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Abstract 20 

Growing evidence indicates that the risk of heat extremes will increase as climate 21 

change progresses and create a significant threat to public health and the economy. 22 

Socioeconomic exposure is the key component for assessing the risk of such events. To 23 

quantify socioeconomic exposure to heat extremes for 2016–2035 and 2046–2065, we 24 

use the projections of five global climate models forced by using three representative 25 

concentration pathways (RCPs) and projections of population and gross domestic 26 

product (GDP), and we take into account the geographic change in the distribution in 27 

shared socioeconomic pathways (SSPs). The exposure of the global population for 28 

2046–2065 is the greatest under the RCP8.5-SSP3 scenario, up to 1037(±164) × 109 29 

person-days, and the global GDP exposure for 2046–2065 is greatest under the RCP2.6-30 

SSP1 scenario, up to 18(±2) × 1015 dollar-days. Asia has the highest exposure among 31 

all continents for both population and GDP, accounting for over half of the global 32 

exposure. Africa has the largest increase in exposure, with the annual population and 33 

GDP exposures increasing by over 9- and 29-fold, respectively, compared with the base 34 

period (1986–2005). The effect of climate makes the dominant contribution (47%–53%) 35 

globally for the change in population exposure. Changes in the geographic distribution 36 

of GDP cause nearly 50% of the total change in GDP exposure for 2016–2035. 37 

Mitigating emissions of greenhouse gases, either at the level of the RCP2.6 scenario or 38 

at a more ambitious target, is essential for reducing socioeconomic exposure to heat 39 

mailto:liuyujie@igsnrr.ac.cn
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extremes. In addition, designing and implementing effective measures of adaptation are 40 

urgently needed in Asia and Africa to aid socioeconomic systems suffering from heat 41 

extremes due to climate change. 42 

Keywords socioeconomic exposure; heat extremes; climate change; population 43 

exposure; gross domestic product (GDP) exposure 44 

1 Introduction 45 

Climatic extremes cause extensive economic damage each year, and the risks are 46 

expected to increase with continued socioeconomic development and climate change. 47 

Risk is usually represented as the probability of occurrence of hazardous events or 48 

trends multiplied by the impact if these events or trends occur. Risk is due to the 49 

interaction of hazard, exposure, and vulnerability. Exposure usually refers to the people, 50 

livelihoods, resources, infrastructure, and economic, social, or cultural assets in places 51 

and settings that could be adversely affected (IPCC, 2014). The prediction of changes 52 

in exposure to future climatic extremes could, therefore, contribute to the need to 53 

consider effective countermeasures to reduce vulnerability and risk. Global 54 

socioeconomic exposure (i.e., exposure of the population and gross domestic product, 55 

GDP) under climate change has received less attention (Burke et al., 2015; Carleton 56 

and Hsiang, 2016), despite recent progress in assessing the hazards of climatic extremes 57 

(Hirabayashi et al., 2013; Cook et al., 2014; King et al., 2017; Huang et al., 2017; Nath 58 

et al., 2017). Such estimates are urgently needed to clarify future spatiotemporal 59 

variation and changes in global socioeconomic exposure and thereby avoid adverse 60 

effects on public health and the economy. The importance of assessing exposure is 61 

gradually being recognized, as indicated by the published reports of the 62 

Intergovernmental Panel on Climate Change (Field et al., 2012; IPCC, 2013), the 63 

proposal of a new set of shared socioeconomic pathways (SSPs, O’Neill et al., 2014), 64 

and some recent studies of the risk of climate change that considers the effects of 65 

socioeconomic factors (Ceola et al., 2015; Mora et al., 2017; Zhang et al., 2018). The 66 

integration of climate change with the social economy to estimate future risk, the 67 

assessment of the relative importance of different factors, and the quantification of 68 

uncertainty would provide a basis for adapting to extreme climate change and reducing 69 

the risk of heat extremes. 70 

Because of climate change, the frequency and intensity of climatic extremes, such as 71 

heat extremes, have increased in recent decades and are likely to continue to increase 72 

in the coming decades (IPCC, 2013). Heat extremes have been responsible for 73 

significant public health threats and economic losses over the last 100 years. Data for 74 

historical damage from the International Disaster Database 75 

(https://www.emdat.be/emdat_db/) indicate that heat extremes affected 1.03 × 108 76 

people, which includes the deaths of 183 495 people, and caused worldwide economic 77 

losses of 6.33 × 1010 USD from 1936 to 2019. Serious heat extremes have also occurred 78 

more frequently in recent decades, such as those in Europe in 2003, 2018 and 2019 79 

(Robine et al., 2008), Australia in 2008 (Vaneckova et al., 2008), Russia in 2010 80 

https://www.emdat.be/emdat_db/
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(Trenberth and Fasullo, 2012), and China in 2013 (Sun et al., 2014). Socioeconomic 81 

exposure and disaster risks will be magnified in a warmer future (Jones, and O’Neill, 82 

