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Abstract—A network with reliable and rapid communication
is critical for Unmanned Aerial Vehicles (UAVs). Flying Ad Hoc
Networks (FANETSs) consisting of UAVs is a new paradigm of
wireless communication. However, the highly dynamic topology
of FANETs and limited energy of UAVs have brought great
challenges to the routing design of FANETS. It is difficult for
existing routing protocols for Mobile Ad Hoc Networks (MANET-
s) and Vehicular Ad Hoc Networks (VANETS) to adapt the high
dynamics of FANETSs. Moreover, few of existing routing protocols
simultaneously meet the requirement of low delay and low energy
consumption of FANETS. This paper proposes a novel Q-learning
based Multi-objective optimization Routing protocol for FANETs
to provide low-delay and low-energy service guarantees. Most of
existing Q-learning based protocols use a fixed value for the
Q-learning parameters. In contrast, Q-learning parameters can
be adaptively adjusted in the proposed protocol to adapt to
the high dynamics of FANETSs. In addition, a new exploration
and exploitation mechanism is also proposed to explore some
undiscovered potential optimal routing path while exploiting the
acquired knowledge. Instead of using past neighbor relationships,
the proposed method re-estimates neighbor relationships in the
routing decision process to select the more reliable next hop.
Simulation results show that the proposed method can provide
higher packet arrival ratio, lower delay and energy consumption
than existing good performing Q-learning based routing method.

Index Terms—multi-objective routing, FANETs, Q-learning,
adaptive parameters

I. INTRODUCTION

Nowadays, Unmanned Aerial Vehicles (UAVs) have become
one of the most important technical areas. To achieve more
complex applications which are very difficult for traditional
Mobile Ad Hoc Networks (MANETSs) or individual UAV,
Flying Ad Hoc Networks (FANETS) consisting of UAVs have
been intensively studied. FANETS play an important role in the
Internet-of-Everything. Significant applications of FANETS are
related to the quick deployment of connectivity in situations,
such as surveillance [1], emergency communications and res-
cue [2]. However, FANETSs are a kind of wireless networks
with dynamic and unsustainable topologies due to the high
mobility of nodes. Thus, routing in a network with easily
disconnected feature is regarded as one of the main challenges
in FANETSs.

Many routing protocols have been designed for wireless ad
hoc networks: proactive, reactive and hybrid routing. Proactive

routing creates routes before packets are forwarded. However,
maintaining the routing table information makes larger control
overhead. Instead, reactive routing creates routes when packets
are forwarded. But it brings larger delay due to discovery de-
livery paths. Hybrid routing takes a trade-off between proactive
and reactive routing. It combines the advantages of low delay
for proactive routing and low network control overhead for
reactive routing. It is mainly suitable for networks with stable
network topology.

Due to the changing network topology, geographic informa-
tion based routing becomes the primary option for improving
routing performance. For example, GPSR [3] is a typical
geographic information based routing protocol, which designs
a packet delivery strategy based on the geographic information
of the network node. However, when routing hole problem
occurs frequently, the hop count increases because the next
hop of the decision is random. The majority of algorithms
so far have not paid significant attention to the movement
pattern of nodes or numerous assumptions about nodes and
network topology are considered. However, in FANETS, the
high mobility of nodes leads to the highly dynamic and
unsustainable topology. An adaptive and highly autonomous
protocol is desired, which means that the routing protocol of
FANETSs should have the ability to find a reliable neighbor to
complete the transmission through perceiving the change of
the environment adaptively. Q-learning is an adaptive machine
learning with environmental feedback as input, which con-
tributes to adaptive routing design. In Q-learning, agents could
constantly adjust their action strategies according to the reward
of environmental feedback to better adapt to the dynamic and
unsustainable topology.

The routing protocol based on Q-learning relies on the
local data of the neighboring nodes and it did not make any
assumptions about the environment. The existing Q-learning
based routing protocols such as QGrid [4], QLAR [5], QGeo
[6], make the best choice among the neighbors at any moment
to transmit a packet to the destination. Due to the requirement
of real-time data transmission and the limited energy of UAVs,
it is crucial for a routing protocol to provide low delay and
low energy consumption service guarantees. However, the
delay and energy metrics often conflict. The optimal routing
solution maximizing for instance delay may not be the one
that minimized energy. A multi-objective optimization routing



protocol is desired to concurrently meet the the low delay
and low energy consumption requirements. However, most
of the existing routing protocols focus on mono-objective
optimization, and seldom pay attention to multi-objective
optimization. Thus, this paper proposes a multi-objective op-
timization routing protocol to provide the service guarantees,
which cannot be ensured in the existing Q-learning based
routing protocols. In addition, most of them use fixed values
for Q-learning parameters and lack of a reasonable scheme to
balance exploration and exploitation. Due to the high dynamic
of UAV networks, if Q-learning parameters including learning
rate and discount factor are fixed, the accuracy of action
selection declines, and the selected link may have the low
probability of connecting to a neighbor node. The faster the
network topology changes, the bigger the learning rate should
be to pay more attention to new information, and the smaller
discount factor should be to reflect unstable future expecta-
tions. However, the fixed learning rate and discount factor
are not capable of reflecting the dynamic mobile environment,
which leads to poor performance. Meanwhile, the reasonable
compromise between exploration and exploitation, could make
it possible to explore some undiscovered potential optimal
routing path while exploiting the acquired knowledge. Due to
these limitations, in this paper, we propose a novel Q-learning
based Multi-objective optimization routing protocol. The main
contributions of this paper are as follows:

« Joint optimization of delay and energy consumption.
Without fixed route vector table, QMR utilizes Q-learning
to perform multi-objective optimization routing instead
of mono-objective as in [6]. In the multi-objective opti-
mization, end-to-end delay and energy consumption are
simultaneously minimized.

« Adaptively adjust Q-learning parameters. Due to the
mobility of nodes, the link quality is extremely unstable.
In this method, each link is given a different learning
rate, and each node is given a different discount factor.
Furthermore, the learning rate and discount factor are
adaptively adjusted according to the network condition.

+ Re-estimate neighbor relationships. High mobility of
nodes leads to unstable neighbor relationships. Therefore,
it is incorrect to use the past neighbor relationships
to determine the current relationships. In our QMR,
neighbor relations are re-estimated in the routing decision
process to get the most reliable next hop.

o Improve the exploration and exploitation mechanism.
In FANETS, the balance process of exploration and
exploitation should not be simply regulated by learning
time, but regulated by the network condition. Differ-
ent from traditional methods, such as € greedy strate-
gy, Boltzmann and Upper-Confidence-Bound(UCB), we
propose a adaptive mechanism of exploration and ex-
ploitation, which balances exploration and exploitation
according to the network condition.

