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OPINION

Type 3 immunity: a perspective 
for the defense of the mammary gland 
against infections
Pascal Rainard1*  , Patricia Cunha1, Rodrigo P. Martins1, Florence B. Gilbert1, Pierre Germon1 and Gilles Foucras2

Abstract 

Type 3 immunity encompasses innate and adaptive immune responses mediated by cells that produce the signature 
cytokines IL-17A and IL-17F. This class of effector immunity is particularly adept at controlling infections by pyogenic 
extracellular bacteria at epithelial barriers. Since mastitis results from infections by bacteria such as streptococci, 
staphylococci and coliform bacteria that cause neutrophilic inflammation, type 3 immunity can be expected to 
be mobilized at the mammary gland. In effect, the main defenses of this organ are provided by epithelial cells and 
neutrophils, which are the main terminal effectors of type 3 immunity. In addition to theoretical grounds, there is 
observational and experimental evidence that supports a role for type 3 immunity in the mammary gland, such as the 
production of IL-17A, IL-17F, and IL-22 in milk and mammary tissue during infection, although their respective sources 
remain to be fully identified. Moreover, mouse mastitis models have shown a positive effect of IL-17A on the course 
of mastitis. A lot remains to be uncovered before we can safely harness type 3 immunity to reinforce mammary gland 
defenses through innate immune training or vaccination. However, this is a promising way to find new means of 
improving mammary gland defenses against infection.
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A novel approach is required to improve mastitis 
vaccines
Mastitis is the most frequent and economically impor-
tant disease of dairy ruminants worldwide [1]. The main 
bacteria responsible for mammary gland (MG) infections 
(staphylococci, streptococci, and coliform bacteria) can 
cause acute clinical mastitis, but more often subclinical 
long-lasting infection and inflammation [2]. Both types of 
infections are characterized by the recruitment of leuko-
cytes, mainly neutrophils, into the mammary tissue and 
secretions. The mechanisms behind this recruitment are 
incompletely defined, and although several MG defenses 
have been identified, their coordination and regulation 
at the cellular and molecular levels are insufficiently 

understood. Besides, despite many attempts at devising 
efficacious vaccines, those presently licensed do not ful-
fill all expectations [2, 3]. We need novel approaches that 
could offer new development perspectives. We propose 
that putting the stress on type 3 immunity, its signature 
cytokines and the cells that produce them or respond to 
them, could help fulfill this need. In this position paper, 
we present the reasons that make type 3 immunity a 
likely major mechanism of MG defense against infec-
tion, and we describe the observational and experimental 
data that support this view. We highlight the emerging 
knowledge that suggests a role for type 3 immunity both 
in the inflammatory response of the MG to infection and 
the prospects that this outlook creates for our under-
standing of mastitis pathogenesis and its control through 
vaccination. Vaccination favoring type 3 immunity is an 
active field of investigation in medical research [4, 5]. We 
plead for its consideration in the mastitis vaccine field. 
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The recent development of new tools allows researchers 
to investigate this new research area for dairy ruminants, 
and to fill some of the knowledge gaps that hamper mas-
titis control.

Type 3 immunity: a defense mechanism 
at epithelial barriers
The immune system comprises different classes of effec-
tor immunity. The term type 3 immunity emerged 
recently [6] to qualify an immune response that comple-
ments the type 1 and type 2 immunity, heralded by the 
Th1 and Th2 lymphocytes, respectively. As type 3 immu-
nity is associated with Th17 differentiation and effector 
functions, it has initially been called type 17 immunity, 
but type 3 immunity seems more convenient, also 
encompassing the innate arm of this kind of immunity, 
mediated by type 3 innate lymphoid cells (ILC3).

