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The intrinsic optical response of a scattering object is known to be modified when it is placed on a substrate.
Moreover, the total extinction through ohmic losses and Rayleigh scattering is basically dependent on the reversal
of the direction of the excitation wave. Considering, as stated by the generalized optical theorem, that the total
extinction of the incident wave is shared among the extinction of the waves transmitted and reflected by the
non-absorbing substrate, we show that only the contribution of the transmitted wave is insensitive to the direction
of illumination, by analogy with the textbook case of transmission through a planar stratified medium. This
property was recently confirmed experimentally [J. Phys. Chem. C 123, 15217 (2019)] and is established here
on theoretical grounds in the frameworks of the Green’s function integral equation method and the Lorentz
reciprocity theorem. Some of its limitations with regard to the incidence and the polarization of the excitation
wave are also discussed in detail.

DOI: 10.1103/PhysRevA.102.033521

I. INTRODUCTION

A particle embedded in a non-absorbing homogeneous di-
electric medium (real refractive index n) and submitted to an
electromagnetic plane wave excitation (intensity Ii, electric
field vector amplitude E(i), angular frequency ω = k0c = 2π

λ0
c,

and wave vector ki with ki = nk0) dissipates part of the in-
cident power through elastic (Rayleigh) scattering into the
whole space and through ohmic losses if it is absorbing. The
extinguished power P(ext) is defined as the sum of the absorbed
(P(abs)) and scattered (P(scat)) powers. The optical theorem
states that the extinction cross section defined as the ratio
C(ext) = P(ext)/Ii is merely related to interferences between the
excitation wave and the scattered wave, which asymptotically
adopts a transverse spherical wave structure [E(s)(ki, r) =
A(r̂ = r/r)eikir/r with A(r̂ = r/r) · r = 0] [1,2]. It can be
expressed simply in the form C(ext) = 2πε0c

k0Ii
Im[E(i)∗ · A(k̂i)]

(SI units) as a simple function of the projection of the far-field
scattering vector amplitude in the propagation direction of the
incident wave (r̂ = k̂i = ki/ki) onto the electric-field vector
amplitude of this incident wave [Fig. 1(a)].

The optical theorem can be extended to more complex
situations provided that the translational symmetry of the
plane-wave excitation is retained, as in the case of a scat-
terer included in a stratified medium made of stacked plane
parallel and nonabsorbing slabs [Fig. 1(b)]. It is then excited
both by (i) the backward- and forward-propagating waves
generated by the multiple reflections of the incident wave
inside the layered medium and (ii) a part of the scattered field
redirected back to it because of these reflections. Whatever
the structure of the layered medium, the incident wave gives
rise to transmitted and reflected plane waves in the far-field
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regions. Part of the scattered wave is confined and guided in
the layered medium whereas the rest is emitted in the upper
or the lower free half spaces. The generalized optical theo-
rem states that the total extinction cross section can be split
into two contributions C(ext) = C(ext)

ref + C(ext)
trans with C(ext)

ref =
2πε0c

k0Ii
Im[E(r)∗ · A(k̂r)] and C(ext)

trans = 2πε0c
k0Ii

Im[E(t )∗ · A(k̂t )], by
analogy with the homogeneous-medium case [3–6]. These
expressions now involve, respectively, the electric fields of
the reflected and transmitted waves and the far fields scattered
in their exact direction of propagation (k̂r and k̂t ), labeled as
backward (BW) and forward (FW) in Fig. 2(b).

The predictions of the generalized optical theorem were
verified quantitatively and discussed in a recent experimental
study on the optical extinction of single plasmonic particles
supported on a transparent substrate (monolayer slab) [7].
On this occasion, we highlighted the general result that the
extinction of the transmitted wave itself is unchanged whether
the particle is located at the inlet or the outlet side of the
slab [up or down configurations in Fig. 1(c)]. Considering a
fixed position of the scatterer relative to the interface, this is
equivalent to saying that the extinction of the transmitted wave
remains the same, whether the scatterer is illuminated from
the upper or from the lower medium or, in other terms, if the
directions of the incident and transmitted waves are swapped.

Indeed, in the absence of an interface (scatterer in a ho-
mogeneous dielectric medium), this property can be inferred
from the Lorentz principle of reciprocity in optics [8–16]
that was comprehensively formulated by de Hoop in case of
electromagnetic scattering by an isolated object of finite size
[17–19]. If two plane waves with electric fields E1 and E2 are
incident on a scatterer in the respective directions ŝ1 and ŝ2,
de Hoop established the reciprocal relation

E1 · AE2 (−ŝ1) = E2 · AE1 (−ŝ2), (1)
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FIG. 1. Illustration of selected configurations that fall within the scope of the optical theorem. The scatterer is subject to a plane-wave
excitation and can be embedded in (a) a homogeneous or (b) a stratified medium. (c) For a scatterer located near a dielectric slab, a previous
experimental study showed that the extinction of the transmitted wave at normal incidence is independent of the direction of illumination [7].

where AEi (−ŝj) is the vector amplitude of the far scattered
field induced by wave i (electric-field vector amplitude Ei)
that propagates, at large distances, in the direction opposite to
the direction of wave j (electric-field vector amplitude E j).
In the very particular configuration of counter-propagating
waves (ŝ1 = −ŝ2), this relation directly leads, through the op-
tical theorem formulation, to the invariance of the extinction
cross sections relative to a simple reversal of the directions
of illumination (E1 ↔ E2). However, such an invariance is
not straightforward in the case of a scatterer close to an in-
terface between two dielectric media because of the splitting
of the exciting waves among secondary refracted and reflected
waves.

The aim of this study is to define and discuss the general
conditions required to establish the invariance of the extinc-
tion cross sections in transmission relative to a permutation of
the incident and transmitted wave directions, that is, when the
illumination is turned from the upper to the lower medium,
as was observed experimentally and proved in the frame of
a simple model (small scatterer and normal incidence) [7].

FIG. 2. General excitation schemes for a scatterer located above
the interface between two dielectric media and irradiated by a plane
wave coming (a) from the upper half space (air) or (b) from the lower
half space (dielectric medium). A sphere of radius � enclosing the
particle is drawn to arbitrarily distinguish between near-field and far-
field regions.

In Sec. II, we introduce general notations and the theoretical
background for formulating the generalized optical theorem.
It is based on the Green’s function formalism and adapted
from the reference paper of Lytle et al. [3] but using here
the SI system of units. We consider the simplest configuration
where a scatterer placed above an infinite planar interface
between air and a dielectric medium is excited by a plane wave
originating from either one or the other half space. This basic
model can be straightforwardly extended to a plane-parallel
dielectric slab of infinite lateral extension embedded in air. In
Sec. III, we establish the conditions for ensuring the exact or
approximate invariance of the optical extinction in transmis-
sion or reflection when reversing the direction of propagation
of the incident wave. Two different approaches are used:
a Green’s function integral equation formalism and the di-
rect application of general reciprocity principles expressed
from the Lorentz theorem [20]. In Sec. IV, we discuss these
properties in the case of an excitation at normal incidence,
particularly their consequences with regard to the optical ex-
tinction of two-dimensional (2D) planar chiral objects, and we
illustrate from numerical simulations their limitations in the
more general case of an excitation at oblique incidence.

II. DEFINITIONS AND NOTATIONS

The system addressed here is illustrated in Fig. 2. The
space is divided into two halves separated by a planar inter-
face. A non-magnetic scatterer is kept positioned in the upper
half space chosen as air for convenience (index of refraction
n1 = 1). The lower half space consists of a semi-infinite non-
magnetic and non-absorbing homogeneous medium (index of
refraction n2 = n). The relative electric permittivity writes
ε(r)/ε0 = n2 in the lower space and ε(r)/ε0 = 1 + η(r) in
the upper space. The electric susceptibility η(r) is zero ex-
cept in the volume Vs of the scatterer. The relative magnetic
permeability μ(r)/μ0 is equal to unity in all media, including
the scatterer. In the following, the scatterer is supposed to
be excited by transverse plane waves generated by distant
sources located either in the upper [superscript (−) in Fig. 2(a)]
or in the lower [superscript (+) in Fig. 2(b)] half space, with an
arbitrary incidence relative to the surface normal (z axis). The
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FIG. 3. Wave-vector notations, in the plane of incidence, for
incident, reflected, and transmitted plane waves in the case of an
excitation from the upper half space [black arrows in panel (a)] or
from the lower half space [gray arrows in panel (b)]. The figure
indicates the convention used for the orientation of the corresponding
TE (s polarized) and TM (p polarized) basis vectors.

incident waves propagate along the negative or positive z val-
ues for sources in the upper or lower half space, respectively.
The wave vectors of the incident, reflected, and transmitted
plane waves are denoted k±

i , k±
r , and k±

t , in Fig. 2 and the in-
cident electric field is E(i)±(r, k±

i , t ) = Re[E(i)(r, k±
i )e−iωt ].

In the following, the harmonic time-dependent factor e−iωt is
omitted.

A. The excitation fields

Boundary conditions at the interface normal to the z
axis impose the conservation of in-plane x and y compo-
nents (Snell-Descartes law). In the fixed basis (x̂, ŷ, ẑ), the
wave vectors of the incident, reflected, and transmitted parts
of the field produced by far sources located in the upper
space are rather denoted k−

i = k̃ ≡ (kx, ky,−kz1), k−
r = k ≡

(kx, ky, kz1), and k−
t = k̃′ ≡ (kx, ky,−kz2) and those of the

field produced by far sources located in the lower space,
k+

i = h′ ≡ (hx, hy, hz2), k+
r = h̃′ ≡ (hx, hy,−hz2) and k+

t =
h ≡ (hx, hy, hz1), so as to match with the notation of Ref. [3]
(see Fig. 3). For completeness, additional wave vectors k′ ≡
(kx, ky, kz2) and h̃ ≡ (hx, hy,−hz1) can also be introduced
even if they are not directly involved in the respective excita-
tion schemes. The prime index refers to the lower-half-space
medium and the tilde character to a propagation towards nega-
tive z values. Reflected and transmitted wave vectors are fully
determined by the choice of the incident wave vectors and
obey the relations

K‖ = K̃‖ = K′‖ = K̃′
‖ = Kxx̂ + Kyŷ,

and Kz1 =
⎧⎨
⎩

√
k2

0 − K2
‖ when k2

0 > K2
‖

i
√

−k2
0 + k2

‖ when k2
0 < K2

‖ ,

Kz2 =
⎧⎨
⎩

√
n2k2

0 − K2
‖ when n2k2

0 > K2
‖

i
√

−n2k2
0 + K2

‖ when n2k2
0 < K2

‖ ,
(2)

with K = k or K = h.

