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Abstract 1 

Extreme drought events exert both immediate and prolonged influences on 2 

terrestrial ecosystems, yet the patterns and mechanisms of the delayed effects of 3 

extreme drought on alpine ecosystems remain largely unknown. In this study, we use 4 

satellite-derived normalized difference vegetation index (NDVI) data to examine the 5 

legacy effect of severe drought events on vegetation greenness across the Tibetan 6 

Plateau (TP). A pervasive, negative drought legacy effect, lasting about one year, is 7 

detected for all plant functional types including forests, shrubs and grasslands on the 8 

TP. The magnitude of the identified legacy effect, namely, the reduced 9 

growing-season NDVI in the first year post-drought, is spatially heterogeneous and 10 

exhibits a clear altitude dependence, while divergent relationships between elevation 11 

and the legacy effect are observed between alpine meadow and steppe. For alpine 12 

meadow, more pronounced legacy effects occur at higher altitudes with lower 13 

precipitation and temperature, suggesting a weaker drought resilience of alpine 14 

meadow under dryer and colder conditions. Whereas for alpine steppe, the magnitude 15 

of the negative legacies reduces as precipitation decreases along the elevation, which 16 

might be due to a greater adaptability to drought under more arid conditions that 17 

enables plant communities to recover to their normal state faster in these very dry 18 

regions. Our results advance the understanding of drought legacy effects on TP alpine 19 

ecosystems and highlight future avenues for research into how different alpine 20 

ecosystem types will respond to drought stress.  21 

Keywords Vegetation greenness, Extreme drought, Legacy effect, Tibetan Plateau, 22 
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Alpine meadow, Alpine steppe. 23 

1. Introduction 24 

The frequency, intensity and duration of climate extremes have increased 25 

considerably during recent decades and are expected to increasingly impact future 26 

ecosystem dynamics and function (Dai, 2013; IPCC et al., 2013; Piao et al., 2019a). As 27 

one of the most frequently recurring climate extremes, drought could significantly 28 

reduce terrestrial ecosystem carbon sink via direct impacts such as water stress on 29 

vegetation growth (Ciais et al., 2005; Li et al., 2019b) and plant mortality caused by 30 

“hydraulic failure” or “carbon starvation” (Bréda et al., 2006; Mcdowell et al., 2008), as 31 

well as indirect impacts such as drought-induced increases in fires and pest and 32 

pathogen outbreaks (Allen et al., 2015; Brando et al., 2014; Piao et al., 2019b; Seidl et 33 

al., 2018). State-of-art earth system models have projected an increasing trend in the 34 

magnitude of annual vegetation productivity reductions associated with extreme 35 

droughts in the 21st century (Xu et al., 2019). However, global impact models tend to 36 

underestimate the negative effects of droughts on important sectors, including 37 

agriculture and terrestrial ecosystems (Schewe et al., 2019). One of the reasons for 38 

this underestimation might be the prevalence of incomplete and lagged vegetation 39 

growth recovery after severe droughts that are not well represented in ecosystem 40 

models (Anderegg et al., 2015b; Ogle et al., 2015; Reichmann et al., 2013). The 41 

effects of extreme drought on terrestrial ecosystems can last for several years and lead 42 

to reduced growth compared to normal years (Pederson et al., 2014), with 43 
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implications for carbon cycling. Therefore, an in-depth understanding and accurate 44 

simulation of this legacy effect is critical to our comprehension of the impacts of 45 

extreme drought events on ecosystem carbon cycles.  46 

Legacy effects vary tremendously across biomes and plant functional types or 47 

even within species, which is likely linked to various ecophysiological traits and the 48 

interactive roles of bioclimatic status. In forest ecosystems, reduced tree growth after 49 

extreme drought events has been widely detected, based on both in situ tree-ring 50 

chronologies (Camarero et al., 2015; Liang et al., 2015; Pederson et al., 2014), and 51 

remote sensing data of vegetation greenness or primary productivity (Kannenberg et 52 

al., 2019b; Schwalm et al., 2017). Such negative legacy effects in forests can last from 53 

months to 1-4 years (Anderegg et al., 2015b; Huang et al., 2018), while longer legacy 54 

effects lasting up to 6 years have also been observed (Itter et al., 2019; Peltier et al., 55 

2016). Whereas in grasslands and shrublands, drought legacy effects are less 56 

pronounced. Remotely sensed vegetation indices in northern temperate regions 57 

showed that shrubs and grasses experienced much shorter drought legacy effects than 58 

forests, with a maximum of one year for grasses (Wu et al., 2017). On the other hand, 59 

field measurements of aboveground net primary production (ANPP) in grasslands 60 

showed mixed results in terms of the magnitude and even direction of drought legacy 61 

effect. Sala et al. (2012) and Reichmann et al. (2013) found that the previous-year 62 

drought condition led to a less-than-normal ANPP for the current year, whereas 63 

Hoover et al. (2014) found a full recovery of ANPP in the first year after drought, and 64 



 

 

5 

 

Griffin-Nola et al. (2018) found even a positive drought legacy, i.e. 65 

higher-than-normal ANPP in the year post-drought, in temperate grassland sites.  66 

