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Abstract: We present a deep leaming-based multitask framework for joint 30 human pose estimation 
and action recognition from RGB sensors using simple cameras. The approach proceeds along 
two stages. In the first, a real-time 20 pose detector is run to determine the precise pixel location 
of important keypoints of the human body. A two-stream deep neural network is then designed 
and trained to map detected 20 keypoints into 30 poses. In the second stage, the Efficient Neural 
Architecture Search (ENAS) algorithm is deployed to find an optimal network architecture that is 
used for modeling the spatio-temporal evolution of the estimated 30 poses via an image-based 
intermediate representation and performing action recognition. Experiments on Human3.6M, MSR 
Action3O and SBU Kinect Interaction datasets verify the effectiveness of the proposed method on 
the targeted tasks. Moreover, we show that the method requires a low computational budget for 
training and inference. In particular, the experimental results show that by using a monocular RGB 
sensor, we can develop a 30 pose estimation and human action recognition approach that reaches the 
performance of RGB-depth sensors. This opens up many opportunities for leveraging RGB cameras 
(which are much cheaper than depth cameras and extensively deployed in private and public places) 
to build intelligent recognition systems. 

Keywords: human action recognition; 30 pose estimation; RGB sensors; deep learning 

1. Introduction

Hu.man Action Recognition (HAR) from videos has been researched for decades, since this topic 
plays a key role in various areas such as intelligent surveillance, human-robot interaction, robot 
vision and so on. Although significant progress has been achieved in the past few years, building 
an accurate, fast and efficient system for the recognition of actions in unseen videos is still a challenging 
task due to several obstacles, e.g., changes in camera viewpoint, occlusions, background, speed of 



motion, etc. Traditional approaches on video-based action recognition [1] have focused on extracting
hand-crafted local features and building motion descriptors from RGB sensors. Many spatio-temporal
representations of human motion have been proposed and widely exploited with success such as
Scale Invariant Feature Transform (SIFT) [2], Histograms of Optical Flow (HOF) [3] or Cuboids [4].
However, one of the major limitations of these approaches is the lack of 3D structure from the scene
and recognizing human actions based only on RGB information is not enough to overcome the current
challenges in the field.

The rapid development of depth-sensing time-of-flight sensor technology has helped in dealing
with this problem, which is considered complex for traditional sensors. Low-cost and easy-to-use
depth sensors can provide detailed 3D structural information of human motion. In particular, most
of the current depth sensors have integrated real-time skeleton estimation and tracking frameworks
[5], facilitating the collection of skeletal data. This is a high-level representation of the human body,
which is suitable for the problem of motion analysis. Hence, exploiting skeletal data for 3D action
recognition opens up opportunities for addressing the limitations of RGB-based solutions and many
skeleton-based action recognition approaches have been proposed [6–10]. However, depth sensors
have some significant drawbacks with respect to 3D pose estimation. For instance, they are only able
to operate up to a limited distance and within a limited field of view. Moreover, a major drawback of
low-cost depth sensors is their inability to work in bright light, especially sunlight [11].

The focus in this paper is therefore to propose a 3D skeleton-based action recognition approach
without the need for depth sensors. Specifically, we are interested in building a unified deep framework
for both 3D pose estimation and action recognition from RGB video sequences provided by single
color sensors. As shown in Figure 1, the approach consists of two stages. In the first, estimation stage,
the system recovers the 3D human poses from the input RGB video. In the second, recognition stage,
an action recognition approach is developed and stacked on top of the 3D pose estimator in a unified
framework, where the estimated 3D poses are used as inputs to learn the spatio-temporal motion
features and predict action labels.

Figure 1. Overview of the proposed method. In the estimation stage, a real-time multi-person 2D pose
detector, such as OpenPose [12] or AlphaPose [13], is used to generate 2D human body keypoints.
A deep neural network is then trained to produce 3D poses from the 2D detections. In the recognition
stage, the 3D estimated poses are encoded into a compact image-based representation and finally fed
into a deep convolutional network for supervised classification task, which is automatically searched
by the ENAS algorithm [14].