This paper is organized as follows. The related work of
routing protocol for ad hoc networks is presented in Second II.
Section IV proposes a Q-learning based Multi-objective op-
timization Routing protocol for FANETs. The performance

evaluation is then given in Section V. Finally, Section VI
makes a conclusion about this paper.

II. RELATED WORK

At present, there is no a proprietary routing protocol for
FANETSs [7]. Most routing protocols of FANETSs are modi-
fications of routing protocols of MANETs. MANET routing
protocols can be divided into static routing, proactive routing,
reactive routing and hybrid routing.

A. Static routing protocols

In static routing protocols, static routing tables of static
routing protocols must be computed and loaded before the
task starts and cannot be updated during an operation. Due to
this limitation, these protocols are not fault tolerant and do not
apply to dynamically changing environments.

Load Carry and Delivery Routing (LCAD) [8] is the first
routing protocol in FANET, where a UAV flies and carries data
from a ground node through to the destination. The purpose
of LCAD is to maximize the throughput and increase security.
Although LCAD achieves higher throughput, data delivery
delay is longer in LCAD due to use of a single UAV.

Multi Level Hierarchical Routing (MLHR) [9] solves the
scalability problems of large-scale vehicle networks which
performance degrades as the size increases. The size and
operation area can be increased by organizing the network
as hierarchical structure. Analogously, UAV networks can be
grouped into multiple clusters in which only cluster head is
connected outside the cluster. However, frequent change of
cluster heads leads to large network overhead.

B. Proactive routing protocols

In Proactive routing protocols, all nodes store the routing
information from this node to other nodes by a routing table.
When the topology of the network changes, nodes need
maintain and update their routing tables by exchanging routing
information. However, in FANETS, the high mobility of nodes
leads to the frequent change of the network topology. So, such
routing protocols are not suitable to be used in FANETSs due
to bandwidth constraints.

The Optimized Link State Routing (OLSR) [10] is a well-
known proactive routing protocol where two types of messages
including “hello” and “topology” are used to finish routing.
The “hello” message is used to find neighbor nodes in the
communication rang and maintain neighbor node list. Where-
as “topology” message is use for maintaining the topology
information in routing tables. However, this protocol has high
control overhead due to periodically exchanging messages.

Link-quality and traffic-load aware optimized link state
routing protocol (LTA-OLSR) has improved OLSR to apply
to FANETs [11]. LTA-OLSR integrates the link quality and
traffic load schemes with OLSR. The link quality scheme
is designed to distinguish the link quality between the node
and its neighboring nodes based on the statistical information
of received packets. The traffic load scheme can ensure a
light-load path by considering MAC layer channel contention



information and the number of packets stored in the buffer.
Compared to OLSR, LTA-OLSR can provide reliable and
efficient communication in FANETS, because the link quality
and the traffic load are considered.

C. Reactive routing protocols

In reactive routing protocols, a route is created only when
a packet need to be transmitted from the source to the
destination, and nodes do not need to maintain the routing
information in real time. So, this type of routing protocols are
also called on-demand routing protocols. Although reactive
routing protocols reduce overhead problem of proactive rout-
ing protocols, they have large delay due to route construction.

Ad-hoc On-demand Distance Vector (AODV) [12] is a well-
known reactive protocol in mobile ad hoc network. AODV
consists of three phases: routing discovery, transmission of
packet and route maintenance. In AODYV, nodes (source and
relay nodes) hold only one entry for each destination and store
next hop information corresponding to each data communica-
tion.

Link Stability Estimation-based Preemptive Routing (LEP-
R) protocol for FANETS is proposed on the basis of AOD-
V [13]. LEPR constructs multiple reliable link-disjoint paths
with a new link stability metric which takes into account the
past, current and future statuses of link stability. In addition, a
preemptive route maintenance mechanism is proposed to repair
links that may be broken soon.

D. Hybrid routing protocols

Hybrid routing takes a trade-off between proactive and
reactive routing. It combines the advantages of low delay
for proactive routing and low network control overhead for
reactive routing. In Hybrid routing protocols, the network
is divided into different zones where proactive protocol and
reactive protocol are used for routing in intra zone and inter
zone, respectively.

Zone Routing Protocol (ZRP) [14] is a hybrid routing
protocol which works on the concept of zones. Each node
has an alternate zone separated by a predefined range called
R. Proactive routing is used to route inside the zone. When
information needs to be sent outside the zone, reactive strategy
is used.

Node Energy Monitoring Algorithm for Zone Head Selec-
tion (NEMA) improves ZRP by adding energy constraints
to hence the lifetime of MANET [15]. NEMA consists of
two parts. In the first part, a zone head selection algorithm
is designed to select a zone head with maximum residual
power. In the second part, node energy monitoring algorithm
is designed to monitor the change of the residual energy of
each node and set different phase for each node according to
residual energy level.

E. Q-learning based routing protocol

Complex flight environments and diverse flight tasks have
caused FANETS to be in an unpredictable random fluctuation
state. Therefore, the above routing protocols are difficult to

adapt to the change of the network in real time, which may de-
teriorate network communication performance for a long time.
Hence, an adaptive and highly autonomous protocol which is
capable of discovering reliable communication links adaptively
and autonomously is desired. Reinforcement learning (RL)
is an adaptive learning method that belongs to the category
of machine learning. It is a good idea to use reinforcement
learning to solve routing problems of FANETs.

For the first time, Boyan and Littman used RL to solve
the routing problem in static networks. Based on Q-learning,
an adaptive algorithm Q-routing is proposed [16]. Getting the
shortest path from the source to the destination may be a good
way to achieve fast routing. However, a path with the minimum
number of hops cannot be the best route because it may be
heavily congested. Thus, Q-routing learns a routing policy
that balances minimizing the number of “hops” a packet will
take with the possibility of congestion along popular routes.
As a result, Q-routing is better than nonadaptive algorithm
based on precomputed shortest path. The [17] extends the Q-
Routing and proposes an energy balancing routing algorithm,
designed for Wireless Sensor Networks. The goal of the
energy balancing routing algorithm is to optimize the network
lifetime by balancing the routing effort among the sensors
in consideration of their current remaining batteries. Today,
Q-learning based routing protocols for Ad Hoc Networks
are gradually emerging. In [4], a Q-learning Based Routing
Protocol (QGrid) for Vehicular Ad Hoc Networks is proposed.
QGrid divides the area into different grids to make routing
decision from macroscopic and microscopic aspects. The
optimal next-hop grid is determined in macroscopic aspect,
and then a specific vehicle is selected in the optimal next-hop
grid as next-hop vehicle in microscopic aspect. Although the
simulation confirmed that QGrid has better performance than
the existing position based routing protocols, such as higher
packet delivery ratio, end-to-end delay, energy consumption
of nodes are not considered in QGrid. The [5] proposes a
Q-Learning based adaptive routing (QLAR) for MANETS:.
QLAR develops a new model to detect the mobility level of
each node in the network and a new metric to account for
the static and dynamic routing. Although end-to-end delay of
QLAR is lower than OLSR, QLAR still does not consider
energy consumption of nodes.

