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Optimizing microalgal productivity in raceway ponds through a
controlled mixing device

Olivier Bernard† , Liudi Lu?, Julien Salomon?

Abstract— This paper focuses on mixing strategies to enhance
the growth of microalgae in a raceway pond. The flow is
assumed to be laminar and the Han model describing the
dynamics of the photosystems is used as a basis to determine
growth rate as a function of light history. A device controlling
the mixing is assumed, which means that the order of the cells
along the different layers can be rearranged at each new lap
according to a permutation matrix P . The order of cell depth
hence the light perceived is consequently modified on a cyclical
basis. The dynamics of the photosystems are computed over K
laps of the raceway with permutation P . It is proven that if
a periodic regime is reached, it will be periodic immediately
after the first lap, which enables to reduce significantly the
computational cost when testing all the permutations. In view
of optimizing the production, a functional corresponding to the
average growth rate along depth and for one lap is introduced.
A suboptimal but explicit solution is proposed and compared
numerically to the optimal permutation and other strategies for
different cases. Finally, the expected gains in growth rate are
discussed.

I. INTRODUCTION

Microalgae have shown a growing interest for producing
food, feed, green chemistry or even biofuels [7]. The most
widespread way of cultivating them is the so-called race-
way pond: an annular basin agitated by a paddle wheel.
Hydrodynamical studies have shown that the paddle wheel
played a key role [1], [2] by modifying the elevation of
the cells, and thus giving successively access to light to all
the population. In this paper, we focus on such possible
effects to determine what should be the optimal design
of a paddle wheel for rearranging the trajectories so that
the photosystems dynamics eventually lead to an optimal
production.

The outline of the paper is as follows: in Section 2, we
present the raceway model we use, namely, the biological
model and the mixing device. This allows us to get explicit
formula to determine the growth of microalgae during the
production process. In Section 3, we introduce the optimiza-
tion problem by using some properties of the model along
with an approximate optimization problem whose solution
is explicit. Some numerical results are presented in Section
4. We conclude in Section 5 with some comments and
perspectives.

In what follows, N denotes the set of non-negative integers
and IN denotes the identity matrix of size N ∈ N. Given a
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matrix M , we denote by ker(M) its kernel and by Mi,j its
coefficient (i, j). In the same way, Wn denotes the coefficient
n of a vector W .

II. RACEWAY MODELING

A. Han model
We consider the Han model [4] which explains the dy-

namics of the reaction centers within the photosystems.
These subunits of the photosynthetic process harvest photons
and transfer their energy to the cell to fix CO2. In this
compartmental model, the reaction centers can be described
by three different states: open and ready to harvest a photon
(A), closed while processing the absorbed photon energy
(B), or inhibited if several photons have been absorbed
simultaneously (C). The relation of these three states are
presented in Fig 1. Their evolution satisfy the following

A B CσI kdσI

τ−1 kr

Photon I Photon I

Fig. 1. Scheme of the Han model, representing the probability to go from
one state to another, as a function of the photon flux density.

dynamical system
Ȧ = −σIA+ B

τ ,

Ḃ = σIA− B
τ + krC − kdσIB,

Ċ = −krC + kdσIB.

Here A,B and C are the relative frequencies of the three
possible states with

A+B + C = 1, (1)

and I is a continuous time-varying signal representing the
photon flux density. Besides, σ stands for the specific photon
absorption, τ is the turnover rate, kr represents the photo-
system repair rate and kd is the damage rate. Following [6]
and using (1), we reduce this system to one single evolution
equation:

Ċ = −α(I)C + β(I), (2)

where

α(I) = kdτ
(σI)2

τσI + 1
+ kr,

β(I) = kdτ
(σI)2

τσI + 1
.



The net specific growth rate is obtained by balancing photo-
synthesis and respiration, which gives

µ(C, I) = −γ(I)C + ζ(I), (3)

where

γ(I) =
kσI

τσI + 1
,

ζ(I) =
kσI

τσI + 1
−R.

Here k is a factor linking the photosynthetic activity and the
growth rate. The term R represents the respiration rate.