The total electric fields generated by sources in the upper
and in the lower half spaces are written, respectively [�(z) is
the Heaviside step function],

E(inc)−(k̃, r) = �(z)[E(i)− (k̃, r) + E(r)− (k, r)]

+ �(−z)E(t )− (k̃′, r) (3a)

and

E(inc)+(h′, r) = �(−z)[E(i)+ (h′, r) + E(r)+ (h̃′, r)]

+�(z)E(t )+ (h, r), (3b)

where the incident, reflected, and transmitted electric fields
can be expressed in the form

E(i)− (k̃, r) = e−(k̃)eik̃·r,

E(r)− (k, r) = e(r)−(k)eik.r,

E(t )− (k̃′, r) = e(t )−(k̃′)eik̃′ ·r, (4a)

and

E(i)+(h′,r) = e+(h′)eih′ ·r,

E(r)+(h̃′, r) = e(r)+(h̃′)eih̃′ ·r,

E(t )+(h, r) = e(t )+(h)eih·r. (4b)

Reflected and transmitted electric-field amplitudes are
fully determined by boundary conditions at the inter-
face through the action of reflection and transmission
operators

e(r)−(k) = R̂(k, k̃)e−(k̃),

e(r)+(h̃′) = R̂′(h̃′, h′)e+(h′),

e(t )−(k̃′) = T̂ (k̃′, k̃)e−(k̃),

and e(t )+(h) = T̂ ′(h, h′)e+(h′). (4c)

For an oblique incidence and in order to apply the Fres-
nel laws for reflection and transmission, it is necessary to
distinguish transverse electric (TE) from transverse magnetic
(TM) polarized waves. The transverse electric field e(K) of a
plane wave with wave number K ≡ (Kx, Ky, Kz ) (unit vector
K̂ = K/|K|) can be expressed in the TE-TM basis:

e(K) = es(K)ŝ(K) + ep(K) p̂(K), (5)
where

ŝ(K) = 1

|ẑ × K̂| ẑ × K̂ = 1√
K2

‖
(−Ky, Kx, 0) (6)

and

p̂(K) = − 1

|ŝ(K) × K̂| ŝ(K) × K̂

= 1

K0

√
K2

‖

(−KxKz,−KyKz, K2
‖
)
. (7)

p̂(K) and ŝ(K) are real unit vectors, respectively parallel and
normal to the plane of incidence so that (ŝ(K), p̂(K), K̂) forms
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a direct and orthogonal basis set [21]. They are represented in
Fig. 3 for all the wave vectors considered here.

The reflection and transmission operators can be developed
as dyadics to more clearly individualize their action on TE
[polarization along ŝ(K)] or TM [polarization along p̂(K)]
components:

R̂(k, k̃) = rs(k‖)ŝ(k) ⊗ ŝ(k̃) + rp(k‖) p̂(k) ⊗ p̂(k̃), (8a)

R̂′(h̃′, h′) = r′
s(h‖)ŝ(h̃′) ⊗ ŝ(h′) + r′

p(h‖) p̂(h̃′) ⊗ p̂(h′), (8b)

T̂ (k̃′, k̃) = ts(k‖)ŝ(k̃′) ⊗ ŝ(k̃) + tp(k‖) p̂(k̃′) ⊗ p̂(k̃), (8c)

T̂ ′(h,h′) = t ′
s(h‖)ŝ(h) ⊗ ŝ(h′) + t ′

p(h‖) p̂(h) ⊗ p̂(h′), (8d)

where r(s/p)(k‖), r′
(s/p)(h‖), t(s/p)(k‖), and t ′

(s/p)(h‖) are
the Fresnel coefficients for reflection and transmission of
up-coming or down-coming TE and TM plane waves
(Appendix A). The prime symbol refers to an incident wave
coming from the dielectric medium (sources in the lower half
space). The vector amplitudes of the corresponding reflected
and transmitted waves in Eqs. (4a) and (4b) are fully deter-
mined as a function of the coefficients of the incident fields
through the relations

e(r)−(k) = R̂(k, k̃)e−(k̃)

= rs(k‖)e−
s (k̃)ŝ(k) + rp(k‖)e−

p (k̃) p̂(k), (9a)

e(t )−(k̃′) = T̂ (k̃′, k̃)e−(k̃)

= ts(k‖)e−
s (k̃)ŝ(k̃′) + tp(k‖)e−

p (k̃) p̂(k̃′), (9b)

e(r)+(h̃′) = R̂′(h̃′, h′)e+(h′)

= r′
s(h‖)e+

s (h′)ŝ(h̃′) + r′
p(h‖)e+

p (h′) p̂(h̃′), (9c)

e(t )+(h) = T̂ ′(h, h′)e+(h′)

= t ′
s(h‖)e+

s (h′)ŝ(h) + t ′
p(h‖)e+

p (h′) p̂(h), (9d)

where e−
(s/p)(k̃) and e+

(s/p)(h
′) are the components of the inci-

dent electric field vectors e−(k̃) and e+(h′) on their respective
TE-TM basis [see Eq. (5)].

B. The scattered fields in the Green’s function formalism

The total electric field is the sum of the incident and the
scattered fields,

E(tot)(K,r) = E(inc)(K, r) + E(scat)(K, r), (10)

with K = k̃ or h′, depending on the configuration. In the
framework of the Green’s function formalism [3,18,21,22] the
scattered field is solution of the integral equation

E(scat)(K,r) = k2
0

∫∫∫
Vs

d3r′η(r′)Ĝ(r,r′)

× [E(inc)(K,r′) + E(scat)(K,r′)], (11)

where Ĝ(r,r′) is the Green operator suited to the present prob-
lem. It can be expressed as a plane-wave expansion (angular
spectral representation or Weyl identity [21]) in the form

Ĝ(r,r′) = i

8π2

∫∫
Kx,Ky

d2K‖
Kz

eiK‖·(r‖−r′‖ )

× {�(−z)T̂ (K̃′, K̃)ei(Kzz′−K′
zz)

+ �(z)[R̂(K, K̃)eiKz (z+z′ ) + �(z − z′)Î (K, K)

× eiKz (z−z′ ) + �(z′ − z)Î (K̃, K̃)eiKz (z′−z)]}, (12)

considering that the scatterer remains located in the upper-
half space (z′ > 0) [3,4,21,23–25]. The integration runs over
all possible values of Kx and Ky from −� to +� (K‖ =
Kxx̂ + Kyŷ). The wave vectors K, K̃, and their partners K̃′
and K′ are related through the application of Snell-Descartes
laws at the interface: K = K‖ + Kz ẑ, K̃ = K‖ − Kz ẑ, K′ =
K‖ + K ′

z ẑ, and K̃′ = K‖ − K ′
z ẑ, with Kz and K ′

z defined ac-
cording to the same type of relations as those established for
excitation fields in Eq. (2). Using suitable TE-TM basis sets,
the operators T̂ (K̃′, K̃) and R̂(K, K̃) are constructed as the
dyadics defined in Eq. (8). In Eq. (12), Î (K, K) = 1̂ − K̂ ⊗
K̂ = ŝ(K) ⊗ ŝ(K) + p̂(K) ⊗ p̂(K) is the projector onto the
plane normal to K(1̂ is the identity operator). For a transverse
wave [e(K) = es(K)ŝ(K) + ep(K) p̂(K)], Î (K, K) reduces to
the identity operator [Î (K, K)e(K) = e(K)].

As can be seen in Fig. 2, the scattered field depends on the
excitation configuration (+/−) through E(inc)(K, r) defined by
Eqs. (3) and (4) and also on the half space into which it prop-
agates (z < 0 or z > 0). The scattered fields corresponding to
the four possible cases behave asymptotically as transverse
spherical waves in the far zone (rk0 � 1), with the following
angular spectrum representations:

E(scat)−(k̃, r, z > 0) = i

8π2

∫∫
dKxdKy

Kz
A−

↑ (K, k̃ )

×eiK·r −→
r→∞ A−

↑
(

k0
r
r
, k̃

)eik0r

r
, (13a)

E(scat)−(k̃, r, z < 0) = i

8π2

∫∫
dKxdKy

K ′
z

A−
↓ (K̃′, k̃)

×eiK̃′ ·r −→
r→∞ A−

↓
(

nk0
r
r
, k̃

)eink0r

r
, (13b)

E(scat)+(h′,r, z > 0) = i

8π2

∫∫
dKxdKy

Kz
A+

↑ (K, h′)

×eiK·r −→
r→∞ A+

↑
(

k0
r
r
, h′

)eik0r

r
, (13c)

E(scat)+(h′, r, z < 0) = i

8π2

∫∫
dKxdKy

K ′
z

A+
↓ (K̃′, h′)

×eiK̃′ ·r −→
r→∞ A+

↓
(

nk0
r
r
, h′

)eink0r

r
. (13d)

The far-field behaviors can be directly obtained through
the application of the stationary phase method. In the fol-
lowing, the “↑” and “↓” symbols will refer to z > 0 and
z < 0 half spaces, respectively. The Fourier components
A(kout, kin ) are the amplitudes of the transverse far fields
scattered with outcoming wave vector kout after excitation by
a plane wave with wave vector kin. Using Eqs. (11) and (12),
the components A are expressed from the Fourier inversion
of Eqs. (13) as integrals over the scatterer volume in the

033521-4



INFLUENCE OF THE ILLUMINATION DIRECTION ON … PHYSICAL REVIEW A 102, 033521 (2020)

form

A−
↓ (K̃′, k̃) = K ′

z

Kz
k2

0

∫∫∫
VS

d3rη(r)T̂ (K̃′, K̃)E(tot)−(k̃, r)

× e−iK̃·r, (14a)

A−
↑ (K, k̃) = k2

0

∫∫∫
VS

d3rη(r)[R̂(K, K̃)E(tot)−(k̃, r)e−iK̃·r

+ Î (K, K)E(tot)−(k̃, r)e−iK·r], (14b)

A+
↓ (K̃′, h′) = K ′

z

Kz
k2

0

∫∫∫
VS

d3rη(r)T̂ (K̃′, K̃)E(tot)+(h′,r)

× e−iK̃·r, (14c)

A+
↑ (K, h′) = k2

0

∫∫∫
VS

d3rη(r)[R̂(K, K̃)E(tot)+(h′,r)e−iK̃·r

+ Î (K, K)E(tot)+(h′,r)e−iK·r]. (14d)

In each individual equation (14a)–(14d), the wave vectors
K, K̃, K̃′, and K′ (the prime index and the tilde character have
been defined in Sec. IIA) are related according to the Snell
Descartes laws, depending on the process involved (transmis-
sion T or reflection R). A derivation of Eq. (14a) is provided
in Appendix B.