Recently, Jung et al. proposed a Q-Learning-Based ge-
ographic ad hoc routing protocol for Unmanned Robotic
Networks (QGeo). QGeo uses a distributed routing decision
mechanism based on the geographical location information of
nodes. In QGeo, the reward value of the action is related
to the packet travel speed. Meanwhile, link condition and
location estimation error are considered when calculating the
travel time. Experimental results show that QGeo has higher
packet delivery ratio and lower end-to-end delay compared
with QGrid [4] in mobile scenarios. However, there are still
some shortcomings in QGeo. QGeo does not consider energy
consumption, which means it could not simultaneously provide
low delay and low energy consumption service guarantees.
Limited battery lifetime is considered a major drawback of
UAVs [18]. Although carrying an extra battery pack can power
the UAV continuously for a period of time, the battery pack is



still limited. Thus, it is very necessary to design a routing
protocol with low energy consumption. In addition, QGeo
utilizes a fixed learning rate in Q-learning approach. Learning
rate is used to control the speed of updating Q-value. A fixed
learning rate implies that the speed of updating Q-value is
constant. However, links in FANETSs are extremely unstable.
Therefore, the speed of updating Q-value associated with the
link should be adaptively adjusted as network environment
changes.

Based on the above analysis, Table 1 compares the char-
acteristics of exiting routing protocols for FANETs and Q-
learning based routing protocols. Static, proactive, reactive and
hybrid routing protocols do not belong to adaptive routing pro-
tocols, which are not able to discover reliable communication
links adaptively and autonomously. Although there are some
adaptive routing protocols based on Q-learning, they still have
some shortcomings. On one hand, existing Q-learning based
routing protocols pay little attention on multi-objective opti-
mization to consider end-to-end delay and energy consumption
simultaneously. On other hand, Q-learning parameters, learn-
ing rate and discount factor, cannot be adaptively adjusted
according to the network condition.

For the above motivation, we proposed a multi-objective
routing protocol where end-to-end delay and energy consump-
tion are optimized concurrently. Furthermore, we also propose
a method of adaptively adjusting Q-learning parameters and a
new exploration and exploitation mechanism in Q-learning, in
order to adapt to the high dynamics of FANETs.

III. SYSTEM MODEL

In this section, we present a multi-hop FANET model and
Q-learning model of the FANET.

A. Multi-hop FANET Model

In this paper, we consider a UAV network comprising
multiple UAVs and a ground station, as shown in Fig 1. The
ground station is regarded as the destination node to receive
signals from the UAVs, one UAV is regarded as the source
node to send signals, and the rest UAVs is regarded as the
relay nodes to forward signals. The key issue is how to find
an optimal path so that signals transmitted along the path
can successfully reach the destination with low delay and low
energy consumption.

e
W — -y

Fig. 1: A Multi-hop FANET with multi-UAVs

B. Q-learning Model of FANETs

1) The basic of Q-learning technology: Reinforcement
learning is an area of machine learning where agents alter their
actions in a specific environment with the goal of maximizing
results. In order to achieve the goal, agents constantly adjust
their action strategies through the reward of environmental
feedback. Reinforcement learning usually considers the reward
by estimating value functions, state value functions or action
value functions [19]. Q-learning is an optimization of the off-
policy temporal difference(TD) [20]. The foundational idea
of the Q-learning is learning from interaction with environ-
ment. It uses action value functions to get the feedback from
environment. In the technique, the agent chooses an action
in a particular state according to the reinforcement (Q-value).
Reinforcement consists of direct reward and the future Q-value
expectation. Through reinforcement, agents can assess how
good an action in the current state and makes a better action at
the next step. The goal of the agent is to maximize expectation
for cumulative rewards over the long run. The basic iterative
formula for the Q-value is as follows:

Q(st,a1) < Q(Shaz)+04[rt+1+7mg113@(3t+17a)*Q(St,at)]
ey
Where, « is the learning rate, v is the discount factor, and
they are set between 0 and 1. r,y; is the direct reward value
that the agent, at time ¢, takes action a; in state s;. After the
agent taking action a4, the state of the agent changes from
the s; state to the sy state. max@(s¢11,a), future Q-value
expectation, is maximum Q—valuae when agent selects possible
action a in the next state s;;1. Fig. 2 shows the interaction
between agent and environment in Q-learning.

—
< Agent s, 1,
action
state reward
a,
Srr1 T !
Environment <—

Fig. 2: The interaction between agent and environment in Q-learning

2) Q-learning Model: In our QMR routing, considering a
packet coming from a source and directed to a destination by
multi-hop communication, the whole network is considered as
an environment, and each packet in the network represents an
agent. Each state of the agent indicates a node who holds the
packet. For example, when a packet is at node %, the current
state associated with this packet is s;. An action a; ; represents
the decision of the packet (agent) to be forwarded from node
¢ to neighbor node j. By this action, the state of the agent
moves from s; to s; and the agent receives a reward about the
action.

IV. Q-LEARNING BASED MULTI-OBJECTIVE
OPTIMIZATION ROUTING

In this section, QMR, a Q-learning based Multi-objective
optimization Routing protocol for FANETS, is introduced.
In QMR, nodes utilize a reinforcement learning algorithm



TABLE I: Comparison between routing protocols

Routing protocol Consider end-to-end delay ~ Consider energy consumption

Q-learning parameters

Exploration and utilization policy Type of routing Type of network

LCAD [8] No No Static routing FANETS
MLHR [9] No No Static routing FANETS
LTA-OLSR [11] Yes No Proactive routing FANETSs
LEPR [13] Yes No Reactive routing FANETSs
NEMA [15] No Yes - - Hybrid routing FANETSs
OPT-EQ-Routing [17] No Yes Both « and ~y are fixed e greedy Q-learning based routing WSNs

QLAR [5] Yes No Both « and ~y are fixed € greedy Q-learning based routing MANETSs
QGrid [4] No No a is fixed, « is variable Greedy and Markov Q-learning based routing VANETSs
QGeo [6] Yes No a is fixed, «y is selected form two values e greedy Q-learning based routing FANETSs