There are four hypotheses that motivate us to build a deep learning framework for human
action recognition from 3D poses. First, actions can be correctly represented through 3D pose
movements [15,16]. Second, the 3D human pose has a high-level of abstraction with much less
complexity compared to RGB and depth streams. This makes the training and inference processes
much simpler and faster. Third, depth sensors can provide highly accurate skeletal data for 3D
action recognition. However, they are expensive and not always available (e.g., for outdoor scenes).



A fast and accurate approach of 3D pose estimation from only RGB input is highly desirable. Fourth,
state-of-the-art 2D pose detectors [12,13,17] are able to provide 2D poses with a high degree of accuracy
in real time. Meanwhile, deep networks have proved their capacity to learn complex functions from
high-dimensional data. Hence, a simple network model can also learn a mapping to convert 2D
poses into 3D. The effectiveness of the proposed method is evaluated on public benchmark datasets
(Human3.6M [18] for 3D pose estimation and MSR Action3D [19] and SBU [20] for action recognition).
Beyond the initial expectations, the experimental results demonstrate state-of-the-art performance on
the targeted tasks (Section 4.3) and support the hypotheses above. Furthermore, we show that this
approach has a low computational cost (Section 4.4). Overall, our main contributions are as follows:

• First, we present a two-stream, lightweight neural network to recover 3D human poses from RGB
images provided by a monocular camera. The proposed method achieves state-of-the-art result
on 3D human pose estimation task and benefits action recognition. The novelty of the study is
that a very simple deep neural network could be trained effectively to learn a 2D-to-3D mapping
for the task of 3D human estimation from color sensors.

• Second, we propose to put an action recognition approach on top of the 3D pose estimator to
form a unified framework for 3D pose-based action recognition. It takes the 3D estimated poses
as inputs, encodes them into a compact image-based representation and finally feeds to a deep
convolutional network, which is designed automatically by using a neural architecture search
algorithm. Surprisingly, the experiments show that we reached state-of-the-art results on this task,
even when compared with methods using depth cameras.

The rest of this paper is organized as follows. A review of the related work is presented in
Section 2. The proposed method is explained in Section 3. Experiments are provided in Section 4 and
Section 5 concludes the paper.

2. Related Work

This section reviews two main topics that are directly related to the proposed approach, i.e., 3D
pose estimation from RGB images and 3D pose-based action recognition. An extensive literature
review is beyond the scope of this section. Instead, the interested reader is referred to the surveys of
Sarafianos et al. [21] for recent advances in 3D human pose estimation and Presti et al. [22] for 3D
skeleton-based action recognition.

2.1. 3D Human Pose Estimation

The problem of 3D human pose estimation has been intensively studied in recent years. Almost
all early approaches for this task were based on feature engineering [18,23,24], while the current
state-of-the-art methods are based on deep neural networks [25–30]. Many of them are regression-based
approaches that directly predict 3D poses from RGB images via 2D/3D heatmaps. For instance,
Li et al. [25] designed a deep convolutional network for human detection and pose regression.
The regression network learns to predict 3D poses from single images using the output of a body part
detection network. Tekin et al. [26] proposed to use a deep network to learn a regression mapping that
directly estimates the 3D pose in a given frame of a sequence from a spatio-temporal volume centered
on it. Pavlakos et al. [27] used multiple fully convolutional networks to construct a volumetric stacked
hourglass architecture, which can recover 3D poses from RGB images. Pavllo et al. [28] exploited
a temporal dilated convolutional network [31] for estimating 3D poses. However, this approach led to
a significant increase in the number of parameters as well as the required memory. Mehta et al. [29]
introduced a real-time approach to predict 3D poses from a single RGB sensor. They used ResNets [32]
to jointly predict 2D and 3D heatmaps as regression tasks. Recently, Katircioglu et al. [30] introduced
a deep regression network for predicting 3D human poses from monocular images via 2D joint location
heatmaps. This architecture is in fact an overcomplete autoencoder that learns a high-dimensional



latent pose representation and accounts for joint dependencies, in which a Long Short-Term Memory
(LSTM) network [33] is used to enforce temporal consistency on 3D pose predictions.