Type 3 immunity can be characterized by an immune 
response that exhibits a distinct profile that includes 
expression of the genes encoding interleukin-17A (IL-
17A), IL-17F and IL-22, and key transcription factors 
retinoic acid-related orphan receptor Rorγt and Rorα 
and their gene targets [6, 7]. Type 3 immunity is an 
ancient immune mechanism whose roots can be found 
in nematodes or mollusks, which evolved to bridge 
innate and adaptive immunity to help metazoans live 
in a microbe’s world [8]. Type 3 immunity is character-
ized by the recruitment of neutrophils and the stimula-
tion of epithelial antimicrobial defenses at infection sites. 
Type 3 immunity is often triggered by extracellular bac-
teria and fungi and seems to be particularly suited to 
defend epithelial barriers against these pathogens. It can 
also be implicated in chronic inflammation and autoim-
munity. The cells responsible for type 3 immunity are 
diverse, including ILC3, γδT cells, CD4 helper (Th17) 
and CD8 (Tc17) αβT cells. Type 3 immune responses 

deal with infections through the collaboration between 
antigen-presenting cells, pathogen-specific B and T cells, 
innate lymphoid cells, neutrophils, and epithelial cells, 
thus orchestrating the interplay of innate and adaptive 
immune components [9].

Surprisingly, the MG is not considered as an organ 
protected by type 3 immunity, although there are consid-
erations about the MG that make it a very likely type 3 
battleground for invading bacteria (Table  1). This omis-
sion likely stems from the shortfall in the immunological 
toolkit for the study of type 3 immunity in ruminants and 
the relative disinterest for infectious mastitis in medical 
research. However, the toolbox for ruminant immunol-
ogy was recently enriched, which should enable advances 
in this research field [10, 11]. Recently, CD4 + cells pro-
ducing IL-17A have been described in ruminants [10, 12], 
and bovine Th17 cells have been isolated and expanded 
in culture [11].

What we know about type 3 immunity 
in the mammary gland
The production of IL-17 in the MG has been reported 
in several studies. Following the characterization of the 
bovine IL-17A cDNA [13], increases in Il17 gene tran-
scripts measured by RT-qPCR in tissue and milk leuko-
cytes from bovine MG infected by Staphylococcus aureus 
or Streptococcus uberis provided observational and cir-
cumstantial evidence to suggest that IL-17 was impli-
cated in the defense of the MG [13–16]. Overexpression 
of genes encoding IL-17A and IL-17F was found in the 
mammary tissue during infection by E. coli [17]. When 
ELISAs for bovine IL-17 and IL-22 became available, IL-
17A, IL-17F, and IL-22 were found in the milk of cows 
infected by E. coli [18, 19] or goats infected by S. aureus 
[20].

Table 1  Theoretical reasons why type 3 immunity should contribute to MG defense against pathogens.

Features of type 3 immunity Features of mammary gland defenses Ref

Immunity to extracellular bacteria and fungi Infection by extracellular bacteria [61]

Defense of epithelial barriers Mainly epithelial infection (“duct disease”) [62]

Amplifies neutrophilic inflammation Neutrophils main cell type recruited during mastitis [63]

Neutrophils important effector arm of type 3 immunity Neutrophils main immune defense of the mammary gland [63]

Induces epithelial self-defense by antimicrobial peptides Mammary epithelial cells produce AMPs in response to bacteria or 
cytokines

[62]

Targets epithelial cells to trigger inflammation (chemokines) Mammary epithelial cells respond to IL-17A by secreting chemokines [17, 24]

Signature cytokines: IL-17A, IL-17F, IL-22 IL-17A, IL-17F, IL-22 in mastitic milk [19, 23]

Targets epithelial cells through receptors to IL-17 and IL-22 Mammary epithelial cells express IL-17R and respond to IL-17A & IL-17F [24]

Immunization elicits CD4 + cells producing IL-17 (Th17 lymphocytes) CD4 + IL-17A + cells correlate with vaccination or antigen-specific 
sensitization of the mammary gland

[33]