Type of network: (WSNs: Wireless Sensor Networks, MANETs: Mobile Ad Hoc Networks, VANETS: Vehicular Ad Hoc Networks, FANETSs:Flying Ad Hoc Networks).

without knowledge of entire networks to make optimal rout-
ing decisions considering low-delay and low-energy service.
To solve the routing problem caused by the high mobility
within FANETSs, adaptive Q-learning parameters and a new
exploration and exploitation mechanism for Q-learning are
also proposed to enhance the routing performance. The QMR
module consists of Routing neighbor discovery, Q-learning,
Routing decision and Penalty mechanism. The flowchart of
the QMR framework is shown in Fig. 3.
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Fig. 3: Flowchart of QMR framework

In QMR, nodes acquire their geographic location infor-
mation by GPS. Further, the routing neighbor discovery is
implemented by sending HELLO packets. When a data packet
generated from a source and directed to a destination, Q-
learning is the key component of routing decision. In the
routing decision, if a routing hole problem [21] is encountered
(i.e., all the neighbors of a node are distant than the distance

from this node to the destination), the penalty mechanism is
triggered. Algorithm 1 shows QMR method and the details of
the work at each phase of QMR.

A. Routing neighbor discovery

Each node periodically sends HELLO packets that in-
clude the node’s geographic location, energy, mobility model,
queuing delay, and discount factor. When a node receives
HELLO packets, it uses the information in HELLO packets to
establish and maintain its neighbor table. The Neighbor table
contains the important information of each neighbor including
the geographic location, energy, mobility model (i.e., moving
speed and direction of the neighbor), arrival time, discount
factor, queuing delay and Q-value. Moreover, neighbor table
also stores some information about links from current node
to its neighbors, such as learning rate and MAC delay. Each
node utilizes the information of its neighbor table to perceive
the network condition. If the information of a neighbor is not
refreshed after a ExpireTime [22], it will be removed from
the neighbor table. The time interval of the HELLO packet
and the ExpireTime can be adjusted according to the moving
speed of the node. The higher the moving speed of the node
is, the smaller the time interval of the HELLO packet and
the ExpireTime are. On the contrary, the time interval of the
HELLO packet and the ExpireTime become larger.

B. Q-learning in QMR

In our QMR, Q-learning is used to make multi-objective
optimization routing decisions, where end-to-end delay and
energy consumption are considered in the reward function.
To adapt to the dynamic mobile environment, Q-learning
parameters including learning rate and discount factor are
adaptively adjusted according to the delay and neighbor mo-
bility. Furthermore, an adaptive mechanism of the exploration
and exploitation in the Q-learning is also proposed to adapt to
the dynamic network.

1) Energy metric: In order to balance the energy consump-
tion of nodes, we consider the energy of the node when
selecting the next hop. In QMR, we use the ratio of the residual
energy of the node to the initial energy (i.e., node residual
energy level [23]) as a energy metric to measure the energy
consumption of the node. The energy metric F; of node i can
be expressed as follows:

B = FE _res;

= 2



Algorithm 1 QMR

Phase 1: Location acquisition

1: if the time of updating node location arrives then

2:  each node obtains its location via GPS;

3: end if

Phase 2: Routing neighbor discovery

4: if the time of sending HELLO packets arrives then

5:  Each node sends a HELLO packet;

6:  These nodes receiving HELLO packets reconfirm their
neighbors and update neighbor tables according to
HELLO packets.

7: end if

Phase 3: Routing decision
8: while Data packets need to be sent do
9:  if the set of candidate neighbors is not empty then

10: Make routing decision based on Q-learning;

11:  else

12: if there are neighbors whose actual velocity is greater
than O then

13: Select the neighbor associated with the maximum

actual velocity;

14: else

15: Penalty mechanism;

16: end if

17:  end if

18: end while

Phase 4: Q-learning

19: if No information about neighbors then

20:  Initialize the Q-value of each neighbor;

21: end if

22: Select the neighbor associated with the largest x-weighted
Q-value;

23: if a neighbor is selected to forward data packets then

24:  Update Q-value of the neighbor by reward;

25: end if

Phase 5: Penalty mechanism

26: if the routing hole problem is encountered, or forwarding
nodes do not receive ACK packets then

27:  Give minimum reward to related neighbors.

28:  Update Q-value of related neighbors.

29: end if

Where E_res; is the residual energy of the node ¢, and
FE_init; is the initial energy of the node ¢. The larger the F; is,
the lower the energy consumption of the node ¢ is; otherwise,
the higher the energy consumption is.

2) Reward function: In QMR, we jointly consider the

delay and energy consumption in the reward function. The
expression of the reward function fr(s¢,a:) is as follows:

fr(st,ar) =

,when s¢411 is destionation
,when st is local minimum
, otherwise

Tmazx

Tmin
wxe WG (1 - W)« By
3

where w(0 < w < 1) is the weight for one-hop delay. Suppose
that at time ¢, the state of the data packet (agent) is s;, meaning
that the data packet stays at node ¢. The action a; is to select

node j for forwarding data packet. The state of the data packet
will be converted from state s; to state s;, i.e., at the next time
t+1, the state of the packet is s;. delay; ; is the one-hop delay
from node 7 to node j, E; is the residual energy level of the
next hop j. When the next hop j is the destination node, it
means that the destination node is the neighbor of node ¢,
so the link from node i to node j gets the maximum reward
value 7,,,4.. When node 7 is a local minimum, it means that all
neighbors of node ¢ are farther away from the destination than
node ¢. If the packet is forwarded to any neighbor of node i,
the packet will take longer time to reach the destination node.
Therefore the minimum reward value 7,,;, is derived.

3) Adaptive Q-learning parameters: In Q-learning, the
learning rate determines to what extent the newly acquired
information overrides the old information. If the learning rate
is higher, the Q-value is updated faster. Most of the existing
Q-learning based routing protocols have a fixed learning rate.
However, in FANETS, if the link between nodes is more
unstable, the one-hop delay will be larger. Then the speed of
updating Q-values should be faster. Therefore, we introduce a
method of adjusting the learning rate to adapt to the speed of
updating Q-value by assigning a corresponding learning rate
for each link.

