), and ad libitum access to food and water, before being 174 

released at the maternal site of capture. 175 

 176 

2.3 Blood sample collection and determination of plasma osmolality and oxidative status 177 

We used 20 µL hematocrit tubes to collect a ~50 µL blood sample from the postorbital sinus of 178 

all reproductive females. Total time for capture, restraint, and blood collection did not exceed 3 179 

min. We immediately centrifuged the blood samples at 4,000 g for 5 min at 20°C to separate 180 

plasma from blood cells, and then aliquoted plasma (~20 µL) into separate vials and froze at -181 

30°C until we used them to measure plasma osmolality and oxidative status. We determined 182 

plasma osmolality using a vapor pressure osmometer (±3 mOsm kg-1; model 5100C; Wescor 183 

Inc., Logan, Utah, USA). To allow for duplicate readings, plasma samples were diluted (1:1) in 184 

reptile Ringer’s solution (300 mOsm kg-1) following methods from Secor et al. (1994). Prior to 185 

use, we calibrated the osmometer using sealed osmolality standards (100, 290, and 1000 mOsm 186 

kg-1) in accordance with factory recommendations. We ran samples in triplicate and used 290 187 
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mOsm kg-1 standards to check the osmometer for variation after every sample. If the standard 188 

varied more than the limits of the osmometer (±3 mOsm kg-1), the osmometer was recalibrated. 189 

If it continued to vary more than the limits, the osmometer head was cleaned and the machine 190 

was recalibrated before continuing duplicate analysis beginning with the last sample prior to 191 

calibration/cleaning to verify correct measurement of the sample. 192 

 In order to examine oxidative status, we performed two plasma-based assays within five 193 

months of blood collection. To evaluate the activity of organic hyperoxides (an index of 194 

oxidative damage; Costantini, 2016), we measured the concentration of reactive oxidative 195 

metabolites (ROMs) using d-ROMs colorimetric kits (MC003, Diacron International, Italy). 196 

Antioxidant capacity (OXY) was also assessed to determine the non-enzymatic ability of diluted 197 

female plasma samples (1:100) to neutralize an oxidant attack from hypochlorous acid 198 

(Constantini, 2011) using OXY-absorbent test kits (MC435, Diacron International, Italy). For all 199 

assays, we used a pooled plasma sample of randomly selected females (n = 8) three times in each 200 

96-well plate to measure coefficients of variation in ROMs (intra-plate: 2.8%; inter-plate: 6.0%) 201 

and OXY (intra-plate: 3.4%; inter-plate: 13.8%). 202 

 203 

2.4 Scanned images 204 

Prior to the experimental manipulation and just after parturition, the ventral surface of all 205 

females was scanned at 600 dots per inch using a flatbed scanner (Hewlett-Packard Co., ScanJet 206 

3670). From these images, we measured tail width at the 7th sub-caudal scales using Inkscape 207 

(v.0.92.3). We also scanned each neonate just after parturition to accurately measure their SVL. 208 

Animals were gently restrained by hand behind the neck and the tip of the tail during image 209 

collection.  210 

 211 

2.5 Statistical analyses 212 

Before testing the effect of water availability and temperature on maternal traits and reproductive 213 

output, we identified a set of explanatory variables to model data from reproductive females. 214 

Larger females typically emerge from overwintering, ovulate, and females with earlier ovulation 215 

dates give birth earlier in the year (Bauwens and Verheyen, 1985).  Therefore, we included 216 

parameters on relative body size (individual SVL minus mean SVL of all females) and relative 217 

duration of treatment (individual time in treatment minus mean time in treatment of females 218 
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within respective treatments). We did not directly manipulate litter size or mass (i.e., 219 

reproductive effort) and therefore included a variable describing individual differences in 220 

reproductive effort (standardized residuals from a linear regression of litter mass against SVL) to 221 

control for potential allocation differences between females (Dupoué et al., 2020b). We also 222 

explored potential interactions between reproductive effort and treatments to test for different 223 

allocation trade-offs depending on temperature and water availability. However, these 224 

interactions were never significant (all p > 0.05) and therefore removed from all models. Starting 225 

with a full model, we used stepwise removal of insignificant variables (Arnold, 2010; Zuur et al., 226 

