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Abstract— We present a coupled model describing growth
of microalgae in a raceway cultivation process, accounting for
hydrodynamics. Our approach combines a biological model
(based on the Han model) and shallow water dynamics equa-
tions that model the fluid into the raceway. We then describe
an optimization procedure dealing with the topography to
maximize the biomass production over one cycle (one lap of the
raceway). The results show that non-flat topographies enhance
microalgal productivity.

I. INTRODUCTION

Research on production of biotechnological microalgae
has been booming in recent years. The potential of these
techniques finds interests for the cosmetics, pharmaceutical,
food and - in the longer term - green chemistry and energy
applications [13]. Production is carried out in biophotoreac-
tors that often take the form of a raceway, i.e. a circular basin
exposed to solar radiation where the water is set in motion
by a paddle wheel [3]. On top of homogenizing the medium
for ensuring an equidistribution of the nutrients necessary for
algal growth, the main interest of mixing is to guarantee that
each cell will have regularly access to light [4]. The algae
are regularly harvested, and their concentration is maintained
around an optimal value [11], [12]. The algal concentration
stays generally below 1% [2]. Above this value, the light
extinction is so high that a large fraction of the population
is in the dark and does not grow anymore.

Many phenomena have to be taken into account to rep-
resent the entire photoproduction process. In this paper, we
develop a coupled model to describe the growth of algae in
a raceway, accounting for the light that they receive. More
precisely, prolonging the study of [1] with a simpler model,
we combine a photosynthesis model, the Han model, and a
hydrodynamic model based on the Saint-Venant equations for
shallow water flows. This approach enables us to formulate
an optimization problem where the raceway topography is
designed to maximize the productivity. For this problem, we
present an adjoint-based optimization scheme including con-
straints to respect the shallow water regime. Our numerical
tests show that non-trivial topographies can be obtained.

The outline of the paper is as follows: in Section 2, we
present the biological and hydrodynamic models underlying
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our coupled model. In Section 3, we describe the optimiza-
tion problem and a corresponding numerical optimization
procedure. Section 4 is devoted to the numerical results
obtained with our approach. We conclude in Section 5 with
some perspectives opened by this work.

II. COUPLING HYDRODYNAMICAL AND
BIOLOGICAL MODELS

Our approach is based on a coupling between the hydro-
dynamic behavior of the particles and the evolution of the
photosystems driven by the light intensity they received when
traveling across the raceway pond.

A. Modelling the photosystems dynamics

The photosystems we consider are cell units that harvest
photons and transfer their energy to metabolism. The photo-
systems dynamics can be described by the Han model [7].
In this compartmental model, the photosystems can be de-
scribed by three different states: open and ready to harvest a
photon (A), closed while processing the absorbed photon en-
ergy (B), or inhibited if several photons have been absorbed
simultaneously (C).
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Fig. 1. Scheme of the Han model, representing the probability to go from
one state to another, as a function of the photon flux density.

Their evolution satisfy the following dynamical system
Ȧ = −σIA+ B

τ ,

Ḃ = σIA− B
τ + krC − kdσIB,

Ċ = −krC + kdσIB.

Here A,B and C are the relative frequencies of the three
possible states with

A+B + C = 1, (1)

and I is the photon flux density, a continuous time-varying
signal. Besides, σ stands for the specific photon absorption,
τ is the turnover rate, kr represents the photosystems repair
rate and kd is the damage rate. Following [8] and using (1),
we reduce this system to one single evolution equation:

Ċ = −α(I)C + β(I), (2)



where

α(I) = kdτ
(σI)2

τσI + 1
+ kr, β(I) = α(I)− kr.

The net specific growth rate is obtained by balancing photo-
synthesis and respiration, which gives

µ(C, I) = −γ(I)C + ζ(I), (3)

where

γ(I) =
kσI

τσI + 1
, ζ(I) = γ(I)−R.

Here k is a factor that links received energy and growth rate.
The term R represents the respiration rate.

Remark 1: The dynamics of the biomass X is derived
from µ:

Ẋ = µ(C, I)X. (4)

B. Steady 1D Shallow Water Equation

The shallow water equations are one of the most popular
model for describing geophysical flows, which is derived
from the free surface incompressible Navier-Stokes equations
(see for instance [5]).