We use the one-hop delay to measure the stability of the
link, where a relatively stable link has a smaller delay. The
normalized one-hop delay ¢; ; can be expressed as follows:

e |delay; ; — i @
04,5

where delay; ; is the one-hop delay from node ¢ to node j, j; ;
and o, ; (0;; # 0) are the mean value and variance of one-
hop delay respectively. Since the learning rate ranges from 0 to
1, we introduce an exponential function for adaptive learning
rate. The adaptive learning rate c; ; associated with the link
from node ¢ to node j can be expressed as follows:

l—e % 0;,;#0
Yl = { 0.3 ;

04,5 = 0

In the Q-learning algorithm, discount factor 7 represents
the stability of future Q-value expectation. A high value of
discount factor indicates that future Q-value expectation is
stable, while the low value indicates the vulnerable Q-value
expectation. Since the routing decision is to find the reliable
neighbor to forward the packet, it is important to adjust the
discount factor according to the mobility of neighbors in the
adjacent time intervals. The faster neighbors of the node move
in adjacent time intervals, the more unstable the future Q-value
expectation associated with the node is. Then the discount
factor of the node is lower. On the contrary, the discount factor
is higher. For the node i, the discount factor ; is defined as
follow:

&)

|Ni(t = DU Ni(@) [ Ni(t = 1) N Na(2)]
|V (t = 1) UNi(t)]

where N;(t — 1) and N;(¢) are the neighbor sets of the node
¢ at time ¢ — 1 and time ¢ respectively.

~vi=1- (6)



4) Exploration and Exploitation: In order to select the most
reliable neighbor to forward the packet in FANETSs, we also in-
vestigate how to balance the relationship between exploration
and exploitation in the Q-learning. The exploration is to search
for unknown actions (get new knowledge), but too much
exploration makes it difficult to retain some better actions.
While the exploitation is to take advantage of explored actions
which may generate high returns, but too much exploitation
makes it difficult to select some undiscovered potential optimal
actions.

In order to balance the relationship between exploration and
exploitation, the € greedy strategy, boltzmann mechanism [24]
and Upper-Confidence-Bound (UCB) [25] are usually adopted
in the field of reinforcement learning. The ¢ greedy strategy is
that the quantitative allocation method is used to explore with
a small probability €, which cannot be adaptively adjusted.
Although UCB and boltzmann mechanism can change the
degree of exploration, the degree of exploration is regulated
according to time. This method of regulating exploration
through time may be more adaptive to static environments.
However, for dynamic environments such as FANETS, the bal-
ance between exploration and exploitation should be regulated
by the network condition rather than simply by time.

In QMR, we propose a new mechanism of exploration and
exploitation in Q-learning routing. The mechanism balances
exploration and exploitation according to network condition,
including actual velocity of a data packet traveling over the
link, link quality and intimacy of neighbor relationship. The
balance between exploration and exploitation in this method
is mainly reflected in the following two aspects:

« When selecting the next hop, instead of directly selecting
the link with the largest Q-value, the actual velocities
of a data packet traveling over links from the current
node to its neighbors are evaluated. These neighbors
associated with links that meet velocity requirements
are selected (more details are discussed in IV-C2). By
filtering the neighbors with actual velocities, the data
packet may arrive at the destination node with smaller
delay. Meanwhile, neighbors that have not been selected
in the past but meet the velocity requirement may also
be used as the next hop, which means the agent wants to
explore new actions.

« Among the neighbors that meet the velocity requiremen-
t, the w-weighted Q-value of each link is calculated.
The neighbor with the maximum rx-weighted Q-value
is selected. The weight ~ that depends on link quality
and intimacy of neighbor relationship (see IV-C3 for
details), is used to evaluate the current condition of the
link. Furthermore, Q-value is used to measure the past
condition of the link. The Q-value can be regarded as the
empirical value of learning link, which reflects that the
agent is exploiting the learned knowledge. On the basis of
Q-value, the weight is introduced, which actually reflects
that the agent is balancing the relationship between
exploration and exploitation.

C. Routing decision

Considering the real-time transmission, each data packet
has a corresponding deadline to constrain the velocity of
the data packet during the transmission. Neighbors whose
actual velocities are not less than the constraint velocity will
be selected as the candidate neighbors for routing decision.
Furthermore, Q-learning is utilized to perform the optimal
routing decision upon these candidate neighbors.

1) Delay constraint: For the real-time application, data
packets generated by source have to be transmitted to the
destination before a certain deadline. In QMR, when a relay
node decides to forward a data packet, the latest deadline for
this data packet will be updated by subtracting its passed time.

Assuming that node i selects node j as the next hop to
forward data packets, node ¢ calculates the one-hop delay
delay; ; from node i and node j using the medium access
delay (MAC delay) and the queuing delay recorded in the
neighbor table. Since data packets travel at the speed of
light in wireless media, propagation delay is approximately
nanoseconds in the communication range of the order of
hundred meters. Therefore, propagation delay is negligible
compared to the MAC delay and queuing delay. The one-hop
delay delay; ; is expressed as follows:

delayi’j = D_maci,j + D_q’UJQLj (7)

where D_mac; j is the MAC delay, which is the time needed
by the medium access protocol to either successfully deliver
the packet or drop it in case of repeated failures. D_que; ; is
the queuing delay, which is the time for the packet to reach
the head of the transmission queue.
The MAC delay t,, is estimated by ACK packets and is
calculated by
tm =tack =l (®)

where t ok is the moment when a node receives the ACK
packet from its neighbor, and ¢___, is the moment when the
node sends the data packet to its neighbor.

The method of window mean with exponentially weighted
moving average (WMEWMA) is used to update MAC delay.
For a node ¢ with m neighbors, it always maintains m sliding
windows with length n. Each window records the MAC delay
of the last n data packets sent by node 7 to node j. The formula
for the [th updated MAC delay is as follows:

I-1
>~ D_mac; ;(k)
D_mac; ;(I) = (1 — B)=="

+ Btm (9

where 5(0 < 8 < 1) is the tunable weighting coefficient. The
MAC delay t,, is measured from the time of node 7 sends the
packet to the time node 7 gets an acknowledgement (ACK)
from the node j, which is expressed as follows:

Similarly, the queuing delay is updated by

-1
> D_que; (k)
D_que; ;(1) = (1—-p) k=lon

where ¢, is the waiting time for the data packet to reach the
head of the transmission queue.

+ B, (10)



Assume that node 7 sends a data packet to node j, and the
deadline of the data packet at nodes ¢ and j are respectively
deadline; and deadline;. The deadline is updated by:

deadline; = deadline; — delay; ;

(11

2) Velocity Constraint: To meet delay constraint, we define
the requested velocity and actual velocity. The requested
velocity to transmit the data packet from node ¢ to destination
D has to meet the constraint of the deadline for end-to-end
packet delivery. When node ¢ will forward a data packet,
it calculates the requested velocity according to the current
deadline of the data packet. The requested velocity to transmit
the data packet at node ¢ can be expressed as follows:

di.p

Vi= deadline;

(12)

where d; p is the distance from node ¢ to destination D, and
deadline; is the deadline of the data packet at node <.

