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This paper presents an analysis of Grade 5 pupils’ work with similarity, based on an adaptation of 

Brousseau’s classical puzzle. My main interest is in investigating the pupils’ language repertoire and 

mathematical strategies for expressing enlargement in a situation involving similar shapes. A crucial 

point is to identify elements of the language use that contribute to seeing enlargement to preserve 

similarity as a multiplicative situation. 
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Introduction 

A large part of the mathematics taught in compulsory school in Norway and elsewhere can be related 

to multiplicative structures (Vergnaud, 1983). The span reaches from the early work with 

multiplication, usually seen as repeated addition, in the lower grades to more advanced topics such 

as proportionality, similarity, combinatorics and growth rate in the higher grades. In the project 

Language Use and Development in the Mathematics Classroom (LaUDiM) — an intervention study 

carried out in collaboration between researchers at the Norwegian University of Science and 

Technology and two local primary schools, we have acknowledged the central role of multiplicative 

structures by making this a recurring theme over several years, from basic models for multiplication 

and division, to combinatorial problems, and, as in this paper, where the pupils in Grade 5 work with 

proportional growth in a task which can be seen as an introduction to similarity.  

It is widely acknowledged that an important achievement in the development of pupils’ numerical 

thinking is the transition from additive to multiplicative (proportional) thinking and that humans 

acquire additive reasoning (AR) before proportional reasoning (PR) (Gläser & Riegler, 2015). This 

may lead to an application of AR in situations where PR is appropriate but there is also evidence to 

show that when pupils have become familiar with PR, they tend to apply PR in situations where this 

is not appropriate (Fernández, Llinares, Van Dooren, De Bock, & Verschaffel, 2012; Van Dooren, 

De Bock, Hessels, Janssens, & Verschaffel, 2005). These studies seem to indicate that language use 

may play an important role for pupils’ success when choosing the correct type of reasoning.  

By zooming in on discussions between pupils, and pupils and teacher, I will identify language 

elements that play a role when pupils development their reasoning from additive to multiplicative 

(proportional).  

The task given to the pupils 

The task, presented in Figure 1, is an adaptation of the puzzle described in (Brousseau, 1997, p. 177). 
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Figure 1: The task given to the pupils 

 

In Brousseau’s example, the given enlargement is from 4 cm to 7 cm. We chose the measures 4 cm 

and 6 cm in order to make calculations simpler. A similar situation is reported in Erath (2019), with 

the enlargement factor 7/4 but with slightly different, and fewer pieces.    

Multiplicative structures 

Greer (1992) presented a classification of situations modelled by multiplication and division. A 

shortened version of his table is given below (Greer, 1992, p. 280):  

 Equal groups and equal measures  
 Rate 
 Measure conversion 
 Multiplicative comparison and multiplicative change 
 Part/whole 
 Cartesian products 
 Rectangular area 

The situation in the task in Figure 1, fits with Greer’s class multiplicative change, as in his example: 

“A piece of elastic 4.2 meters long can be stretched to 13.9 meters. By what factor is it lengthened?” 

(Greer, 1992, p. 280). The crucial point in the task in Figure 1 is to identify the enlargement factor, 

1.5, although it is not explicitly said that one is looking for an enlargement factor.  

Vergnaud sees multiplication, division, fraction, ratio, proportion, similarity, linear functions, and 

other concepts as belonging to one conceptual field and presents three classes of multiplicative 

structures (Vergnaud, 1983, 2009): Isomorphy of measures, Product of measures, and Multiple 

proportions. Isomorphy of measures is described as a direct proportion between two measure spaces, 

M1 and M2, as illustrated in Table 1.  

M1  M2  

1 a 

b x 

Table 1: Isomorphy of measures 

The terms scalar operator and function operator are used to denote the numbers b and a, respectively. 

The scalar operator operates within one measure space, whereas the function operator operates 

between two measure spaces. This model contains both equal groups, multiplicative comparison and 

change, as well as rate in Greer’s list. Problems fitting into Vergnaud’s model Isomorphy of measures 

are of a type referred to by Behr, Harel, Post and Lesh as “the rule of three problems” (1992, p. 297). 