2016; Smirnov et al., 2016), when the more frequent and intense heat extremes of this 83 

century (Fischer and Knutti 2015; Kharin et al., 2013) combine with a greater 84 

population and the accumulation of wealth.  85 

In socioeconomic systems, population is most closely related to heat extremes 86 

because of its direct impact on public health (Wang et al., 2019). Various economic 87 

sectors also can be seriously affected by heat extremes, such as agriculture (water 88 

shortages) and industries that rely heavily on hydropower. In addition, tourism, 89 

transportation, construction, and other industries are also affected by heat extremes to 90 

varying degrees (IPCC, 2014). Considering the data on historical damage of heat 91 

extremes (number of people affected, total damage on the economy, etc.) and the 92 

availability of simulated socioeconomic data for the future, we selected population and 93 

economic activity, expressed as GDP, to determine the impact of heat extremes on the 94 

socioeconomic system. Many studies that have quantified future socioeconomic 95 

exposure have not considered changes in populations or GDP but assumed that these 96 

variables remain constant, which is inappropriate for predicting changes in exposure 97 

(Bouwer, 2013; Sun et al., 2017). Most studies have also focused on changes in 98 

exposure based on a specific pathway of emission of a greenhouse gas (GHG) or a 99 

target of global mean temperature (GMT) rise such as 1.5 °C or 2.0 °C (Harrington and 100 

Otto, 2018; Mishra et al., 2017). These analyses of the spatiotemporal variation in 101 

exposure between scenarios and time periods are thus insufficient because the 102 

population and economy (usually calculated by GDP) are both essential elements in 103 

socioeconomic systems and are the factors most severely affected by climatic extremes. 104 

The exposures of populations and GDP are usually predicted separately, and these two 105 

elements are rarely used to assess socioeconomic exposure (Bowles et al., 2014; 106 

Forzieri et al., 2017), although the spatial distributions of populations and economies 107 

are also consistent. Given these factors, we focus in this work on simulating the global 108 

exposure to extreme heat as a function of changes in climate and population or GDP. 109 

The results constitute a first step toward understanding how interactions between 110 

climate change and socioeconomic systems affect exposure patterns. 111 

This study systematically quantify the global spatiotemporal distribution of and 112 

changes in exposure of population and GDP to heat extremes under different scenarios 113 

and over different time periods. Bias-corrected projections of five global climate 114 

models (GCMs, Table 1) driven by representative concentration pathways (RCPs) are 115 

used to calculate the frequency of extreme heat events (see Sec. 2.1, Materials). 116 

Combined with population and GDP projections in SSPs (Figs. S1 and S2), which 117 

consider changes in the geographic distribution of population and GDP (see Sec. 2.1, 118 

Materials), the spatiotemporal variation of global exposure to extreme heat of the 119 

population and GDP is quantified in both the base period (1986–2005) and in future 120 

periods (2016–2035 and 2046–2065) under various scenarios (see Sec. 2, Materials and 121 

Methods). We also assess the relative importance of climatic and socioeconomic factors 122 

and their uncertainties to characterize the contribution of climate change and growth in 123 

population and GDP to future changes in extreme-heat exposure. The main target of 124 
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this study is quantifying the impact of heat extremes on socioeconomic system under 125 

climate change to characterize variation of socioeconomic exposure among scenarios 126 

and periods, distinguish high exposure regions, and identify dominant contributor for 127 

exposure change, so as to support policymakers in the development of climate change 128 

mitigation and adaptation strategies. 129 

2 Materials and Methods 130 

2.1 Materials 131 

Daily climatic data were obtained from the Inter-Sectoral Impact Model 132 

Intercomparison Project (ISI-MIP, Warszawski et al., 2014) for the Coupled Model 133 

Intercomparison Project Phase 5 (CMIP5, Taylor et al., 2012) (Table 1), which contains 134 

simulations from five GCMs based on RCPs. The RCP scenarios represent pathways 135 

based on simulated impacts on land use, aerosol emissions, and GHGs (Vuuren et al., 136 

2011). The four RCPs cover the period up to 2100 and have radiative forcings from the 137 

open literature that vary from 2.6 to 8.5 W/m2. The scenarios, RCP2.6, RCP4.5, and 138 

RCP8.5, which represent low, middle, and high GHG emissions, respectively, were 139 

selected for analysis (Vuuren et al., 2011). RCP6.0, which is interpreted as either a 140 

medium baseline or a high-mitigation case between RCP4.5 and RCP8.5, is not used. 141 

The base period was 1986–2005, which is the commonly used reference period in 142 

assessments of projected changes in extreme indices and climate impacts (Schleussner 143 

et al., 2016). Future periods in the 2030s and 2050s were given lengths of 20 years 144 

(2016–2035 and 2045–2065) to be consistent with the base period. The spatial 145 

resolution of the output data was offset-corrected and converted to 0.5° × 0.5° latitude 146 

and longitude by spatial downscaling. Statistical bias-correction methods facilitate the 147 

comparison between observed and simulated data during the historical reference period 148 

and for a continuous transition into the future (Hempel et al., 2013). Preservation of 149 

absolute changes in monthly temperature and relative changes in monthly precipitation 150 

in each grid cell implies that the global warming trend and the climate sensitivities of 151 

the GCMs are preserved, and the trend and the long-term mean are well represented, 152 

which ensures the credibility of the simulated data (Hempel et al., 2013; Warszawski et 153 

al., 2014). 154 

The United Nations, the World Bank, and other organizations proposed future 155 

socioeconomic projections for population and GDP. Many previous studies also 156 

combined current socioeconomic data with future climatic data for analysis, although 157 

these studies neglected to consider how changes in socioeconomic factors affect 158 

exposure. We used the predictions of population and GDP from the scenarios of SSPs 159 

based on the selected RCP scenarios. SSPs are reference pathways describing possible 160 

alternative trends in the evolution of societies and ecosystems on a timescale of 100 161 

years without climate change or implementation of climate policies (Riahi et al., 2017). 162 