In QMR, node ¢ considers the mobility of neighbor j when
calculating the actual velocity of a data packet from node ¢
to its neighbor j. Here, we assume that the node’s moving
speed is fixed for a certain period of time. The position of the
neighbor node is predicted by the moving speed and moving
direction of the neighbor node recorded in the neighbor table.
Let node ¢ add node j to the neighbor table at time ¢;. The
location of node j at time ¢y is (x;(¢1),y;(¢1)). The moving
speed is Vm; and the moving direction is angle_xy;. to is
the current moment, that is, node ¢ makes a routing decision
at time t5. Assuming that node ¢ selects node j as the next
hop and the data packet reaches node j at time ¢3, the position
of node j at time t3 can be estimated as:

J;:j(tg) = x;(t1) + Vm, * cos(angle;) * (t3 —t1)  (13)
Y (ts) = y;(t1) + Vm; = sin(angle;) = (t3 — t1) (14
t3 = tz -+ delayi,j (15)

According to the current position of node ¢ and the predicted
position of neighbor node j, the actual velocity v; ; from node
7 to node j can be obtained.

dip —djp

16
delay; ; (16)

Vij =

where d; p is the distance between the real position of the node

¢ at the time ¢ and the destination D. {; p is the distance
between the predicted position of the node j at the time t3
and the destination D.

To meet the deadline, the actual velocity to forward the
packet should be not less than the requested velocity. It means
that the candidate node must satisfy v; ; no less than V.

3) The selection of the optimal forwarding node: Due to
the high mobility of nodes, the neighbor relationship and
link quality between two nodes are extremely unstable. To
solve this problem, we introduce a weighted Q-value as an
indicator for selecting the next hop. The weight x of the Q-
value depends on the neighbor relationship coefficient M, ;
and the link quality L(Q); ;. The expression of & is as follows:

KzMiyj*LQi,j (17)

The link quality LQ);; is calculated using the forward
delivery ratios df; ; and reverse delivery ratios dr; ; of the link.
df; ; represents the probability that a data packet successfully
arrives at the recipient (i.e., node j); dr;; represents the
probability of sender (i.e., node 7) successfully receiving ACK
packets. In [5], df;; and dr;; are measured using hello
message. In this paper, we also use hello message to measure
df;,; and dr; ;. The expression of L(); ; is as follows:

Lng = dfz»] * d?"iﬂ'

The neighbor relationship coefficient M; ; indicates the
intimacy between node ¢ and node j. Due to the high dynamics
of nodes, the neighbor relationships may vary constantly.
Therefore, it is not a good way to determine the current
neighbor relationships by past neighbors. We need to re-
estimate the neighbor relationships between nodes. Let node ¢
add node j to its neighbor table at time ¢;, and node ¢ makes
routing decision at time ¢. Here assuming that node ¢ selects
node j as the next hop, the data packet arrives at node j at
time ¢3, then we can use (13) and (14) to estimate the position
of node j at time t3. According to the estimated position of
node j at time ¢3 and the actual position of node ¢ at time ¢,
the intimacy of node ¢ and node j within (t3 —t2) time can be
estimated. The coefficient of neighbor relationship M; ; as:

(18)

_ 1—di'j7 d17<R
]V[z',j = { 07R di,j >R (19)
N 2 ~ 2
dij =\ (;(ts) —wi(t2)) + (¥;(t3) —yi(t2)) (20)

where d; ; is the distance between the position of node ¢ at
time t2 and the estimated position of node j at time ¢3. R is
the propagation range of the node. If d; ; is greater than R,
the data packet cannot reach node j from node ¢, indicating
that node ¢ has a weak neighbor relationship with node j. So,
M; ; is equal to 0. On the contrary, if d; ; is smaller than R,
M; ; becomes lager as the decrease of d; ;, which indicates
that node ¢ has strong intimacy with neighbor node j.

When the node 7 makes a routing decision, a candidate
neighbor associated with the largest x-weighted Q-value is
selected as the next hop. It can be expressed as following:

e2y)

maz k*Q(s;,a;;) s.t. v >V,

where s; is the state of the data packet (agent) at current time.
One possible action a; ; is to select a neighbor node j as the
next hop.

If the set of candidate neighbors is empty, while there
are neighbors whose actual velocities are greater than 0, the
neighbor associated with the maximum actual velocity will be
selected as the next hop. Moreover, if all neighbors whose
actual velocities are no greater than O (i.e., the routing hole
problem is encountered), the penalty mechanism is triggered.

D. Penalty mechanism

The emergence of routing holes will increase the delay of
the data packet. In order to reduce the routing hole problem,
penalty mechanism is proposed in QMR. Penalty mechanism



is triggered in the following two cases. One case is that when
node j makes routing decision, if the routing hole problem
is encountered, it gives previous hop node ¢ a feedback.
After receiving the feedback, the previous node ¢ will give
a minimum reward 7,,;, to the link from node ¢ to node j
and use Q-learning to update the Q-value of the link again.
Another case is that forwarding node ¢ does not receive the
ACK packet from the next hop node j, node 7 will give the
minimum reward 7,,;, of the link from node 7 to node j, and
update the corresponding Q-value.

E. Illustration for QMR routing decision

Fig. 4 shows a simple network topology diagram. In the
network, there are source node, destination node and 5 relay
nodes. Suppose that at the current moment ¢, there are three
data packets in the network, i.e., three agents. Packet 1, packet
2 and packet 3 (i.e., agent 1, agent 2, agent 3) stay on node
1, node 4 and node S respectively. Therefore, at time ¢, the
state of packet 1, packet 2, and packet 3 are si, s4, and s,
respectively, as shown in Fig. 4(a). Suppose that at time ¢,
the distances between node S, node 1, node 4 and destination
node D are 500m, 360m and 245m respectively. The deadline
of packet 1 at node 1 is 45 ms; the deadline of packet 2 at
node 4 is 35 ms; the deadline of packet 3 at node S is 50
ms. Using (12), according to the distance between the node
and the destination and the deadline of the packet on the
corresponding node, the requested velocities of the node S,
node 1 and node 4 are 10km/s, 8km/s and 7km/s, respectively.
As can be seen from the Fig.4(a), at the current moment ¢, the
sets of neighbors of node S, node 1 and node 4 are {node 1,
node 2}, {node S, node 3, node 4}, {node 1, node 2, node 3,
node 5} respectively. The node S, node 1 and node 4 need to
select one of their neighbors as the next hop to forward the
packet. It is assumed that at time ¢, the actual velocities for
one-hop forwarding are shown in Fig. 4(b).
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Fig. 4: The network status at time ¢ and ¢ + 1

According to the requested velocities of source node S, node
1 and node 4 and the actual velocities of their neighbors,
we can obtain the set of candidate neighbors of each node.
The sets of candidate neighbors of node S, node 1 and node

4 are {node 1, node 2}, {node 3, node 4}, {node 3, node
5} respectively, according to the velocity requirement that the
actual velocity is not less than the requested velocity. Suppose
that at time ¢, the Q-value, weight x and weighted Q-value of
the link corresponding to the candidate neighbors of node S,
node 1 and node 4 are shown in Table II.