One can construct problems that on the surface look like rule-of-three-problems, but that not are 

multiplicative. Several authors have studied and compared pupils’ reasoning in such problems 

The pieces in the puzzle to the right shall be enlarged to a puzzle 
having the same shape as the one shown to the right. This should 
be done in such a way that the length which is 4 cm in the 
original puzzle becomes 6 cm in the enlarged puzzle. 
 

1) Each member of the group shall enlarge two pieces. 
2) Put the pieces together to an enlarged puzzle. 
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(Fernández et al., 2012; Van Dooren et al., 2005, 2010). Van Dooren et al. (2010) report that there is 

an increase in the use of PR when AR is appropriate as pupils get older but for young pupils the 

inappropriate use of AR is dominating. This seems to indicate that when the ability for PR is 

established it tends to be used also in situations where it is not appropriate. An example of a problem 

requiring AR, which has the structure of a rule-of-three-problem, is the following:  

Ellen and Kim are running around a track. They run equally fast but Ellen started later. 

When Ellen has run 4 laps, Kim has run 8 laps. When Ellen has run 12 laps, how many has 

Kim run? (Van Dooren et al., 2010, p. 368, my emphasis) 

In the study by Van Dooren et al. (2010) the percentage of pupils that solved additive problems of 

this type using PR increased from 17 % in Grade 3 to 67.9 % in Grade 6. The language cue indicating 

that this is an AR task is “[t]hey run equally fast but Ellen started later”. In the task in Figure 1, the 

cue indicating PR is that the new puzzle should have the same shape as the original one. In addition, 

the physical fitting together of the pieces was intended to support the choice of PR. As will be seen, 

this did not suffice, and only after additional language support, elements of PR started to develop. 

My interest in this paper is to investigate the nature of these elements of language support.  

Method 

Throughout the whole LaUDiM project, classroom sessions have been designed based on principles 

from the Theory of Didactical Situations (TDS) (Brousseau, 1997). A central feature of TDS is to 

create an adidactical situation, a situation in which the pupils take a mathematical problem as their 

own and try to solve it without the teacher’s guidance and without trying to interpret the teacher’s 

intention with it. For an adidactical situation to be successful, it is important that the pupils get 

relevant feedback from the milieu (Brousseau, 1997) so that they have a chance to know when the 

task is solved correctly without being told so by the teacher. For this to happen, the task must contain 

an inner logic, guiding the pupils to the correct solution without the teacher’s intervention. To create 

tasks with such an inner logic has proved to be very challenging (Rønning & Strømskag, 2017). In 

the task discussed here, the feedback from the milieu is that if the pieces are not enlarged in the correct 

way, they will not fit together as a puzzle. It is then expected that this feedback will strengthen the 

connection between the language cue “same shape” and proportional reasoning.  

The task was provided for the pupils to work with in groups of three-four, after a brief introduction 

by the teacher. After some time, the teacher interrupted and gave some additional information, and 

the pupils continued their work. In the next mathematics lesson, three days later, the lesson started 

with the teacher giving an introduction where she drew on what she had observed on the first day. 

During this whole class session, the correct solution of the task was established, with active 

participation from the pupils. All whole class situations are videotaped, as well as the group work of 

three groups on day 1 and five groups on day 2. For this paper I follow one group of three pupils, 

Frances, George and Mary, throughout their work on day 1. In addition, I base my analysis on the 

teacher’s intervention in whole class situations as well as on written work collected from the pupils. 

In the whole class session on day 2 it became evident that she had observed something interesting in 

the group with Frank, Roger, Nora and Brenda, and to look closely at this, I also use part of their 

discussion as data for the analysis.  
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Analysis of the task 

The task given in Figure 1 can be seen as a rule-of-three-problem where the measure spaces M1 and 

M2 are the original and the enlarged puzzle, respectively. Since it is not given what length in the 

enlarged puzzle corresponds to the length 1 in the original puzzle, a slightly modified version of the 

Vergnaud table is therefore appropriate for this task (Table 2).  

M1  M2  

4 6 

b x 

Table 2: The Vergnaud table for the task 

Here b can be any of the other numbers in the original puzzle and the task is to find the corresponding 

x. The givens in Table 2 will make it possible to compute the enlargement factor, 6/4 = 1.5, which in 

Vergnaud’s (1983) terms is the function operator.  