RCP2.6, 4.5, and 8.5 generally correspond to SSP1, 2, and 3, respectively, based on the 163 

correspondence between the RCPs and SSPs provided by the IPCC (O’Neill et al., 2014, 164 

Table S4). We therefore selected SSP1, 2, and 3 for this study. The RCP2.6-SSP1 165 
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scenario assumes low carbon emissions, sustainable development proceeding at a 166 

reasonably high pace, and fewer inequalities. The RCP4.5-SSP2 scenario assumes 167 

moderate carbon emissions with medium growth in population and GDP. Finally, the 168 

RCP8.5-SSP3 scenario assumes high carbon emissions with a rapidly growing 169 

population and a low adaptive capacity. The projections of population and GDP were 170 

obtained from the National Institute for Environmental Studies, Japan (NIES), which 171 

were downscaled from the International Institute for Applied Systems Analysis 172 

(IIASA). The spatial resolution was also 0.5° × 0.5° latitude and longitude. The 173 

population and GDP projections were downscaled with explicitly considered spatial 174 

and socioeconomic interactions between cities, and they used auxiliary variables, 175 

including road network and land cover. The downscaling results were consistent with 176 

the scenario assumptions and captured the difference in urban and non-urban areas in a 177 

more reasonable manner, which ensures the prediction accuracy of the SSPs (Murakami 178 

and Yamagata, 2016).  179 

Table 1. Description of global climate models (GCMs). 180 

Model Institute 

Atmospheric 

resolution 

(longitude × latitude) 

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory 2.5° × 2° 

HadGEM2-ES 
National Institute of Meteorological 

Research/Korea Meteorological Administration 
1.875° × 1.25° 

IPSL-CM5A-LR Institute Pierre-Simon Laplace 3.75° × 1.875° 

MIROC-ESM-

CHEM 

Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research 

Institute (University of Tokyo), and National 

Institute for Environmental Studies 

2.8° × 2.8° 

NorESM1-M Norwegian Climate Centre 2.5° × 1.89° 

 181 

2.2 Methods 182 

2.2.1 Hazards of extreme heat 183 

Annual days of extreme heat, which is also the frequency of extreme heat, were 184 

used to quantify the hazard, which is defined as the daily maximum temperature 185 

exceeding a threshold. The threshold for extreme heat was defined as the 90th percentile 186 

of daily maximum temperatures for the base period (1986–2005) and was set at 25 °C 187 

when the local 90th percentile was <25 °C (Garssen et al., 2005). We chose relative 188 

thresholds rather than a fixed threshold to project global spatiotemporal variation and 189 

changes in exposure because no single fixed threshold suffices for the substantial 190 

differences in climatic conditions around the world (Gasparrini et al., 2015). Relative 191 

thresholds were, therefore, the simplest definitions of regionally relevant extreme heat 192 

around the globe. The frequency of extreme heat was calculated as follows: 193 

𝐶 = ∑ (𝑇𝐸𝑀𝑖 > 𝑇𝐻𝑅)365
𝑖=1 , (1) 
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𝐶̅ =
∑ 𝐶𝑗

5
𝑗=1

5
, (2) 

where 𝐶 is the annual number of days of extreme heat (day), i is the ith day of a year, 194 

𝑇𝐸𝑀 is the daily maximum temperature (°C), THR is the local threshold (°C), 𝐶̅ is the 195 

multi-model averaged value of 𝐶 (day), and j is the jth GCM. 196 

2.2.2 Exposure to extreme heat 197 

We measured population and GDP exposure for each grid cell as the number of 198 

extreme heat days multiplied by the number of people and GDP, respectively (Jones et 199 

al., 2015). Therefore, the units of population and GDP exposures are person-days and 200 

purchasing power parity (PPP) dollar-days, respectively. To calculate exposure in the 201 

base period and in the future periods (2016–2035 and 2046–2065), we minimized 202 

interannual variations by using 20-year averages of annual extreme heat days and of the 203 

projections of population and GDP. The 20-year mean exposure for each projection of 204 

the five climate models was calculated for the base period and for the future periods. 205 

Moreover, exposure for the grid cells was also aggregated to global and continental 206 

scales for further analysis. Explicitly, we have 207 

𝐸𝑃
̅̅ ̅ =

∑ 𝐶𝑚× 𝑃20
𝑚=1

20
, 

 

(3) 

𝐸𝐺
̅̅̅̅ =

∑ 𝐶𝑚× 𝐺20
𝑚=1

20
, (4) 

where 𝐸𝑃
̅̅ ̅ is the 20-year-averaged population exposure (person-day), m is the mth year 208 

of the study period, 𝐶 is the number of annual days of extreme heat (day), 𝑃 is the 209 

simulated population number (person), 𝐸𝐺
̅̅̅̅  is the 20-year-averaged GDP exposure 210 

