

EQUALE

Evaluation et Qualité de l'Enseignement

How are quiz scores related to students' performance in blended-learning?

M. SACRÉ, D. LAFONTAINE, M.-C. TOCZEK

The popularity of blended learning is growing at the university

- Integral part of our personal and professional lives
- Could even be considered as the norm
- Flexibility in time and space

Blended-learning (BL)

- Refers to many approaches
- Combination of face-to-face instruction with computer-mediated instruction
- These two modes can vary greatly in terms of time, methodology and content

(Boelens, Van Laer, De Wever, & Elen, 2015; Osguthorpe & Graham, 2003)

Effects of BL

Study	Design and aim	Population	Results
(McCutcheon et al., 2015)	systematic review: online or BL vs. face- to-face learning	nursing education	no difference in performance compared to face- to-face environments
(Vo, Zhu, & Diep, 2017)	meta-analysis : BL vs. classroom instruction	higher education	BL demonstrates a small effect ($g+=0.385$, p < 0.001) compared to traditional teaching methods. A higher mean effect size was found in STEM disciplines ($g+=0.496$).
(Liu et al., 2016)	meta-analysis : BL vs. no intervention and non-BL	Health Professions learners	BL is more effective than or at least as effective as non-blended instruction
(Bernard, Borokhovski, Schmid, Tamim et Abrami, 2014)	meta-analysis : BL vs. classroom instruction	different types of learners	"improvement in achievement related to BL is low but significantly greater than zero"
(Means, Toyama, Murphy et Baki, 2013)	meta-analysis : face-to- face vs. online and BL	K–12 and higher education	BL > $f2f \& online (g+ = +0.35)$

A particular component of the BL: quizzes

Variety of forms: optional exercises or quizzes

• (multiple choice questions, true or false, short answer questions etc.)

Allow for formative self-evaluation at different points of the learning process

Can generate the "testing effect" (roediger & karpicke, 2006)

Testing effect

(Agarwal, Karpicke, Kang, Roediger, & McDermott, 2008; Roediger & Karpicke, 2006)

test > restudy

Powerful effects on learning and long-term retention

Research questions

In a context of blended-learning,

- 1) how are quiz scores related to students' performance?
- 2) is this effect different depending on whether the students are
 - o low-, medium- or high-achievers?

Two correlational studies were conducted:

- Nursing students (study 1)
- Computer science students (study 2)

Study 1

Convenience sample

- 80 nursing students
- Course: "Introduction to scientific research methodology"

One online quiz at the end of the course

Pretest and post-test of performance:

Performance	Min	Max	Mean	SD
Pretest (out of 32)	5.000	26.000	15.023	6.061
Quiz score (out of 20)	.000	18.520	13.445	3.888
Post-test (out of 32)	10.000	32.000	22.587	4.929

Pearson's bivariate correlations

	1	2	3	4	5	6	7
1. Posttest	-						
2. Pretest	,420**	-					
3. Quiz scores	,380**	,295**	-				
4. Gender	-0,176	-0,080	-0,075	-			
5. SEB	0,190	0,150	0,016	0,070	-		
6. Enrolment	-0,099	-0,033	0,113	0,151	-,347**	-	
7. Age	-0,150	0,060	0,165	0,206	-,369**	,864**	-

Results

Linear regression analyzes predicting student performance from their quiz scores and pre-test results:

	В	S.E.	β	P	Adjusted R ²
(Constant)	11.982	2.157		.000	
Pretest	.375	.115	.339	.002	.229
Quiz scores	.356	.131	.280	.008	

Dependent Variable: Post-test

• Results show a significant effect of quiz scores on performances, while controlling for the pretest

Study 2

Convenience sample

- 46 computer science students
- Course: "Mathematics applied to computer graphics"
- Five chapters throughout the semester

 Each chapter included 1 to 5 quizzes and 1 mandatory assessment at the end

Data collection

Independant variable: quiz data (5 averaged quiz scores)

Dependant variable: performance data (5 assessments results)

and sociodemographic variables

Based on the Quiz 1, students were ranked according to their initial level by constituting 3 groups:

low-, medium- and high-achievers

Data analysis

Firstly, Pearson correlations were calculated between each quiz scores and each performance assessment.

Secondly, we initiated <u>repeated measures correlations</u> to assess the overall relationship between quiz scores and student performance in the course.

(Bakdash & Marusich, 2017)

Results

• Pearson's bivariate correlations:

	Assessment 1	Assessment 2	Assessment 3	Assessment 4	Assessment 5
Quiz 1	.439**	.456**	.380*	.148	.158
Quiz 2	.200	.391**	.415**	.265	.092
Quiz 3	.225	.427**	.410**	.298*	.263
Quiz 4	.336*	.086	.268	.470**	.120
Quiz 5	.568**	.233	.178	.371*	.239

• Repeated measures correlations : r=.332**

Evolution of students' performance over assessments

Quiz scores by groups from quiz 1 to quiz 5

Assessment results by groups from assessment 1 to assessment 5

Conclusions and limitations

Quiz scores are positively related to student performance

- ... especially for low-achievers who really benefits from this activity
- This result is quite intuitive: the better they perform, the better they will perform in the future

Could this relation be a consequence of a change in students' motivational beliefs?