2010).  227 

We used linear models to examine the effect of water availability (wet or dry) and 228 

temperature (hot or cold) on mass and tail width changes and changes in plasma osmolality in 229 

reproductive females throughout the experiment. We used temperature, water availability, and 230 

their interaction as fixed effects, and relative body size and reproductive effort as covariates. To 231 

model the duration that females were in the experiment and differences in litter size and mass we 232 

used models with only relative body size as a covariate. Similarly, we used linear models to 233 

compare differences in initial and final OXY and only used relative duration as a covariate. 234 

Models used to investigate differences in initial and final ROMs, included that same fixed effects 235 

and interactions but did not include any covariates. We used general linear models for ratio and 236 

proportion data (crickets consumed and number of stillborn) with temperature, water availability, 237 

and their interaction as fixed factors. For ratio of crickets consumed, we used relative body size, 238 

relative duration, and reproductive effort as covariates, and for proportion of stillborn, only 239 

relative duration was used as a covariate. For offspring data (mass and SVL), we used linear 240 

mixed-effect models with maternal treatments (temperature, water, and their interaction) as fixed 241 

factors, SVL or mass as covariates, and maternal identity as a random factor to control for non-242 

independence among offspring from the same litter. All analyses were performed using R 243 

software (R Development Core Team, version 3.5.2) using the packages ‘nlme’, ‘lattice’, ‘car’, 244 

‘lsmeans’, and ‘MASS’ (Fox and Weisberg, 2011; Pinheiro et al., 2018; Russell, 2016; Sarkar, 245 

2008; Venables and Ripley, 2002). Data are presented as mean ± SEM and differences were 246 

accepted as significant at the level of p < 0.05. 247 

 248 

 249 
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3. Results 250 

3.1 Impact on gestation length and female morphology 251 

When comparing the duration that females were in their experimental treatments (time until 252 

parturition), we found a significant main effect of temperature regime (F1,92 = 172.04, p < 0.001), 253 

but no main effect of water availability or interaction between the two kinds of treatment (p > 254 

0.05). Regardless of water availability, reproductive females exposed to hot temperatures gave 255 

birth sooner in the study compared to those exposed to cold temperatures. Comparing duration 256 

against the relative body size of females further revealed a significant interaction between 257 

relative body size and treatment (F1,93 = 13.31, p < 0.001). The relationship with relative body 258 

size was more pronounced in reproductive females exposed to cold (β = –1.68, SE = 0.24, R2
adj = 259 

0.497) compared to hot temperatures (β = –0.73, SE = 0.10, R2
adj = 0.499; Fig. 2). 260 

Females at the beginning of the experiment had similar body mass between treatments 261 

(F3,93 = 0.16, p = 0.93; Table S2). Mass change during the experiment (pre-parturition mass – 262 

initial mass) was additively influenced by water availability (F1,91 = 8.39, p = 0.004) and 263 

temperature regime (F1,91 = 32.48, p < 0.001), but we found no interaction between temperature 264 

and water availability (F1,91 = 0.82, p = 0.366). Females exposed to hot and wet conditions gained 265 

less mass during gestation compared to all other treatment groups (Fig. 3C). Similarly, post-266 

partum body condition (body mass adjusted to the mean body size of females: F1,91 = 186.75, p < 267 

0.001) was influenced by water availability (F1,91 = 4.12, p = 0.045) and temperature treatment 268 

(F1,91 = 17.57, p < 0.001), with females exposed to hot and dry conditions having the lowest post-269 

parturition body condition (3.21±0.12g) and females exposed to cold and wet conditions having 270 

the highest post-parturition body condition (3.73±0.17g). We found no interaction between 271 

temperature and water availability for post-parturition body condition (F1,91 < 0.01, p = 0.94). 272 

There was no initial difference in tail width among the treatment groups (F3,93 = 0.11, p = 273 

0.95; Table S2). Most females had reductions in tail width during the experiment and these 274 

decreases were additively influenced by water availability (F1,91 = 17.23, p < 0.001) and 275 

temperature treatment (F1,91 = 5.75, p = 0.018), with females exposed to hot and dry conditions 276 

losing the most tail width and females exposed to cold and wet conditions losing the least tail 277 

width (Fig. 3A). We found no interaction between temperature and water availability (F1,91
 = 278 