(PPP $-day), and 𝐺 is the GDP simulation (PPP $). 211 

2.2.3 Analysis of relative importance of change in exposure and cumulative 212 

probability 213 

Using techniques from a previous study (Jones et al., 2015), we evaluated the relative 214 

importance of the effects of different factors by categorizing the changes in population 215 

and GDP exposures in terms of the effects of climate, population, GDP, and interactions. 216 

The impact of population and GDP was calculated by holding climate constant (i.e., the 217 

20 year averages of annual days of extreme heat for the base period were multiplied by 218 

the populations and GDPs in the RCP-SSP scenarios). Population and GDP were 219 

similarly held constant when calculating the impact of climate (i.e., the population for 220 

the base period was multiplied by the 20 year averages of annual days of extreme heat 221 

in the RCP scenarios). The interactive effect was also calculated to determine whether 222 

the areas with continued population and GDP growth experienced more heat extremes 223 

under climate change. The changes in population and GDP exposure were categorized 224 
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as follows: 225 

∆𝐸𝑃 = 𝐶𝑏∆𝑃 + 𝑃𝑏∆𝐶 + ∆𝑃∆𝐶, (5) 

 226 

∆𝐸𝐺 = 𝐶𝑏∆𝐺 + 𝐺𝑏∆𝐶 + ∆𝐺∆𝐶, (6) 

where ∆𝐸𝑃 is the total change in population exposure, ∆𝐸𝐺  is the total change in GDP 227 

exposure, 𝐶𝑏 is the annual days of extreme heat for the base period, 𝑃𝑏 and 𝐺𝑏 are 228 

the population and GDP for the base period, respectively, ∆𝐶 is the change in annual 229 

days of extreme heat from the base period to future periods, and ∆𝑃 and ∆𝐺 are the 230 

changes in population and GDP, respectively, from the base period to future periods. 231 

Therefore, 𝐶𝑏∆𝑃  is the population effect, 𝐶𝑏∆𝐺  is the GDP effect, 𝑃𝑏∆𝐶  and 232 

𝐺𝑏∆𝐶 are the climatic effects, and ∆𝑃∆𝐶 and  ∆𝐺∆𝐶 are the interactive effects. 233 

The uncertainties of changes in population and GDP exposure for future scenarios 234 

were analyzed to evaluate the possible impact of climate change and growth on 235 

population and GDP. The probability analysis of changes in population and GDP were 236 

first separately calculated in each GCM based on the cumulative distribution function 237 

(CDF). Next, the mean value and standard deviation for the five GCMs were computed. 238 

The CDF of a random variable X represents the probability that X ≤ x.  239 

3 Results 240 

3.1 Spatial pattern of population and GDP exposures to extreme heat  241 

Figure 1 shows the multi-model average exposures of the population and GDP for 242 

RCP8.5-SSP3 for 2046–2065. Figure S3 shows the frequency of extreme heat, and Figs. 243 

S4 and S5 show the population and GDP exposures, respectively. Tables S1 and S2 244 

present the statistics for population and GDP exposures globally and continentally for 245 

the RCP-SSP scenarios and the different time periods. 246 

 247 

Fig. 1: Multi-model global projections of average exposures of (a) population and (b) 248 

GDP to extreme heat for the RCP8.5-SSP3 scenario for 2046–2065. PPP is purchasing 249 

power parity in USD. 250 

The spatial distribution of the frequency of heat extremes indicates latitudinal 251 

zonality in each time period and for each scenario (Fig. S3). The threshold in the base 252 

period exceeds 25 °C, except at latitudes >50° and on the Qinghai-Tibet Plateau. Heat 253 

extremes are most frequent near the equator, and their frequency gradually decreased 254 

with increasing latitude in both the base period and future periods. The frequency of 255 
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extreme heat clearly increases over time. The highest frequency is 36.5 days in the base 256 

period, whereas the frequency is projected to exceed 120 days in the RCP scenarios. 257 

The frequency is significantly higher for 2046–2065 than 2016–2035 under each 258 

scenario. The frequency is highest under the RCP8.5 scenario and lowest under RCP2.6, 259 

but the difference between the scenarios is less than the difference between the time 260 

periods. 261 

The regions with high population and GDP exposures to extreme heat are primarily 262 

concentrated in densely populated areas, such as India, China, midwestern Europe, the 263 

eastern USA, and the coastal areas of South America, for both the base period and the 264 

projected scenarios (Fig. 1). Exposure is also high near the equator in Africa because 265 

of the frequent occurrence of extreme heat. Population exposure under the RCP 266 

scenarios is highest for India and the east coast of China (>10 × 106 person-days). GDP 267 

exposure is much higher for eastern China, the Indian subcontinent, western Europe, 268 

and eastern North America than other locations such as northern Asia, northern North 269 

America, and Middle Oceania, with annual GDP exposure >100 × 109 PPP dollar-days. 270 

3.2 Global and continental change in exposure to extreme heat 271 

Annual exposure of the global population for the base period is 217.80 × 109 person-272 

days, which increases to 1037.06 × 109 person-days for 2046–2065 under the RCP8.5-273 

SSP3 scenario (Table S1). The increase in population exposure is largest for the 274 

RCP8.5-SSP3 scenario and smallest for RCP2.6-SSP1 (Fig. 2). The increase in global 275 

annual GDP exposure is largest for 2046–2065 under the RCP2.6-SSP1 scenario (Fig. 276 