C. Scattering operators in the Green’s
function integral formalism

In the following, it will be useful to introduce the scattering
operators that formally relate the vector amplitudes of the
scattered fields to the amplitude of the incident fields accord-
ing to

A−
↓ (K̃′, k̃) = Ŝ−

↓ (K̃′, k̃)e−(k̃), (15a)

A−
↑ (K, k̃) = Ŝ−

↑ (K, k̃)e−(k̃), (15b)

A+
↓ (K̃′, h′) = Ŝ+

↓ (K̃′, h′)e+(h′), (15c)

A+
↑ (K, h′) = Ŝ+

↑ (K, h′)e+(h′). (15d)

A difficulty is that the expressions of the vector amplitudes
of the scattered fields in Eqs. (14) do not only depend explic-
itly on the incident field but also on the total field experienced
by any point of the scatterer [see Eq. (10)]. In order to formally
express the scattered fields and therefore the total fields as
a function of the incident field, we assume that E(scat)(K, r)
(with K = k̃ or h′) can be obtained from an iterative resolution
of the implicit constitutive relation (11) and can be developed
as the infinite converging series

E(scat)(K, r) = k2
0

∞∑
i=0

∫∫∫
Vs

d3riη(ri )Ĝ i(r,ri )E(inc)(K, ri ),

(16)

introducing the composed Green’s operators of order i (di-
mension [L]−1) defined as

Ĝ0(r,r0) = Ĝ(r,r0),

and

Ĝ i(r,ri�1) = k2
0

∫∫∫
Vs

d3ri−1η(ri−1)Ĝ i(r,ri−1)Ĝ(ri−1,ri )

= k2i
0

∫∫∫
Vs

d3r0

∫∫∫
Vs

d3r1 · · ·
∫∫∫

Vs
d3ri−1

Ĝ(r, r0)η(r0)Ĝ(r0,r1)η(r1)Ĝ(r1,r2)η(r2) · · ·
Ĝ(ri−1,ri ). (17)

These expressions are not rigorously valid because of the
singularity of the Green’s operator Ĝ(r, r′) when r = r′. Such
a singularity is widely discussed in the literature [26–28]
and can be overcome by a suitable modification detailed in
Appendix C. As far as the explicit form of Ĝ(r,r′) is not
required in the following discussion, this modification that
would make the notations more complicated is not of basic
importance since the corrected function still possesses the
suited analytical properties. For convenience, it will be disre-
garded in the following, without questioning the forthcoming
conclusions and we will assume that both E(scat)−(k̃, r) and
E(scat)+(h′, r) can be appropriately replaced by such an infinite
converging series. Introducing the operator (dimension [L]),

	̂(k2, k1) = k2
0

∫∫∫
VS

d3rη(r)ei(k1−k2 )·r1̂ + k4
0

∞∑
i=0

∫∫∫
VS

d3r

×
∫∫∫

VS

d3riη(r)η(ri )e
i(k1·ri−k2·r)Ĝ i(r,ri ),

(18)

it is possible, from the definition of the scattering vectors
amplitude [Eqs. (14)] with the incident and scattered fields
in Eqs. (4) and (16), to establish the simplified form of the
scattering operators:

Ŝ−
↓ (K̃′, k̃) = kz2

kz1
[T̂ (K̃′, K̃)	̂(K̃, k̃)Î (k̃, k̃)

+ T̂ (K̃′, K̃)	̂(K̃,k)R̂(k, k̃)], (19a)

Ŝ+
↑ (K, h′) = [R̂(K, K̃)	̂(K̃,h)T̂ ′(h, h′)

+ Î (K, K)	̂(K, h)T̂ ′(h, h′)], (19b)

Ŝ−
↑ (K, k̃) = [R̂(K, K̃ )	̂(K̃,k̃)Î (k̃, k̃)

+ R̂(K, K̃ )	̂(K̃, k)R̂(k, k̃)

+ Î (K, K)	̂(K, k̃)Î (k̃, k̃)

+ Î (K, K)	̂(K, k)R̂(k, k̃)], (19c)

Ŝ+
↓ (K̃′, h′) = kz2

kz1
[T̂ (K̃′, K̃)	̂(K̃, h)T̂ ′(h, h′)]. (19d)

In the expression of a scattering operator Ŝ(kout, kin ),
where kin and kout are the wave vectors of the incident
and scattered waves wave, each generic term of the type
Ŵ (kout, u) 	̂(u, v) V̂ (v, kin ) can be associated to a spe-
cific scattering pathway, as schematized in Fig. 4. In each
case, the excitation is provided either by the primary in-
cident wave [ V̂ (v, kin ) = Î (kin,, kin )] or by the secondary
waves, either transmitted [ V̂ (v, kin) = T̂ (v, kin)] or reflected
[ V̂ (v, kin) = R̂(v, kin )] at the interface. On the other hand,
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FIG. 4. Scheme of the basic mechanisms entering the four scat-
tering operators in Eq. (19). The wave vectors of the incident and
scattered waves are indicated by thick black arrows. The allowed
scattering processes are indicated by different types of arrows ac-
cording to the nature of the exciting and scattered waves (into
brackets), with I for free propagating, R for reflected, and T for
transmitted by the interface. The black dots materialize the action
of the elementary scattering operators 	̂(u, v). The object is drawn
just to materialize the scattering region above the interface.

the resulting scattered waves can propagate, either directly in
the far region [ Ŵ (kout, u) = Î (kout, kout )] or can experience
a prior reflection [ Ŵ (kout, u) = R̂(kout, u)] or transmission
[ Ŵ (kout, u) = T̂ (kout, u)] at the interface. The wave vectors
u and v are naturally and univocally connected to kin and
kout through the constitutive definitions of the reflection and
transmission operators [Eqs. (8)]. The elementary operator
	̂(u, v) gives the vector amplitude of the far field scattered
in the direction u as a function of the vector amplitude of
a plane wave incident in the direction v. It accounts for all
the secondary excitation and scattering processes involved
inside the scatterer volume. In Fig. 4, one can notice that the
processes describing the forward scattering of incident waves
coming from the upper and the lower half space are more
symmetric than those related to backward scattering.

D. The generalized optical theorem

From the Maxwell’s equations and considering the nature
of the problem presented in Sec. IIA, the magnetic fields asso-
ciated with the electric fields E(inc/scat)(r) are H(inc/scat)(r) =
− i

ωμ0
∇ × E(inc/scat)(r), and H(tot)(r) = H(inc)(r) + H(scat)(r)

(the reference to wave vectors k̃ or h′ are omitted for sim-
plicity). From these fields, we define the Poynting vectors

S(inc)(r) = 1
2 Re{E(inc)(r) × H(inc)∗(r)},

S(scat)(r) = 1
2 Re{E(scat)(r) × H(scat)∗(r)},

S(ext)(r) = 1
2 Re{E(inc)(r) × H(scat)∗(r) + E(scat)(r)

× H(inc)∗(r)},
S(tot)(r) = 1

2 Re{E(tot)(r) × H(tot)∗(r)}
= S(inc)(r) + S(scat)(r) + S(ext)(r).

The absorbed, scattered and extinguished powers are given
by their flux through a closed surface � containing the scat-
terer (Fig. 2):

P(abs) = −
∫∫

�

S(tot)(r) · n̂d2S,

P(scat) =
∫∫

�

S(scat)(r) · n̂d2S,

P(ext) = P(abs) + P(scat)

= −
∫∫

�

S(ext)(r) · n̂d2S.

These quantities are independent of the shape and the size
of �.

From the expressions of the scattering amplitudes
[Eqs. (14)] and of the incident fields in Eqs. (3) and (4), it may
be shown that, for the plane-wave excitation coming from the
upper half space for instance, the total extinguished power can
be written as the sum of dot products:

P(ext)− = 2πωε0

k2
0

Im{[R̂(k, k̃)e−(k̃)]
∗ · A−

↑ (k, k̃)

+ [T̂ (k̃′, k̃)e−(k̃)]
∗ · A−

↓ (k̃′, k̃)}. (20)

By means of the stationary phase method, this result is
obtained after long but straightforward algebraic manipula-
tions based on the direct integration of the Poynting vector
S(ext)(r) over a sphere � of sufficiently large radius (k0R �
1 in Fig. 2) for using the asymptotic expressions of the
far fields (see Chap. 3 in Ref [1]). It is in line with the
notations of Ref. [3] which also provides a demonstration
of this formula in a different approach. The vector am-
plitudes A−

↓ (k̃′, k̃) and A−
↑ (k, k̃) respectively correspond to

the far field scattered in the direction of the transmitted
wave (k̃′) in the lower half space, and in the direction
of the reflected wave (k) in the upper half space. The
familiar form of the optical theorem for a plane-wave excita-
tion [P(ext)− = 2πωε0

k2
0

Im{e−(k̃)
∗ · A−(k̃, k̃)}] can be recovered

from Eq. (20) in the absence of a planar interface (homo-
geneous medium). In Eq. (20), the total extinguished power
appears as the sum of the powers lost (or gained) by both the
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transmitted and reflected waves through the interface

P(ext)−
↓ = 2πωε0

k2
0

Im{[T̂ (k̃′, k̃)e−(k̃)]
∗ · A−

↓ (k̃′, k̃)}, (21a)

P(ext)−
↑ = 2πωε0

k2
0

Im{[R̂(k, k̃)e−(k̃)]
∗ · A−

↑ (k, k̃)}. (21b)

The algebraic values of these quantities are controlled by
the relative phase between the incident fields propagating in
both half spaces (reflected field for the upper one and trans-
mitted field for the lower one) and the far fields scattered
in the same propagation directions. The generalized form
of the optical theorem also holds in the case of the plane-
wave excitation originating from the lower half space, where
P(ext)+ = P(ext)+

↑ + P(ext)+
↓ , with

P(ext)+
↑ = 2πωε0

k2
0

Im{[T̂ ′(h, h′)e+(h′)]∗ · A+
↑ (h, h′)}, (21c)

and

P(ext)+
↓ = 2πωε0

k2
0

Im{[R̂′(h̃′, h′)e+(h′)]
∗ · A+

↓ (h̃′, h′)}. (21d)

Since the extinguished powers are dependent on the wave
intensities, it is more convenient to consider their related
cross-sections defined here as the ratio between extinguished
powers and the incident powers per unit surface normal to the
interface, Î− = 1

2 cε0|e−(k̃)|2 kz1

k0
or Î+ = 1

2 ncε0|e+(h′)|2 hz2

nk0
.