The task requires that the pieces should be enlarged, and to secure a multiplicative and not an additive 

enlargement the cue is given that the enlarged puzzle should have the same shape as the original 

puzzle. The task is therefore to produce a new puzzle where each piece, and therefore the whole 

puzzle, is similar to the original one. This can be seen as what Hölzl (2018) describes as a dynamic 

approach to similarity, where enlargement is seen as a dynamic process, something should be done 

to the original figure to get the new one. This can be contrasted with at static view, where only the 

ratio between corresponding distances is considered.  

The Norwegian word used in the task is ‘å forstørre’, which has the same meaning as ‘to enlarge’, 

namely ‘to make something larger’. To make something larger can be done by adding a positive 

number, or by multiplying with a number greater than 1. In the task, the enlargement should lead to 

new shapes similar to the original shapes, meaning that the ratio between corresponding lengths 

should be the same. Hence, the dynamic enlargement process should lead to a static situation with a 

constant ratio. Both Brousseau (1997) and Erath (2019), experienced that the first attempt of the 

pupils was to add a constant number to each length, and indeed, this also happened in our case. Van 

Dooren et al. (2010) investigated pupils from Grades 3-6 and found that the tendency to use AR for 

PR was decreasing as pupils got older, whereas the tendency to use PR when AR was appropriate 

was increasing. One would therefore expect that the pupils in my study (Grade 5) would have 

developed PR some extent.  

The research question that is addressed in this paper is: What language cues can be identified in the 

classroom sessions that support a transition from additive reasoning to multiplicative reasoning?  

Analysis of the teaching sequence 

Group work, day 1, Frances, George and Mary 

The pupils are given the pieces of the original puzzle cut out in blue cardboard with the correct 

measures. The task is printed on a piece of paper and the pupils are given a large piece of yellow 

cardboard on which they are supposed to draw the enlarged pieces. Each pupil makes two pieces. 

When they have drawn their pieces, they are supposed to cut them out and place them together. 

Almost immediately, when looking at the task, Mary says “we can take plus two. Since this was plus 
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two, we can take all the others plus two”. There seems to be agreement in the group that this is the 

thing to do and based on this, they make their pieces. However, already when cutting out the new 

shapes they start to suspect that something is wrong. Mary says that “the shapes are not the same”. It 

seems that when enlarging the right-angled triangles, they have added 2 cm to all three sides, and 

then the new triangles are no longer right-angled. Obviously, the pieces then don’t fit together. They 

think this is because they have not been accurate enough and they try to make new versions of some 

of the shapes. Although they see that the pieces don’t fit, they don’t question the “plus 2 strategy”. 

Discussing with the teacher, they realise that when adding 2 to all pieces, the new total shape will no 

longer be a square. George observes that by adding 2 to each length, the sides composed of three parts 

will be longer than the sides composed of two parts. Therefore, they decide to concentrate on the 

frame and make this into a square of 13 x 13 cm (instead of 11 x 11 cm) and adjust the interior parts 

to fit into the frame. They don’t finish this strategy before the teacher intervenes.  

Teacher intervention in whole class 

The teacher has observed that all groups have used the strategy of adding 2. She decides to help them 

further by giving the additional information is that the sides which are 5 should become 7.5.   

Group work, day 1, Frances, George and Mary, continued 

The teacher’s new information leads to a new hypothesis in the group, that the even numbers get +2 

and the odd numbers get +2.5. This is consistent with the information that 4  6 and 5  7.5. They 

use this procedure to compute the new lengths, in combination with trying to get a square. They 

realise that this procedure will give 15.5 cm for two of the edges and 17.5 cm for the other two, hence 

not a square. The discussion gives rise to two different hypotheses to solve this problem. One comes 

from George who suggests that if the length that is 6 becomes 10 and not 8, they will get a 17.5 x 

17.5 square. The second hypothesis is to let the lengths that are 2 remain as 2. Then they think that 

they get a 15.5 x 15.5 square. Here they overlook one of the lengths of 2. They don’t get time to finish 

testing their hypotheses but they seem to be prepared to construct rather elaborate additive structures 

to solve the problem, where the operator takes on a different form depending on the values of the side 

lengths.  