The IL-23/IL-17 axis drives granulopoiesis Mastitis drains neutrophil reserves [64]
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It has been established that IL-17A contributes to the 
defense of the MG against infections. Experimental evi-
dence came from mouse models of MG infection. Experi-
mental infection with a mastitis S. aureus strain of goat 
origin revealed an early influx of γδT cells producing 
IL-17A into the MG [21]. Other experimental infections 
of mouse MG with either S. aureus or E. coli showed an 
early contribution of IL-17 and Th17 cells to the con-
trol of infection, rapidly followed by IL-10 and probably 
regulatory T cells (Treg) intervention [22, 23]. In those 
studies, co-administration of IL-17A along with the 
inoculum increased the recruitment of neutrophils and 
decreased the severity of infection, whereas the admin-
istration of an antibody blocking IL-17A decreased the 
recruitment of neutrophils and resulted in an increased 
E. coli bacterial load. Those studies demonstrated that IL-
17A plays a part in the defense of the mouse MG, with 
clear beneficial effects in the case of E. coli mastitis, and 
moderate effects on S. aureus mastitis. Of note, IL-22 
concentrations increased markedly in infected MGs and 
the depletion of γδT lymphocytes did not affect the E. 
coli mammary load [23].

Another finding was that IL-17A amplifies mammary 
epithelial cells (MECs) responses to infection. A major 
effector arm of type 3 immunity involves epithelium pro-
inflammatory and antimicrobial responses. Bovine MECs 
express (mRNA) the two components of the IL-17 recep-
tor, IL17RA, and IL-17RC, and they respond to IL-17A 
or IL-17F by producing chemokines and antimicrobial 
peptides [24]. Interestingly, the response of MECs was 
enhanced by the simultaneous exposure to TNF-α or to 
staphylococcal or E. coli microbe-associated molecular 
patterns (MAMPs), suggesting that IL-17 exerts its full 
potential in a context of inflammation triggered by bac-
teria [17, 24]. Of note, under these conditions, MECs 
markedly overexpressed (mRNA) CCL20, a chemokine 
that attracts cells expressing the receptor CCR6, 
which include most of type 3 immunity cells [25]. This 
chemokine was found at the protein level in milk from 
bovine MGs exposed to E. coli LPS [26].

The preceding data refer to the contribution of type 
3 immunity through its innate arm, even though Th17 
cells were involved in the mouse mastitis model [23]. 
These Th17 cells may be the MG counterpart of the 
innate Th17 cells that have been found to play a part in 
the immune response to intestinal bacterial pathogens 
in mice [27]. The contribution to adaptive immunity is 
less well established. However, there is some evidence 
that type 3 immunity can be induced in the MG by vac-
cination. Neutrophilic inflammation in response to the 
local infusion of antigens can be induced in the MG by 
immunization. This mammary antigen-specific reac-
tion (mASR) was first described by using ovalbumin as a 

model antigen. Upon infusion of a few µg of ovalbumin 
through the teat canal of cows previously sensitized to 
this antigen by subcutaneous immunization, neutrophils 
flocked to the lumen of the MG, whereas control unim-
munized cows did not react [28]. The same phenomenon 
was reproduced in the MG of guinea pigs with killed S. 
aureus as antigen [29]. Experiments with adoptively sen-
sitized guinea pigs have shown that lymphocytes, but not 
immune serum, made the recipient animals responsive to 
the sensitizing antigen [30, 31]. In the milk of sensitized 
and antigen challenged cows, IL-17A and IFN-γ were 
found as soon as 8 h post-challenge, along with overex-
pressed transcripts of the genes encoding IL-17A, IL-17F, 
IL-21, IL-22, IL-26, and IFN-γ in mammary tissue [32]. 
The mASR was later shown to correlate with the induc-
tion of circulating CD4 T cells producing both IL-17A 
and IFN-γ [33]. Indeed, a whole-blood assay measuring 
the production of IL-17A and IFN-γ upon stimulation 
with the antigen correlated with the magnitude of mASR 
[32]. Overall, these results strongly suggest that Th17 
lymphocytes are associated with antigen-specific neutro-
philic inflammation in the MG. This immune response 
supposes the existence of antigen-presenting cells (APC) 
in the MG. Cells with a CD11c high, MHCII + and 
CD205 + phenotype have been described in the bovine 
MG, within the alveolar epithelium and the connective 
tissue [34]. These cells, resembling dendritic cells, are 
distinct from macrophages and in a position to sample 
the lumen of the MG and present antigenic peptides to 
tissue-resident effector lymphocytes.