Mechanisms that may cause legacy effects within forest ecosystems have been 67 

well discussed in recent studies. These mechanisms include leaf area and/or 68 

non-structural carbohydrate loss, hydraulic damage (Anderegg et al., 2015b; 69 

Anderegg et al., 2016), carbon allocation shifts, demographic traits such as species 70 

composition shifts and mortality (Lloret et al., 2012), pest and pathogen outbreaks 71 

(Anderegg et al., 2015a), and ecohydrological processes regarding water table 72 

depletion and delayed replenishment (Kannenberg et al., 2019a; Kannenberg et al., 73 

2020). Some of these mechanisms, however, have a relatively lower impact on 74 

grassland ecosystems, possibly explaining the more rapid recovery of grasses and 75 

shrubs after droughts than forests (Jobbágy and Sala, 2000; Reichmann et al., 2013; 76 

Sala et al., 2012). 77 

Much of our current understanding of drought legacy effects comes from 78 

tree-ring increments and forest inventories or syntheses relying on field measurements 79 

in temperate grassland ecosystems (Anderegg et al., 2016; Gazol et al., 2017). Studies 80 

of the lagged effects of drought on plant growth in arid and semi-arid alpine 81 

ecosystems are however limited. A handful of such studies include field 82 

measurements in alpine grasslands, which showed either a fast recovery of production 83 

during the later re-wetting growing stage after the earlier summer drought (Chen et al., 84 

2020), or a delayed recovery of up to two years post-drought (De Boeck et al., 2018). 85 
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The Tibetan Plateau (TP), with a typical highland climate characterized by a low 86 

temperature, high solar radiation and limited water availability, plays an important 87 

role in shaping the regional and global climate and energy-water cycle (Duan and Wu, 88 

2005; Huang et al., 2017a; Yao et al., 2019). With the harsh environment and complex 89 

terrain of the TP, alpine grassland is the dominant vegetation type, covering 90 

approximately two-thirds of the total plateau area, followed by shrubs that are mainly 91 

located in the central-southern region and forests along the southeastern boundaries 92 

where altitudes are relatively low (Cui and Graf, 2009) (Fig. 1). Rapid warming in 93 

recent decades over the TP has enhanced vegetation productivity by stimulating 94 

metabolism and extending growing season length (Huang et al., 2019; Piao et al., 95 

2011; Piao et al., 2019c; Zhu et al., 2016). Nevertheless, warming can also exert 96 

negative impacts on plant growth on the TP due to drought conditions and 97 

warming-induced soil moisture loss (Fu et al., 2013; Zhang et al., 2015). Under such 98 

conditions, drought stress can regulate vegetation dynamics and mediate the effects of 99 

warming on vegetation on the TP (Li et al., 2020; Piao et al., 2014; Zhang et al., 2018). 100 

However, research on alpine ecosystems on the TP in response to extreme drought 101 

events and their legacy effects has been scant to date (Liu et al., 2019).  102 

In light of current knowledge and gaps in the understanding of how extreme 103 

drought affects the TP terrestrial carbon cycle, we first tested whether extreme 104 

drought events in alpine ecosystems would lead to discernible legacy effects regarding 105 

greenness using the normalized difference vegetation index (NDVI). Second, we 106 

identified the duration, prevalence and magnitude of drought legacy effects as well as 107 
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their possible drivers, which is crucial for predicting the future behaviour of the alpine 108 

ecosystem and the provision of ecosystem services on the TP (Zhang et al., 2019b).  109 

2. Materials and methods 110 

2.1. NDVI dataset 111 

The latest version of the Global Inventory Modeling and Mapping Studies 112 

(GIMMS) NDVI3g dataset derived from the Advanced Very High Resolution 113 

Radiometer (AVHRR) sensors 114 

(https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation115 

-index-3rd-generation-nasagfsc-gimms) was used in this study. NDVI is an indicator of 116 

canopy greenness and has been commonly used for vegetation dynamic monitoring at 117 

regional and global scales (e.g. Barichivich et al., 2013; Huang et al., 2017b). GIMMS 118 

has the longest time series of NDVI observations that cover 1982–2015, with a spatial 119 

resolution of 0.083° and a biweekly temporal resolution (Jorge and Compton, 2014). 120 

The biweekly NDVI data were composited into monthly series using the maximum 121 

value composite (MVC) method. We defined the growing season as the period from 122 

May to September, and calculated growing-season average NDVI (NDVIGS) that is 123 

used in the following analyses. Pixels with a multi-year mean NDVIGS value less than 124 

0.1 during 1982−2015 were considered to be bare and sparsely vegetated areas and 125 

were excluded from the following analysis. 126 
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2.2. Climate data and drought variables  127 

In this study, we use two drought variables to detect extreme drought events: 128 

climatic water deficit (CWD), defined as precipitation minus the potential 129 

evapotranspiration (PET) (Stephenson, 1998), and the standard 130 

precipitation-evapotranspiration index (SPEI), a climatic drought index based on a 131 

water balance that includes the effects of temperature variability on drought 132 

assessment that has the advantage of combining multiple scales (Beguería et al., 2014; 133 