Teacher in whole class, day 2 

The teacher starts by presenting the methods she has observed in the groups on day 1, first the “+2 

strategy”, and then variations of this, mainly based on distinguishing between even and odd numbers. 

In the group with Frank, Roger, Nora and Brenda, the teacher has observed something different, and 

she asks Nora to present the strategy from her group.  

Nora: We thought first that four should be six. So then we added two. Then we found that 

on the other we should add two point five. So we added one half more on the next. 

Then we tried to do that upwards on the other numbers.  

Teacher: What we add, should be larger and larger the longer the edges are.  

Nora’s utterance “added one half more on the other” gives an indication that they are moving away 

from adding a constant to adding something which varies, which could be a first step towards PR. 
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Looking into the video from this particular group on day 1, I can see that these pupils also started 

with adding 2 for even numbers and 2.5 for odd numbers and when they realised that this did not 

work they were stuck. They sit for some time, not knowing what to do. Then the teacher comes and 

asks how they are doing. Frank says “not good”. He has written 4 = 6 and 5 = 7.5. The teacher points 

to this and the following conversation takes place. 

Teacher: Is there something else with these apart from that here we add two and here we add 

two point five? Is there another pattern we can think of in addition to this?  

Frank: Perhaps that when there is a larger number, then we add one half more.  

Teacher: OK, so what do you think if it had been six here [points to the number 5]?  

Frank: [writes 6 = 9 below 5 = 7.5] 

Teacher:  You think it will be nine. What about seven?  

Frank continues writing and finally he produces the table shown in Figure 2. The teacher turns to the 

other pupils and encourages them to try out this method.  

 

Figure 2: From the notes by Frank 

In the whole class session on day 2, the teacher presents the table that Frank had made and says: 

Teacher:  Do you see any connection between the lengths in the original puzzle and how much 

we should add? 

Frances:  I think we have to add a half each time. 

Teacher: What half then, do you think? What is it half of? 

Mary:  Perhaps when it is eight, we have to add half of eight.  

When Frances says that “we have to add a half each time” it is reasonable to think that she means that 

she thinks about the increase in the increment and not the increase itself, since her utterance comes 

after the teacher has pointed to the table in Figure 2. A language cue to bring the reasoning forwards 

may be when the teacher then asks “what is it half of?” Then the word ‘half’ changes from being an 

additive constant to being a multiplicative operator. It is no longer the number ‘one half’ but it is ‘one 

half of something’. There are also traces of the operator aspect in what Frank said in the group, “when 

there is a larger number, then we add one half more”. When the teacher has emphasized “what is it 

half of”, Mary is able to express the general function x  x + ½ x, using ‘eight’ as a generic example, 

“when it is eight, we have to add half of eight”. Finally, the teacher produces the table shown in 

Figure 3 on the board. 
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1 2 3 4 5 6 7 8 9 11 

1.5 3 4.5 6 7.5 9 10.5 12 13.5 16.5 

+0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4 +4.5 +5.5 

Figure 3: The table produced by the teacher 

Here the teacher has indicated that what is to be added is half of the original value of the lengths, so 

in effect the teacher has made a representation of the function x  f(x) shown in Figure 4.  

 

 

Figure 4: The enlargement function 

Summary 

All the groups started by adding 2 cm to each length in the puzzle, an indication that the word enlarged 

made them think of adding a constant. During their work, they got feedback from the milieu as they 

observed that the new pieces did not have the same shape as the original pieces and also that they did 

not fit together without gaps. However, they explained this by inaccurate measuring and inaccurate 

cutting. They did not question the procedure. This is completely in line with the experiences made by 

Brousseau (1997, p. 177): “It is not the model, it is the realization that is put into question.” When 

the teacher gave the information that 5  7.5, in addition to 4  6 they realised that they should not 

add the same number each time. This information led to new procedures, which, in the effort to 

preserve the shape, turned out to be rather complicated. 