0.49, p = 0.486). 279 

 280 
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3.2. Changes in blood parameters 281 

Plasma osmolality change during the experiment was additively influenced by water availability 282 

(F1,74 = 16.26, p < 0.001) and temperature treatment (F1,74 = 7.62, p = 0.007), with females 283 

exposed to hot and dry conditions  having the largest increases in plasma osmolality 284 

(308±2mOsm kg-1 to 323±3mOsm kg-1 for mean initial and final values, respectively), females in 285 

hot and wet, and in cold and dry conditions having intermediary increases in plasma osmolality 286 

(305±2mOsm kg-1 to 314±2mOsm kg-1 and 311±2mOsm kg-1 to 318±1mOsm kg-1), and females 287 

exposed to cold and wet conditions having decreased plasma osmolality (323±3mOsm kg-1 to 288 

315±3mOsm kg-1,  Fig. 3B). We found no interaction between temperature and water availability 289 

(F1,74 = 2.04, p = 0.157). 290 

There was no initial difference in oxidative stress (ROMs; F3,93 = 0.40, p = 0.75) or non-291 

enzymatic antioxidant capacity (OXY; F3,93 = 1.32, p = 0.27) among the treatment groups. After 292 

parturition, females in dry conditions throughout pregnancy had significantly higher ROMs (F1,93 293 

= 8.34, p = 0.005), but we found no significant interaction or main effect of temperature regime 294 

(p > 0.05; Fig. 4A). When examining OXY values after parturition, we found a significant 295 

interaction between temperature and water availability (F1,92 = 6.39, p = 0.013). Within the hot 296 

treatments, females in wet conditions had higher OXY values compared to those in dry. In 297 

juxtaposition, females exposed to cold and wet treatments had slightly lower OXY values 298 

compared to those in dry (Fig. 4B). 299 

 300 

3.3 Impact on food intake 301 

When evaluating the ratio of crickets consumed during the same period, we found a significant 302 

main effect of water availability (F1,94 = 4.16, p = 0.044) and temperature regime (F1,95 = 36.43, p 303 

< 0.001) but no interaction between the two (F1,90 = 2.76, p = 0.100). A Tukey’s HSD post-doc 304 

test revealed that females in the hot temperature regimes ate a greater ratio of crickets than those 305 

in the cold regimes (p < 0.01) regardless of water regime, and within each temperature regime, 306 

females in wet conditions consumed a higher proportion of crickets although not significantly so 307 

(p > 0.05; Fig. 5). 308 

 309 

3.4 Impact on reproductive output 310 
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We did not detect any significant differences in litter size (F3,93 = 0.49, p = 0.688), total litter 311 

mass (F3,92 = 0.49, p = 0.688), individual offspring mass (F3,92 = 1.08, p = 0.363) or snout-vent 312 

length (F3,92 = 0.35, p = 0.786) among the treatment groups. When comparing the proportion of 313 

stillborn offspring among treatment groups, we found a significant effect of temperature (F1,95 = 314 

6.69, p = 0.011), where females exposed to cold temperatures had three times more stillborn 315 

compared to females exposed to hot temperatures, irrespective of water regime (p < 0.05; Table 316 

1). 317 

 318 

4. Discussion 319 

Understanding how animals cope with both altered temperature regimes and restricted resources, 320 

such as water, will enable us to better predict how they might be affected by anticipated climate 321 

change scenarios. This is especially important because in many environments climate warming 322 

induces concurrent changes in mean temperature and water availability as well as in the 323 

occurrence of extreme weather events (Fischer and Knutti, 2015; Mann et al., 2017; Rahmstorf 324 

and Coumou, 2011). Ours is the first study to explore the independent and combined effects of 325 

water availability and thermal conditions during gestation in a vertebrate. Our results regarding 326 

water availability are mostly consistent with previous work in squamate reptiles: mild 327 

dehydration during gestation negatively affects maternal physiology but has little effect on 328 