The relevant quantities are

C(ext)−
↓ = P(ext)−

↓
Î− = 4π

|e−(k̃)|2kz1

× Im{[T̂ (k̃′, k̃)e−(k̃)]
∗ · A−

↓ (k̃′, k̃)}, (22a)

C(ext)−
↑ = P(ext)−

↑
Î− = 4π

|e−(k̃)|2kz1

× Im{[R̂(k, k̃)e−(k̃)]
∗ · A−

↑ (k, k̃)}, (22b)

C(ext)+
↑ = P(ext)+

↑
Î+ = 4π

|e+(h′)|2hz2

× Im{[T̂ ′(h, h′)e+(h′)]∗ · A+
↑ (h, h′)}, (22c)

C(ext)+
↓ = P(ext)+

↓
Î+ = 4π

|e+(h′)|2hz2

× Im{[R̂′(h̃′, h′)e+(h′)]
∗ · A+

↓ (h̃′, h′)}, (22d)

where C(ext)− = C(ext)−
↓ + C(ext)−

↑ and C(ext)+ = C(ext)+
↓ +

C(ext)+
↑ are the total extinction cross sections of the waves

coming from the upper and the lower half space, respectively.

III. EXTINCTION CROSS SECTIONS OF TRANSMITTED
AND REFLECTED WAVES UNDER EXCITATIONS FROM

THE UPPER OR LOWER MEDIUM

We aim at establishing a simple connection between the ex-
tinction cross-sections of the transmitted (or reflected) waves
by a supported scatterer, depending on whether it is irradiated

FIG. 5. Representation of incident, reflected, and transmitted
wave vectors for incident plane waves generated by far sources,
either in the upper half space (black) or in the lower half space (blue),
chosen to develop the expressions of C (ext)−

↓ and C (ext)+
↑ from the

generalized optical theorem formula.

from the upper half space or from the lower half space. A
relevant comparison between C(ext)−

↓ and C(ext)+
↑ (or C(ext)−

↑
and C(ext)+

↓ ) expressed for independent plane-wave excitations
in Eqs. (22a) and (22c) [or Eqs. (22b) and (22d)] requires as-
suming, for both incident waves, a common pulsation ω and a
relationship as simple as possible between their wave vectors.
In line with the reciprocity of Snell’s laws, the most natural
choice is to set h′ = −k̃′, and so h = −k̃. The direction of the
incident wave originating from the lower medium coincides
with the direction of the transmitted wave generated from the
upper medium, which also implies that h̃′ = −k′, and h̃ = −k
(Fig. 5). The related pairs of incident and transmitted waves
(k̃, k̃′) and (h′ = −k̃′, h = −k̃) define excitation schemes that
will be said to be reversed one from each other in the follow-
ing. Because the substrate is lossless, the basic components
kx, ky, kz1, and kz2 involved in the various wave vectors all
have real values. The quantities related to the wave coming
from the lower half-space, C(ext)+

↑ and C(ext)+
↓ in Eqs. (22c)

and (22d) can be written as

C(ext)+
↑ = 4π

|e+(−k̃′)|2kz2

Im{[T̂ ′(−k̃,−k̃′)e+(−k̃′)]
∗

·A+
↑ (−k̃,−k̃′)}, (23a)

and

C(ext)+
↓ = 4π

|e+(−k̃′)|2kz2

Im{[R̂′(−k′,−k̃′)e+(−k̃′)]
∗

·A+
↓ (−k′,−k̃′)}. (23b)
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We adopt two approaches: the first consists in developing
analytically and comparing the expressions of the various
cross sections in the framework of the Green’s function
formalism, and the second one is directly based on the ap-
plication of the general principle of reciprocity in optics. If
these approaches are close to each other with regard to the
extinction of the transmitted waves, only the first one is really
suited to discuss the extinction of reflected waves. It is impor-
tant to note that the conclusions drawn below in the case of a
single dielectric interface could be straightforwardly applied
to the case of a scatterer close to a planar stratified medium
of finite thickness. Because of the far-field formulation used
here, it is sufficient to replace the transmission and reflection
coefficients for a single interface with those of a layered
slab and to consider that incident and transmitted waves both
propagate in air (n = 1 for the lower half space), and in the
same direction (kz1 = kz2, k̃ = k̃′, and k = k′).

A. The Green’s function formalism

Discussing the conditions for a possible invariance of cross
sections C(ext)+

↑ and C(ext)−
↓ in transmission (or C(ext)+

↓ and

C(ext)−
↑ in reflection) first requires us to express the scattering

amplitude vectors in Eqs. (14) as a function of the problem
parameters (scatterer dielectric susceptibility, incident wave
structures, substrate refractive index, …). Assuming reversed
excitation schemes (h′ = −k̃′), the four relevant scattering
vector amplitudes in Eqs. (15) are written

A−
↓ (k̃′, k̃) = Ŝ−

↓ (k̃′, k̃)e−(k̃), (24a)

A−
↑ (k, k̃) = Ŝ−

↑ (k, k̃)e−(k̃), (24b)

A+
↓ (−k′,−k̃′) = Ŝ+

↓ (−k′,−k̃′)e+(−k̃′), (24c)

A+
↑ (−k̃,−k̃′) = Ŝ+

↑ (−k̃,−k̃′)e+(−k̃′), (24d)

and the four corresponding scattering operators [Eqs. (19)]
can be expressed as

Ŝ−
↓ (k̃′, k̃) = kz2

kz1
[T̂ (k̃′, k̃)	̂(k̃, k̃)Î (k̃, k̃)

+ T̂ (k̃′, k̃)	̂(k̃,k)R̂(k,k̃)], (25a)

Ŝ+
↑ (−k̃,−k̃′) = kz2

kz1
[T̂ (k̃′, k̃)	̂(k̃, k)R̂(k,k̃)

+ T̂ (k̃′, k̃)	̂(k̃, k̃)Î (k̃, k̃)]T (25b)

for forward scattering and

Ŝ−
↑ (k, k̃) = [R̂(k,k̃)	̂(k̃,k̃)Î (k̃, k̃)

+ R̂(k,k̃)	̂( k̃, k)R̂(k,k̃)

+ Î (k, k)	̂(k, k̃)Î (k̃, k̃)

+ Î (k, k)	̂(k, k)R̂(k,k̃)], (25c)

Ŝ+
↓ (−k′,−k̃′) =

(
kz2

kz1

)2

[T̂ (k̃′, k̃)	̂(̃k, k)T̂ (k,k′)]T (25d)

for backward scattering (the superscript T indicates the trans-
position operation noticing that [ÛV̂ ]T = V̂ TÛ T).

The above formulations make use of several simpli-
fications based on reciprocity relations. The first one is

	̂(k2, k1)T = 	̂(−k1,−k2), which is a direct consequence
of the basic reciprocity property of the Green’s operators
[Ĝ(r, r′) = Ĝ(r′, r)T and Ĝ i(r,ri ) = Ĝ i(ri, r)T ], as shown in
Appendix D. This property remains valid in the exact for-
mulation of the effective Green’s operator accounting for
singularities in the scatterer volume. The second ones directly
result from the definition of the transmission and reflection
dyadics in Eqs. (8), which allows us to write T̂ (k2, k1) =
T̂ (−k2,−k1) = T̂ (k1, k2)T and R̂(k2, k1) = R̂(−k2,−k1) =
R̂(k1, k2)T for any pair (k2, k1) of connected wave vectors.
The last one relates to the transmission operators of ascending
and descending incident waves through the relation

T̂ ′(−k̃,−k̃′) = kz2

kz1
[T̂ (k̃′, k̃)]T = kz2

kz1
T̂ (k̃, k̃′), (26)

making use of the relation t ′
s/p(k‖) = kz2

kz1
ts/p(k‖) given by the

Snell-Descartes laws (Appendix A). A comparison between
Eqs. (25a) and (25b) allows us to establish the important
reciprocity relation between the forward-scattering operators:

Ŝ+
↑ (−k̃,−k̃′) = Ŝ−

↓ (k̃′, k̃)T , (27)

whereas no similar relation between the backward-scattering
operators can be obtained.

1. Extinction of the transmitted waves: Conditions for an
invariance relative to the direction of illumination

We want to discuss here under which conditions the ex-
tinction cross sections for the transmitted waves (C(ext)−

↓
and C(ext)+

↑ ) may be identical. Assuming that the incidence

and the polarization state [e−(k̃) = e−
s (k̃)ŝ(k̃) + e−

p (k̃) p̂(k̃)]
of the excitation wave coming from the upper half-space
[Eq. (4a)] are fixed, the incidence of the excitation wave
coming from the lower half-space is determined by the
above-mentioned condition h′ = −k̃′ and its polarization
state [e+(−k̃′) = e+

s (−k̃′)ŝ(−k̃′) + e+
p (−k̃′) p̂(−k̃′)] is the

only adjustable parameter to consider for achieving C(ext)−
↓ =

C(ext)+
↑ that can be alternatively expressed, from Eqs. (22a) and

(23a), in the form

4π

|e−(k̃)|2kz1

Im{[T̂ (k̃′, k̃)e−(k̃)]
∗ · A−

↓ (k̃′, k̃)}

= 4π

|e+(−k̃′)|2kz2

Im{[T̂ ′(−k̃,−k̃′)e+(−k̃′)]
∗

·A+
↑ (−k̃,−k̃′)}, (28a)

or, after introducing the scattering operators [Eqs. (25a) and
(25b)],

4π

|e−(k̃)|2kz1

Im{[T̂ (k̃′, k̃)e−(k̃)]
∗ · Ŝ−

↓ (k̃′, k̃)e−(k̃)}

= 4π

|e+(−k̃′)|2kz2

Im{[T̂ ′(−k̃,−k̃′)e+(−k̃′)]
∗

·S+
↑ (−k̃,−k̃′)e+(−k̃′)}. (28b)

If a polarization state e+(−k̃′) is a solution of Eq. (28b), it
is reasonable to believe, without further proof, that it should
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also be a solution of the same equation involving the real parts
of the quantities into brackets since it must be independent of
the excitation wavelength and of the complex electric suscep-
tibility η(r) of the scatterer. Equation (28b) can be generalized
in the form

4π

|e−(k̃)|2kz1

[T̂ (k̃′, k̃)e−(k̃)]∗ · Ŝ−
↓ (k̃′, k̃)e−(k̃)

= 4π

|e+(−k̃′)|2kz2

[T̂ ′(−k̃,−k̃′)e+(−k̃′)]∗

· S+
↑ (−k̃,−k̃′)e+(−k̃′). (28c)

A condition on e+(−k̃′) that fulfills Eq. (28c) will be
sufficient to fulfill (28b) and we assume it is also necessary.
Making use of the general property A · (V̂ B) = (V̂ TA) · B and
the reciprocity relations (26) and (27), Eq. (28c) is written

[
T̂ (k̃′, k̃)

e−(k̃)

|e−(k̃)|

]∗
· Ŝ−

↓ (k̃′, k̃)
e−(k̃)

|e−(k̃)|

= e+(−k̃′)
|e+(−k̃′)| · Ŝ−

↓ (k̃′, k̃)[T̂ (k̃′, k̃)
T e+(−k̃′)

|e+(−k̃′)| ]∗. (28d)