To the best of our knowledge, several studies [27,29,30] stated that regressing the 3D pose from 2D
joint locations is difficult and not too accurate. However, motivated by Martinez et al. [34], we believe
that a simple neural network can learn effectively a direct 2D-to-3D mapping. Therefore, this paper
aims at proposing a simple, effective and real-time approach for 3D human pose estimation that
benefits action recognition. To this end, a two-stream deep neural network that performs 3D pose
predictions from the 2D human poses is designed and optimized. These 2D poses are generated by
a state-of-the-art 2D detector, which can run in real time for multiple people. We empirically show
that although the proposed approach is computationally inexpensive, it is still able to improve the
state-of-the-art.

2.2. 3D Pose-Based Action Recognition

Human action recognition from skeletal data or 3D poses is a challenging task. The methods
used in previous works on this topic can be divided into two main groups. The first group [6,9,35]
extracts hand-crafted features and uses probabilistic graphical models, e.g., Hidden Markov Model
(HMM) [35] or Conditional Random Field (CRF) [36] to recognize actions. However, almost all these
approaches require a lot of feature engineering. The second group [37–39] considers the 3D pose-based
action recognition as a time-series problem and proposes to use Recurrent Neural Networks with Long
Short-Term Memory units (RNN-LSTMs) [33] for modeling the dynamics of the skeletons. Although
RNN-LSTMs are able to model the long-term temporal characteristics of motion and have advanced
the state-of-the-art, this approach feeds raw 3D poses directly into the network and just considers them
as a kind of low-level feature. The large number of input features makes RNNs very complex and may
easily lead to overfitting. Moreover, many RNN-LSTMs act merely as classifiers and cannot extract
high-level features for recognition tasks [40].

In the literature, 3D human pose estimation and action recognition are closely related. However,
both problems are generally considered to be two distinct tasks [41]. Although some approaches have
been proposed for tackling the problem of jointly predicting 3D poses and recognizing actions in RGB
images or video sequences [42–44], they are data-dependent and require a lot of feature engineering,
except the work of Luvizon et al. [44]. Unlike previous studies, a multitask learning framework for 3D
pose-based action recognition is proposed here by reconstructing 3D skeletons from RGB images and
exploiting them for action recognition in a joint way. Experimental results on public and challenging
datasets show that the framework can solve the two tasks in an effective way.

3. Proposed Method

This section presents the proposed method. First, the approach for 3D human pose estimation is
presented, followed by the proposed solution for 3D pose-based action recognition.

3.1. Problem Definition

Given an RGB video clip of a person who starts to perform an action at time t = 0 and ends at
t = T, the problem studied in this work is to generate a sequence of 3D poses P = (p0, ..., pT), where
pi ∈ R3×M, i ∈ {0, ..., T} at the estimation stage, in which M denotes the number of keypoints for the
pose pi. The generated P is then used as input for the recognition stage to predict the corresponding
action label A by a supervised learning model. See Figure 1 for an illustration of the problem.

3.2. 3D Human Pose Estimation

Given an input RGB image I ∈ RW×H×3, we aim to estimate the body joint locations in the
3-dimensional space, noted as p̂3D ∈ R3×M. To this end, we first run any state-of-the-art human 2D
pose detector, in this case OpenPose [12], to produce a series of 2D keypoints p2D ∈ R2×N . To recover



the 3D joint locations, we try to learn a direct 2D-to-3D mapping fr: p2D
fr7−→ p̂3D. This transformation

can be implemented by a deep neural network in a supervised manner

p̂3D = fr(p2D, θ), (1)

where θ is a set of trainable parameters of the function fr. To optimize fr, the prediction error is
minimized over a labelled dataset of C poses by solving the optimization problem

arg min
θ

1
C
C
∑
n=1
L( fr(xi), yi). (2)

Here xi and yi are the input 2D poses and the ground truth 3D poses, respectively; L denotes a loss
function. Here, the robust Huber loss [45] is used to deal with outliers.