reproductive output (Dupoué et al., 2015, Lourdais et al., 2015). For all traits except anti-oxidant 329 

capacity of females, we also found that these effects are additive to temperature regimes and 330 

therefore similar in both warmer and colder environments despite very significant effects of 331 

thermal conditions on the length of gestation and maternal physiology. Overall, our study adds to 332 

a growing body of evidence that water is a fundamental currency used during reproduction. Our 333 

study also emphasizes the importance of considering multiple, concurrent physiological 334 

challenges when investigating organismal responses to climate changes, especially during 335 

fundamental life-history stages such as reproduction.  336 

 We found that temperature but not water availability affected gestation length, with 337 

higher temperatures resulting in a shorter period of pregnancy (Fig. 2). In both temperature 338 

regimes smaller females had a longer duration of pregnancy, although this size-dependent 339 

gestation length was far more pronounced in the cold treatments. Maternal body size is often an 340 

important factor influencing reproductive output and timing (Blueweiss et al., 1978; Díaz et al., 341 
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2012; Iverson et al., 1997; Kiefer et al., 2008), including in this species (Bauwens and Verheyen, 342 

1985). Higher temperatures in our study appear to have accelerated gestation and partially 343 

outweighed the size-dependent timing of pregnancy suggesting that small females caught-up for 344 

initial differences in the timing of reproduction when provided with warmer environmental 345 

conditions. These results are in accordance with previous research showing that higher maternal 346 

temperatures result in shorter gestation length and faster embryonic development both in 347 

oviparous and viviparous squamates (Dubey and Shine, 2011; Foucart et al., 2018; Lorioux et al., 348 

2012, 2013a). They also confirm comparative findings among wild populations showing that 349 

climate warming induces phenological acceleration (e.g., shorter gestation time and lower 350 

variance in laying date) and significant demographic changes (Massot et al., 2017; Rutschmann 351 

et al., 2016).  352 

Previous field and laboratory studies further suggested that increased gestational 353 

temperatures can also impact reproductive output, offspring phenotypes, and future fitness 354 

(Chamaille-Jammes et al., 2006; Lorioux et al. 2013b; Lourdais et al 2004; Ma et al., 2014; 355 

Marquis et al., 2008). Although we did not investigate effects on future reproduction and 356 

survival, we detected no significant differences in total litter size and mass, and offspring metrics 357 

between any of the experimental groups but found that females had a poorer embryonic success 358 

in the cold treatment. In ectotherms, embryonic metabolism is temperature-dependent and 359 

mothers often behaviorally thermoregulate to maintain optimal temperatures for embryonic 360 

development (Farmer, 2003; Gillooly et al., 2002; Lorioux et al. 2013a; Lourdais et al., 2013; 361 

Mettouris et al., 2017). Extreme temperatures are often associated with decreased reproductive 362 

success in ectotherms because they compromise behavioral thermoregulation and may increase 363 

physiological stress and decrease performance when they cannot be avoided behaviorally 364 

(Clusella-Trullas et al., 2011; Sinervo et al., 2010; Wang et al., 2016). In our study, females were 365 

not allowed to thermoregulate but had longer access time to preferred temperature (31°C) in the 366 

hot than in the cold treatment. The hot treatment temperature (31°C) was within the range of 367 

preferred temperature during gestation and was not meant to induce thermal stress or heat-related 368 

embryonic mortality (Le Galliard et al., 2003). Thus, embryonic success was maximized in hot 369 

conditions probably because gravid females were given better opportunities to maintain their 370 

preferred body temperatures during the prolonged daytime period (Foucart et al., 2018; Le 371 

Galliard et al., 2010; Le Henanff et al., 2013; Lorioux et al., 2012, 2013a). While females in the 372 
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cold treatment were provided access to preferred temperatures for 4 hr each day, that window 373 

does not appear to have been large enough to effectively maintain embryonic development in 374 

these cold-adapted lizards, resulting in a greater proportion of stillborn as seen in wild 375 

populations (Le Galliard et al. 2010). 376 

 Higher temperatures and dry conditions resulted in additively higher tail width loss (Fig. 377 

3A) and lower total body mass change during gestation (Fig. 3C). Tail reserves are a very 378 

important site for storing accumulated resources in many species of lizards (reviewed in 379 