Mirroring the synergy of bacterial MAMPs with IL-
17A seen in vitro with MECs, a synergy between innate 
(MAMPs) and adaptive (Th17) immunity seems to oper-
ate in  vivo to amplify neutrophilic inflammation in the 
MG [35]. Such a synergy that increases the recruitment 
of neutrophils at the onset of infection may reduce the 
bacterial burden, facilitate the prompt clearance of bac-
teria, and consequently reduce the initial inflammatory 
insult to mammary tissue. This scenario was elicited by 
immunizing cows with a surface protein of Streptococcus 
agalactiae [36]. This result deserves further investigation 
at a larger scale and in greater depth with the immuno-
logical toolbox currently available for ruminants. An 
attempt was recently made by vaccinating cows with E. 
coli extracts before intramammary challenge with the 
vaccinating strain [19]. The results indicated a level of 
protection involving the production of IFN-γ and pos-
sibly Th17 cells, but the improvement over control cows 
was moderate. The antibody response did not seem to 
play an important role in the improved response to MG 
infection. A further study indicated that a type 3 immu-
nity had been induced in the mammary tissue by local 
vaccination, as evidenced by the transcriptomic profile of 
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CD4 T cells isolated from the MG parenchyma 24 h post-
infection [37].

Undoubtedly, there is still a lot to be done before adap-
tive type 3 immunity can be harnessed effectively to pro-
tect against mastitis. However, a putative schematic view 
of the ways type 3 immunity might operate in the MG 
can be envisioned (Figure 1).

What we do not know: knowledge gaps
A major issue is the identification of the cells that could 
contribute to the defense of the MG against infections. 
Several different cell types are enrolled under the banner 
of type 3 immunity and produce the signature cytokines. 
There are antigen-specific cells with αβT-cell receptor 
(TCR) CD4 + (Th17) and CD8 + T (Tc17) or γδTCR (γδT 
cells), and lymphoid cells that do not express a TCR, the 
ILCs. Lymphocytes of the CD4 and CD8 lineages with 
memory phenotype are found in the milk of healthy 
and infected MGs, but their functions remain specula-
tive [38, 39]. Among these cells, CD4 T cells expressing 
RORγt or producing IL-17A have been found in healthy 
or infected, lactating or involuting mouse MGs, but 
RORγt + CD8 + T cells have not yet been reported [23, 
40]. These lymphocytes require antigen presentation by 
APCs in association with MHC class I or class II to be 