To obtain the photon flux density I at depth z, we assume
that growth takes place at a much slower time scale. The
biomass variations are thus negligible over one lap of the
raceway. As a consequence the turbidity is supposed to be
constant at the considered time scale. In this framework,
the Beer-Lambert law describes the light attenuation as a
function of depth by:

I(z) = Is exp(εz), (4)

where Is is the light intensity at the free surface, ε is the
light extinction coefficient and z is the depth of the algae.
We suppose that the system is perfectly mixed so that the
concentration of the biomass is homogeneous, meaning that
ε is constant. The average net specific growth rate over the
domain is defined by

µ̄ :=
1

T

∫ T

0

1

h

∫ 0

−h
µ
(
C(t, z), I(z)

)
dzdt,

where h is the depth of the raceway pond and T is the
average duration of one lap of the raceway pond.

In order to tackle numerically this problem, we introduce
a vertical discretization of the fluid. Consider N layers
uniformly distributed on a vertical grid, meaning that the
layer n is located at depth zn defined by:

zn = −
n− 1

2

N
h, n = 1, · · · , N. (5)

Let Cn(t) and In the corresponding photo-inhibition state
and the light intensity, respectively. In this semi-discrete
setting, the average net specific growth rate in the raceway
pond can be defined by

µ̄N :=
1

T

∫ T

0

1

N

N∑
n=1

µ(Cn(t), In)dt. (6)

B. Mixing device modeling

We denote by P the set of permutation matrices of size
N ×N and by SN the associated set of permutations of N
elements. The mixing device (P ) is described by P ∈ P as
follows. Denote by σ ∈ SN the permutation corresponding
to P . At each new lap, the algae in the layer n are entirely
transferred into the layer σ(n) when passing through the
mixing device. In this way, we assume the rearrangement
to be perfect. This model is depicted schematically on an
example in Figure 2.
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z1 = zσ(4)
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z3 = zσ(2)

z4 = zσ(3)

-

-

Fig. 2. Example of mixing device (P ). Here, N = 4 and P corresponds
to the cyclic permutation σ = (1 2 3 4).

The interest of such a device is to mix the algae to better
balance their exposure to light and increase the production.
Note that in actual raceway ponds, this device is generally a
paddle wheel (see for example [2]).

C. Explicit computation of the growth rate

Since (In)Nn=1 are constants with respect to time, for a
given initial vector of states (Cn(0))Nn=1, the solution of (2)
is given by

C(t) = D(t)C(0) + V (t), t ∈ [0, T ], (7)

where D(t) is a diagonal matrix with Dnn(t) = e−α(In)t

and V (t) is a vector with Vn(t) = β(In)
α(In)

(1 − e−α(In)t). It
follows that (6) can also be computed explicitly, which gives

µ̄N =
1

N

1

T

(
〈Γ, C(0)〉+ 〈1, Z〉

)
, (8)

where 1 is a vector of size N whose coefficients equal 1,
and Γ, Z are two vectors with Γn = γ(In)

α(In)
(e−α(In)T−1) and

Zn = γ(In)
α(In)

β(In)
α(In)

(1 − e−α(In)T ) − γ(In)β(In)
α(In)

T + ζ(In)T .
The details of the computation giving rise to (7) and (8)
are given in Annex. For simplicity of notations, we write
hereafter D,V instead of D(T ), V (T ).

D. Periodic regime

In this section, we study the evolution over multiple laps.
Denote by Ck(0) the photo-inhibition state of the algae
which has just passed the mixing device P after k laps. The
initial state of the system C0(0) := C(0) is assumed to be
known. According to (7) and by definition of P , we have

Ck+1(0) = P (DCk(0) + V ). (9)

Before studying the sequence
(
Ck(0)

)
k∈N, let us give a

technical result.
Lemma 1: Given k ∈ N, the matrix IN − (PD)k is

invertible.
Proof: Assume IN − PD is not invertible, then there

exists a non-null vector X ∈ ker(IN − PD), which means
X = PDX . Let us denote dn = Dnn. The coefficients of X



satisfy (DX)n = dnXn and Xn = (PDX)n = dσ(n)Xσ(n)

for n = 1, . . . , N . In the same way, we have Xn =(
(PD)kX

)
n

= dσk(n) · · · dσ(n)Xσk(n) for n = 1, . . . , N .
Denoting by L the order of σ, we have

Xn =
(
(PD)LX

)
n

= dσL(n) · · · dσ(n)XσL(n)

= dσL(n) · · · dσ(n)Xn.