TABLE II: Link information

Tink GD [ 62 A3 [ b [ G3) [ @5
weight r 06 | 078 | 06 | 065 | 0.63 | 0.85
Q-value 062 | 05 | 08 | 072 | 08 | 0.68
weight Q-value | 0.372 | 0.30 | 0.48 | 0.468 | 0.504 | 0.578

In table II, (¢,7) represents the link from node ¢ to node
J. At the beginning of the learning phase, the initial Q-value
of each link is 0.5. As the weighted Q-value of the link (1,3)
is greater than the weighted Q-value of the link (1,4), packet
1 (agent 1) will select the link (1,3) to forward. In fact, the
Q-value of the link (1,3) is also greater than the Q-value of
the link (1,4), which implies link (1,3) is better than link (1,4)
in the past. Packet 1 (agent 1) selects the best link in the past,
which means it mainly exploits the knowledge (experience)
that has been learned in the past.

For packet 2 (agent 2), although the Q-value of the link (4,5)
is smaller than the Q-value of the link (4,3), the weighted Q-
value of the link (4,5) is greater than the weighted Q-value
of the link (4,3). Therefore, packet 2 (agent 2) will select the
link (4,5). Since the Q-value of the link (4,5) is not equal to
the initial value 0.5, the link (4,5) has been explored before
time ¢t. However, packet 2 (agent 2) still selects the link (4,5)
to forward, which indicates that links that have been explored
in the past but in poor condition will have the opportunity to
be re-explored.

For packet 3 (agent 3), although the Q-value of the link (S,2)
is smaller than the Q-value of the link (S,1), the weighted Q-
value of the link (S,2) is greater than the weighted Q-value
of the link (S,1). Therefore, packet 3 (agent 3) will select the
link (S,2). The link (S,2) has not been explored before time
t, because the Q-value of the link is equal to the initial value
of 0.5. However, packet 3 (agent 3) still selects link (S,2)
to forward, which implies that packet 3 (agent 3) decides to
explore a new link (i.e., explore new action) due to the link
(S,2) with bigger weight (i.e., the link in better condition at
present). This means that previously undiscovered links might
be explored.

In a word, packet 1 selects the link that was regarded as the
best in the past (exploitation), while packet 2 selects the link
that was regarded as the poor in the past but may be better at
present (exploration). Packet 3 selects the link not previously
explored (exploration). Then at the next time ¢ + 1, packet 1,
packet 2 and packet 3 respectively stay on node 3, node 5 and
node 2. Therefore, at the time ¢ + 1, the states of packet 1,
packet 2 and packet 3 (i.e., agent 1, agent 2 and agent 3) are s3,
s5 and so respectively, as shown in Fig. 4(b). Meanwhile, these
actions (i.e., link(1,3), link(4,5) and link (S,2)) will receive
corresponding rewards.

From this example, we can see that both explored links and
unexplored links are likely to be explored when forwarding



packets. Due to the frequent change of topology in FANETS,
the quality of link is extremely unstable, so the exploration
and exploitation mechanism mentioned in this paper can better
adapt to the situation of link instability to find a better
forwarding path.

V. PERFORMANCE EVALUATION

In this section, our QMR algorithm is implemented and
compared with the existing good performing QGeo [6], using
an event-driven wireless networks simulator WSNet!.

In QGeo, the packet travel speed is considered as the reward
to select optimal next hop. The discount factor selected from
two constant values and a fixed learning rate are used to update
Q-value in QGeo. The packet travel speed is only considered in
reward function, However, the energy consumption is ignored,
which makes QGeo difficult to provide low energy consump-
tion service. In contrast, discount factor can be adjusted adap-
tively according to the mobility of neighbors in the adjacent
time intervals, and learning rate can be adjusted adaptively
according to one-hop delay in our QMR. In addition, QMR
simultaneously considers delay and energy consumption to
provide low delay and low energy consumption service.

For the considered scenario, 25 nodes are evenly distributed
in an area of 500m x 500m, and the coordinates of destination
node are (500, 500). We randomly select one node as the
source node to transmit data to the destination node, and the
rest of nodes except the destination node are relay nodes.
The source emits a periodic flow of data packets whose data
interval is set differently for comparison. Initially, Q-value of
each link is 0.5. The parameters for the scenario are shown in
Table III.

TABLE III: Parameter configuration

Parameters Settings
Area Size 500m x 500m
Number of Nodes 25
MAC 802.11 DCF

Radio propagation
Interferences

propagation_range, rang = 180m
interferences_orthogonal

Modulation modulation_bpsk
Antenna antenna_omnidirectionnal
Battery energy_linear

HELLO Interval 100ms
ExpireTime 300ms
update interval of 100ms
size of data packet 127Bytes
B 0.5
w 0.6

The performance metrics including average end-to-end de-
lay, maximum end-to-end delay, packet arrival ratio and energy
consumption are considered:

o Average end-to-end delay: The average delay of the data

packet from the source node to the destination node.

¢ Maximum end-to-end delay: The maximum delay of the

data packet from the source node to the destination node.

o Packet arrival ratio: The ratio of the number of data pack-

ets received by the destination node (excluding redundant

Uhttp://wsnet.gforge.inria.fr/
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data packets) to the number of data packets transmitted
by the source node.

o Energy consumption: We consider as a first approxima-
tion that the main energy consumption factor is due to
the emission and reception of a data packet. Thus, the
energy consumption is defined as the average number
of emissions and reception operations performed by all
nodes (sources and relays). This value is normalized by
the number of data packets sent by the sources. The
complete definition is given in [26]

In the following simulations, all mobile nodes (including
source and relay nodes) utilize the Random Waypoint Mobility
Model. In this mobility model, a mobile node moves from its
current location to a new location by choosing a direction and
speed [27]. The new location is randomly chosen in the range
of simulation area, while the new speed is evenly chosen from
[minspeed, maxspeed]. When the mobile node moves to the
newly selected destination at the selected speed, the mobile
node pauses for a specified period and then starts to move
to another new location. In all simulations, the pause time of
mobile nodes set to 0.