We assume that the hydrodynamics in the raceway pond
corresponds to a laminar flow where the viscosity is ne-
glected. As a consequence, it can be described by the steady
Shallow Water equation which is given by

∂x(hu) = 0, (5)

∂x(hu2 + g
h2

2
) = −gh∂xzb, (6)

where u is the horizontal averaged velocity of the water, h is
the water elevation, the constant g stands for the gravitational
acceleration, and zb defines the topography of the raceway
pond. The free surface η is given by η = h+zb. This system
is presented in Fig 2. The z axis represents the vertical

0 L

z

0 x
η(x)

Is Light intensity

zb(x)

h(x)

u(x)

Fig. 2. Representation of the hydrodynamic model.

direction and the x axis represents the horizontal direction.
Besides, Is represents the light intensity at the free surface
(assumed to be constant).

Considering Equations (5)-(6), and integrating the former,
we get

hu = Q0, (7)

for a fixed positive constant Q0. On the other hand, since
hu is a constant, Equation (6) can be rewritten as

hu∂xu+ h∂xgh+ h∂xgzb = 0.

Assuming that h > 0 and using (7), we can eliminate u to
get

∂x(
Q2

0

2h2
+ g(h+ zb)) = 0.

Then for two given constants h(0), zb(0) ∈ R, we have for
all x ∈ [0, L]

Q2
0

2h2
+ g(h+ zb) =

Q2
0

2h2(0)
+ g(h(0) + zb(0)) =: M0. (8)

Finally we find that the topography zb satisfies

zb =
M0

g
− Q2

0

2gh2
− h. (9)

Remark 2: This model is relevant if the flow is subcritical
and the water elevation is positive, meaning that the follow-
ing relation shall hold

0 <
u(x)√
gh(x)

< 1 x ∈ (0, L),

which can also be written as

h(x) > (
Q2

0

g
)

1
3 x ∈ (0, L). (10)

This leads us to introduce the threshold value hc := (
Q2

0

g )
1
3 ,

which guarantees that the system is in a shallow water
regime. Note that hc is the threshold value of h for which
the Froude number equals to one.

From (9), h is the solution of a third degree equation.
Given a smooth topography zb, there exists a unique positive
smooth solution of (9) which satisfies the subcritical flow
condition (see [10, Lemma 1]).

C. Lagrangian trajectories of the algae and captured light
intensity

Let z be the vertical position of a particle in the raceway.
We first determine the Lagrangian trajectory of an algal cell
which starts at a given position z(0) at time 0.

From the incompressibility of the flow, we have

∇ · u = 0,

with u = (u(x), w(x, z)). Here u(x) is the horizontal
velocity and w(x, z) is the vertical velocity. This implies
that

∂xu+ ∂zw = 0. (11)



Integrating (11) from zb to z gives:

0 =

∫ z

zb

(
∂xu(x) + ∂zw(x, z)

)
dz,

= ∂x

∫ z

zb

u(x)dz +

∫ z

zb

∂zw(x, z)dz,

= ∂x
(
(z − zb)u(x)

)
+ w(x, z)− w(x, zb),

= (z − zb)∂xu(x)− u(x)∂xzb + w(x, z).

where we have used the non-penetration condition
w(x, zb) = 0. It then follows from (9) that

w(x, z) = (
M0

g
− 3u2(x)

2g
− z)u′(x).

The Lagrangian trajectory is consequently characterized by
the system (

ẋ(t)
ż(t)

)
=

(
u(x(t))

w(x(t), z(t)).

)
(12)

To obtain the light intensity observed on this trajectory,
we assume the turbidity to be constant over the considered
time scale and use Beer-Lambert law:

I(x, z) = Is exp (−ε(η(x)− z)), (13)

where ε is the light extinction coefficient. In doing so, we
suppose that the system is perfectly mixed so that the con-
centration of the biomass X defined in (4) is homogeneous
and ε is constant.

Remark 3: We see that in this approach, the light intensity
I couples the hydrodynamic model and Han model: the
trajectories of the algae define the received light intensity,
which is used in the photosystem dynamics.

III. OPTIMIZATION PROBLEM

In this section, we define the optimization problem associ-
ated with the biological-hydrodynamical model. We assume
a constant volume for the raceway system. We first introduce
our procedure in the case of one single layer, and then extend
this to a multiple layers system. For simplicity, we omit t in
the notations.