The conditions for establishing Eq. (28d) are very general
and do not depend on the size and the nature of the scatterer.
As a consequence, Eq. (28d) must hold for any scattering
operator Ŝ−

↓ (k̃′, k̃) which is independent of the wave polariza-
tions. It can then only be verified provided that right and left
vectors in both members of this expression are proportional
with

[
T̂ (k̃′, k̃)

e−(k̃)

|e−(k̃)|

]∗
= α

e+(−k̃′)
|e+(−k̃′)| and

[
T̂ (k̃′, k̃)

T e+(−k̃′)
|e+(−k̃′)|

]∗
= α

e−(k̃)

|e−(k̃)| , (29)

where α is an arbitrary complex number. This leads
to the equality e−(k̃) = |α|−2T̂ (k̃′, k̃)T∗T̂ (k̃′, k̃)e−(k̃)
or, equivalently, to the statement that the operator
T̂ (k̃′, k̃)T∗T̂ (k̃′, k̃) commutes with the projector Î (k̃, k̃).
From the definition of the dyadic in Eq. (8c), we have
T̂ (k̃′, k̃)T∗T̂ (k̃′, k̃) = |ts(k‖)|2ŝ(k̃) ⊗ ŝ(k̃) + |tp(k‖)|2 p̂(k̃) ⊗
p̂(k̃). The condition [T̂ (k̃′, k̃)

T∗
T̂ (k̃′, k̃), Î (k̃, k̃)] = 0

is then possible either if |ts(k||)|2 = |tp(k||)|2, which
corresponds to the case of a normal incidence relative to the
interface [k| | = 0, t = tp(k| |) = ts(k| |)], or if |ts(k| |)|2 = 0
(alternatively |tp(k| |)|2 = 0), which corresponds to the case
of a pure TE (alternatively TM) polarization of the incident

wave. As a general rule, [T̂ (k̃′, k̃)
T∗

T̂ (k̃′, k̃), Î (k̃, k̃)] = 0
for an arbitrary polarized wave at oblique incidence
(ts(k| |) = tp(k| |)), implying that the extinction of the
transmitted waves cannot be invariant under a permutation
of the directions of illumination (C(ext)−

↓ = C(ext)+
↑ ). This

constitutes the key result of this analysis.
In the case of normal incidence, α = teiβ (where β is an ar-

bitrary real number), it turns out that T̂ (k̃′, k̃)e−(k̃) = te−(k̃)

and we obtain, from Eq. (29),

e+(−k̃′)
|e+(−k̃′)| = e−∗(k̃)

|e−(k̃)|e− iβ, (30)

In the case of pure TE or TM waves at oblique incidence
T̂ (k̃′, k̃) = ts(k‖)ŝ(k̃′) ⊗ ŝ(k̃) (α = ts(k‖)eiβTE ) or T̂ (k̃′, k̃) =
tp(k‖) p̂(k̃′) ⊗ p̂(k̃)[α = tp(k‖)eiβTM ]. We then have, from
Eq. (29) and according to the notations in Eq. (4), the general
relation

e+(−k̃′)
|e+(−k̃′)| = α−1T̂ (k̃′, k̃)∗

e−∗(k̃)

|e−(k̃)| = α−1 e(t)−∗(k̃′)
|e−(k̃)|

= e(t)−∗(k̃′)
|e(t)−(k̃′)|e−iβTM/TE . (31)

Relations (30) and (31) are equivalent in the case of nor-
mal incidence where incident and transmitted wave vectors
and polarizations are proportional [k̃′ = nk̃ and e(t )−(k̃′) =
te−(k̃)].

In both favorable cases discussed above, the condition
ensuring, for any scatterer and any wavelength, the invari-
ance of the optical extinction cross sections in transmission
for reversed-excitation schemes, amounts to stating that the
polarization of the incident wave propagating from the lower
half space must be the complex conjugate of the polarization
of the transmitted wave coming from the upper half space,
to an arbitrary phase factor which is intended to vanish in the
formulation of the cross-sections. When the waves are linearly
polarized, complex conjugation is not necessary since it can
be rooted in the choice of this arbitrary phase.

2. Extinction of the reflected waves: Sensitivity to
the direction of illumination

We examine here the possibility that the extinction pro-
cesses related to waves reflected at the interface may be also
invariant for reversed excitation schemes. The corresponding
cross sections to be compared are given in Eqs. (22b) and
(23b):

C(ext)−
↑ = 4π

|e−(k̃)|2kz1

Im{[R̂(k, k̃)e−(k̃)]
∗·Ŝ−

↑ (k, k̃)e−(k̃)},
(32a)

and

C(ext)+
↓ = 4π

|e+(−k̃′)|2kz2

Im{[R̂′(−k′,−k̃′)e+(−k̃′)]
∗

·Ŝ+
↓ (−k′,−k̃′)e+(−k̃′)}. (32b)

Since such an invariance cannot be achieved for the
extinction of transmitted waves in the general case of
an arbitrary polarized fields at oblique incidence, the
strong differences in the formulations of Ŝ−

↑ (k, k̃) and

Ŝ+
↓ (−k′,−k̃′) [Eqs. (25c) and (25d)] even more precludes

this possibility for reflected waves. Let us rather consider
the simpler case of an excitation at normal incidence
(k̃ = −k = −kz1ẑ, −k̃′ = kz2ẑ, kz1 = k0, and kz2 = nk0).
Transmission and reflection coefficients are strictly
independent of the polarization of the transverse electric field
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[ts(k‖ = 0) = tp(k‖ = 0) = t, rp(k‖ = 0) = −rs(k‖ = 0) = r]
leading to R̂(k = −k̃,k̃) = −rÎ (k̃, k̃), T̂ (k̃′, k̃) = t Î (k̃, k̃),
and T̂ (k, k′) = T̂ (−k̃ ,−k̃′) = T̂ (k̃′, k̃)T . Noticing that
Î (k̃, k̃)2 = Î (k̃, k̃), Î (k̃, k̃)T = Î (k̃, k̃) = Î (−k̃,−k̃), and
	̂(k̃, k = −k̃)T = 	̂(k = −k̃,k̃), Eqs. (25c) and (25d)
simplify in the form

Ŝ−
↑ (k = −k̃, k̃) = [−rÎ (k̃, k̃)	̂(k̃,k̃)Î (k̃, k̃)

+ r2 Î (k̃, k̃)	̂(k̃,−k̃)Î (k̃, k̃)

+ Î (k̃, k̃)	̂(−k̃, k̃)Î (k̃, k̃)

− rÎ (k̃, k̃)	̂(−k̃,−k̃)Î (k̃, k̃)], (33a)

and

Ŝ+
↓ (−k′ = k̃′,−k̃′) = (nt )2[Î (k̃, k̃)	̂(k̃,− k̃)Î (k̃, k̃)].

(33b)

Backward-scattering operators are basically too different to
ensure, even under any further conditions, the general equal-
ity between the cross sections C(ext)−

↑ and C(ext)+
↓ . The same

conclusion could be drawn for pure TE or TM excitations
at oblique incidence, which leads to the general conclusion
that the extinction of reflected waves and therefore the total
extinction itself are always sensitive to the way the supported
scatterer is illuminated, either from the upper or from the
lower medium. This is particularly apparent in the simple
case of a normal incidence under the hypothesis that the
height of the scatterer in the direction normal to the substrate
(�z) is small compared with the wavelength (�zk0 � 2π ).
In that case, the phase factors in the expression (18) can be
neglected, which yields 	̂(k̃,k̃) ∼= 	̂(k̃,−k̃) ∼= 	̂(−k̃,k̃) ∼=
	̂(−k̃,−k̃) ∼= 	̂(k̃,k̃)T and therefore Ŝ+

↓ (k′ = −k̃,−k̃′) ∼=
( nt

1−r )2Ŝ−
↑ (k = −k̃, k̃) = n2Ŝ−

↑ (k = −k̃, k̃), since t = 1 − r
for real reflection- and transmission-type coefficients at an
interface (Appendix A). From Eqs. (8a) and (8b) and noticing
that ŝ(k̃′) = ŝ(k̃) and p̂(k̃′) = p̂(k̃) for a normal incidence
(Fig. 5), the reflection operators are written R̂(k = −k̃,k̃) =
rÎ (k̃,k̃) and R̂′(−k′ = k̃′,−k̃′) = r′Î (k̃,k̃) in Eqs. (33), with
r = −r′ (Appendix A). No general relation between e+(−k̃′)
and e−(k̃) allows us to establish the equality C(ext)−

↑ = C(ext)+
↓

from Eqs. (32). It nevertheless appears that, if e+(−k̃
′
)

|e+(−k̃′ )| =
e−(k̃)
|e−(k̃)|e

iβ (arbitrary real β value), the profiles of the extinction
cross-sections in reflection are almost homothetic, with op-
posite signs (C(ext)+

↓ ∼= −nC(ext)−
↑ ). It must be noted that this

condition differs from Eq. (30) in the case of an elliptically
polarized incident wave.

FIG. 6. System consisting of a scatterer above a plane interface
separating two semi-infinite media (air and dielectric). J− and J+

are the source currents that generate plane-wave excitations and
the respective total electromagnetic fields [E(tot)−(r), H(tot)−(r)] and
[E(tot)+(r), H(tot)+(r)] for any position r. A sphere � of very large
radius R compared with the wavelength encloses the scatterer.

B. The Lorentz reciprocity theorem

The basic conditions that ensure the invariance of the ex-
tinction cross sections of the transmitted light for reversed
excitation schemes can be defined through an alternative
approach, based on the Lorentz reciprocity theorem [20]. Con-
sidering the system pictured in Fig. 2, the excitation plane
waves coming from the upper and lower half spaces are as-
sumed to be created respectively by electric current source
densities J− and J+ located at infinite distances from the
interface, outside of a volume V (outer surface �) enclosing
the scatterer (Fig. 6). The total field in the presence of J− (re-
spectively J+) is denoted [E(tot)−(r), H(tot)−(r)] [respectively
[E(tot)+(r), H(tot)+(r)]].