Already in grade 3, the pupils worked with situations of multiplicative comparison, which is closely 

related to multiplicative change. These situations were of the type “the short walls of a room are 3 

meters long, and the long walls are five times longer. How long are the long walls?” In Vergnaud’s 

model, this means that the measure spaces M1 and M2 are the short and the long walls, respectively, 

and “five times longer” is the function operator. Hence, in �: �� → ��: �
�∙
→ �, a and k are given and 

b is unknown. In the current situation, a and b are given and k is unknown.  

In line with previous research (Ahl, 2019; Erath, 2019; Fernández et al., 2012; Gläser & Riegler, 

2015; Van Dooren et al., 2005, 2010) done with students in different age groups, the present study 

shows that using AR instead of PR is firmly established in problems of the kind studied here. Seen 

from a language perspective, an interesting question is, what elements of language use may support 

a transition from additive to multiplicative thinking. A turning point towards multiplicative reasoning 

takes place when Frank suggests that “when there is a larger number, then we add one half more”. 

Since only integers are considered, I interpret the statement “when there is a larger number, then we 

add one half more” to mean that when a length in the original puzzle is increased by 1, the increment 

increases by a constant, ½. This is extended by Mary to say that “when it is eight, we have to add half 

of eight”. Although the multiplicative factor is not clearly identified and the function in Figure 4 is a 

mixed additive/multiplicative model, it seems that the pupils are beginning to develop a language 

involving a multiplicative structure.  

References 

 
f (x)= x +

1

2
x



Language elements helping to see enlargement as a multiplicative situation 

 

Proceedings of the Seventh ERME Topic Conference on Language in the Mathematics Classroom  120 

Ahl, L. M., (2019). Designing a research-based detection test for eliciting students’ prior 

understanding on proportional reasoning. Adults Learning Mathematics: An International Journal, 

14(1), 6–22. 

Behr, M.J., Harel, G., Post, T., & Lesh, R. (1992). Rational number, ratio, and proportion. In D.A. 

Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 296–333). New 

York, NY: Macmillan. 

Brousseau, G. (1997). The theory of didactical situations in mathematics: Didactique des 

mathématiques, 1970–1990 (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Eds. & 

Trans.). Dordrecht, the Netherlands: Kluwer.  

Erath, K. (2019). Explorative study on language means for talking about enlarging figures in group 

work. In U.T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the 

Eleventh Congress of the European Society for Research in Mathematics Education (pp. 1632–

1639). Utrecht, the Netherlands: Utrecht University and ERME. 

Fernández, C., Llinares, S., van Dooren, W., de Bock, D., & Verschaffel, L. (2012). The development 

of students’ use of additive and proportional methods along primary and secondary school. 

European Journal of Psychology of Education, 27, 421–438. 

Gläser, K., & Riegler, P. (2015). Beginning students may be less capable of proportional reasoning 

than they appear to be. Teaching Mathematics and its Applications, 34, 26–34. 

Greer, B. (1992). Multiplication and division as models of situations. In D.A. Grouws (Ed.), 

Handbook of research on mathematics teaching and learning (pp. 276–295). New York, NY: 

Macmillan. 

Hölzl, R. (2018). Ähnlichkeit [Similarity]. In H.-G. Weigand et al. (Eds.), Didaktik der Geometrie 

für die Sekundarstufe I (pp. 203–225). Berlin, Germany: Springer Spektrum. 

Rønning, F., & Strømskag, H. (2017). Entering the mathematical register through evolution of the 

material milieu for classification of polygons. In T. Dooley & G. Gueudet (Eds.), Proceedings of 

the Tenth Congress of the European Society for Research in Mathematics Education (CERME10) 

(pp. 1348–1355). Dublin, Ireland: DCU and ERME. 

Van Dooren, W., de Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not everything is 

proportional: Effects of age and problem type on propensities for overgeneralization. Cognition 

and Instruction, 23(1), 57–86. 

Van Dooren, W., de Bock, D., & Verschaffel, L. (2010). From addition to multiplication … and back: 

The development of students’ additive and multiplicative reasoning skills. Cognition and 

Instruction, 28(3), 360–381. 

Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landau (Eds.), Acquisition of 

mathematics concepts and processes (pp. 127–174). Orlando, FL: Academic Press. 

Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52, 83–94. 