Vicente-Serrano et al., 2010; Vicente-Serrano et al., 2013). We obtained two climate 134 

datasets to calculate these drought variables. One was the climate dataset for 86 135 

meteorological stations with complete and continuous monthly meteorological records 136 

from 1982 to 2015 across the TP, collected from the China Meteorological 137 

Administration (CMA) (http://data.cma.cn/data/). Stations located at 3 × 3 pixels with 138 

an average NDVIGS less than 0.1 over the 34 years were excluded. As a result, 139 

meteorological data from 79 stations in the study area were processed, which were 140 

mainly located in the eastern, central and southern plateau. The other climate dataset 141 

was the gridded reanalysis forcing dataset at a 0.1° spatial resolution and 3 hour 142 

temporal resolution covering the same time period, obtained from the China 143 

Meteorological Forcing Dataset (CMFD), developed by the Data Assimilation and 144 

Modeling Center for Tibetan Plateau Multi-spheres, Institute of Tibetan Plateau 145 

Research, Chinese Academy of Sciences 146 

(http://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49/?q=%147 

E4%B8%AD%E5%9B%BD) (Chen et al., 2011; He et al., 2020; Yang et al., 2010).  148 
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For the CMA site-level dataset, we calculated monthly PET and SPEI (at a 149 

time-scale of 3 months) using the Food and Agriculture Organization of the United 150 

Nations (FAO-56) Penman-Monteith approach (Monteith, 1965) using the SPEI R 151 

package (Beguería et al., 2014; Vicente-Serrano et al., 2010). Driving inputs included 152 

latitude, elevation and monthly climate status, i.e., temperature, precipitation, wind 153 

speed, relative humidity and bright sunshine hours collected from meteorological 154 

stations. Note that bright sunshine hours were used to estimate solar radiation in this 155 

calculation. Then, monthly CWD was calculated as precipitation minus PET. Detailed 156 

calculation procedures are provided in http://spei.csic.es/home.html. 157 

In terms of the gridded reanalysis CMFD, because solar radiation and daily 158 

maximum and minimum temperatures were not available, we calculated daily PET at 159 

a 0.1° resolution using the FAO-56 Penman-Monteith equation, with inputs including 160 

instantaneous near surface (2 m) air temperature, pressure, air specific humidity, wind 161 

speed and 3-hour mean surface downward shortwave and longwave radiation. Net 162 

radiation was calculated as the sum of downward components of shortwave and 163 

longwave radiation minus the sum of their upward components. The upward 164 

longwave was calculated using the surface air temperature (Blackbody radiation law). 165 

Upward shortwave was equal to downward shortwave multiplies albedo, following 166 

the method in (Sheffield et al., 2012). In this study, we used black-sky albedo in the 167 

visible band (ABD_BSA_VIS) as albedo data accessed from the Global Land Surface 168 

Satellite (GLASS) Product (Liang et al., 2013a; Liang et al., 2013b), downloaded 169 

from http://www.glass.umd.edu/. The ABD_BSA_VIS data had a geographic 170 
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resolution of 0.05°, and we aggregated to a 0.1° resolution prior to the calculation to 171 

match the CMFD data resolution. Through the above procedures, daily PET data were 172 

converted to monthly accumulative PET, and then, monthly CWD was obtained by 173 

subtracting PET from precipitation. Accordingly, monthly precipitation and PET were 174 

determined to calculate the SPEI using the R package. Finally, we resampled the 175 

gridded monthly CWD and SPEI data to a resolution of 0.083° to match the spatial 176 

resolution of NDVI. The growing season CWD and SPEI were produced by averaging 177 

the corresponding values from May to September.  178 

2.3. Land cover and digital elevation model (DEM) datasets  179 

The land cover map of TP was extracted from the 1:1000,000 digitalized 180 

vegetation map of China (Editorial Board of Vegetation Map of China, 2001, 181 

http://westdc.westgis.ac.cn), and it was mapped in Figure 1 and in our previous study 182 

(Li et al., 2020). The elevation data were obtained from the Advanced Spaceborne 183 

Thermal Emission and Reflection Radiometer Global Digital Elevation Model version 184 

2 (http://earthexplorer.usgs.gov/), with a spatial resolution of 30 m. We aggregated the 185 

elevation data into a 0.083° resolution using the bilinear interpolation method. To 186 

obtain an overall view of vegetation greenness across the plateau, we drew the contour 187 

lines of the multi-year mean NDVIGS during 1982−2015. The topography and 188 

vegetation types of the TP and the contour map of the mean NDVIGS are shown in 189 

Figure 1, showing a decrease in NDVIGS from the southeastern forest region to the 190 

western desert region along an increasing altitude gradient. 191 
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 192 

Fig. 1. The topography (m, above sea level) of the Tibetan Plateau (TP) and the 193 

isolines of multi-year average growing season (May-September) NDVI during 1982−194 

2015 over the plateau. Inset shows the vegetation types across the TP. 195 

2.4. Drought legacy on vegetation greenness 196 

In this study, we identified extreme drought events as the years with detrended 197 

growing season drought variables (i.e., CWD and SPEI) exceeding 1.5 standard 198 

deviations (1.5-SD dry anomaly). To avoid consecutive drought events disturbing the 199 

following year plant recovery, only single drought events lasting no more than one year 200 

and no consecutive drought in the following 3 years were considered. The legacy effect 201 

in growing-season vegetation greenness, i.e., NDVIGS, was quantified using two 202 

methods: (a) partial autocorrelation function (PACF) coefficients of yearly NDVIGS, 203 

and (b) the departure of observed NDVIGS from predicted NDVIGS after extreme 204 
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drought events based on long-term correlations between growing season NDVI and 205 

drought variables. PACF identifies the extent of the lag in a time series (i.e., yearly 206 

