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Abstract. Enhancing the spatial resolution of pedological information is a great challenge in the field of digital
soil mapping (DSM). Several techniques have emerged to disaggregate conventional soil maps initially and are
available at a coarser spatial resolution than required for solving environmental and agricultural issues. At the
regional level, polygon maps represent soil cover as a tessellation of polygons defining soil map units (SMUs),
where each SMU can include one or several soil type units (STUs) with given proportions derived from expert
knowledge. Such polygon maps can be disaggregated at a finer spatial resolution by machine-learning algo-
rithms, using the Disaggregation and Harmonisation of Soil Map Units Through Resampled Classification Trees
(DSMART) algorithm. This study aimed to compare three approaches of the spatial disaggregation of legacy
soil maps based on DSMART decision trees to test the hypothesis that the disaggregation of soil landscape dis-
tribution rules may improve the accuracy of the resulting soil maps. Overall, two modified DSMART algorithms
(DSMART with extra soil profiles; DSMART with soil landscape relationships) and the original DSMART algo-
rithm were tested. The quality of disaggregated soil maps at a 50 m resolution was assessed over a large study area
(6775 km?) using an external validation based on 135 independent soil profiles selected by probability sampling,
755 legacy soil profiles and existing detailed 1 : 25000 soil maps. Pairwise comparisons were also performed,
using the Shannon entropy measure, to spatially locate the differences between disaggregated maps. The main
results show that adding soil landscape relationships to the disaggregation process enhances the performance of
the prediction of soil type distribution. Considering the three most probable STUs and using 135 independent
soil profiles, the overall accuracy measures (the percentage of soil profiles where predictions meet observations)
are 19.8 % for DSMART with expert rules against 18.1 % for the original DSMART and 16.9 % for DSMART
with extra soil profiles. These measures were almost 2 times higher when validated using 3 x 3 windows. They
achieved 28.5 % for DSMART with soil landscape relationships and 25.3 % and 21 % for original DSMART and
DSMART with extra soil observations, respectively. In general, adding soil landscape relationships and extra
soil observations constraints allow the model to predict a specific STU that can occur in specific environmental
conditions. Thus, including global soil landscape expert rules in the DSMART algorithm is crucial for obtaining
consistent soil maps with a clear internal disaggregation of SMUs across the landscape.
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1 Introduction

Characterising soil variability, especially over large areas, re-
mains a crucial challenge for fostering the sustainable man-
agement of agronomic and environmental issues and help-
ing stakeholders to design regional projects (Chaney et al.,
2016). At the regional and country level, soil maps are often
available at a coarse spatial resolution (Bui and Moran, 2001)
which limits their ability to depict accurate soil informa-
tion. For instance, the finest soil maps covering France were
extended to include administrative regions at a 1:250000
scale, via a set of polygons, called soil map units (SMUs)
with crisp boundaries. The delineation of SMUs is based on
soil survey programmes involving pedologists’ expertise. In
a coarse-scale map, each polygon includes one or several soil
type units (STUs), which are not explicitly mapped, but their
proportions, environmental conditions and soil characteris-
tics are provided in a detailed database (Le Bris et al., 2013).

To improve soil variability knowledge and to overcome
the limitations of a coarse mapping scale, several methods
have emerged in the field of digital soil mapping (DSM).
These methods offer useful tools for predicting soil spatial
patterns from scarce or limited soil data sets by exploiting
the availability of model-based methods and an extensive
array of spatialised (and, more often than not, gridded) en-
vironmental variables. In recent decades, DSM techniques
have been increasingly used to downscale soil information
and improve their spatial resolution. Depending on the qual-
ity of the data and the complexity of soil cover, Minasny and
McBratney (2010) have supplied a workflow that outlines the
different models that can be explored. In general, two main
pathways can be distinguished, namely point-based DSM ap-
proaches and map-disaggregation approaches (Odgers et al.,
2014; Holmes et al., 2015). Point-based DSM approaches use
legacy soil profiles, which are irregularly distributed and col-
lected according to specific objectives rather than optimising
a statistical criterion (Holmes et al., 2015). The spatial dis-
tribution of soil properties can be estimated by fitting geo-
statistical models such as ordinary kriging (Odgers et al.,
2014; Holmes et al., 2015; Chaney et al., 2016; Santra et al.,
2017; Vincent et al., 2018; Chen et al., 2018) or co-kriging,
which takes into account the spatial interrelations among sev-
eral soil properties (Webster and Oliver, 2007). Additionally,
McBratney et al. (2003) formalised the Soils, Climate, Or-
ganisms, Parent material, Age and (N) space or spatial po-
sition (SCORPAN) soil landscape model. It is an empirical
quantitative function of environmental covariates allowing
the prediction of soil attributes (soil type or soil property)
based on correlative and statistical relationships with predic-
tor variables.