Bateman and Fleming, 2009). However, our study is the first to demonstrate the negative impact 380 

of dehydration, enhanced by higher temperatures, on tail morphology. The tails of Z. vivipara are 381 

composed of both lipids and proteins (Avery, 1974), and increased muscle catabolism at this site 382 

may release bound water to offset physiologically damaging levels of dehydration (Brusch et al. 383 

2018). Additionally, altered tail reserves likely explain lower body mass after parturition in 384 

females exposed to hot and dry treatments. A decreased maternal body condition after 385 

reproduction has been shown to challenge future survival due to increased starvation or predation 386 

risks if food is not readily available or if weaker mothers are less able to avoid predation (Bleu et 387 

al., 2013). These females also had higher plasma osmolality (Fig. 3B) suggesting that both high 388 

temperatures and water shortage challenge hydric state during pregnancy and lead to 389 

dehydration. Surprisingly, we did not detect an interactive effect. That is, gravid females exposed 390 

to hot and dry conditions did not have significantly higher plasma osmolality compared to 391 

females who were exposed to cold and wet or hot and wet conditions (Fig. 3B). Females may 392 

have increased muscle catabolism to release bound water and support some of the water demands 393 

of reproduction (Brusch et al., 2018) as females in dry conditions had higher tail width loss 394 

compared to females in wet (Fig. 3A). Alternatively, females may have behaviorally adjusted 395 

their behavior to maximize drinking when water was available in the morning as has been shown 396 

in this species (Rozen-Rechels et al., 2020).  397 

 In addition to being more dehydrated, females in dry conditions throughout pregnancy 398 

also had higher markers of oxidative damage after parturition, regardless of temperature 399 

treatment (Fig. 4A). Unlike all the other dependent variables measured in our study, we found a 400 

significant interaction between temperature and water availability on non-enzymatic antioxidant 401 

levels. Dehydrated females in the hot treatment had the lowest non-enzymatic antioxidant levels 402 

(Fig. 4B) which, coupled with high levels of oxidative damage, equates overall to the highest 403 
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levels of oxidative stress. These results suggest that the production of potentially damaging 404 

oxygen species is linked to hydric resources and it appears that females were able to protect 405 

themselves with increased antioxidant production, as shown previously (Dupoué et al., 2020a; 406 

Stier et al., 2017). These results further complement recent comparative findings between wild 407 

populations, showing that warmer climates may be associated with lower OXY levels in 408 

pregnant Z. vivipara (Dupoué et al., 2020b), although as demonstrated here, thermal impacts 409 

were conditioned by water resources. Importantly, the magnitude of alterations in oxidative 410 

status during pregnancy can have serious and delayed consequences on offspring mortality rate, 411 

which will need further examinations (Dupoué et al., 2020a). Our study did not explicitly 412 

measure such reproductive trade-offs however, and females in the hot treatments were exposed 413 

to water restrictions for ~3 weeks, half that of females from the cold treatments. It is worth 414 

noting that kinetic changes in oxidative stress are not stable during gravidity (Kouyoumdjian et 415 

al., 2019; Speakman and Garratt, 2014), so this may partly explain observed differences post-416 

parturition. Additionally, antioxidants serve a myriad of functions and their production is 417 

frequently temporarily mismatched with the creation of reactive oxygen species over acute 418 

timescales (Costantini, 2019; Halliwell and Gutteridge, 2015). Females in the hot treatments may 419 

not have had enough time or hydric resources to balance their oxidative status and a mechanistic 420 

understanding of these results is beyond the scope of this study but deserves further exploration.  421 

When free-standing water is limited, some organisms are able to rely almost entirely on 422 

metabolic (as a by-product of metabolism) or dietary (that present in food) water (Karasov 1983; 423 

Nagy and Gruchacz, 1994; Ostrowski et al. 2002). Because our experimental manipulations 424 

began after vitellogenesis, which is considered the main energy allocation period in this species 425 

(Foucart et al. 2014), and because metabolism is relatively low in squamate reptiles (Andrews 426 

and Pough, 1985), metabolic water was likely negligible (Shoemaker and Nagy, 1977). 427 