A. Evalutation metrics for different data interval

In this simulation, the minspeed and the maxspeed of mobile
nodes are Om/s and 15m/s respectively. Source node sends one
thousand data packets at different interval. For each interval,
we repeated the simulation 100 times. From Fig. 5 to Fig. 8,
the performance of our QMR for different data interval of
source is compared with QGeo, considering average end-to-
end delay, maximum end-to-end delay, packet arrival ratio and
energy consumption.
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Fig. 5: Average end-to-end delay for different data interval

From Fig. 5 and Fig. 6, we can see that the average end-to-
end delay and max end-to-end delay of our algorithm QMR
are lower than QGeo. Compared to the QGeo, the average
end-to-end delay and max end-to-end delay are averagely
reduced by 42% and 47%, respectively. The main reason is
that our algorithm constrains the velocity of data packets in
the transmission process. QMR requires that the actual velocity
of the data packets in the transmission process is not less
than the requested velocity within the delay deadline. Thus,
the routing path with low delay from source to destination
is selected for data transmission. In addition, compared with
QGeo, our algorithm not only considers the MAC delay, but
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also considers the average queuing delay in one-hop delay,
which is more realistic end-to-end delay.

Fig. 7 shows that energy consumption of our QMR is lower.
Compared with QGeo, energy consumption is reduced by
18%. One of the major reasons is that our algorithm considers
the energy consumption of the node in the Q-learning reward
function. By considering the initial energy and the residual
energy of the nodes in a comprehensive manner, the nodes
with smaller energy consumption are selected as the next hop,
thereby balancing the energy consumption of all nodes in the
network. Besides, QMR has good capability to find a low delay
path, which results in fewer retransmissions and higher energy
utilization efficiency.

Figure 8 represents packet arrival ratio of our QMR. Com-
pared with QGeo, the packet arrival rate of our QMR has
increased by 6%. The main reason is that considering the
high mobility of nodes, our algorithm re-estimates neighbor
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Fig. 8: Packet arrival ratio for different data interval
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relationships between nodes when requiring the next hop.
In addition, learning rate and discount factor in Q-learning
are adaptively adjusted according to the one-hop delay and
the mobility of neighbors to predict the status of the link.
According to the prediction results, the most stable link is
selected for data transmission, which in turn increases the
packet arrival ratio.

To be concluded, our QMR performs better than the existing
good performing QGeo for different data interval.

B. Evalutation metrics for different moving speed

In this simulation, source node sends one thousand data
packets at the interval of 30ms. The minspeed of mobile nodes
is Om/s, and the maxspeed of mobile nodes varies from 10m/s
to 100m/s. For each maximum speed of mobile nodes, we
repeated the simulation 100 times.
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Fig. 9: Packet arrival ratio for different moving speed
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Fig. 11: Average end-to-end delay for different moving speed
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Fig. 12: Max end-to-end delay for different moving speed

From Fig. 9 to Fig. 12, the performance of our QMR for
different moving speed is compared with QGeo. Figure 9
shows that packet arrival ratio is higher than Qgeo, which
is increased by 10% on average. We can see in figure 10 that
energy consumption of the node is lower. Compared with Q-
Geo, energy consumption is reduced by 19% on average. From
figure 9 and figure 12, we can see that in our algorithm, the
average end-to-end delay and max end-to-end delay are lower,
which is averagely reduced by 48% and 44%, respectively. We
can include that our QMR performs better than the existing
good performing QGeo for different moving speed.

C. Evalutation metrics for a scenario with faulty relay nodes

In this simulation, we randomly select 10 nodes among
25 nodes to stop working by power off at 1 second after
the start of the simulation, to achieve the scenario where
numbers of relay nodes are faulty. The performance of the
proposed method QMR and the existing QGeo under different
data interval of source are compared. The minimum speed
of mobile nodes is Om/s, and the maximum speed of mobile
nodes is 15m/s. We repeated the simulation 100 times.
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Fig. 13: Average end-to-end delay for a scenario with faulty relay nodes

From Fig. 13 to Fig. 16, we can see that our method still
have better performance than the existing method QGeo, even
if numbers of intermediate nodes are faulty. From Fig. 13
and Fig. 14, it can be seen that our method QMR still has
lower average and max end-to-end delay. Compared to QGeo,
the average end-to-end delay and max end-to-end delay are
averagely reduced by 40% and 46%, respectively. Meanwhile,
energy consumption is reduced by 17% on average, and packet
arrival ratio is increased by 6% in comparison to QGeo.
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Fig. 14: Max end-to-end delay for a scenario with faulty relay nodes
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Fig. 15: Packet arrival ratio for a scenario with faulty relay nodes

D. Comparisons of exploration and exploitation mechanism

In this simulation, we use QMR to compare the explo-
ration and exploitation mechanism proposed in this paper
with traditional methods (e greedy strategy, UCB, boltzmann
mechanism) by average end-to-end delay and packet arrival
ratio. The minspeed and the maxspeed of mobile nodes are
Om/s and 15m/s respectively. The data interval of the source
to transmit one packet is 10ms and 40ms. The experimental
results are shown in the Fig. 17.

From Fig. 17, we can see that our mechanism can enhance
the routing performance, where the average end-to-end delay
is smallest and the packet arrival ratio is the highest. This
is because the regulation method is adaptive to the variation
of network condition. Therefore, it can better balance the
relationship between exploration and exploitation, which is
more suitable for FANETs and other dynamic environments.
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Fig. 16: Energy consumption for a scenario with faulty relay nodes
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Fig. 17: Comparison of exploration and exploitation mechanism

VI. CONCLUSION

The drastically changing topology of FANETSs has brought
great challenges to routing protocols for FANETs. Existing
routing protocols for MANETs and VANETSs cannot be di-
rectly applied in FANETS. In this paper, we propose a novel
Q-learning based routing protocol for FANETs. Considering
the requirement of low delay and low energy consumption
of FANETSs, a Q-learning based Multi-objective optimiza-
tion Routing protocol (QMR) is proposed aiming directly at
simultaneously providing low-delay and low-energy service
guarantees. In addition, a method of adaptively adjusting Q-
learning parameters is proposed to adapt to the high dynamics
of FANETS:. In this method, learning rate is adaptively adjusted
according to one-hop delay, and discount factor is adjusted
according to the mobility of neighbors in the adjacent time
intervals. The results have demonstrated outstanding perfor-
mance of our QMR in comparison with the QGeo. The trans-
mission of multi-flows with different requirements of QoS will
be investigated in the future. Moreover, the implementation of
QMR in a physical UAVs would be a challenge and could
provide many useful insights.
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