3), with a 10.47-fold increase in exposure relative to the base period (Table S2). In 277 

contrast, the increase is smallest for 2016–2035 under RCP8.5-SSP3, with an increase 278 

of only 3.71-fold relative to the base period. The reason that the highest GDP exposure 279 

appears in the RCP2.6-SSP1 scenario is that SSP1 is a “sustainable” scenario that 280 

assumes economic growth is shared at the global scale, so GDP increases relatively 281 

more in countries that currently have less wealth. Therefore, the exposed GDP at the 282 

global scale is higher in RCP2.6-SSP1, despite the hazard of extreme heat being lower 283 

in RCP2.6. 284 

The population exposure is highest for Asia, followed by Africa, and lowest in 285 

Oceania in both the base period and the RCP scenarios. Exposure in Asia and Africa in 286 

the base period is 63% and 14%, respectively (Table S1). The percentage of population 287 

exposure under the three RCP scenarios decreases for Asia and increases for Africa. 288 

The percentage of population exposure for 2046–2065 under the RCP8.5-SSP3 289 

scenario decreases for Asia to 53% and increases for Africa to 29% of global exposure. 290 

Exposure for the continental GDP in the base period ranks as follows: Asia > North 291 

America > Europe > South America > Africa > Oceania (Table S2).  292 

The percent of GDP exposure increases for Asia, Africa, and South America and 293 

decreases for North America, Europe, and Oceania. The increase in both continental 294 

population and GDP exposures is largest for Africa, with the annual population 295 

exposure >9.20-fold higher under the RCP8.5-SSP3 scenario for 2046–2065 than for 296 

the base period, and the change of population exposure is 1.22-fold larger over the same 297 

period and under the same scenarios for Europe than in the base period, which is the 298 
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smallest change among the continents. GDP exposure increases the most in Africa, 299 

by >29.34-fold relative to the base period under the RCP2.6-SSP1 scenario for 2046–300 

2065, whereas GDP exposure in North America is 3.99-fold higher for 2046–2065 than 301 

the base period, which is the lowest among continents. 302 

Figure 2 presents the relative changes in population exposure for the projected 303 

scenarios relative to the base period. The rate of change is highest in Africa in regions 304 

near the equator. Population exposure for 2016–2035 under the RCP2.6-SSP1 scenario 305 

increases more than 2-fold. The increase in the coastal regions of South America is also 306 

rapid, by more than 2-fold for 2046–2065 under the RCP4.5-SSP2 scenario. The rate 307 

of change, however, is <50% in areas where the rate has usually been high, such as 308 

China, the USA, and Western Europe. Population exposure is much higher for 2046–309 

2065 than 2016–2035 under each scenario when the differences are compared between 310 

different time periods, with time, the population increases gradually, and when that 311 

increase is crossed with the more frequent heat extremes affected by climate change. 312 

Population exposure is highest under the RC8.5-SSP3 scenario, where population 313 

growth is rapid, followed by the RCP4.5-SSP2 and RCP2.6-SSP1 scenarios.  314 

 315 

Fig. 2: Multi-model global projections of average relative change in population 316 

exposure to extreme heat for the three RCP scenarios and two time periods relative to 317 

the base period: (a) RCP2.6-SSP1, (b) RCP4.5-SSP2, (c) RCP8.5-SSP3, (1) 2016–2035, 318 

(2) 2046–2065. 319 
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Figure 3 presents the spatial distributions of the average relative changes in GDP 320 

exposure for the RCP scenarios projected by multiple models. GDP exposure for 2016–321 

2035 increases most rapidly in eastern China, with a more than 9-fold increase relative 322 

to the base period. GDP exposure also changes for central Africa and the South Asian 323 

subcontinent, with more than 6-fold increases relative to the base period. GDP exposure 324 

increases for 2046–2065 relative to the base period and 2016–2035. The increase in 325 

exposure is largest for Asia and is >12-fold higher than the base period in many 326 

countries, such as China, India, and Mongolia. GDP exposure also changes for Africa, 327 

South America, and Eastern Europe. The change in exposure is relatively small for 328 

North America and Oceania, less than 6-fold relative to the base period. GDP exposure 329 

is highest under the RC2.6-SSP1 scenario, where GDP growth is fastest, followed by 330 

the RCP4.5-SSP2 and RCP8.5-SSP3 scenarios. 331 

 332 
Fig. 3: Multi-model global projections of average relative change in GDP exposure to 333 

extreme heat for the three RCP scenarios and two time periods relative to the base 334 

period: (a) RCP2.6-SSP1, (b) RCP4.5-SSP2, (c) RCP8.5-SSP3, (1) 2016–2035, (2) 335 

2046–2065. 336 

3.3 Analysis of relative importance of change in exposure 337 

To determine the relative importance of various factors, we categorize the changes 338 

in population and GDP exposures in terms of the effects of population, GDP, climate, 339 
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and their interactions. Figures 4–6 show the changes in exposure and its components 340 

for the globe and for the continents under the three RCP scenarios. The change in global 341 

exposure of the population is primarily affected by the climate, whereas the change in 342 

global exposure of GDP is mainly attributed to the GDP effect (Fig. 4). 343 

The climate effect accounts for nearly half of the total change in population exposure 344 

(47%–53%) in each scenario and for each period. The effect of population change for 345 