A. One layer problem

1) Optimization functional: The average net specific
growth rate for one trajectory is defined by

µ̄1 :=
1

T

∫ T

0

µ(C, I(x, z))dt. (14)

As we have mentioned in the previous section, in the
subcritical case, a given topography zb corresponds to a
unique water height h. On the other hand, the volume of
our system is defined by

V =

∫ L

0

h(x)dx. (15)

Therefore, we choose to parameterize h by a vector a ∈ RN ,
which will be the variable to be optimized, in order to handle
the volume of our system. Given a vector a and the associated
h, the optimal topography can be obtained by using (9).

Our goal here is to optimize the topography to maximize
µ̄1. In this way, we define the functional with the help of (3)

µ̄1(a) =
1

T

∫ T

0

−γ(I(x, z; a))C + ζ(I(x, z; a))dt,

where C, x, z satisfy Ċ = −α(I(x, z; a))C + β(I(x, z; a))
ẋ = u(x; a)
ż = w(x, z; a).

(16)

The optimal control problem then reads:
Find a? solving the maximization problem:

max
a∈RN

µ̄1(a). (17)

2) Optimality System: Define the Lagrangian of Prob-
lem (17) by

L(C, z,x, p1, p2, p3, a)

:=
1

T

∫ T

0

(
− γ(I(x, z; a))C + ζ(I(x, z; a))

)
dt

−
∫ T

0

p1
(
Ċ + α(I(x, z; a))C − β(I(x, z; a))

)
dt

−
∫ T

0

p2
(
ż − w(x, z; a)

)
dt−

∫ T

0

p3
(
ẋ− u(x; a)

)
dt.

where p1, p2 and p3 are the Lagrange multipliers associated
with the constraints (16).

The optimality system is obtained by cancelling all
the partial derivatives of L. Differentiating L with re-
spect to p1, p2, p3 and equating the resulting terms to
zero gives the corrected model equations (16). Integrating
the terms

∫
p1Ċdt,

∫
p2żdt and

∫
p3ẋdt on the inter-

val [0, T ] by parts and differentiating L with respect to
C, z, x, C(T ), z(T ), x(T ) gives rise to

∂CL = − 1
T γ(I(x, z; a)) + ṗ1 − α(I(x, z; a))p1

∂zL =
( 1

T

(
− γ′(I(x, z; a))C + ζ ′(I(x, z; a))

)
+ p1

(
− α′(I(x, z; a))C + β′(I(x, z; a))

))
∂zI(x, z; a) + ṗ2 + p2∂zw(x, z; a)

∂xL =
( 1

T

(
− γ′(I(x, z; a))C + ζ ′(I(x, z; a))

)
+ p1

(
− α′(I(x, z; a))C + β′(I(x, z; a))

))
∂xI(x, z; a) + p2∂xw(x, z; a) + ṗ3 + p3∂xu(x; a)

∂C(T )L = p1(T )
∂z(T )L = p2(T )
∂x(T )L = p3(T ).

(18)
Given a vector a, let us still denote by C, x, z, p1, p2, p3
the corresponding solutions of (16) and (18). The gradient
∇µ̄1(a) is obtained by

∇µ̄1(a) = ∂aL,



where

∂aL =
1

T

∫ T

0

(
− γ′(I(x, z; a))C + ζ ′(I(x, z; a))

)
∂aI(x, z; a)dt+

∫ T

0

p1
(
− α′(I(x, z; a))C

+β′(I(x, z; a))
)
∂aI(x, z; a)dt

+

∫ T

0

p2∂aw(x, z; a)dt+

∫ T

0

p3∂au(x; a)dt.

(19)

B. Multiple Layers Problem

We now extend the previous procedure to deal with
multiple layers. Let us denote Nz the number of layers and
Ci (resp. zi) the photo-inhibition state (resp. the trajectory
position) associated with the i-th layer. As the optimization
functional, we consider the semi-discrete average net specific
growth rate over the domain, namely:

µ̄Nz
(a) =

1

Nz

Nz∑
i=1

1

T

∫ T

0

µ(Ci, I(x, zi; a))dt, (20)

where Ci, x, zi verify the constraints (16) for i = 1, · · · , Nz .
Remark 4: Note that the average net specific growth rate

over the domain is defined by:

µ̄∞ :=
1

L

∫ L

0

1

h(x)

∫ η(x)

zb(x)

µ(C, I(x, z))dzdx.