(Berger & Büchel, 2012)

Limitations:

- Small samples
- Convenience samples
- Correlational studies
- Very different area

Thank you for your attention

msacre@uliege.be

References (1)

- Agarwal, P. K., Karpicke, J. D., Kang, S. H. K., Roediger, H. L., & McDermott, K. B. (2008). Examining the testing effect with open- and closed-book tests. *Applied Cognitive Psychology*, 22(7), 861-876. https://doi.org/10.1002/acp.1391
- Al-Qahtani, A. A. Y., & Higgins, S. E. (2013). Effects of traditional, blended and e-learning on students' achievement in higher education. *Journal of Computer Assisted Learning*, 29(3), 220-234. https://doi.org/10.1111/j.1365-2729.2012.00490.x
- Bakdash, J. Z., & Marusich, L. R. (2017). Repeated measures correlation. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00456
- Berger, J.-L., & Büchel, F. (2012). Métacognition et croyances motivationnelles : Un mariage de raison. *Revue française de pédagogie. Recherches en éducation*, 179, 95-128. https://doi.org/10.4000/rfp.3705
- Bernard, R. M., Borokhovski, E., Schmid, R. F., Tamim, R. M., & Abrami, P. C. (2014). A meta-analysis of blended learning and technology use in higher education: From the general to the applied. *Journal of Computing in Higher Education*, 26(1), 87-122. https://doi.org/10.1007/s12528-013-9077-3
- Boelens, R., Van Laer, S., De Wever, B., & Elen, J. (2015). *Blended learning in adult education: Towards a definition of blended learning*. http://hdl.handle.net/1854/LU-6905076
- Botts, R. T., Carter, L., & Crockett, C. (2018). Using the blended learning approach in a quantitative literacy course. *PRIMUS*, 28(3), 236-265. https://doi.org/10.1080/10511970.2017.1371264
- Delialioglu, O., & Yildirim, Z. (2008). Design and development of a technology enhanced hybrid instruction based on MOLTA model: Its effectiveness in comparison to traditional instruction. *Computers & Education*, 51(1), 474-483. aph.
- Deschacht, N., & Goeman, K. (2015). The effect of blended learning on course persistence and performance of adult learners: A difference-in-differences analysis. *Computers & Education*, 87, 83-89. https://doi.org/10.1016/j.compedu.2015.03.020

References (2)

- Deschacht, N., & Goeman, K. (2015). The effect of blended learning on course persistence and performance of adult learners: A difference-in-differences analysis. *Computers & Education*, 87, 83-89. https://doi.org/10.1016/j.compedu.2015.03.020
- Huang, E. Y., Lin, S. W., & Huang, T. K. (2012). What type of learning style leads to online participation in the mixed-mode e-learning environment? A study of software usage instruction. *Computers & Education*, 58(1), 338-349. https://doi.org/10.1016/j.compedu.2011.08.003
- Liu, Q., Peng, W., Zhang, F., Hu, R., Li, Y., & Yan, W. (2016). The Effectiveness of Blended Learning in Health Professions: Systematic Review and Meta-Analysis. *Journal of Medical Internet Research*, 18(1), e2. https://doi.org/10.2196/jmir.4807
- McCutcheon, K., Lohan, M., Traynor, M., & Martin, D. (2015). A systematic review evaluating the impact of online or blended learning vs. Face-to-face learning of clinical skills in undergraduate nurse education. *Journal of Advanced Nursing*, 71(2), 255-270. https://doi.org/10.1111/jan.12509
- Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and self-regulated learning: A model and seven principles of good feedback practice. *Studies in Higher Education*, 31(2), 199-218. https://doi.org/10.1080/03075070600572090
- Norberg, A., Dziuban, C. D., & Moskal, P. D. (2011). A time-based blended learning model. *On the Horizon*, 19(3), 207-216. https://doi.org/10.1108/10748121111163913
- Osguthorpe, R. T., & Graham, C. R. (2003). Blended learning environments: Definitions and directions. *Quarterly Review of Distance Education*, 4(3), 227-233.
- Roediger, H. L., & Karpicke, J. D. (2006). The power of testing memory: Basic research and implications for educational practice. *Perspectives on Psychological Science*, 1(3), 181-210. https://doi.org/10.1111/j.1745-6916.2006.00012.x
- Vo, H. M., Zhu, C., & Diep, N. A. (2017). The effect of blended learning on student performance at course-level in higher education: A meta-analysis. *Studies in Educational Evaluation*, *53*, 17-28. https://doi.org/10.1016/j.stueduc.2017.01.002