2016–2035 is larger than the interactive effect, which reverses for 2046–2065. The GDP 346 

effect is responsible for nearly 50% of the total change in GDP exposure for 2016–2035, 347 

with approximately 30% and 20% attributable to the effects of climate and interactions, 348 

respectively. The change in GDP exposure for 2046–2065 under the RCP4.5-SSP2 and 349 

RCP8.5-SSP3 scenarios is dominated by the interactive effect, at 49% and 53%, 350 

respectively, followed by the effects of GDP and climate. The increase in the influence 351 

of the interactive effect highlights the importance of the interactions between GDP and 352 

climate change in increasing GDP exposure under the scenarios of high GHG emissions.  353 

 354 

Fig. 4: Categorization of projected aggregate global changes in (a) population and (b) 355 

GDP exposure to extreme heat under the RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-356 

SSP3 scenarios. Error bars are the standard deviations for the results of the five GCMs. 357 

PPP is purchasing power parity in USD.  358 

The relative importance of the factors of change in population exposure at the 359 

continental level varies between regions (Fig. 5). As noted above, the percent of 360 

population exposure worldwide is highest for Asia and Africa, but the dominant 361 

contribution to the change differs between the two continents. The effect of climate is 362 

the dominant contribution for Asia, Europe, North America, and South America for all 363 

scenarios and periods. This result indicates that an increased frequency of heat extremes 364 

amplifies population exposure, even in the absence of population increases on these 365 

continents. In contrast, the contribution of the three factors (i.e., the effects of 366 

population, climate, and the interaction) for Africa is nearly identical for 2016–2035 367 

because of the strong population increase projected for this continent. The interactive 368 

effect, however, becomes the primary contribution for 2046–2065, particularly under 369 

the RCP8.5-SSP3 scenario, accounting for 53% of the total change, which is more than 370 

the sum of the population and interactive effects. The contributions of the GDP and 371 

interactive effects for Oceania are nearly the same for 2016–2035 under the three 372 

scenarios. In contrast, the interactive effect makes the primary contribution to the 373 

change in GDP exposure for 2046–2065 under the RCP4.5-SSP2 and RCP8.5-SSP3 374 
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scenarios. 375 

 376 

Fig. 5: Categorization of projected aggregate continental change in population exposure 377 

to extreme heat under the RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP3 scenarios. 378 

Error bars are the standard deviations for the results of the five GCMs: (a) Africa, (b) 379 

Asia, (c) Europe, (d) North America, (e) Oceania, (f) South America. 380 

Between continents, the differences in relative importance to GDP exposure to the 381 

effects of GDP, climate, and interactions are clear (Fig. 6), and the contribution of GDP, 382 

climatic, and interactive effects under the various scenarios and periods also varies 383 

among  continents. The largest contribution for Asia and North America is from GDP 384 

for 2016–2035 under the three scenarios and for 2046–2065 under the RCP2.6-SSP1 385 

scenario, whereas the interactive effect is the dominant contribution for 2046–2065 386 

under the RCP4.5-SSP2 and RCP8.5-SSP3 scenarios. The GDP effect for Africa and 387 

South America is the primary contributor for 2016–2035, whereas the interactive effect 388 

is the primary contributor for 2046–2065. The difference between the interactive and 389 

GDP effects also increases for the pathways involving high GHG emissions in these 390 

two continents. The interactive effect for the RCP8.5-SSP3 scenario accounts for 64% 391 

of the total change for Africa, exceeding the contribution of 35% for the GDP effect. 392 

The interactive effect accounts for 58% of the total change for South America, whereas 393 

the GDP effect accounts for only 22%. The increase in GHG emissions leading to 394 

climate change and more frequent heat extremes can account for the increase in the 395 

difference between the interactive and GDP effects. The interaction between climate 396 

and change in GDP amplifies the exposure, but the GDP effect decreases, and the 397 

interactive effect increases as GDP growth slows under the pathways with high GHG 398 

emissions, which leads to the large difference between the effects under the RCP8.5-399 

SSP3 scenario. The GDP effect is the primary contributor for Europe and Oceania for 400 



13 
 

all periods and scenarios, except for 2046–2065 under the RCP8.5-SSP3 scenario, 401 

which implies that GDP exposure on these two continents would increase quickly 402 

without the impact of climate change. For almost all continents, GDP exposure is 403 

dominated by the GDP effect under the RCP2.6-SSP1 scenario because GDP grows 404 

fastest under this scenario.   405 

 406 

Fig. 6: Categorization of projected aggregate continental change in GDP exposure to 407 

extreme heat under the RCP2.6-SSP1, RCP4.5-SSP2, and RCP8.5-SSP3 scenarios. 408 

Error bars are the standard deviations for the results of the five GCMs. PPP is 409 

purchasing power parity in USD: (a) Africa, (b) Asia, (c) Europe, (d) North America, 410 

(e), Oceania, (f) South America. 411 

3.4 Analysis of cumulative probability of changes in population and GDP 412 

exposures 413 

Figure 7 shows the cumulative distribution functions for changes in population and 414 

GDP exposures under the various scenarios and time periods relative to the base period. 415 