Additionally, temperature and metabolism are tightly linked in ectotherms (Dillon et al., 2010), 428 

but females in the hot treatments, regardless of water availability, had no significant differences 429 

in plasma osmolality changes (Fig. 3B), which further supports that metabolic water was 430 

negligible in our study. This still leaves the possibility that females in our experiment were able 431 

to partially compensate the hydric demands of reproduction through increased food consumption 432 

and dietary intake of water. Females in hot treatments ate a greater ratio of crickets (Fig. 5). If 433 

dietary water was an important component of hydration, we might expect lizards consuming a 434 
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greater ratio of crickets to have decreased plasma osmolality, which was not the case in our 435 

study. Because we did not detect a significant difference in plasma osmolality change between 436 

females in hot and wet treatments and cold and dry treatments, it is difficult to conclude if 437 

females were gaining any hydric benefit from food consumption. Overall, these results may 438 

suggest that free-standing water is the most important source during pregnancy and essential for 439 

maintaining maternal hydration. Especially considering that previous research has found no net 440 

osmotic advantage from eating in non-reproductive squamates (Lillywhite, 2017; Murphy and 441 

DeNardo, 2019; Wright et al., 2013). Higher temperatures still had an important effect on food 442 

consumption, and females with ad libitum access to water consumed marginally higher ratios of 443 

crickets, indicating a much more complex relationship between the temperature, water 444 

availability, and food consumption that merits future investigation. 445 

Previous studies examining limited hydric resources during periods of reproductive 446 

investment have similarly found that mothers are burdened with the majority of water imbalance 447 

in favor of embryonic hydration (Brusch et al., 2018; Dupoué et al., 2015, 2018a). While 448 

developing embryos often depend on maintaining water balance for survival (Cagle et al., 1993, 449 

Warner and Andrews, 2002), water imbalance is not necessarily physiologically detrimental in 450 

all cases. For example, immune enhancement as the result of dehydration has been documented 451 

in multiple taxa (Brusch and DeNardo, 2017; Hoang, 2001; Moeller et al., 2013) including 452 

mothers and embryos during conflicts for limited hydric resources (Brusch and DeNardo, 2019; 453 

Brusch et al., 2017). Future studies should focus on the interplay between osmolality and 454 

physiological functions in both mothers and embryos, especially considering that previous 455 

explorations of more cryptic physiological traits have elucidated that both mothers and embryos 456 

are impacted by dehydration (Brusch et al., 2019). 457 

Warmer and drier environmental conditions may challenge reproductive modes in several 458 

ways and these lines of research deserve further attention. Future studies should continue to 459 

consider the interaction between temperature and water availability and further explore the 460 

impacts they have on maternal physiology, reproductive output, and offspring physiology. In 461 

particular, developmental temperatures and hydric conditions outside optimal ranges, which may 462 

become more frequent under expected climate change scenarios, may lead to increased 463 

embryonic mortality (Gibbons et al., 1983; Madsen et al., 2006; Packard et al. 1977; Semlitsch 464 

1987; Sperry and Weatherhead, 2008). Therefore, considering both hydro- and thermoregulation 465 
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under joint conditions of thermal and hydric stress will be essential for understanding 466 

ectothermic responses to predicted shifts in temperature and water availability (Rozen-Rechels et 467 

al., 2019; Smith et al., 2019; Wake and Vredenburg, 2008). 468 
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 801 

Table 1 – Details of reproductive output from female Zootoca vivipara held in either hot and dry 802 

(HD), hot and wet (HW), cold and dry (CD), or cold and wet (CW) conditions throughout 803 

pregnancy (mean ± SEM). 804 

 805 

 806 

 807 

 808 

 809 

 810 

 811 

 812 

Litter mass represents the total mass of living and stillborn offspring from each female. 813 

Offspring mass and snout-vent-length (SVL) is only for living neonates from each female. 814 

Proportion of stillborn represents the number of stillborn divided by the total litter size (living 815 

and stillborn).   816 

Treatment 
Litter mass 

(g) 

Offspring 

mass (mg) 

Offspring 

SVL (mm) 