Network Design

State-of-the-art deep learning architectures such as ResNet [32], Inception-ResNet-v2 [46],
DenseNet [47], or NASNet [48] have achieved an impressive performance in supervised learning
tasks with high-dimensional data, e.g., 2D or 3D images. However, the use of these architectures
[32,46–48] on low-dimensional data like the coordinates of the 2D human joints could lead to overfitting.
Therefore, the design is based on a simple and lightweight multilayer network architecture without the
convolution operations. The design process exploits some recent improvements in the optimization
of the modern deep learning models [32,47]. Concretely, a two-stream network is proposed. Each
stream comprises linear layers, Batch Normalization (BN) [49], Dropout [50], SELU [51] and Identity
connections [32]. During the training phase, the first stream takes the ground truth 2D locations as
input. The 2D human joints predicted by OpenPose [12] are inputted to the second stream. The outputs
of the two streams are then averaged. Figure 2 illustrates the network design. Please note that learning
with the ground truth 2D locations for both of these streams could lead to a higher level of performance.
However, training with the 2D OpenPose detections could improve the generalization ability of the
network and makes it more robust during inference, when only the OpenPose’s 2D output is used to
deal with action recognition in the wild.

Figure 2. Diagram of the proposed two-stream network for training the 3D pose estimator.

3.3. 3D Pose-Based Action Recognition

This section describes the integration of the estimation stage with the recognition stage in a unified
framework. Specifically, the proposed recognition approach is stacked on top of the 3D pose estimator.



To explore the high-level information of the estimated 3D poses, they are encoded into a compact
image-based representation. These intermediate representations are then fed to a Deep Convolutional
Neural Network (D-CNNs) for learning and classifying actions. This idea has been proven effective in
our previous works [52–54]. Thus, the spatio-temporal patterns of a 3D pose sequence are transformed
into a single color image as a global representation called Enhanced-SPMF [54] via two important
elements of a human movement: 3D poses and their articulation joint motions as shown in Figure 3.

Figure 3. Illustration of the Enhanced-SPMF representation. To build an Enhanced-SPMF map from
skeletal data, each skeleton sequence is first encoded as a single RGB image via a skeleton-based
representation called SPMF (Skeleton Pose-Motion Feature) [53]. The SPMF is built from Pose Feature
vectors (PFs) and Motion Feature vectors (MFs), which are calculated from the 3D coordinates of
skeletons. Finally, we use a color enhancement technique [55] to enhance the local textures of the SPMF
to form the Enhanced-SPMF. This is an image-based global representation for the whole input skeleton
sequences. Figure reproduced, by permission from the publishers, from our previous work in [56].

For a detailed technical description of the Enhanced-SPMF the interested reader is referred to the
work described in [54]. Figure 4 visualizes some Enhanced-SPMF representations from samples of the
MSR Action3D dataset [19].

Figure 4. Immediate image-based representations for the recognition stage.

For learning and classifying the obtained images, the use of the Efficient Neural Architecture
Search (ENAS) [14]—a recent state-of-the-art technique for automatic design of deep neural networks,
is proposed. ENAS is in fact an extension of an important advance in deep learning called NAS
[48], which can automate the designing process of convolutional architectures on a dataset of interest.
The method searches for optimal building blocks (called cells, including normal cells and reduction
cells) and the final architecture is then constructed from the best cells. Figure 5 shows a typical CNN
architecture that is generated by ENAS.

Figure 5. Illustration of a deep neural network generated by ENAS that contains 3 blocks, each with N
optimal convolution cells and one reduction cell.