The changes are smaller for 2016–2035 than 2046–2065 for both population and GDP 416 

exposure, which indicates that population and GDP exposures increase rapidly over 417 

time, independent of the scenario. Population and GDP exposures, however, differ 418 

between the three scenarios and the two time periods. The cumulative probability of an 419 

increase in population exposure is >90% for 2016–2035 and >95% for 2046–2065. The 420 

change is largest under RCP8.5-SSP3, with 90% probability of a zero- to 10-fold 421 

increase for both periods, followed by RCP4.5-SSP2 and RCP2.6-SSP1, with a 90% 422 

probability of a zero- to 7-fold increase relative to the base period. The future increase 423 

is much faster for GDP exposure than for population exposure because of the faster 424 

growth in GDP. The change in GDP exposure for 2046–2065 under the RCP2.6-SSP1 425 
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scenario is the largest among all time periods and scenarios, with 90% probability of a 426 

difference of −1- to 43-fold, with a 10% probability for an increase >43-fold relative to 427 

the base period. The increase for 2046–2065 is −1- to 35-fold under RCP8.5-SSP3 and 428 

−1- to 31-fold under RCP4.5-SSP2 for the same probability. The changes are much 429 

smaller for 2016–2035 than for 2046–2065, with >70% probability of a zero- to 7-fold 430 

increase for the three scenarios. The change for 2046–2065 is largest under RCP2.6-431 

SSP1, with nearly a 15% probability of a >15-fold increase relative to the base period, 432 

whereas the increases are 7- and 11-fold under the RCP4.5-SSP2 and RCP8.5-SSP3 433 

scenarios, respectively, for the same probability.   434 

 435 

Fig. 7: Cumulative probability of projected change in (a) population exposure and (b) 436 

GDP exposure to extreme heat relative to the base period. Error bars are the standard 437 

deviations for the results of the five GCMs.  438 

4 Discussion 439 

4.1 Impact of a warmer climate on socioeconomic exposure to extreme heat 440 

Our study shows spatiotemporal variation and changes in exposure and its 441 

components at global and continental levels. The results indicate variations among the 442 

continents (Figs. S4 and S5). For example, population exposure is highest in Asia (Fig. 443 

S4), accounting for >50% of the global exposure, followed by Africa, North America, 444 

Europe, South America, and Oceania. The percent of population exposure for Africa 445 

and South America is projected to increase over time and with an increase in GHG 446 

emissions, whereas the percentage of population exposure for Asia, Europe, and North 447 

America is projected to decrease over time. GDP exposure accounted for >50% of the 448 

total exposure for Asia (Fig. S5), with likely increases under the future scenarios, 449 

followed by North America, Europe, Africa, South America, and Oceania. The percent 450 

of exposure for developing countries, such as in Africa and South America, increases 451 

for the future scenarios. In contrast, decreases would be likely for developed countries, 452 

such as those in North America, Europe, and Oceania. Extreme heat under climate 453 

change would thus affect Asia the most, where population and GDP exposures are 454 

highest. Exposure for Africa is expected to increase rapidly in the future. Therefore, 455 

more attention should be directed to Asia and Africa for deeper research on extreme 456 

heat exposure and risk assessment. In addition, the design and implementation of 457 

effective adaptive measures are urgently needed in regions with high socioeconomic 458 
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exposure, to lessen populations suffering from heat extremes and reduce the economic 459 

losses under climate change. 460 

We estimate future socioeconomic exposure based on SSP projections with to various 461 

RCP scenarios. Because the current data are well understood and widely accepted, 462 

however, some previous research is based on current spatial distributions and 463 

population and GDP exposures (Hsiang et al., 2017). We also calculate exposure to 464 

future extreme heat regardless of changes in population and GDP (Table S3). The 465 

results indicate that socioeconomic exposure would increase significantly under climate 466 

change, with distinct differences among the RCP scenarios, even if population and GDP 467 

exposures are maintained at current levels. Exposure is lowest under the RCP2.6 468 

scenario and highest under the RCP8.5 scenario. Population and GDP exposures are 469 

1.72- and 1.67-fold higher under RCP8.5 than under RCP2.6, respectively. Both results 470 

for the SSP projections and the current fixed values highlight the importance of 471 

reducing emissions. Overall, it is potential to mitigate the impact of climate change on 472 

both extreme heat hazards and population exposures under the RCP2.6 scenario 473 

compared to RCP4.5 and 8.5 scenarios. And the efficiency of reducing emissions 474 

should be further quantified in future studies under RCP2.6 or other ambitious warming 475 

target, such as 1.5°C and 2°C warming target proposed in Paris Agreement (UNFCCC, 476 

2015), which will be helpful for making climate change mitigation strategies. 477 

4.2 Uncertainty, limitation and further research 478 

Heat extremes could be measured by using different thresholds (e.g., 90, 95, 97.5, 479 

and 99th percentile of daily maximum temperatures over the base period). The spatial 480 

patterns of exposure and change are generally similar, whereas the quantity of exposure 481 

and the relative importance of factors differ greatly (Liu et al., 2017). Assessing 482 

socioeconomic exposure under climate change has many uncertainties, except for the 483 

indices that measure extreme heat. The primary sources of uncertainty include scenarios 484 

of GHG emission (Maurer, 2007), GCMs (Soden et al., 2018), predictions of population 485 

and GDP (Chen et al., 2018) and the calculation method of exposure (Zhang et al., 486 