Proportion 

stillborn 

HD 1.15 ± 0.09 17.33 ± 0.17 19.51 ± 0.08 0.03 ± 0.02 

HW 1.10 ± 0.09 17.02 ± 0.18 19.63 ± 0.09 0.07 ± 0.03 

CD 1.17 ± 0.09 16.93 ± 0.19 19.50 ± 0.11 0.11 ± 0.03 

CW 1.09 ± 0.09 17.38 ± 0.18 19.59 ± 0.08 0.19 ± 0.05 
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Figure legends 817 

Figure 1 – Hourly temperature regimens of reproductive female Zootoca vivipara held in 818 

climatic chambers. Lizards were exposed to stable (±0.1°C) hot (closed triangles; n = 48) or 819 

cold (open circles, n = 49) temperature treatments during pregnancy. 820 

 821 

Figure 2 – Relationships between body size and gestation length in temperature treatments. 822 

Duration of experimental regimen (number of days from beginning of the experiment to 823 

parturition) and snout-vent length (mm) measured in reproductive female Zootoca vivipara 824 

exposed to hot (open circles, dashed line; n = 48) or cold (closed circles, solid line; n = 49) 825 

temperature regimes during pregnancy. A line of best fit is included for each significant 826 

relationship (p < 0.05).  827 

 828 

Figure 3 – Average morphological and physiological changes in reproductive female 829 

Zootoca vivipara. Change in tail width (A), plasma osmolality (B), and body mass (C) measured 830 

from beginning of the experiment to parturition for lizards held in either hot and dry (HD; n = 831 

24), hot and wet (HW; n = 24), cold and dry (CD; n = 24), or cold and wet (CW; n = 25) 832 

conditions throughout pregnancy. Error bars represent ±1 SEM. Different letters indicate 833 

significant differences among groups (p < 0.05; Tukey’s HSD post-hoc test).  834 

 835 

Figure 4 – Average markers of oxidative status in post-reproductive female Zootoca 836 

vivipara. Oxidative damage [ROMs; A] and non-enzymatic antioxidant capacity [OXY; B]) 837 

measured in lizards held in either hot and dry (HD; n = 24), hot and wet (HW; n = 24), cold and 838 

dry (CD; n = 24), or cold and wet (CW; n = 25)  conditions throughout pregnancy. Error bars 839 

represent ±1 SEM. Oxidative damage was significantly higher (p < 0.05) in females held without 840 

water regardless of temperature. Different letters indicate significant differences among groups 841 

(Tukey’s HSD post-hoc test). There was a significant temperature by water availability 842 

interaction effect (p < 0.05) on non-enzymatic antioxidant capacity. 843 

 844 

Figure 5 – Average ratio of crickets consumed by reproductive female Zootoca vivipara. 845 

Lizards were held in either hot and dry (HD; n = 24), hot and wet (HW; n = 24), cold and dry 846 

(CD; n = 24), or cold and wet (CW; n = 25) conditions throughout pregnancy. Error bars 847 
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represent ±1 SEM. Different letters indicate significant differences among groups (p < 0.05; 848 

Tukey’s HSD post-hoc test).    849 





10

20

30

40

50

60

70

45 55 65

D
u

ra
ti
o

n
 i
n

 e
x
p

e
ri
m

e
n

t 
(d

)

Snout-vent length (mm)

Hot

Cold



0

0.2

0.4

0.6

0.8

1

m
a

ss
 (

g)

A

B

BC

C

-0.5

-0.4

-0.3

-0.2

-0.1

0

ta
il 

w
id

th
 (

m
m

)

A

A

B

AB

-20

-10

0

10

20

o
sm

ol
al

ity
 (

m
O

sm
kg

-1
)

A

B

HD HW CD CW

C

A

B



2.5

2.75

3

Dry Wet

R
O

M
s
 (

m
g
 H

2
0

2
d

l-1
) A

B

450

500

550

600

650

HD HW CD CW

O
X

Y
 (

µ
m

o
l 
H

C
lO

m
l-1

)
A

B



0.6

0.7

0.8

0.9

1

HD HW CD CW

R
a

ti
o
 o

f 
c
ri
c
k
e

ts
 c

o
n

s
u

m
e
d A

B