Our approach consequently consists in considering a vertical
discretization of µ̄∞, which gives (20). This discretization
should not give rise to any problem and is left to a future
contribution.

Similar computations as in the previous section give rise
to Nz systems similar to (18), where C and z are replaced by
Ci and zi respectively. Denoting by p1,i, p2,i the associated
Lagrange multipliers, the partial derivatives ∂xL is a little
different from the previous section, more precisely, this can
be computed by:

∂xL =
1

Nz

Nz∑
i=1

1

T

(
− γ′(I(x, zi; a))Ci + ζ ′(I(x, zi; a))

)
∂xI(x, zi; a) +

Nz∑
i=1

p1,i
(
− α′(I(x, zi; a))Ci

+ β′(I(x, zi; a))
)
∂xI(x, zi; a)

+

Nz∑
i=1

p2,i∂xw(x, zi; a) + ṗ3 + p3∂xu(x; a).

Finally, the gradient ∇µ̄Nz
(a) is given by

∂aL =
1

Nz

Nz∑
i=1

1

T

∫ T

0

(
− γ′(I(x, zi; a))Ci + ζ ′(I(x, zi; a))

)
∂aI(x, zi; a)dt+

Nz∑
i=1

∫ T

0

p1,i
(
− α′(I(x, zi; a))Ci

+ β′(I(x, zi; a))
)
∂aI(x, zi; a)dt

+

Nz∑
i=1

∫ T

0

p2,i∂aw(x, zi; a)dt+

∫ T

0

p3∂au(x; a)dt.

IV. NUMERICAL EXPERIMENTS

A. Numerical method

1) Gradient Algorithm : In order to tackle the optimiza-
tion problem (17), we consider a gradient-based optimization
method. The complete procedure is detailed in Algorithm 1.
Note that in addition to a numerical tolerance criterion on

Algorithm 1 Gradient-based optimization algorithm
Input: Tol> 0, ρ > 0.
Initial guess: a.
Output: a
Set err := Tol+1 and define h by (21) using the input
data.
while err >Tol and ‖h‖∞ > hc do

Compute u by (7).
Set x, z as the solutions of the last two equations of
(16).
Compute I by (13).
Set C as the solution of the first equation of (16).
Set p1, p2, p3 as the solutions of (18).
Compute the gradient ∇µ̄1 by (19).
a = a+ ρ∇µ̄1,
Set err := ‖∇µ̄1‖.

end while

the magnitude of the gradient, we have added a constraint
on the water height h. The latter guarantees that we remain
in the framework of subcritical flows (10) (and in the range
of industrial constraints, see [3]).

A similar algorithm can be considered to tackle the
multiple layers Problem (20). Remark that since there is no
interaction between layers, the gradient computation can be
partially parallelized when computing zi, Ci, p1,i, p2,i.

2) Numerical Solvers: We introduce a supplementary
space discretization with respect to x to solve our opti-
mization problem numerically, in this way, we set a time
step ∆t, and use Heun scheme to compute the trajectories



described by (12). The integration is stopped when x reaches
L. Denoting by NT the final number of the time steps, we
then have NT∆t ≈ T .

We use the Heun scheme again for computing C via (2).
We use a first-discretize-then-optimize strategy, meaning that
the Lagrange multipliers p1 (resp. p2, p3) are also computed
by a (backward) Heun’s type scheme. Note that this scheme
is still explicit since it solves a backward dynamics starting
from p1(T ) = 0 (resp. p2(T ) = 0, p3(T ) = 0).

B. Parameter settings

1) Parameterization: In order to describe the bottom of
an optimized raceway pond, we choose to parameterize h
by a truncated Fourier series for our numerical tests so that
h(0) = h(L), which means we have accomplished one lap.
More precisely, h reads:

h(x) = a0 +

N∑
n=1

an sin(2nπ
x

L
). (21)

The parameter to be optimized is the Fourier coefficients
a := [a1, · · · , aN ]. Note that we choose to fix a0, since it is
related to the volume V of the raceway. Indeed, under this
parameterization we have

V =

∫ L

0

h(x)dx = a0L.

From (7) and (9), the velocity u and the topography zb read
also as functions of a. Once we find the vector a maximizing
the functional µ̄Nz

, we then find the optimal topography of
our system.