The electric fields are split into two contributions,
one corresponding to the direct excitation by the
sources, including reflected and transmitted plane
waves, and one corresponding to the field scattered
by the particle. According to the notations in Sec. II,
E(tot)−(k̃, r) = E(inc)−(k̃, r) + E(scat)−(k̃, r) and E(tot)+
(h′,r) = E(inc)+(h′,r) + E(scat)+(h′,r), where the incident
fields can be fully expressed through Eqs. (3) and (4).
The magnetic fields are obtained from the electric fields
through Maxwell’s equations in the source-free region
[H(tot)±(r) = −i

ωμ0
∇ × E(tot)±(r)]. In this framework, since

J−(r) = 0 and J+(r) = 0 inside V, the Lorentz theorem gives
[29]

∫∫∫
V

∇ · [E(tot)−(k̃, r) × H(tot)+(h′, r) − E(tot)+(h′,r) × H(tot)−(k̃, r)]dV

=
∫∫∫

V
[E(tot)−(k̃, r) · J+(r) − E(tot)+(h′,r) · J−(r)]dV = 0,
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or, alternatively, using the divergence theorem,∫∫
©
�

[E(tot)−(k̃, r0) × H(tot)+(h′,r0) − E(tot)+(h′,r0) × H(tot)−(k̃,r0)] · n̂dS = 0, (34)

where � is the surface enclosing the volume V and n̂ a vector normal to this surface at point r0 = Rn̂. According to the
reversibility of Snell’s law for refraction, the condition h′ = −k̃′ is retained once more. Moreover, reciprocity relations have
to be established in the far field so as to make a connection with the optical theorem formulation. For this purpose, the volume
V is chosen as a sphere of radius R, large enough to have nk0R � 1 and allowing the scattered fields to be represented by their
asymptotical expressions given in Eqs. (13):

E(scat)−(k̃, r = Rn̂) = �(z)A−
↑ (k0n̂, k̃)

eik0R

R
+ �(−z)A−

↓ (nk0n̂, k̃)
eink0R

R
,

and

E(scat)+(h′ = −k̃′, r = Rn̂) = �(z)A+
↑ (k0n̂,−k̃′)

eik0R

R
+ �(−z)A+

↓ (nk0n̂,−k̃′)
eink0R

R
,

where the vector amplitudes are defined in Eq. (14). By making use of the stationary phase method (or Jones’ lemma in Appendix
XII of Ref. [18]) and exploiting the transversal character of incident and scattered fields, it is possible to establish, from Eq. (34)
and using the notations in Eq. (4), the simple relation

kz1[e−(k̃) · e(t )+(−k̃′)] − kz2[e(t )−(k̃) · e+(−k̃′)] + 4π i[e+(−k̃′) · A−
↓ (k̃′, k̃) − e−(k̃) · A+

↑ (−k̃,−k̃′)] = 0.

Since this expression must be valid for any scatterer, the two basic conditions

kz1[e−(k̃) · e(t )+(−k̃)] = kz2[e(t )−(k̃′) · e+(−k̃′)], (35a)

and

e+(−k̃′) · A−
↓ (k̃′, k̃) = e−(k̃) · A+

↑ (−k̃,−k̃′), (35b)

must be fulfilled independently.

1. Transmission through the interface

Let us consider first the reciprocity relation (35a) which
only concerns the transmission of a plane wave through a pla-
nar dielectric interface in the absence of a scatterer. For waves
at oblique incidence, the transmitted electric fields are usually
expressed in a TE-TM basis set and written as e(t )+(−k̃) =
T̂ ′(−k̃,−k̃′)e+(−k̃′) and e(t )−(k̃′) = T̂ (k̃′, k̃)e−(k̃) with the
transmission operators defined in Eqs. (8c) and (8d). Thanks
to the general property (ÛA) · (V̂ B) = (V̂ TÛA) · B, it is
straightforward to see that the condition required to fulfill
Eq. (35a) is T̂ ′(−k̃,−k̃′) = kz2

kz1
[T̂ (k̃′, k̃)]T, which is nothing

but the reciprocity relation [Eq. (26)] established in the pre-
vious section. The principle of reciprocity then leads to the
laws for the transmission of a plane wave through a diopter,
insofar as the materials considered here are passive and linear.

This result obtained for a single interface can be extended to
any stratified medium (SF) where the Snell-Descartes laws
applied to the multipath transmission through parallel in-
terfaces from air to air impose the conservation of wave
vectors −k̃′ = −k̃ (kz1 = kz2) and the TM or TE polarization
states (see Fig. 1). The relation (26) reduces to the sim-
plified form T̂

′SF(−k̃,−k̃) = [T̂ SF(k̃, k̃)]T which prescribes
that t ′SF

s (k‖) = tSF
s (k‖) and t ′SF

p (k‖) = tSF
p (k‖) and gives the

well-known condition fulfilled by the transmission matrices
of counter-propagating waves in the Jones’ formulation in the
case of a normal incidence [16,30].

2. Scatterer extinction in transmission

The issue is to discuss, on the basis of relations (35a)
and (35b), under which conditions the quantities C(ext )+

↑ and

C(ext )−
↓ may be equal, or in other terms, Eq. (28a) established

in Sec. III A 1 may be verified. Using Eq. (26) and considering
that kz1 and kz2 are real-valued, Eq. (28a) gives

1

|e−(k̃)|2
Im{[T̂ (k̃′, k̃)e−(k̃)]

∗ · A−
↓ (k̃′, k̃)} = 1

|e+(−k̃′)|2
Im{[T̂ (k̃′, k̃)

T
e+(−k̃′)]

∗ · A+
↑ (−k̃,−k̃′)}. (36)

As before, if one considers that this equality should be also valid for the real parts of the complex scalar products into brackets,
it gives

1

|e−(k̃)|2
{[T̂ (k̃′, k̃)e−(k̃)]

∗ · A−
↓ (k̃′, k̃)} = 1

|e+(−k̃′)|2
{[T̂ (k̃′, k̃)

T
e+(−k̃′)]

∗ · A+
↑ (−k̃,−k̃′)}. (37)
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A direct comparison between Eq. (37) and relation
(35b) leads to the same relation as Eq. (29) established in
Sec. III A 1, and therefore to the same general conclusion.
The insensitivity of the extinction cross section of the trans-
mitted wave to a reversal of the excitation scheme requires

the commutation condition [T̂ (k̃′, k̃)
T∗

T̂ (k̃′, k̃), Î (k̃, k̃)] = 0.
This property can be fulfilled in the case of a normal incidence
or an oblique incidence with pure TE or TM polariza-
tions, with the same constraint on the relative polarization of
both counter-propagating waves. However, unlike the Green’s
function formalism, nothing more can be said about the sen-
sitivity of the extinction of the reflected wave relative to a
reversal of the excitation scheme.

IV. DISCUSSION

In many cases of interest, the extinction cross section of
the light transmitted through an interface in the presence of
a scatterer is found to be strictly insensitive to the reversal
of the excitation scheme, primarily if the transmitted wave
preserves the polarization state of the incident wave. This
property finds its origin in the special symmetry of the Green’s
operator [Ĝ(r,r′) = Ĝ(r′,r)T] and was established through
two basically equivalent approaches (Green’s formalism or the
Lorentz-Helmholtz theorem). It is strictly valid in the case of
normal incidence or in the case of oblique incidence for purely
TE or TM polarized waves, and only approximate otherwise,
as discussed hereafter. Such a property is not so intuitive even
in the absence of a dielectric interface (free scatterer in a ho-
mogeneous medium) where the total scattering (or absorption)
cross section itself is in general not invariant. It is intimately
related to the cancellation of retardation effects through the
scatterer volume, i.e., the conservation of phase coherence
between the local excitation field and the far fields scattered
by elementary parts of the scatterer in the same propagation
direction. Such a coherence is destroyed in the case of the
reflected wave because of mirroring and induced retardation
effects. This is obvious in the expression of the backscattering
operators Ŝ−

↑ (k, k̃) and Ŝ+
↓ (−k′, − k̃′) in Eqs. (33), where

transmission and reflection coefficients play asymmetric roles.

A. Normal incidence with circularly polarized waves

Normal incidence is an important case encountered in
most experimental studies, with especially profound impli-
cations on circular dichroism properties. In this respect,
clear conventions for the description of polarization states
of the incident waves relative to their direction of propaga-
tion are required. The main specificity of this configuration
is that the positively oriented basis frames attached to the

descending and ascending waves (ŝ(k̃), p̂(k̃), ̂̃k) and (ŝ(−k̃′),
p̂(−k̃′), −̂̃k′), respectively, are parallel to each other. At
the limit of normal incidence (k‖ → 0), the TM-TE ba-
sis vectors coincide with the axes of the laboratory frame

with the following relations, ̂̃k → −ẑ, −̂̃k′ → ẑ, ŝ(k̃) →
ŷ, p̂(k̃) → x̂, ŝ(−k̃′) → −ŷ, and p̂(−k̃′) → x̂ (Fig. 7). The
relation e+

s (−k̃′)/e+
p (−k̃′) = −[e−

s (k̃)/e−
p (k̃)]∗ between the

components of the electric-field polarizations results from the

FIG. 7. Relationships between the polarization states of counter-
propagating waves exciting a supported scatterer at normal incidence
for achieving invariance in the extinction cross section for trans-
mitted waves. (a) Case of a linear polarization, the insets show the
orientation of the polarization vectors in the plane normal to the
wave direction of propagation with the wave vector seen from the
rear, together with the corresponding view of the supported scatterer.
(b) Case of circularly polarized waves, the handedness of counter-
propagating waves must be the same, either positive (black arrow) or
negative (gray dotted arrow).

constraint e+(−k̃′)/|e+(−k̃′)| = e−(k̃)∗/|e−(k̃)| on their am-
plitudes [see Eq. (30) with β = 0] because ŝ(−k̃′) = −ŝ(k̃)
and p̂(−k̃′) = p̂(k̃). If the wave coming from the upper half
space is linearly polarized [e−

s (k̃)/e−
p (k̃) = tan(θpol )], then

the wave coming from the lower half space must have the
same polarization but with an apparent angle of opposite sign
[e+

s (−k̃′)/e+
p (−k̃′) = tan(−θpol )], as long as the object and

the oriented frames are seen from the far source regions, the
wave vectors k̃ and −k̃′ pointing towards opposite directions
[Fig. 7(a)].