Since, 0 < dn < 1 for n = 1, . . . , N , then 0 <
dσL(n) · · · dσ(n) < 1. This implies that Xn = 0, which
contradicts our assumption. Therefore, IN−PD is invertible.
That IN − (PD)k is invertible can be proved in much the
same way.

Assume now that the state C is KT -periodic in the sense
that after K times of passing the device (P ), i.e. CK(0) =
C(0). A crucial property of

(
Ck(0)

)
k∈N is given in the next

proposition.
Proposition 1: For all k ∈ N

Ck(0) = (IN − PD)−1PV. (10)

As a consequence, the sequence
(
Ck(0)

)
k∈N is constant.

Proof:
Thanks to Lemma 1, there exists a unique C̄ satisfying

C̄ = P (DC̄ + V ).

Define ek := Ck(0)− C̄, so that ek+1 = (PD)ek. Since C
is assumed to be KT -periodic, we have

e0 = eK = (PD)Ke0.

According to Lemma 1, IN − (PD)K is invertible, meaning
that e0 = 0. It follows that ek = 0, for k ∈ N. The result
follows.
A natural choice for K would be the order of the permutation
associated with P . Indeed, K is in this case the minimal
number of laps required to recover the initial ordering of the
layers. The previous result shows that every KT−periodic
evolution will actually be T−periodic. This will help us
in simplifying the formulation of the optimization problem
considered in the next section. In addition, the computations
to solve the optimization problem will be reduced, since the
CPU time required to assess the quality of a permutation will
not depend on its order.

III. OPTIMIZATION PROBLEM

A. Presentation of the optimization problem

Recall that the light intensity is assumed to be constant
with respect to time. As a consequence, Γ and Z are also
constant. With the help of (8), the average net specific growth
rate for K laps of the raceway pond is then defined by

µ̄KN :=
1

K

K−1∑
k=0

1

N

1

T

(
〈Γ, Ck(0)〉+ 〈1, Z〉

)
.

We assume the system to be KT -periodic. From Proposi-
tion 1, we obtain that µ̄KN = µ̄N , meaning that we only need

to consider the evolution over one lap of raceway. Replacing
now C(0) in (8) by (10), we obtain

µ̄N =
1

N

1

T

(
〈Γ, (IN − PD)−1PV 〉+ 〈1, Z〉

)
.

Since N,T and Z are independent of P , we need to focus
on the functional defined by

J(P ) = 〈Γ, (IN − PD)−1PV 〉. (11)

The optimization problem then reads:
Find a permutation matrix Pmax solving the maximization

problem:
max
P∈P

J(P ). (12)

B. Approximation of the optimization problem

For realistic cases, e.g., large values of N , Problem (12)
cannot be tackled in practice. To overcome this difficulty,
we now propose an approximation of J whose maximum
can be computed explicitly. For this purpose, we consider
the following expansion of (11):

〈Γ, (IN − PD)−1PV 〉 =

+∞∑
m=0

〈Γ, (PD)mPV 〉

=〈Γ, PV 〉+

+∞∑
m=1

〈Γ, (PD)mPV 〉.

We then consider as an approximation of (11) the first term
of this series, namely

J approx(P ) = 〈Γ, PV 〉. (13)

Before detailing the solution of maxP∈P J
approx(P ), let us

state a preliminary result.
Lemma 2: Let u, v ∈ RN , with u1 ≤ · · · ≤ uN , σ? ∈

SN such that vσ?(1) ≤ · · · ≤ vσ?(N) and P ? ∈ P the
corresponding matrix. Then

P ? ∈ argmaxP∈P〈u, Pv〉.
Proof: Denote by P ? a solution of maxP∈P〈u, Pv〉

and by σ? the corresponding element in SN . Let ṽ := P ?v.
Assume that the sum 〈u, P ?v〉 =

∑N
n=1 unvn =: SN does

not contain the term uN ṽN . There exists i, j < N such that
SN contains uN ṽj + uiṽN . However

uN ṽj + uiṽN ≤ uN ṽN + uiṽj , (14)

so that P ? is not optimal. Hence a contradiction. As a
consequence, SN contains uN ṽN . The result follows by
induction.