In NAS, an RNN is used. It first samples a candidate architecture called child model. This child
model is then trained to converge on the desired task and to report its performance. Next, the RNN



uses the performance as a guiding signal to find a better architecture. This process is repeated many
times, making NAS computationally expensive and time-consuming (e.g., on CIFAR-10, NAS needs
4 days with 450 GPUs to discover the best architecture). The main limitation of NAS is that the training
of each child model to convergence requires a significant amount of time and computational resources
as it measures model accuracy while throwing away all the trained weights. Therefore, ENAS has
been proposed to improve the efficiency of NAS. Its key idea [14] is the use of shared parameters
among child models, which helps reducing the training times of each child model from scratch to
convergence. State-of-the-art performance has been achieved by ENAS on well-known public datasets.
We encourage the readers to refer to the original paper [14] for more details. Figure 6 illustrates the
entire pipeline of our approach for the recognition stage.

Figure 6. Illustration of the proposed approach for 3D pose-based action recognition.

4. Experiments

4.1. Datasets and Settings

The proposed method is evaluated on three challenging datasets: Human3.6M, MSR Action3D
and SBU Kinect Interaction. Human3.6M is used for evaluating 3D pose estimation. Meanwhile,
the other two datasets are used for evaluating action recognition. The characteristics of each dataset
are as follows.

Human3.6M [18]: This is a very large-scale dataset containing 3.6 million different 3D articulated
poses captured from 11 actors for 17 actions, under 4 different viewpoints. For each subject, the dataset
provides 32 body joints, from which only 17 joints are used for training and computing scores. In
particular, 2D joint locations and 3D poses ground truth are available for evaluating supervised
learning models.

MSR Action3D [19]: This dataset contains 20 actions, performed by 10 subjects. Experiment were
conducted on 557 video sequences of the MSR Action3D, in which the whole dataset is divided into
three subsets: AS1, AS2, and AS3. There are 8 actions classes for each subset. Half of the data is
selected for training and the rest is used for testing.

SBU Kinect Interaction [20]: This dataset contains a total of 300 interactions, performed by
7 participants for 8 actions. This is a challenging dataset as it contains pairs of actions that are difficult
to distinguish such as “exchanging objects–shaking hands” or “pushing–punching”. The dataset is
randomly split into 5 folds, in which 4 folds are used for training and the remaining 1 fold is used for
testing.

4.2. Implementation Details

The proposed networks were implemented in Python with Keras/TensorFlow backend. The two
streams of the 3D pose estimator are trained separately with the same hyperparameters setting,
in which mini batches of 128 poses are used with 0.25 dropout rate. The weights are initialized with
He initialization [57]. Adam optimizer [58] is used with default parameters. The initial learning rate
is set to 0.001 and is decreased by a factor of 0.5 after every 50 epochs. The network is trained for
300 epochs from scratch on the Human3.6M dataset [18]. For action recognition task, OpenPose is



run [12] to generate 2D detections on MSR Action3D [19] and SBU Kinect Interaction [20]. The 3D
pose estimator pre-trained on Human3.6M [18] is then used to provide 3D poses. Standard data
pre-processing and augmentation techniques are used, such as randomly cropping and flipping on
these two datasets due to their small sizes. To discover optimal recognition networks, ENAS [14]
is used with the same parameter setting as the original work. Concretely, the shared parameters ω

are trained with Nesterov’s accelerated gradient descent [59] using Cosine learning rate [60]. The
candidate architectures are initialized by He initialization [57] and trained by Adam optimizer [58]
with a learning rate of 0.00035. Additionally, each search is run for 200 epochs.