In the case of circularly polarized waves, a right-handed
(positive) or a left-handed (negative) circular polarization is,
by convention here, associated with a clockwise or a counter-
clockwise rotation of the electric field relative to the direction
of propagation when observed from the corresponding source
region. Owing to the choice of the temporal dependence
(e−iωt ), normalized positive or negative circularly incident
waves coming from the upper half space are written e−(k̃) =
σ̂±(k̃) = 1√

2
[ŝ(k̃) ∓ i p̂(k̃)]. To achieve invariance of the ex-

tinction cross sections of the transmitted waves relative to a
reversal of the excitation scheme, the constraint (30) imposes
the polarization states of the waves coming from the lower
half space to be written as e+(−k̃′) = 1√

2
[ŝ(k̃) ∓ i p̂(k̃)]∗ =

1√
2
[−ŝ(−k̃′) ± i p̂(−k̃′)] = −σ̂±(−k̃′) and therefore must

possess the same handedness [Fig. 7(b)].
An important consequence of this property is illustrated

in Fig. 8, which shows the particular example of a scatterer
consisting of a spiral shined on by a positive circularly plane
wave directed normally to its mirror plane of symmetry. This
spiral is achiral since it can be superposed to its mirror im-
age through a suited rotation but, viewed in the direction
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FIG. 8. (a) Spiral embedded in a homogeneous medium and ex-
cited by a circularly polarized plane wave normally incident relative
to its plane of symmetry. The wave and the spiral are both right-
handed. (b) Excitation scheme of the same spiral by a circularly
polarized plane wave propagating in the opposite direction and re-
taining the same handedness. (c) Mirror transformation of scheme (b)
relative to a plane containing the incident wave vector. The circular
polarization turns from positive to negative (gray dotted arrow).

of the incident wave vector, it possesses a sense of twist
chosen to coincide with the handedness of the excitation
wave [Fig. 8(a)]. According to the property established be-
fore, the extinction cross section is unchanged if the spiral
is excited by a positive circularly plane wave propagating in
the opposite direction, although the apparent sense of twist
of the spiral seen from the light source regions is reversed
[Fig. 8(b)]. Starting from this second configuration, a mirror
inversion relative to a plane normal to the spiral would result
in changing the handedness of both the spiral and the wave po-
larization without altering the incident wave vector direction
[Fig. 8(c)]. In such an operation, the extinction cross section
is unchanged. As a consequence, a comparison between the
configurations in Figs. 8(a) and 8(c) proves the absence of
circular dichroism with respect to extinction measurements

for such a planar object. This does not preclude its occurrence
for absorption and total scattering.

B. Failure of the invariance of the extinction cross section for
reversed excitation schemes in the general case:

Numerical verifications

In case of an arbitrary polarized wave at oblique incidence,
the extinction of the transmitted light depends on whether
the supported scatterer is illuminated from the upper or from
the lower medium because the operators T̂ (k̃′, k̃)T∗T̂ (k̃′, k̃)
and Î (k̃, k̃) do not commute due to the difference between
TE and TM transmission coefficients [tp(k‖) and ts(k‖)]. In
order to highlight and quantify this phenomenon, extinction
cross sections given by Eqs. (22a) and (23a) are calculated in
the specific case of a scatterer consisting of a gold plasmonic
structure chosen for its generality, without any particular mir-
ror symmetry (a priori chiral), placed in air and supported on
a plane dielectric semi-infinite substrate (refractive index n)
as shown in Fig. 9. The plane of incidence for the excitation
waves is chosen as the xz plane in the laboratory frame. The
polar angles of incidence for the plane waves coming from the
air (θ ) or from the dielectric (ϕ) are related by Snell’s laws
(sin θ = n sin ϕ, cos θ = kz1

k0
and cos ϕ = kz2

nk0
).

In a first step, Maxwell’s equations are solved in the near-
field by using a finite-element method (COMSOL 5.2 software).
The dielectric function of gold is taken from Ref. [31]. The
calculation parameters are the angle of incidence θ and
the polarization of the incident fields e−(k̃) = e−

s (k̃)ŝ(k̃) +
e−

p (k̃) p̂(k̃) and e+(−k̃′) = e+
s (−k̃′)ŝ(−k̃′) + e+

p (−k̃′) p̂(−k̃′)
(see Fig. 9) that are assumed to be linear [e−

s (k̃), e−
p (k̃),

e+
s (−k̃′), and e+

p (−k̃′) are real]. The polarization angle θpol of
the wave coming from the upper space (air) is defined through
the ratio e−

p (k̃)/e−
s (k̃) = tan(θpol ). For an oblique incidence,

there is no longer preferred relations between the polarizations
of the incident fields e−(k̃) and e+(−k̃′). One could choose
e+(−k̃′) proportional to the field transmitted from the air to
the substrate [T̂ (k̃′, k̃)e−(k̃)] or, reciprocally, choose e+(−k̃′)
such as the field transmitted from the substrate to the air

FIG. 9. Schemes of the excitation configurations involved in the numerical calculations. The incident wave can come (a) from the air with
an angle of incidence θ in the xz plane or (b) from the substrate of refractive index n with an angle of incidence ϕ = sin−1(sin θ/n) in the xz
plane (c) The long side of the gold nanostructure forms an angle of 20° relative to the y axis.
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FIG. 10. Extinction cross sections for the transmitted (full gray lines) and reflected (dotted gray lines) waves calculated in the case of an
excitation of the supported gold nanostructure from the air (upper panels) or from the dielectric (lower panels). Their sums (total extinctions)
are given by the thick black lines. The wave coming from the upper half space is linearly polarized with an angle θpol = 60◦ . Calculations are
made for an angle of incidence θ = 30◦ and a refractive index of the substrate n = 1.5 in panel (a) and for θ = 70◦ and n = 2.25 in panel (b).
In the lower panels, the circles report the values of C (ext)−

↓ from the upper panel for comparison with C (ext)+
↑ . Their difference is given by the

lowermost thick black curves.

[T̂ ′(−k̃,−k̃′)e+(−k̃′)] is proportional to e−(k̃). None of these
nonequivalent hypotheses is more relevant than the other. For
simplicity and by analogy with the limiting case of a nor-

mal incidence, we arbitrarily assume that e+
s (−k̃′ )

e+
p (−k̃′ ) = tan(−θpol )

which is also consistent with the case of pure TE or TM
polarizations at oblique incidence. In a second step, the near-
field to far-field transformation is computed by using a method
based on reciprocity arguments and a freely available software
package [32].

Figure 10(a) shows that, for the choice θ = 30◦, θpol =
60◦, and n = 1.5, the cross sections for the reflected waves
are totally different for the two directions of excitation and
may adopt negative values corresponding to an increase of
the reflected power. On the contrary, the curves C(ext)−

↓ and

C(ext)+
↑ cannot be distinguished from each other in the whole

spectral range where several plasmon resonances develop.
This is due here to the close proximity between the TE
and TM transmission coefficients (ts(k‖)/tp(k‖) � 0.982 for
θ = 30◦ and n = 1.5 as shown in Fig. 11 of Appendix A.
If the angle of incidence and/or the refractive index of the
substrate is increased, the difference between the transmis-
sion coefficients for TE and TM polarizations become larger,
leading to a weak but noticeable dependence of the extinction
of the transmitted waves on the excitation scheme, as illus-
trated in Fig. 10(b) for θ = 70◦ and n = 2.25, corresponding
to ts(k‖)/tp(k‖) � 0.74. It must be noted that such extreme

parameter values are not commonly encountered in most op-
tical experiments. In any case, the sums C(ext)−

tot = C(ext)−
↑ +

C(ext)−
↓ and C(ext)+

tot = C(ext)+
↑ + C(ext)+

↓ corresponding to the
total extinction cross sections are significantly different for
reversed-excitation schemes.

FIG. 11. Ratio between the TE and TM transmission coefficients
from air to a dielectric medium of refractive index n = 1.5 or n =
2.25 as a function of the angle of incidence. The values ≈0.74 for
θ = 70◦ (n = 2.25) and ≈0.98 for θ = 30◦ (n = 1.5) are indicated.
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V. CONCLUSION

We have analyzed to what extent, and under which con-
ditions, the extinction of the transmitted light by a scatterer
placed at the planar interface between two isotropic and semi-
infinite homogeneous media can be sensitive to the direction
under which it may be illuminated. Extinction cross sections
in transmission are found to be exactly identical for reversed
excitation configurations as far as normal incidence or oblique
incidence with purely magnetic or electric transverse excita-
tion waves are considered. This has been demonstrated from
two converging approaches: a Green’s function integral equa-
tion method and an application of the Lorentz reciprocity
theorem in optics. The fundamental condition is that the po-
larization state of an incident excitation wave coming from a
given medium must be the complex conjugate of the polar-
ization state of the counter-propagating wave transmitted in
the same medium. This amounts to a simple conservation of
the linear TE or TM polarization for an oblique incidence and
to the conservation of a general elliptical polarization hand-
edness for normal incidence. For an oblique incidence with
waves being neither purely TE nor TM linearly polarized, the
extinction cross sections for reversed illumination schemes
are no longer identical. This deviation is all the more sig-
nificant that TM and TE transmission coefficients themselves
differ from each other (large angle of incidence and/or large
refractive index of the dielectric medium), inducing a polar-
ization rotation upon transmission. This fully corroborates
the observations recently made in extinction spectroscopy
experiments on single plasmonic nanoparticles supported on

transparent thin film or thick glass slides [7]. Moreover, except
for specific limiting situations, this property does not hold
for the extinction of reflected waves and therefore for the
global extinction by the supported particle, according to the
generalized optical theorem.

This restricting condition on the polarization of reciprocal
waves is of main importance with regard to the chiral proper-
ties of supported particles. For instance, this shows that, when
embedded in a homogeneous medium, any scatterer having
a plane of symmetry normal to the incident wave vector
cannot display any dichroism in the extinction of transmitted
light, even if it may possess a sense of twist. This observa-
tion is related to the more general and widely debated issue
of the chirality and dichroic properties of two-dimensional
metamaterials made of planar nanostructures arranged in reg-
ular arrays [33–37]. In this respect, the general connection
that can be made between the circular dichroism and/or the
optical activity of free-standing or supported scatterers and
their symmetry properties will be explored more deeply in a
forthcoming presentation that should benefit from the Green’s
equation integral formalism introduced here.
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APPENDIX A: THE FRESNEL COEFFICIENTS

For a plane wave incident on a planar interface between two media 1 and 2 with dielectric functions ε1 and ε2 and magnetic
permittivities μ1 and μ2 as sketched in Fig. 3,and with the convention chosen for the TE (s) and TM (p) basis [Eqs. (6) and (7)],
the general reflection and transmission coefficients are written [21]

r1→2
s (kx, ky) = μ2kz1 − μ1kz2

μ2kz1 + μ1kz2
, r1→2

p (kx, ky ) = ε2kz1 − ε1kz2

ε2kz1 + ε1kz2
,

t1→2
s (kx, ky) = 2μ2kz1

μ2kz1 + μ1kz2
, t1→2

p (kx, ky) = 2ε2kz1

ε2kz1 + ε1kz2

√
μ2ε1

μ1ε2
,

with kz1 and kz2 defined in Eq. (2). The superscript (1 → 2) indicates that the wave propagates from medium1 to medium 2. In the
case of a plane wave incident from medium 2 to medium 1, it is straightforward to check that t2→1

(s/p) (kx, ky) = kz2μ1

kz1μ2
t1→2
(s/p) (kx, ky) and

r2→1
(s/p) (kx, ky) = −r1→2

(s/p) (kx, ky). Figure 11 shows the dependence with the angle of incidence of the ratio between the transmission
coefficients of TM and TE waves, when medium 1 is the air and medium 2 is a dielectric of refractive index n = 1.5 or 2.25