NDVIGS in this study) while conditioning on the values at all smaller lags (Ramsey, 207 

1974). It is a simple and widely used way to measure legacy effects in time series 208 

(Scheffer et al., 2009).  209 

The second method generates a prediction of post-drought greenness after each 210 

extreme drought event, calculated by linear regressions between drought variables and 211 

NDVIGS over the period of 1982−2015, as in previous studies (Anderegg et al., 2015b; 212 

Huang et al., 2018; Sala et al., 2012). In this method, the reliability of the drought 213 

legacy depends on the strength of the correlations between the growing season NDVI 214 

and drought variables. Time series of NDVIGS and two drought variables were 215 

detrended and normalized prior to linear regressions. The legacy effect at each pixel or 216 

station was determined by averaging the departure values between the observed and 217 

predicted NDVIGS after all extreme drought events. Following the same procedures, we 218 

also calculated legacy effects using residuals of NDVIGS from which the effects of 219 

temperature were removed by linear regression. Finally, pixels or stations central at 220 

3×3 pixels with a multi-year average NDVIGS smaller than 0.1 over the 34 years were 221 

excluded from the analysis. To investigate the altitude gradient of drought legacy 222 

effects on NDVIGS, we calculated the mean legacy effect in each elevation bin at an 223 

interval of 100 m. When calculating legacy effects in elevation bins, only the pixels 224 

with significant and positive correlations between NDVI and drought variables were 225 

included.  226 
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3. Results 227 

3.1. Drought legacy effects on vegetation greenness of alpine grass, shrubs and forests 228 

We detected prevalent drought legacy effects on vegetation greenness that lasted 229 

for one year across the TP, i.e., reduced growth in the first year after drought and 230 

expected growth recovery in the second year. Positive PACF coefficients deduced 231 

from SPEI, which indicated detectable legacy effect of NDVIGS, were observed in 232 

more than 80% of all pixels and in approximately 91% of the pixels with significantly 233 

positive NDVI-SPEI relationships in the first year after extreme drought. Such 234 

widespread positive PACF coefficients occurred regardless of the vegetation type (Fig. 235 

2). The results derived from the CWD were similar to those derived from SPEI and 236 

are thus not shown here. One-year drought legacy effects in grass, shrub and forest 237 

were also observed based on the linear regression method (Fig. 3). In addition, drought 238 

legacy effects lasting for 1 year were robust regardless of the strength of the correlation 239 

between drought stress and NDVIGS (Fig. A1). For both results derived from all grid 240 

points and meteorological sites, NDVIGS had comparable magnitudes of negative 241 

legacy effects: approximately 0.33 times the SD decrease in observed versus predicted 242 

NDVIGS in the first year post-drought. However, grids/sites with significant and 243 

positive NDVI-SPEI relationships exhibited larger negative legacy effects than those 244 

derived from all grids/sites (Fig. 3). Furthermore, negative legacy effects tended to be 245 

larger where the interannual variability in NDVIGS was more strongly correlated with 246 

water limitation (Fig. A1). 247 
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Slight differences were found regarding the magnitude of drought legacy effects 248 

among different plant functional groups (PFGs). In the first year after severe drought, 249 

the magnitude of the negative legacy effects deduced from the SPEI was largest on 250 

shrubs, followed by that on forests, alpine meadows and steppes (Fig. 3). This 251 

phenomenon was relatively more evident in pixels with a significantly positive 252 

correlation between NDVIGS and water availability. Reductions in the normalized 253 

NDVIGS (observed minus predicted) of shrub (0.51) were ~1.2 times more 254 

pronounced to those of alpine meadow (0.43) and ~1.5 times to those of alpine steppe 255 

(0.33) in pixels where the NDVIGS exhibited significant correlations with SPEI (Fig. 256 

3). The results from the CWD showed overall comparable magnitudes of legacy 257 

effects between different PFGs and generally larger negative legacy effects compared 258 

with those derived from SPEI, especially in the pixels/sites in which NDVIGS was 259 

significantly correlated with drought stress (Fig. A1). Moreover, there was no 260 

significant correlation between the magnitude of the legacy effect and the intensity of 261 

the corresponding drought event (p > 0.1, Fig. A2), indicating that the magnitude of 262 

the legacy effects was unlikely attributable to differences in drought severity. 263 
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 264 

Fig. 2. Legacy effects detected based on partial autocorrelation function (PACF) 265 

coefficients of growing season NDVI. The mean PACF coefficients across pixels with 266 

positive PACF coefficients in the corresponding year are shown here. Turquoise line 267 

represents mean value of all pixels (All) and pink line represents the pixels where 268 

NDVI is significantly positively correlated with SPEI (R*
+). Error bars represent 95% 269 

confidence intervals around the mean from 1,000 bootstrapped estimates. 270 

 271 

Fig. 3. Drought legacy effects of growing season NDVI in grids (a) and 272 

meteorological sites (b) at periods of 1~3 years after extreme drought events over the 273 