4.3. Experimental Results and Comparison

4.3.1. Evaluation on 3D Pose Estimation

The effectiveness of the proposed 3D pose estimation network is evaluated using the standard
protocol of the Human3.6M dataset [18,27,29,34]. Five subjects S1, S5, S6, S7, S8 are used for training
and the remaining two subjects S9, S11 are used for evaluation. Experimental results are reported by
the average error in millimeters between the ground truth and the corresponding predictions over all
joints. Much to our surprise, this method outperforms the previous best result from the literature [34]
by 3.1mm, corresponding to an error reduction of 6.8% even when combining the ground truth 2D
locations with the 2D OpenPose detections. This result proves that the network design can learn to
recover the 3D pose from the 2D joint locations with a remarkably low error rate, which to the best of
our knowledge, has established a new state-of-the-art on 3D human pose estimation (see Table 1 and
Figure 7).

Table 1. Experimental results (average error in mm) and comparison with previous state-of-the-art 3D
pose estimation approaches on the Human3.6M dataset [18]. The symbol ? denotes that a 2D detector
was used and the symbol † denotes the ground truth 2D joint locations were used.

Method Direct. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg

Ionescu et al. [18]† 132.7 183.6 132.3 164.4 162.1 205.9 150.6 171.3 151.6 243.0 162.1 170.7 177.1 96.6 127.9 162.1

Du et al. [61]? 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2 117.5 226.9 120.0 117.7 137.4 99.3 106.5 126.5

Tekin et al. [26] 102.4 147 2 88.8 125.3 118.0 182.7 112.4 129.2 138.9 224.9 118.4 138.8 126.3 55.1 65.8 125.0

Park et al. [62]? 100.3 116 2 90.0 116.5 115.3 149.5 117.6 106.9 137 2 190.8 105.8 125.1 131.9 62.6 96 2 117.3

Zhou et al. [63]? 87.4 109.3 87.1 103 2 116 2 143.3 106.9 99.8 124.5 199 2 107.4 118.1 114.2 79.4 97.7 113.0

Zhou et al. [64]? 91.8 102.4 96.7 98.8 113.4 125.2 90.0 93.8 132 2 159.0 107.0 94.4 126.0 79.0 99.0 107.3

Pavlakos et al. [27] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63 2 71.9

Mehta et al. [65]? 67.4 71.9 66.7 69.1 71.9 65.0 68.3 83.7 120.0 66.0 79.8 63.9 48.9 76.8 53.7 68.6

Martinez et al.

[34]?

51.8 56.2 58.1 59.0 69.5 55 2 58.1 74.0 94.6 62.3 78.4 59.1 49.5 65.1 52.4 62.9

Liang et al. [66] 52.8 54.2 54.3 61.8 53.1 53.6 71.7 86.7 61.5 53.4 67 2 54.8 53.4 47.1 61.6 59.1

Luvizon et al. [44] 49 2 51.6 47.6 50.5 51.8 48.5 51.7 61.5 70.9 53.7 60.3 48.9 44.4 57.9 48.9 53.2

Martinez et al.

[34]†

37.7 44.4 40.3 42.1 48 2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5

Ours†,? 36.6 43.2 38.1 40.8 44.4 51.8 43.7 38.4 50.8 52.0 42.1 42.2 44.0 32.3 35.9 42.4

Figure 7. Visualization of 3D output of the estimation stage with some samples on the test set of
Human3.6M [18]. For each example, from left to right are 2D poses, 3D ground truths and the 3D
predictions, respectively.



4.3.2. Evaluation on Action Recognition

Table 2 reports the experimental results and comparisons with state-of-the-art methods on the MSR
Action3D dataset [19]. The ENAS algorithm [14] is able to explore a diversity of network architectures
and the best design is identified based on its validation score. Thus, the final architecture achieved
a total average accuracy of 97.98% over three subset AS1, AS2 and AS3. This result outperforms
many previous studies [9,19,37,38,67–71], and among them, many are depth sensor-based approaches.
Figure 8 provides a schematic diagram of the best cells and optimal architecture found by ENAS on
the AS1 subset [19]. For the SBU Kinect Interaction dataset [20], the best model achieved an accuracy
of 96.30%, as shown in Table 3. The results reported here indicated an important observation that by
using only the 3D predicted poses, it was possible to outperform previous works reported in [37,72–77]
and reach state-of-the-art results provided in [54,78], which deploy accurate skeletal data provided by
Kinect v2 sensor.