APPENDIX B: EXPRESSIONS OF THE SCATTERING VECTOR AMPLITUDES

We derive here the particular expression (14a) of the scattering vector amplitude A−
↓ (K̃′, k̃) =

−i2K′
zeiK′

z ·zb
∫∫

z=zb
d2r‖e−iK̃′ ·r‖E(scat)−(k̃, r) defined as the Fourier component [Eq. (13b)] of the scattered field

E(scat)−(k̃, r) = k2
0

∫∫∫
Vs d3r′η(r′)Ĝ(r,r′)E(tot)−(k̃, r′) [Eq. (11)]. The arbitrary coordinate zb < 0 on the z axis is chosen

so that the scatterer is entirely located above the corresponding plane parallel to the interface [see Fig. 3(a)]. In that case, the
Green’s operator Ĝ(r,r′) [Eq. (12)] is written

Ĝ(r,r′;z′ > 0, z < zb < 0) = i

8π2

∫∫
d2K̈‖

K̈z
eiK̈‖·(r‖−r′‖ )[T̂ ( ¨̃K′, ¨̃K)ei(K̈zz′−K̈ ′

zzb)],
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since the scatterer lies in the upper half space (z′ > 0) and the scattered field is considered in the region
where z < zb < 0. The variable K̈ is used instead of K to avoid confusion with the argument K̃′ in A−

↓ (K̃′, k̃).
Therefore,

A−
↓ (K̃′, k̃) = −i2K′

ze
iK ′

z ·zbk2
0

∫∫
z=zb

d2r‖e−iK̃′ ·r‖
∫∫∫

VS

d3r′
{

i

8π2

∫∫
d2K̈‖

K̈z
eiK̈‖·(r‖−r′‖ )[T̂ ( ¨̃K′, ¨̃K)ei(K̈zz′−K̈ ′

zzb)]

}
η(r′)E(tot)−(k̃, r′)

= −i2K′
ze

iK ′
z ·zbk2

0

∫∫∫
VS

d3r′e−iK̈‖·r′‖

{
i

8π2

∫∫
d2K̈‖

K̈z

[∫∫
z=zb

d2r‖ei(K̈‖−K̃′
‖ )·r‖

]
[T̂ ( ¨̃K′, ¨̃K)ei(K̈zz′−K̈ ′

zzb)]

}
η(r′)E(tot)−(k̃, r′).

The integration over d2r‖ in the plane z = zb provides the Dirac delta function (2π )2δ(2)(K̈‖ − K‖) which imposes K̈‖ − K‖ =
K̈′

‖ − K′‖ = 0 and then K̈z = Kz and K̈ ′
z = K′

z according to Eqs (2). Since K̈‖ · r′‖ − Kzz′ = K̃ · r′, we finally obtain

A−
↓ (K̃′, k̃) = −i2K′

ze
iK ′

z ·zbk2
0

∫∫∫
VS

d3r′e−iK̈‖·r′‖

{
(2π )2i

8π2Kz
[T̂ (K̃′, K)ei(Kzz′−K ′

zzb)]

}
η(r′)E(tot)−(k̃, r′)

= K ′
z

Kz
k2

0

∫∫∫
VS

d3r′e−iK̃·r′
T̂ (K̃′, K)η(r′)E(tot)−(k̃, r′).

APPENDIX C: SINGULARITY OF THE GREEN’S FUNCTION IN THE SCATTERER VOLUME

The integral formulation of the scattered electric field, E(scat)(r) = k2
0

∫∫∫
Vs d3r′η(r′)Ĝ(r,r′)[E(inc)(r′) + E(scat)(r′)], is only

valid outside the volume of the scatterer (r = r′). The Green’s function of the problem [Eq. (12)] can be split into two

contributions, Ĝ(r,r′) = ĜR(r,r′) + Ĝ0(r,r′), where ĜR(r,r′) = i
8π2

∫∫ d2K‖
Kz

eiK‖·(r‖−r′‖ ){�(z)R̂(K, K̃)eiKz (z+z′ )} is the Green’s
operator associated to the secondary wave reflected at the interface, and

Ĝ0(r,r′) = i

8π2

∫∫
d2K‖

Kz
eiK‖·(r‖−r′‖ ){�(z − z′)Î (K, K)eiKz (z−z′ ) + �(z′ − z)Î (K̃, K̃)eiKz (z′−z)}

is the Green’s operator associated with the primary incident wave (free-space case). Its spatial representation is Ĝ0(r,r′) =
[Î + ∇⊗∇

k2
0

]G0(r,r′) where Î = 1̂ ⊗ 1̂ is the unit dyadic and G0(r,r′) = eik0|r−r′ |/4π |r − r′| is the scalar free-space Green’s

function. Unlike ĜR(r,r′), Ĝ0(r,r′) is singular when r = r′. The treatment of the Green’s function in the source regions has
been widely discussed and is now well established [26,28,38]. When r is inside the volume of the scatterer, Ĝ0(r,r′) can be
reformulated by introducing the Cauchy principal part of the integral,

E(scat)(r) = lim
ε→0

⎛
⎝k2

0

∫∫∫
Vs−δV (r,ε)

d3r′η(r′)Ĝ0(r,r′)E(tot)(r′) + k2
0

∫∫∫
δV (r,ε)

d3r′η(r′)
[
Ĝ0(r,r′)E(tot)(r′) + ĜS

0 (r,r′)E(tot)(r′)
]

+ L̂(δS(r, ε))η(r)E(tot)(r)

⎞
⎠, (C1)

where ĜS
0(r,r′) = [Î + ∇⊗∇

k2
0

] 1
4π |r−r′ | and δV (r, ε) is an exclusion volume containing r and having a chord size ε. The “depo-

larization” dyadic L̂(δS(r, ε)) = ∫∫©
δS(r,ε) d2r′ n̂′⊗(r−r′ )

|r−r′ |3 is defined by integration on the surface δS(r, ε) enclosing δV (r, ε) (n̂′ is
an outwardly pointing unit vector normal to the surface at point r’). It depends on ε and on the shape of δS(r, ε). If ε is small
enough, the second term on the right side of Eq. (C1) can be neglected and the regular Green’s operator for the case where
r, r′ ∈ VS can be written in the compact form

Ĝ(r,r′)in = lim
ε→0

¯̄G(r,r′,δV (r, ε)), (C2)

with ¯̄G(r,r′,δV (r, ε)) = ĜR(r,r′) + ( 1+�(|r−r′ |−ε)
2 )Ĝ0(r,r′) + L̂(δS(r, ε)) δ(r−r′ )

k2
0

[� is the Heaviside function and δV (r, ε) is
arbitrarily chosen as a sphere of radius ε centered on r]. In this framework the regular expression of the total electric
field inside the scatterer is now E(tot)(r) = E(inc)(r) + k2

0

∫∫∫
Vs d3r′η(r′)Ĝ(r,r′)inE(tot)(r′) and is assumed to be equiva-

lent to E(tot)(r) = E(inc)(r) + lim
ε→0

k2
0

∫∫∫
Vs d3r′η(r′) ¯̄G(r,r′,δV (r, ε))E(tot)(r′), if the limit and the integral operations can be

interchanged.
Although the self-consistent development of the total field is more complicated from an analytical point

of view, the discussion in Sec. III A. remains valid since the modified Green’s operator Ĝ(r,r′)in verifies
the same reciprocity property as Ĝ(r,r′) [ ¯̄G(r,r′,δV (r, ε))T = ¯̄G(r′,r,δV (r′,ε))]. From Ĝ(r,r′)in, it is actually pos-
sible to define a regular composed operator on the basis of Eq. (17), Ĝ i(r,ri )in = limε→0 Ĝ i(r,ri, δV (r, ε))
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with

Ĝ i(r,ri, δV (r, ε))

= lim
ε0,ε1,...,εi−1→0

⎧⎨
⎩ k2i

0

∫∫∫
Vs

d3r0η(r0)
∫∫∫

Vs
d3r1η(r1)

∫∫∫
Vs

d3r2.η(r2) · · ·
∫∫∫

Vs
d3ri−1η(ri−1)

¯̄G(r,r0, δV(r, ε) ¯̄G(r0,r1, δV(r0, ε0) ¯̄G(r1,r2, δV(r1, ε1) . . . ¯̄G(ri−1,ri, δV(ri−1, εi−1)

⎫⎬
⎭.

As a consequence, all the operators defined in the discussion of Sec. III could be replaced by Ĝ i(r,ri )in, with preserved
reciprocity properties since Ĝ i(r,ri )in = [Ĝ i(ri, r)in]T.

APPENDIX D: RECIPROCITY RELATION FOR THE GREEN’S OPERATORS

Using the property [ÛV̂ ]T = V̂ TÛ T, the transpose of the generalized composed Green operator of order i > 0 given by
Eq. (17) is written

Ĝ i(r,ri )
T = k2i

0

∫∫∫
¯̄V S

d3r0η(r0)
∫∫∫

¯̄V S

d3r1η(r1) · · ·
∫∫∫

¯̄V S

d3ri−1η(ri−1)Ĝ(ri−1,ri )
T · · · Ĝ(r1,r2)T Ĝ(r0,r1)T Ĝ(r,r0)T . (D1)

On the other hand, the transposed of the elementary operator [Eq. (12)] is, for z > 0,

Ĝ(r, r′)T = i

8π2

∫∫
Kx,Ky

d2K‖
Kz

eiK‖·(r‖−r′‖ )[R̂(K, K̃)
T

eiKz (z+z′ ) + �(z − z′)Î (K, K)T eiKz (z−z′ ) + �(z′ − z)Î (K̃, K̃)
T

eiKz (z′−z)].

(D2)

Making the variable change K = −H̃ (or H = −K̃), the operators in Eq. (D2) are written Î (K̃, K̃)T = Î (−H, − H)T =
Î (−H, − H) = Î (H, H), Î (K, K)T = Î (−H̃,−H̃)T = Î (−H̃,−H̃) = Î (H̃, H̃),
and

R̂(K, K̃) = R̂(−H̃,−H) = rs(−H‖)ŝ(−H̃) ⊗ ŝ(−H) + rp(−H‖) p̂(−H̃) ⊗ p̂(−H)

= rs(H‖)ŝ(H̃) ⊗ ŝ(H) + rp(H‖) p̂(H̃) ⊗ p̂(H) = R̂(H, H̃)T

Since the integration in Eq. (D2) runs over all possible values of Hx and Hy from −� to +� and −H̃‖ = −H‖, it can be
found that

Ĝ(r,r′)T = Ĝ(r′,r), (D3)

and, finally, from Eqs. (D1) and (D3),

Ĝ i(r,ri )
T = Ĝ i(ri, r). (D4)
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