TP. Turquoise and pink bars show results from all grids/sites (All) and grids/sites with 274 

significant and positive correlation (R*
+) between NDVI and SPEI. Error bars 275 
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represent 95% confidence intervals around the mean from 1,000 bootstrapped 276 

estimates. 277 

3.2. Spatial patterns of legacy effects for one year after extreme drought events 278 

The spatial patterns of the correlation coefficients between NDVIGS and drought 279 

variables and the legacy effects in the first year after severe drought are mapped in 280 

Figure 4. Overall, the NDVIGS showed stronger relationships with the SPEI than with 281 

the CWD (Fig. 4a and Fig. A3a). Significant positive correlations between the NDVIGS 282 

and the two drought variables were observed over ~15% and ~20% of the study area, 283 

with a mean Pearson’s correlation coefficient of approximately 0.45 for both drought 284 

variables. On the other hand, approximately 37% and 43% of the meteorological sites 285 

showed significant positive correlations with CWD and SPEI, respectively. There were 286 

consistent spatial patterns of the correlation coefficients between the grid points and 287 

sites. Regions of significant positive coefficients appeared mainly on the southwestern 288 

and northeastern plateau and in the Yangtze River basin (Fig. 4a), indicating a 289 

substantial dependence of vegetation growth on water availability in these regions. 290 

NDVIGS in parts of the southern, southeastern and central plateau exhibited negative 291 

correlations with drought variables (Fig. 4a and Fig. A3a). These negative relationships 292 

also occurred in the partial correlation analysis by controlling the mean growing season 293 

temperature (Fig. A4), suggesting that the interannual variations in vegetation growth 294 

in these regions are unlikely constrained by water stress but were probably driven by 295 

variations in insolation because less precipitation may suggest fewer cloudy days and 296 
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more insolation, which can positively affect plant growth over these regions (Zhang et 297 

al., 2017).   298 

Negative drought legacy effects were prevalent across most parts (~70% of the 299 

study area) of the TP, irrespective of the relationship between NDVIGS and water 300 

deficits (Fig. 4b). The SPEI-based legacy effects were largely consistent with those 301 

derived from CWD (Fig. 4b and Fig. A3b), as well as with those derived from 302 

residuals of the NDVIGS after removing the effects of temperature by linear regression 303 

(Fig. A4). Note that the validity of the legacy effects depended on the strength of the 304 

regression between NDVIGS and drought variables. Therefore, we focused on regions 305 

where NDVIGS was significantly positively correlated with drought stress. In these 306 

regions, vegetation greenness exhibited pronounced negative legacy effects (~71% of 307 

the pixels with significant positive NDVI-SPEI relationships) (Fig. 4b and Fig. A3b). 308 

Positive legacy effects (~29%), where observed NDVIGS increased compared to that 309 

predicted in the next year, were sparsely located in the central, western, and humid 310 

forest regions on the eastern edges of the plateau (Fig. 4b).   311 

 312 

Fig. 4. Spatial patterns of correlation coefficients between growing season NDVI and 313 
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SPEI (a), and the legacy effect in the first year post-drought derived from SPEI (b). 314 

Colors of circles show results from meteorological sites (circles with black edges 315 

represent sites with significant correlation between NDVI and SPEI, p < 0.05). Inset 316 

in (a) shows the pixels with significant NDVI-SPEI relationships (red: positive, blue: 317 

negative). Inset in (b) shows the frequency histogram of the legacies across pixels 318 

with significant positive NDVI-SPEI relationships (R*
+) in (a). Extra blank areas in (b) 319 

means that no extreme drought event is detected during 1982−2015. 320 

3.3. Elevation-dependent differences in legacy effects between different ecosystem 321 

types 322 

The magnitude of vegetation greenness legacy effects in the first year after 323 

extreme drought showed clear altitude dependencies over the TP. Figure 5 shows the 324 

changes in legacy effects along the elevational gradient (at 100 m interval bins). For all 325 

PFGs combined, the negative drought legacy effects deduced from the SPEI and CWD 326 

showed a significant increasing trend along the elevational gradients (Fig. 5a and Fig. 327 

A5a). For the alpine steppe, the magnitude of negative drought legacy effects 328 

gradually increased from 0.2 in 2200 m to 0.9 in 3800 m (p < 0.001), then decreased 329 

with elevation (p < 0.001), reaching approximately 0.09 at 5200 m, and then changed 330 

to positive legacy effects at bins of 5300 m and 5400 m (Fig. 5b). In contrast, the 331 

alpine meadow showed an increasing magnitude of negative legacy effect along the 332 

elevation bins of 3200-5400 m (p = 0.05, Fig. 5c). This increasing trend was more 333 

evident after removing the effects of temperature (p < 0.01), particularly at altitudes 334 
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higher than 4000 m, with the largest legacy effect of approximately 1 at 5300 m (Fig. 335 