2018). The research of Bonan and Doney (2018) on global change in stresses on 487 

terrestrial and marine ecosystems show that the uncertainty on land is mostly from 488 

model uncertainty, which contributes nearly 80% of the total uncertainty in the 21st 489 

century. We evaluate population and GDP exposures based on five GCM simulations 490 

after downscaling and assessing the various scenarios and time periods separately. 491 

Figures 4–7 show the differences between the GCMs. In addition to displaying the mean 492 

value of five GCMs, the standard deviation of five GCMs is also displayed as error bars 493 

in the figures. This study generates assessments by considering different sources of 494 

uncertainty, so the results can be considered as reasonable with relatively high accuracy. 495 

This study is also subject to some limitations. First, our study quantified 496 

spatiotemporal variation of population and GDP exposures to extreme heat as an 497 

important first step for estimating changes in risk, which made progress compared to 498 

the previous studies ignoring the spatiotemporal variation of the socioeconomic risk 499 

(Barnett et al., 2012; Gasparrini and Armstrong, 2011; Voorhees et al., 2011). However, 500 

we do not estimate changes in vulnerability due to the lack of more advanced damage 501 
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data due to heat extremes. In further studies, we should also concentrate on assessing 502 

vulnerability when the data are available, which is also essential for assessing risk. In 503 

addition, adopting measures such as the use of air conditioning and the purchase of 504 

insurance should be taken into account. These factors would likely improve resilience 505 

to heat extremes and thus decrease vulnerability and limit the impact of climate change. 506 

Second, the effect of urban heat islands (UHIs) in addition to global warming is not 507 

considered explicitly in the climate change simulations in this study. UHIs are 508 

confirmed to exacerbate the extent and intensity of heat extremes in urban areas and 509 

increase the risk to urban residents in heat extremes (Dan and Bou-Zeid, 2013; Hajat 510 

and Kosatky, 2010; Mishra et al., 2015). Recently, as the importance of urbanization in 511 

climate change has come to be realized, several case studies simulating the impact of 512 

urbanization on extreme temperature events been done (Chen and Frauenfeld, 2016; 513 

Grossman-Clarke et al., 2010; Wang et al., 2012). Some research focused on intensely 514 

urbanized places such as eastern China, the eastern USA, and Western Europe, which 515 

is consistent with the results of our studies on high-exposure regions. However, some 516 

other regions such as western Africa and northern India are also expected to suffer high 517 

exposure to heat extremes in the future. More attention should be focused on these 518 

regions in future studies (see Fig. 8). However, global studies are rare because of a lack 519 

of precise land-use and population data. Some other studies assess the future urban 520 

climate change by using GCM (Fischer et al., 2012; Oleson, 2012). However, given the 521 

coarse spatial resolution, the influence of GCM on underlying urban surfaces could not 522 

be fully appreciated, so the impact of future urban development on UHIs was not 523 

considered in these studies. As a result, the effect of UHIs on extreme temperature 524 

events may be underestimated. Therefore, in future studies, the design and nesting of 525 

urban land surface models and the estimation of UHI, especially the heat island 526 

estimation during heat extremes, should be taken into account, since they are critical 527 

for estimating exposure and risk to heat extremes in cities due to climate change. 528 

 529 
Fig. 8: Regions with high future exposure under climate change. E.g. Western Europe 530 

(region 1), the eastern USA (region 2), eastern China (region 3), western Africa (region 531 

4) and northern India (region 5), may face more risk in heat extremes coupled with the 532 

effect of urban heat islands in intensely urbanized places. 533 
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5 Conclusions 534 

This study generated four key findings. First, the regions with the highest population 535 

and GDP exposures to extreme heat are primarily concentrated in densely populated 536 

areas, such as India, China, midwestern Europe, the eastern USA, and the coastal areas 537 

of South America. Second, global population exposure for the years 2046–2065 is 538 

highest under the RCP8.5-SSP3 scenario, with exposure increasing 3.76-fold relative 539 

to the base period 1986−2005. The RCP2.6-SSP1 scenario produces the highest global 540 

GDP exposure, with exposure increasing 10.47-fold for 2046–2065. Third, exposure is 541 

highest for Asia for both population and GDP, which exceeds 50% of the global 542 

exposure. The increase in exposure is largest for Africa, with the annual population and 543 

GDP exposures 9.20- and 29.34-fold higher, respectively, than during the base period. 544 

In contrast, the relative changes in population and GDP exposures are lowest for Europe 545 

and North America, respectively. Fourth, the effect of climate is the dominant 546 

contribution globally to change in population exposure, accounting for nearly half of 547 

the total change (47%–53%). The effect of GDP is responsible for nearly 50% of the 548 

total change in GDP exposure for 2016–2035, whereas the interactive effect makes the 549 

primary contribution for 2046–2065 under the RCP4.5-SSP2 and RCP8.5-SSP3 550 

scenarios, accounting for 49% and 53% of the total change, respectively. In conclusion, 551 

mitigating emissions of greenhouse gases, either at the level of the RCP2.6 scenario or 552 

at a more ambitious target of reduction, is important for reducing socioeconomic 553 

exposure to heat extremes. In addition, designing and implementing effective measures 554 

of adaptation are urgently needed in Asia and Africa to aid socioeconomic systems 555 

suffering from heat extremes due to climate change.  556 
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