fully activated. Th17 cells are well known for their plastic-
ity, and their changing phenotype depends on their envi-
ronment. The cells, metabolites and cytokines that could 
influence the phenotype of Th17 cells in the MG remains 
an unexplored but important area of research. Besides 
Th17 cells, γδT cells express receptors of the innate 
immune system such as Toll-like receptors (TLR)1, 
TLR2, TLR3, TLR4 and dectin 1, which allow them to 
respond to MAMPs [41, 42]. They can also secrete IL-
17A and IL-22 without the engagement of the TCR in 
the presence of IL-1β and IL-23. In the bovine species, 
WC1 + γδT cells, CD4 + (Th17) and CD8 + T cells have 
been shown to produce IL-17A [10, 12, 43, 44]. In organs 
and at periphery tissues, most bovine γδT cells are of 
the WC1-phenotype and would differ functionally from 
the WC1 + phenotype [41]. During infection, γδT cells 
are recruited in milk and a few studies indicated selec-
tive recruitment of particular subsets [45, 46]. Other 
type 3 immune cells do not possess TCR and belong to 
the innate arm of immunity. The most recently described 
are the ILCs that come in three types, ILC1, ILC2 and 
ILC3 [47]. They are the innate counterparts of the Th1, 
Th2, and Th17 adaptive T cells. ILC3 cells mostly popu-
late parenchymal tissues and mucosal epithelia, where 
they hold important functions of early resistance to 
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Figure 1.  Schematic view of type 3 immunity governing neutrophilic inflammation in the infected mammary gland. A The healthy 
MG is an immunologically quiet place at homeostasis as there is little or no bacterial stimulation. B According to the innate immunity scenario, 
macrophages (MΦ) or epithelial cells responding to invading bacteria attract and stimulate ILC3 that respond by secreting IL-17A. In turn, epithelial 
cells recruit neutrophils through chemokine secretion. C In the adaptive immunity scenario, the capture of bacteria and presentation of antigen 
by an antigen-presenting cell (APC) to a tissue resident Th17 cell triggers the release of IL-17A that prompts epithelial cells to secrete chemokines 
(including CXCL8). These chemokines recruit neutrophils that cross the epithelium to reach invading bacteria.
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pathogens, regulation of inflammation and tissue home-
ostasis [48]. Bovine ILCs have not been described yet. 
These cells are difficult to study because they reside 
mainly in peripheral tissues, hardly recirculate and are 
difficult to extract from their niche environment. We do 
not know if they can respond to MAMPs, as human ILCs 
do, or cannot, like mice ILCs. ILC3 respond to IL-23 and 
IL-1α or IL-1β to produce their effector cytokines (IL-
17A, IL-17F, IL-22) [48]. Whether IL-23 is overexpressed 
in the MG during infection remains to be established. 
It is likely that ILCs are present in mammary tissue and 
contribute to the defense of the MG, but so far that has 
not been documented.

We do not know precisely which cells produce IL-
17A/F and IL-22 in the MG during infection. Much of 
the IL-17 released during an inflammatory response is 
produced by innate immune cells [49]. In both mice and 
humans, γδT cells and ILCs are important sources of the 
Th17 cytokines IL-17A, IL-17F and IL-22 in the epithelial 
tissues. We can speculate that different cell types secrete 
IL-17A and IL-22 during an E. coli infection or LPS 
inflammation episode because IL-17A/F and IL-22 con-
centration increases in milk did not coincide [19]. We are 
also ignorant of the respective roles of the type 3 immu-
nity signature cytokines in the defense of the MG against 
infection, wound healing, physiology at involution and 
homeostasis. We know that IL-22 is endowed with 
important functions of control of pathogens and tissue 
repair [50]. However, we do not know the effects of IL-22 
on mammary tissue. Several studies have shown that in 
the bovine species type 3 immunity and the associated 
cytokines are likely to play a positive or negative part in 
viral, mycobacterial (tuberculosis and paratuberculosis) 
or parasitic diseases [43, 51–55]. The cytokine IL-26 is 
also associated with type 3 immunity [56]. Contrary to 
the laboratory mouse, but like humans, ruminants have 
a functional Il26 gene. Human IL-26 possesses antibacte-
rial activity [57]. Bovine Il26 can be expressed in mam-
mary tissue and by bovine Th17 cells [11, 32], but its role 
in the mastitis context remains to be established.

Another knowledge gap refers to the homing and 
addressing of innate and adaptive lymphocytes to mam-
mary tissue. Few studies addressed this important issue 
in the MG of ruminants. What we know is that the 
adhesion molecule MAdCAM-1 was not found to be 
expressed in the bovine MG and supramammary lymph 
nodes whatever the physiological stage and lymphocytes 
expressing the counter-receptor α4β7 were not detected 
in mammary tissues [58], suggesting that this vascular 
addressin is not involved in the recruitment of lympho-
cytes in healthy glands.