The second approach, known as spatial disaggregation, at-
tempts to downscale the soil map unit information in order
to delineate unmapped STUs (Bui and Moran, 2001; Odgers
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et al., 2014; Holmes et al., 2015). Alternatively, it can be de-
fined as the process that allows the estimation of soil proper-
ties at a finer scale than that of the initial soil map. Several
techniques have been demonstrated in soil science literature
and tested in different case studies around the world. For in-
stance, Kempen et al. (2009) have explored the use of multi-
nomial logistic regression (MLR) for digital soil mapping.
Other techniques have also been applied as decision trees us-
ing rule-based induction (Bui and Moran, 2001), Bayesian
techniques (Bui et al.,, 1999) and an area-to-point kriging
method (Kerry et al., 2012).

In the DSM field, machine-learning techniques are in-
creasingly used to elucidate the spatial distribution of both
soil type and soil properties across a large range of scales
(Bui and Moran., 2001; Scull et al., 2005; Malone et al.,
2009; Nelson and Odeh, 2009; Abdel-Kader, 2011; Lacoste
et al., 2011; Lemercier et al., 2012; Kempen et al., 2012; Ja-
fari et al., 2013; Nauman and Thompson, 2014; Brungard et
al., 2015; Mosleh et al., 2016; Viloria et al., 2016; Nussbaum
et al., 2018; Vaysse and Lagacherie, 2015; Ellili et al., 2019;
Padarian et al., 2019; Arrouays et al., 2020).They were also
applied to disaggregate superficial geology maps available at
a 1:250000 scale in Australia (Bui and Moran, 2001). The
main advantage of these approaches is they allow the han-
dling of both quantitative and categorical (ordinal or nomi-
nal) soil and environmental variables as explanatory covari-
ates (Bui and Moran, 2001).

Odgers et al. (2014) have developed a machine-learning
algorithm entitled the Disaggregation and Harmonisation of
Soil Map Units Through Resampled Classification Trees
(DSMART) to predict STUs as a function of the high-
resolution environmental data supplied over different study
areas in Australia. The DSMART algorithm is based on a cal-
ibration data set derived from a random selection of a fixed
number of sampling points within each soil polygon. Each
sampling point is then assigned to one soil type following a
weighted random allocation procedure based on the propor-
tions informed by the soil map database. The same procedure
was applied by Chaney et al. (2016) to spatially disaggregate
the soil map of the contiguous United States of America at a
30 m spatial resolution. Because the integration of pedolog-
ical knowledge has been recognised as an effective way to
improve digital soil mapping approaches (Cook et al., 1996;
Walter et al., 2006; Stoorvogel et al., 2017; Machado et al.,
2018; Mgller et al., 2019; Arrouays et al., 2020), Vincent et
al. (2018) have applied the DSMART algorithm with addi-
tional expert soil landscape rules describing the soil distribu-
tion in the local context of the Brittany region (France). By
adding supplementary sampling points to the calibration data
set selected according to the soil parent material, soil redox-
imorphic conditions and topographic features, and by inte-
grating soil landscape relationships in the DSMART sample
allocation scheme, the authors obtained a coherent soil spa-
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tial distribution that observed the soil organisation along hill
slopes and the occurrence of intensely waterlogged soils in
the stream neighbourhood, as seen in Brittany.

This study aimed to test the hypothesis that adding soil
landscape relationships to the disaggregation procedure im-
proved the accuracy of the disaggregated soil maps produced.
This involved assessing the contribution of soil landscape re-
lationships implemented in the DSMART algorithm by Vin-
cent et al. (2018). To achieve this objective, we compared
disaggregated soil maps either derived from the original DS-
MART algorithm, the DSMART algorithm with extra soil
observations or the DSMART algorithm fed by soil land-
scape relationships over an area of 6775 km? in the eastern
part of Brittany, France.

2 Materials and methods

2.1 Study area

The Ille-et-Vilaine region covers an area of 6775 km? and is
located in the eastern part of Brittany, France (48° N, 2° W;
Fig. 1). It is drained by the rivers Ille and Vilaine and their
tributaries. Its climate is oceanic, with a mean annual rainfall
of 669 mm and mean annual temperature of 11.3° (Source:
Climate Data EU). Main land uses include arable land, tem-
porary and permanent grasslands, woodlands and urban ar-
eas. In the present study, anthropogenic areas were not con-
sidered. Elevation ranges between 0 and 20 m in the coastal
zone and 20-150m almost everywhere else, except in the
western part of the region where it tills at 256 m. The topog-
raphy is generally gentle, with maximum slopes not exceed-
ing 16 %. The Ille-et-Vilaine region is part of the Armori-
can Massif, with complex geology (BRGM, 2009) includ-
ing intrusive rocks (granite, gneiss and mica schist) in the
northern and northwestern zones, sedimentary rocks (sand-
stone) and metamorphic rocks (Brioverian schist) in the cen-
tral and southern zones, and superficial deposits (aeolian
loam with decreasing thickness from north to south overlay-
ing the bedrock, alluvial and colluvium deposits). According
to the World Reference Base for Soil Resources, soils occur-
ring in Ille-et-Vilaine include Cambisols, Luvisols Stagnic
Fluvisols, Histosols, Podzols and Leptosols (IUSS Working
Group WRB, 2014).