A5c). The contrasting elevation dependencies of steppe and meadow at higher altitudes 336 

were robust regardless of the different data used or whether the effect of temperature 337 

was removed (Fig. A5). Shrub showed a weak decreasing trend in negative legacy 338 

effects with altitude (p = 0.05, Fig. 5d), whereas this trend did not exist after removing 339 

the effects of temperature or when using CWD data (Fig. A5d), which should be treated 340 

with caution because of the possibility of inaccurate remote sensing data due to the 341 

complex and steep terrain of shrublands (Fig. 1). Drought legacy effects on the 342 

greenness of forest did not show significant trends with altitude (Fig. 5). 343 

 344 

Fig. 5. Relationship between legacy effect on growing season NDVI in the first year 345 

after drought events and elevation (at 100m interval bins). Only pixels with significant 346 
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and positive correlation between growing season NDVI and SPEI and bins with at 347 

least 10 sample size were included in the analysis. Dots illustrate the average values 348 

within the corresponding elevation bins. Error bars represent 95% confidence 349 

intervals around the mean from 1,000 bootstrapped estimates. 350 

4. Discussion 351 

4.1. Consistent drought legacy effects on plant growth among different PFGs on the TP 352 

Unexpectedly similar durations of drought legacy effects on growing-season 353 

vegetation greenness among different PFGs on the TP may be linked to the limited 354 

resource availability and adaptive response of plant growth to drought conditions in 355 

alpine environments (Liu et al., 2019; Marine et al., 2015). In general, temperate 356 

herbaceous grassland species can recover very rapidly in the following growing season 357 

after drought through efficient root water use patterns and interspecific functional 358 

strategies (Dreesen et al., 2014; Griffin-Nolan et al., 2018; Hoover et al., 2014; Lloret et 359 

al., 2012). However, pervasive incomplete growth in the year after extreme drought 360 

and lagged recovery until the second year were observed in TP grasslands (Fig. 2 and 361 

Fig. 3). The result that vegetation growth continued to be suppressed in the following 362 

year has also been found in other semi-arid grasslands (Arredondo et al., 2016). When 363 

extreme drought combines with heat, i.e., ‘hot drought’, the legacy effect can occur 364 

for up to 2 years in alpine grasslands (De Boeck et al., 2018). The observed legacy 365 

effects after drought on the TP and other alpine grasslands might be attributable to 366 

low nutrient availability in soil and the phenological constraints that limit potential 367 
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growth later in the growing season (Cremonese et al., 2017; De Boeck et al., 2016; 368 

Zhang et al., 2019a). Relatively lower soil water availability could suppress soil 369 

nutrient cycling, leading to nutrient deficiencies in plants and microbes (Aanderud et 370 

al., 2010; Wang et al., 2013a), which may modulate the response of alpine grasslands 371 

to drought. On the other hand, unlike annual grass that can quickly colonize open 372 

niches in the following growing season, the dominant plant species of perennials on 373 

the TP may be subject to slower recruitment and thus delayed recovery from drought, 374 

especially under a shorter growing season than that of temperate grasslands and alpine 375 

conditions that make seedling establishment more difficult (De Boeck et al., 2018). 376 

Moreover, for perennials, drought legacy effects may arise from changes in structural 377 

components such as a reduced tiller density that can limit recruitment of new tillers and 378 

maximum leaf area in the next year after drought and stolon density that can restrict the 379 

regeneration process through a stoloniferous expansion strategy (Reichmann and Sala, 380 

2014; Reichmann et al., 2013). 381 

The one-year drought legacy effect on shrub growth in our study is consistent with 382 

that from field experiments, which have shown an approximate drought legacy effect 383 

of 1~2 years (Jobbágy and Sala, 2000). However, tree-ring chronologies in temperate 384 

and boreal forest ecosystems have shown longer drought legacy effects than that 385 

based on forest NDVI in the TP in this study. Since NDVI is a proxy for canopy 386 

greenness while tree-ring widths indicate stem radial growth, such difference may be 387 

partly explained by the dynamic carbon allocation strategies of forest ecosystems in 388 

response to drought with a preferential allocation to the canopy as opposed to wood, 389 
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leading to longer legacy effects in tree rings than in NDVI (Kannenberg et al., 2019b; 390 

Kannenberg et al., 2020). In addition, the carbon allocation mechanism after drought 391 

also varies across different biomes (Gazol et al., 2018). Moreover, acclimation 392 

mechanisms in semi-arid forests coping with drought could also be one potential 393 

mechanism underlying a more rapid recovery after drought in woody plants on the 394 

plateau (Fang and Zhang, 2019; Liu et al., 2008). Our results suggest that tree growth 395 

on the TP is unlikely to have experienced severe hydraulic damage or extensive 396 

mortality, which could otherwise lead to years of recovery after extreme drought 397 

events.       398 

It is, however, difficult to compare drought legacy effects across the globe due to 399 

various quantitative approaches based on radial growth, remote sensing products and 400 

leaf-level observations, and varied definitions of drought events that contribute to the 401 

reported highly variable legacy effects in terms of duration and magnitude 402 

(Kannenberg et al., 2020). On the Tibetan Plateau, although vegetation greenness 403 

showed similar durations and comparable magnitudes of drought legacy effects among 404 

different PFGs at a regional scale (Fig. 3), the magnitude of legacy effects exhibited 405 

large spatial heterogeneity (Fig. 4). Thus, our study highlights the need for further 406 

research into the physiological and ecological mechanisms of alpine vegetation in 407 

response to extreme drought events. 408 
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4.2. Divergent changes in elevational gradients of drought legacy effects between 409 

alpine meadow and steppe  410 

The drought legacy effects on vegetation greenness varied with altitude, which 411 

may have been due to altitudinal shifts in climate factors limiting plant recovery 412 

among different ecosystem types. In the alpine meadow areas, the magnitude of 413 

negative legacy effects increased with altitude (Fig. 5c and Fig. A5c), coincident with 414 

a reverse dependence on temperature and water availability (p < 0.05) (Fig. 6e-g and 415 