2) Parameters of the system: The time step is set to ∆t =
0.1 s which corresponds to the numerical convergence of the
Heun’s scheme, and we take Q0 = 0.04 m2 s−1, a0 = 0.4 m,
zb(0) = −0.4 m to stay in standard ranges for a raceway.
We take here L = 10 m and the free-fall acceleration g =
9.81 m s−2. The initial state of C is set to be its steady state.
All the numerical parameters values for Han’s model are
taken from [6] and recalled in Tab. I.

TABLE I
PARAMETER VALUES FOR HAN MODEL

kr 6.8 10−3 s−1

kd 2.99 10−4 -
τ 0.25 s
σ 0.047 m2.(µmol)−1

k 8.7 10−6 -
R 1.389 10−7 s−1

In order to determine the light extinction coefficient ε, let
us assume that only 10% light can be captured by the cells

at the bottom of the raceway, meaning that Ib = 0.1Is, we
choose Is = 2050µmol m−2 s−1 which corresponds to the
average light intensity at summer (see [6]). Then ε can be
computed by

ε = (1/a0) ln(Is/Ib).

C. Numerical results

1) Convergence test: The first test consists in studying
the influence of the vertical discretization number Nz . We
fix N = 5 and take 100 random initial guesses of a. Note
that the choice of a should respect the subcritical condition
(10). For Nz varying from 1 to 80, we compute the average
value of µ̄Nz

for each Nz . The results are shown in Fig. 3.
We observe numerical convergence when Nz grows, showing

1 20 40 60 80
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Fig. 3. The value of µ̄Nz for Nz = [1, 80].

the convergence towards continuous model. In view of these
results, we take Nz = 40 for the successive studies.

2) Optimization example: We focus now on the shape of
the optimal topography. Let us set the numerical tolerance
Tol= 10−10, we choose N = 5 terms in the truncated
Fourier series as an example to show the shape of the
optimal topography. As an initial guess, we consider the flat
topography, meaning that a is set to 0. The optimal shape of
the topography is shown in Fig. 4, and the a? for the final it-
eration reads a? = [0.1043, 0.0503, 0.0333, 0.0250, 0.0201].
The resulting optimal topography is not flat, which is not a
common knowledge in the community.

3) Study of the influence of N : The last test is given to
study the influence of the order of the truncation of the
Fourier series. Set N = [0, 5, 10, 15, 20] and keep all the
other parameter settings. Tab. II shows the optimal value of
our functional µ̄Nz

for different values of N . Note that, even
the value of µ̄Nz is small, it is not the numerical error. There
is a slight increase of the optimal value of the functional
µ̄Nz

when N becomes larger. However, corresponding values
of µ̄Nz

remain close to the one associated with a flat
topography. As for the optimal shape, for instance, we give
in Fig. 4 another optimal topography when N = 20. The
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Fig. 4. The optimal topography at the final iteration for N = 5 (up) and
for N = 20 (down). The red thick curve represents the topography (zb),
the blue thick curve represents the free surface (η), and all the other curves
between represent the trajectories for different layers.

optimal topography seems to converge to a slope. Here, the
topography varies significantly so that viscosity of the fluid
can give rise to turbulence (and irreversibility) which is not
taken into account in (5–6).

TABLE II
THE VALUE OF µ̄Nz FOR DIFFERENT N

N Iter µ̄Nz log10(‖∇µ̄Nz‖)
0 0 1.232270 10−5 −
5 39 1.250805 10−5 -10.077503
10 39 1.251945 10−5 -10.091920
15 39 1.252354 10−5 -10.097072
20 39 1.252565 10−5 -10.099389

V. CONCLUSIONS AND FUTURE WORKS

A non flat topography slightly enhances the average
growth rate. However the gain stays very limited and it is not
clear if the practical difficulty to generate such pattern would
be compensated by the increase in the process productivity.

Here the class of functions representing the topography
has been chosen so that the topographic functions are zero
on average. As a consequence, their choice does not affect

the liquid volume. Further studies could consist in consid-
ering more general class of functions, also considering a
non constant volume. Moreover, the optimal algal biomass
concentration is itself related to the growth rate ([9]) so that
the light extinction coefficient is no more a constant, and
depends on biomass supported by the parameterization of
the system. The computation of the gradient should then be
revisited to manage this more complicated case.
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Eric Pruvost, Raouf Hamouda, Fabien Souillé, Pierre-Olivier Lamare,
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