We immediately deduce from this lemma that once Γ
and V are given, the optimal solution P approx

max of (13) can
be determined explicitly as the matrix corresponding to the
permutation which associates the largest element of Γ with
the largest element of V , the second largest element with the
second largest, and so on.

IV. NUMERICAL EXPERIMENTS

In this section, we present some numerical results to eval-
uate the efficiency of the various mixing strategies presented
above.



A. Parameter settings

Let the water elevation h = 0.4 m. All the numerical
parameters values considered in this section for Han’s model
are taken from [3] and recalled in Table I.

TABLE I
PARAMETER VALUES FOR HAN MODEL

kr 6.8 10−3 s−1

kd 2.99 10−4 -
τ 0.25 s
σ 0.047 m2.(µmol)−1

k 8.7 10−6 -
R 1.389 10−7 s−1

Recall that Is is the light intensity at the free surface. In
order to fix the value of the light extinction coefficient ε
in (4), we assume that only q percent of Is is still available
at the bottom of the raceway, meaning that Ib = qIs, where
q ∈ [0, 1]. It follows that ε can be computed by

ε = (1/h) ln(1/q).

In practise, this quantity can be implemented in the experi-
ments by adapting the harvest frequency.

B. Examples of optimal devices

In this section, we present some examples of optimal
solution of (12). Set N = 11 the number of layers, meaning
that we test numerically N ! (i.e. 39916800) permutation
matrices. The light intensity at the free surface is set to be
Is = 2000µmol m−2 s−1 which corresponds to a maximum
value during summer in the south of France.

Let us start with a series of tests with the average time
duration for one lap of the raceway pond T = 1000 s. When
the light attenuation ratio q = 10%, we find that Pmax = IN .
When q = 1%, the optimal permutation matrix Pmax is given
by (15).

Pmax =



0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0


. (15)

When q = 0.1%, the optimal permutation matrix Pmax is

given by (16). For all three cases, P approx
max = Pmax.

Pmax =



0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0


. (16)

We next study a much extreme case where the time
duration of one lap T = 1 s. When the ratio q = 10%,
we find the optimal matrix Pmax = IN . When q = 1%,
the optimal permutation matrix Pmax is a two-block matrix
consisting of a block of identity and a block of anti-diagonal
matrix with one as entries. This matrix is shown in (17).

Pmax =



1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0


. (17)

When q = 0.1%, we find the optimal matrix Pmax as an
anti-diagonal matrix with one as entries. For all three cases,
P approx
max is an anti-diagonal matrix with one as entries.
To evaluate the efficiency of the corresponding mixing

strategy, let us define

r1 :=
µ̄N (Pmax)− µ̄N (IN )

µ̄N (IN )
, (18)

r2 :=
µ̄N (Pmax)− µ̄N (Pmin)

µ̄N (Pmin)
, (19)

r3 :=
µ̄N (IN )− µ̄N (Pmin)

µ̄N (IN )
, (20)

where Pmin ∈ P is the matrix that minimizes J , (see (11)),
i.e., that corresponds to the worse strategy. Figure 3 shows
how these three ratios change with q. It turns out that the
optimal mixing has more influence in the case of high
density, i.e., when the % of transmitted light is lower. An
optimal permutation strategy will increase growth rate by
15% for q = 10−3 compared to a situation without mixing.
It is also worth remarking that a non appropriate mixing
can reduce the growth rate by almost 30% compared to the
optimal permutation.

C. Further numerical tests

We now study in a more extensive way the influence of
various parameters on the optimal strategy.
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Fig. 3. The ratio r1, r2 and r3 for q ∈ [0.1%, 10%], the blue curve stands
for r1, the red curve represents r2 and the yellow curve is for r3.

1) Results for different strategies: The first test aims
at studying the influence of permutation strategies on the
average of net specific growth rate µ̄N . More precisely, we
compute µ̄N for the next four strategies: the optimal matrix
Pmax that solves Problem (12), the worst matrix Pmin which
minimizes J , the no permutation case where P = IN and the
matrix P approx

max which solves the approximate Problem (13).
In our test, we consider N = 7 layers, Is ∈ [0, 2500], and
q ∈ [0.1%, 10%]. Figure 4 presents the results for T = 1 s,
T = 500 s and T = 1000 s.