Fig. A6), which suggests a more pronounced negative legacy effect under relatively 416 

drier and colder conditions. It has been documented that for forest ecosystems, the 417 

magnitude of the legacy effect is associated with precipitation but nonsignificantly 418 

correlated with temperature (Anderegg et al., 2015b). For the alpine meadow on the 419 

TP, both water availability and thermal conditions appeared to impact the drought 420 

legacy effect and thus its resilience to drought, probably linked to the dual limitation 421 

of temperature and precipitation on TP grassland productivity (Liu et al., 2018). In 422 

addition, it has been documented that vegetation growth has relatively higher climate 423 

sensitivity at higher altitudes (Li et al., 2019a; Tao et al., 2015; Wang et al., 2013b); 424 

therefore, the declining water availability and air temperature concurrent with the 425 

increasing sensitivity of growth to climate at higher elevations may result in an 426 

amplified reduction in NDVIGS at higher altitudes over the TP. Apart from climate 427 

factors, soil hydraulic properties, particularly soil water holding capacity (WHC) that 428 

is determined by soil texture and organic content (Dai et al., 2013b), might also 429 

impact the magnitude of drought legacy effect and thus contribute to the observed 430 
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elevation-dependence of the legacy effect. However, our analysis shows that WHC is 431 

not significantly correlated with the legacy effect for alpine meadow (Fig. A7).  432 

Drought-induced legacy effects in the alpine steppe increased at lower altitudes 433 

(lower than 3800 m) and then decreased sharply at higher altitudes (higher than 3800 434 

m), showing an opposite trend in elevation dependence to that of the meadow. In 435 

contrast to the alpine meadow, the magnitude of the negative legacy effects in the 436 

alpine steppe was positively related to precipitation and water deficit (p < 0.001, Fig. 437 

6a,b), i.e. the drier the region, the smaller the magnitude of the negative legacy effect 438 

was. Therefore, the segmented trends between lower and higher altitudes (Fig. 5b) 439 

might be linked to the different changes in precipitation between lower and higher 440 

elevations (Fig. A6). As for the potential impact of soil hydraulic properties, although 441 

soil WHC is negatively correlated with the legacy effect, the relationship becomes 442 

non-significant when CWD (or precipitation) is controlled for (Fig. A7). Thus, the 443 

long-term water availability, rather than WHC, may be an important factor that 444 

influences the drought legacy effect in alpine steppe over the TP. We speculate that 445 

compared with the semi-arid meadow, the steppe ecosystem on the TP evolved 446 

ecophysiological traits adapted to arid environments, leading to higher resilience 447 

associated with higher water-use efficiency (Ponce-Campos et al., 2013; Wu et al., 448 

2013); thus, steppes generally have a smaller magnitude of legacy effects compared to 449 

that of meadows (Fig. 3), albeit with lower precipitation and water availability (Fig. 450 

A6). The positive relationship between the drought legacy effect and precipitation in 451 

alpine steppe might be attributable to the negative correlation between water-use 452 
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efficiency and precipitation (Huang et al., 2015; Wu et al., 2013), whereby a higher 453 

water-use efficiency enables growth with less water, possibly conferring a relatively 454 

more rapid recovery rate after drought. However, further research is needed to clarify 455 

this mechanism. 456 

Accordingly, we argue here that the large spatial heterogeneity in the drought 457 

legacy effects across the TP is likely attributable to different hydrothermal conditions 458 

caused by elevational gradients and the diverse response strategies of different 459 

ecosystem types. Other climatic factors that depend on elevation, such as sunshine 460 

duration and terrain slope angle, may also lead to changes in vegetation recovery. The 461 

widespread long-lasting post-drought effects across the TP, particularly on the 462 

southwestern and northeastern plateau where vegetation growth is highly dependent 463 

on water availability, indicate a high risk of grassland degradation induced by the 464 

projected increasing extreme drought events in the future, which may affect 465 

hydrological and ecological services in Asia. 466 
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 467 

Fig. 6. Relationships between legacy effects on growing season NDVI in the first year 468 

post-drought events and multi-year mean growing season climatic water deficit 469 

(CWD), precipitation, temperature and downward shortwave radiation in alpine 470 

steppe and meadow. Dots represent average values within the 100m elevation bins. 471 

Only pixels with significant and positive NDVI-SPEI relationships were included in 472 

each elevation bin, and only bins with at least 10 sample size are shown here. 473 

5. Conclusions 474 

In this study, we detected prevalent legacy effects on growing-season vegetation 475 

greenness in the first year after extreme drought events in alpine ecosystems of the TP. 476 