Table 2. Test accuracies (%) on the MSR Action3D dataset [19]. Please note that many previous methods
are based on depth sensors.

Method AS1 AS2 AS3 Aver.

Li et al. [19] 72.90 71.90 71.90 74.70

Chen et al. [67] 96.20 83.20 92.00 90.47

Vemulapalli et al. [9] 95.29 83.87 98.22 92.46

Du et al. [38] 99.33 94.64 95.50 94.49

Liu et al. [37] N/A N/A N/A 94.80

Wang et al. [68] 93.60 95.50 95.10 94.80

Wang et al. [69] 91.50 95.60 97.30 94.80

Xu et al. [70] 99.10 92.90 96.40 96.10

Lee et al. [71] 95.24 96.43 100.0 97.22

Pham et al. [54] 98.83 99.06 99.40 99.10

Ours 97.87 96.81 99.27 97.98

Table 3. Test accuracies (%) on the SBU Kinect Interaction dataset [20]. Please note that many previous
methods are based on depth sensors.

Method Acc.

Song et al. [72] 91.51

Liu et al. [37] 93.30

Weng et al. [73] 93.30

Ke et al. [74] 93.57

Tas et al. [75] 94.36

Wang et al. [76] 94.80

Liu et al. [77] 94.90

Zang et al. [78] (using VA-RNN) 95.70

Zhang et al. [78] (using VA-CNN) 97.50

Pham et al. [54] 97.86

Ours 96.30



(a) (b) (c)
Figure 8. Diagram of the top performing normal cell (a) and reduction cell (b) discovered by ENAS [14]
on AS1 subset [19]. They were then used to construct the final network architecture (c). We recommend
the interested readers to see [14] to better understand this procedure.

4.4. Computational Efficiency Evaluation

On a single GeForce GTX 1080Ti GPU with 11GB memory, the runtime of OpenPose [12] is less
than 0.1s per frame for an image size of 800 × 450 pixels. On the Human3.6M dataset [18], the 3D pose
estimation stage takes around 15ms to complete a pass (forward + backward) through each stream with
a mini batches of size 128. Each epoch was done within 3 min. For the action recognition stage, our
implementation of the ENAS algorithm takes about 2 h to find the final architecture (∼2.3M parameters)
on each subset of MSR Action3D dataset [19], while it takes around 3 h on the SBU Kinect Interaction
dataset [20] to discover the best architecture (∼3M parameters). With small architecture sizes, the
discovered networks require low computing time for the inference stage, making the approach more
practical for large-scale problems and real-time applications.

5. Conclusions

In this paper, a unified deep learning framework for joint 3D human pose estimation and
action recognition from RGB video sequences has been presented. The proposed method first runs
a state-of-the-art 2D pose detector to estimate 2D locations of body joints from a monocular RGB
sensor, although the approach is not limited to a particular 2D pose detector. A deep neural network
was then designed and trained to learn a direct 2D-to-3D mapping and predict human poses in 3D
space. Experimental results demonstrated that the 3D human poses can be effectively estimated by
a simple network design and training methodology over 2D keypoints. A novel action recognition
approach was also introduced based on a compact image-based representation and automated machine
learning, in which an advanced neural architecture search algorithm was exploited to discover the
best performing architecture for each recognition task. The experiments on public and challenging
action recognition datasets indicated that the proposed framework was able to reach state-of-the-art
performance, while requiring less computation budget for training and inference. Despite that, this
method naturally depends on the quality of the output of the 2D detectors. Hence, a limitation
is that it cannot recover 3D poses from 2D failed output. To tackle this problem, we are currently
expanding this study by adding more visual evidence to the network to further gains in performance.
The preliminary results are encouraging. Codes and models will be made available on our GitHub
project at https://github.com/huyhieupham/.
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