We see that the original problem (11) and the approx-
imated problem (13) coincide much more often for large
values of the lap duration time T . In fact, the four surfaces
become closer one to the others for large values of T .

2) Influence of lap duration, % of transmitted light and
light at surface on average growth rate: To assess the
influence of the light intensity at the free surface Is, the light
attenuation ratio q and the lap duration time T , we compute
µ̄N for the optimal strategy associated with Pmax. We
consider again N = 7 layers, Is ∈ [0, 2500], q ∈ [0.1%, 10%]
and T ∈ [1, 1000]. The results are shown in Figure 5. We
observe that for a fixed light intensity at surface (Is), the
influence of the time duration (T ) is very weak. Besides,
there exists an optimal value for % of the transmitted light
(q) which is around 3%. We also find that for small values of
q, there exists a non-trivial optimal light intensity at surface,
e.g., Is ≈ 500µmol m−2 s−1 for q = 0.1%. Finally, average
growth rate (µ̄N ) appears to increase monotonically when
T goes to 0. This flashing effect corresponds to the fact
that the algae exposed to high frequency flashing have a
better growth. This phenomenon has already been reported
in literature, see, e.g., [5], [6].

3) Influence of light at the free surface and of the lap
duration time T on the ratios: We finally study the influence
of light intensity at the free surface Is and the average lap
duration time T on the three ratios (18)-(20). Let keep the
number of layers N = 7, q = 0.1%, T ∈ [1, 1000] and Is ∈
[0, 2500]. Figure 6 presents the results for these three ratios
r1, r2, r3. We see that the relative improvement between the
worst and the best strategy may reach 30%. This confirms
the results obtained in Figure 3. In our experiments, we have
observed that this improvement can even be greater when
considering higher values of Is. Moreover, we observe again

Fig. 4. Average net specific growth rate µ̄N for Is ∈ [0, 2500] and
q ∈ [0.1%, 10%]. In each figure, the red surface is obtained with Pmax,
the dark blue surface is obtained with Pmin, the green surface is obtained
with IN and the light blue surface is obtained with P approx

max . The black stars
represent the cases where Pmax = IN and the red circles represent the
cases where Pmax = P

approx
max . Top: for T = 1 s. Middle: for T = 500 s.

Bottom: for T = 1000 s.

the flashing effect.

V. CONCLUSION

We have presented a model of raceway that focuses
on the mixing caused by the flow driving device. This
model enables us to find mixing strategies that maximize
the production. On the other hand, it requires a significant
computational effort when dealing with fine discretization of
the fluid layers. We overcome this difficulty by defining an
approximation that has an explicit solution that appears to
coincides with the true solution when the lap duration T is
large enough. Our experimental results show the significance
of the choice of the mixing strategy: the relative ratio
between the best and the worst case reaches 30% in some
cases. We also observe a flashing effect meaning that better
results are obtained when T goes to zero.

Further works will be devoted to the understanding of the
permutation strategies that are found and to the reduction of
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the computational cost.
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APPENDIX

In this section, we provide the detail of the computation
for an arbitrate layer n ∈ [[1, N ]]. Given two points t1 and
t2, since In is constant, Equation (2) can be integrated and
becomes

Cn(t2) = eα(In)(t1−t2)Cn(t1) +
β(In)

α(In)
(1− eα(In)(t1−t2))

(21)
The time integral in (6) can be computed by∫ T

0

µ(Cn(t), In)dt =

∫ T

0

−γ(In)Cn(t) + ζ(In)dt

=− γ(In)

∫ T

0

Cn(t)dt+ ζ(In)T.

Replacing t2 by t and t1 by 0 in (21) and integrating t from
0 to T gives∫ T

0

(
e−α(In)tCn(0) +

β(In)

α(In)
(1− e−α(In)t)

)
dt

=
Cn(0)

α(In)
(1− e−α(In)T ) +

β(In)

α(In)
T − β(In)

α2(In)
(1− e−α(In)T ).