That is, albeit with climatic conditions returning to normal after drought, plants did 477 

not recover their expected growth for approximately one year, regardless of ecosystem 478 
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types. To our knowledge, our study is the first to reveal the drought legacy effects on 479 

greenness over the alpine ecosystems of the TP at a regional scale. Importantly, the 480 

same lag time and comparable magnitude of legacy effects among grass, shrubs, and 481 

forests are observed on the plateau. Meanwhile, drought legacy effects are spatially 482 

heterogeneous and exhibit clear altitude dependence, while divergent relationships 483 

between altitude and the magnitude of reduced NDVIGS in the first year post-drought 484 

are observed between alpine steppe and meadow. For alpine meadow, the negative 485 

legacy effects are more pronounced at higher altitudes with reduced precipitation and 486 

temperature, indicating a weaker drought resilience under dryer and colder conditions. 487 

In contrast, for alpine steppe, smaller legacy effects are found in regions with lower 488 

precipitation, suggesting a stronger drought resilience of plant communities in dryer 489 

regions for alpine steppe. Thus, the distinct elevation dependencies of drought legacy 490 

effects may be attributable to altitudinal shifts in climate factors that limit plant 491 

growth and to different strategies among ecosystem types to cope with droughts. More 492 

observations and in situ experiments on vegetation recovery after drought are needed 493 

to further explore the mechanisms underlying the varying responses to drought on the 494 

TP, probably involving vertical changes in plant physiological traits, species 495 

distribution and community structure. The results from this study help improve our 496 

knowledge of vegetation vulnerability to extreme droughts in alpine ecosystems. 497 

Given the rapid climate change over the TP with a projected increasing trend in the 498 

frequency and intensity of extreme events in both temperature and precipitation (You 499 

et al., 2020), the identified widespread drought legacy effects demonstrate the 500 
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necessity to account for the potential prolonged effects of extreme climate events in 501 

order to better predict future ecosystem dynamics and functions on the TP. 502 
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Appendices 743 

Figs. A1-A7. 744 

 745 

Fig. A1. Drought legacy effects on growing season NDVI derived from SPEI and CWD 746 

in grids (a) and meteorological sites (b) at periods of 1~3 years after extreme drought 747 

events over the TP. Only results with at least 10 sample size were included in the 748 

analysis. Error bars represent 95% confidence intervals around the mean from 1,000 749 

bootstrapped estimates. 750 

 751 

Fig. A2. Relationship between the legacy effects in growing season NDVI after the 752 

first year drought events and anomaly of SPEI (a), CWD (b). 753 
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 754 

Fig. A3. Spatial patterns of correlation coefficients between growing season NDVI 755 

and CWD (a), and the legacy effect in the first year post-drought derived from CWD 756 

(b). Colors of circles show results from meteorological sites (circles with black edges 757 

represent sites with significant and positive correlation between NDVI and CWD, p < 758 

0.05). Inset in (a) shows the pixels with significant NDVI-CWD relationships (red: 759 

positive, blue: negative). Inset in (b) shows the frequency histogram of the legacy 760 

effects across pixels with significant positive NDVI-CWD relationships (R*
+) in (a). 761 

Extra blank areas in (b) means that no extreme drought event is detected during 762 

1982-2015. 763 
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 764 

Fig. A4. Spatial patterns of partial correlation coefficients between growing season 765 

NDVI and CWD (a), SPEI (b), and the legacy effects (after removing effects of 766 

temperature by linear regression) in the first year post-drought derived from CWD (c), 767 

SPEI (d). Colors of circles show results from meteorological sites (circles with black 768 

edges represent sites with significant and positive correlation between NDVI and 769 

CWD/SPEI, p < 0.05). Insets in (a) and (b) show the pixels with significant 770 

NDVI-CWD/SPEI relationships (red: positive, blue: negative). Insets in (c) and (d) 771 

show the frequency histograms of the legacy effects across pixels with significant 772 

positive NDVI-CWD/SPEI relationships (R*
+). Extra blank areas in (c) and (d) means 773 

that no extreme drought event is detected during 1982-2015. 774 
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 775 

Fig. A5. Dependence upon elevation of legacy effect of NDVI (after removing effects 776 

of temperature by linear regression) in the first year post-drought events derived from 777 

SPEI and CWD. Only pixels with significant and positive correlation between NDVI 778 

and SPEI/CWD and bins with at least 10 sample size were included in the analysis. 779 

Error bars represent 95% confidence intervals around the mean from 1,000 780 

bootstrapped estimates. 781 

 782 
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Fig. A6. Multi-year average growing season temperature, precipitation, climatic water 783 

deficit and downward shortwave radiation across the elevation gradients of the TP (at 784 

100m interval bins). Only pixels with significant and positive correlation between 785 

NDVI and SPEI and bins with at least 10 sample size were included in the analysis. 786 

 787 

Fig. A7. Relationship between legacy effects on growing season NDVI in the first 788 

year post-drought and soil water holding capacity (WHC) in alpine steppe and 789 

meadow over the TP. Calculated linear correlation coefficient (black) and partial 790 

correlation coefficient controlling either CWD (red) or precipitation (blue) are also 791 

given with their significance levels. Dots represent average values within the 100m 792 

elevation bins. Only pixels with significant and positive NDVI-SPEI relationships 793 

were included in each elevation bin, and only bins with at least 10 sample size are 794 

shown here. WHC was calculated as field capacity minus permanent wilting point, 795 

which was from Dai et al. (2013), integrated over the top six layers of the dataset that 796 

correspond to the depth of 0~0.829 m.  797 
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