Prospects: beyond the mastitis vaccine deadlock
We have seen that there are several theoretical, obser-
vational and experimental arguments supporting the 
notion that type 3 immunity is an important arm of the 
immune defense of the MG. It is patent that a lot remains 
to be uncovered about the ins and outs of this immune 
type in ruminant in general and in the MG in particular. 
In the mastitis context, a major driver for a better knowl-
edge of type 3 immunity in the MG is the development of 
efficacious vaccines. Conventional views of MG defenses 
and vaccine mode of action, which are essentially based 
on antibody response, may have come to a deadlock. 
An alternative approach based on new developments 
of immunology is possible by capitalizing on a better 
knowledge of cell-mediated type 3 immunity. This raises 
the possibility of new experiments and progress towards 
more efficacious vaccines, by combining immunology 
knowledge and vaccinology approaches [59].

For practical purposes, what do we need to harness type 
3 immunity to control mastitis? The issue of the orienta-
tion of the immune response in ruminants is crucial. A 
major research topic should be the search for antigens and 
adjuvants that engage the appropriate APC and ILC sub-
sets and therefore orient the adaptive immune response 
towards type 3 immunity. Preliminary data indicate that it 
is possible to induce protective Th17 cells in the MG. To 
elicit a protective type 3 immune response in the MG, we 
will need to select antigens with T-cell epitopes presented 
by the MHC class II targeting the right APCs by the proper 
delivery system, with the appropriate adjuvant. Undoubt-
edly, much remains to be explored before we are able to 
meet these different requirements. We know very little 
about CD8 T cells producing IL-17 (Tc17). Yet, those cells 
might be instrumental in flushing out bacteria sheltered in 
epithelial cells or macrophages. Other cells of the innate 
arm of type 3 immunity are also likely to play an impor-
tant part in the defense of the MG. It can also be envis-
aged harnessing the innate component of type 3 immunity 
with immunomodulators. A foreseeable complication to 
these approaches will come from the proinflammatory 
facet of type 3 immunity and its impact on the MG integ-
rity. In effect, an overshooting inflammatory reaction could 
jeopardize the MG function, i.e., secretion of milk. The 
immune response must be adapted to the pathogen: what 
is good for E. coli mastitis may not be necessarily good for 
S. uberis or S. aureus mastitis. Type 3 immunity could be 
beneficial by improving the efficiency of the acute phase of 
an infection that self-cures as E. coli mastitis usually does. 
Its role may be more complex in chronic infections such as 
S. aureus mastitis. It may even be detrimental in the case 
of S. uberis infection, as the efficiency of phagocytic kill-
ing by neutrophils is dubious [60]. However, IL-17 cor-
related with the resolution of MG infections by S. uberis 
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[14], an observation that could be in relation with type 3 
immunity protective mechanisms other than neutrophilic 
inflammation, such as the contribution of Tc17 cells or 
the self-defense response of epithelial cells. Type 1 immu-
nity or Tc17 cells may be a more important component of 
the immune response with bacteria that are apt at surviv-
ing within epithelial cells such as S. aureus than with E. 
coli. Taking into account the pathogenesis of the infection 
at issue will be necessary. Moreover, inflammation-driven 
dysfunction may be more or less critical according to the 
organ at stake. In the lungs, for example, loss of function is 
incompatible with life, whereas, in the mammary gland, a 
temporary loss of function is critical only to the offspring if 
it lasts several days, and thus a level of inflammation is tol-
erable in the MG that would not be in the lungs. However, 
this caveat should be addressed by a fine-tuning of the elic-
ited immunity. The new tools and concepts of immunology 
will help to respond to these challenges.
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