2.2 Soil data
2.2.1 Regional soil database at 1: 250000 scale

In Brittany, soils are represented through a regional ge-
ographic database called the Référentiel Régional Pé-
dologique (RRP) and available at a 1 : 250000 scale (INRA
Infosol, 2014). This regional database identifies soils within
soil map units (SMUs), each containing one to several soil
types called soil type units (STUs). STUs are defined as ar-
eas with homogeneous soil-forming factors such as morphol-
ogy, geology and climate. In the study area, 96 SMUs and
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Figure 1. Location of the study area and the validation data sets.

171 STUs have been distinguished and represented by a spa-
tial coverage of 479 polygons. The STU nomenclature re-
spects the French soil classification system (Baize and Gi-
rard, 2008). It reflects different information simultaneously
like the weathering degree of the soil parent material, the re-
doximorphic conditions and the soil type, which refers to the
identification of diagnostic horizons depicting pedogenetic
processes and the soil depth.

In the regional database SMUs were spatially delim-
ited with crisp boundaries while STUs were not explicitly
mapped, but their proportion in each SMU and the associ-
ated environmental and soil characteristics were accurately
described in a semantic database (Le Bris et al., 2013; INRA
Infosol, 2014).

2.2.2 Soil validation data

To assess the quality of disaggregated soil maps, three vali-
dation data sets were used (Fig. 1) as follows:

— A total of 135 soil profiles were chosen following a
stratified random sampling design and specifically de-
scribed and sampled from March to May 2017 for in-
dependent validation purposes in the framework of the
Soilserv research project (Ellili-Bargaoui et al., 2019).

— A total of 755 legacy soil profiles were collected be-
tween 2005 and 2008 during the Sols de Bretagne pro-
gramme (INRA Infosol, 2014). These profiles were

SOIL, 6, 371-388, 2020




374 Y. Ellili-Bargaoui et al.: Comparing three approaches of spatial disaggregation of legacy soil maps

sampled following a purposive sampling design, created
by expert soil surveyors, to characterise the hydromor-
phic soil conditions and soil landscape heterogeneity.

— Existing detailed soil maps (1:25000) covering
87150ha were surveyed according to Riviere et
al. (1992) and revised later to adapt to the STU typolo-
gies developed in the RRP (Le Bris et al., 2013).

All soil profiles were allocated, after description and anal-
ysis by an expert, to a suitable STU. Both legacy soil profiles
and detailed maps were converted to a raster format to per-
fectly meet the prediction raster at a 50 m spatial resolution.

2.3 Environmental covariates

The SCORPAN concept (McBratney et al., 2003) allows one
to predict STUs as a function of a set of covariates describ-
ing seven soil-forming factors, namely soil properties (s), cli-
mate (c), organisms (0), relief (r), parent material (p), age (a)
and geographic position (n). In this study, 10 environmen-
tal variables (Table 1) were considered as covariates in the
disaggregation process at a 50 m spatial resolution, and they
were chosen based on prior expert knowledge of the study
area. Terrain attributes included elevation, slope, compound
topographic index (CTI; Beven and Kirkby, 1979; Merot et
al., 1995) and the topographic position index (TPI; Jenness,
2006; Vincent et al., 2018) that, together, were derived from
a 50 m resolution digital elevation model (IGN, 2008). These
attributes were computed using ArcGIS 10.1 (ESRI, 2012)
and MNT surf software (Squividant, 1994).

Environmental attributes describing soil parent material
(Lacoste et al., 2011) and hydromorphic soil conditions via
the waterlogging index (Lemercier et al., 2012) were ob-
tained using decision tree methods. The waterlogging in-
dex derives from a natural soil drainage prediction. Four
classes were distinguished, namely well drained, moderately
drained, poorly drained and very poorly drained. Aeolian silt
deposits and soil map unit boundaries are environmental co-
variates also obtained via expert knowledge from soil scien-
tists.

Landscape units reflecting vegetation, land use and relief
attributes were derived from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) imagery by supervised clas-
sification (Le Du Blayo et al., 2008). The airborne gamma
ray spectrometry variable (K : Th ratio; Messner, 2008), char-
acterising the degree of weathering of the geological mate-
rial, was also considered.

All soil environmental covariates were converted to a
raster format at a 50 m spatial resolution.

2.4 Disaggregation procedure: DSMART algorithm
2.4.1 Original DSMART algorithm (method 1)

The open source DSMART algorithm (Odgers et al., 2014)
was applied to spatially disaggregate the existing legacy soil
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map at a 1:250000 scale. The DSMART algorithm uses
machine-learning classification trees implemented in C5.0
(Quinlan, 1993) to build a decision tree from a target vari-
able (STUs) and the environmental covariates supplied. The
DSMART algorithm was written in the Python programming
language by Odgers et al. (2014) and was recently translated
to the R programming language.

Running the DSMART algorithm requires the following
three main steps (Fig. 2):

1. Polygon sampling by a random selection of a fixed num-
ber of sampling points (n = 30) within each polygon.
This procedure allowed for the selection of a total of
14 370 sampling points per iteration which covered the
study area and ensured that all polygons were sampled.

2. Soil type unit (STU) assignment to each sampling point
following a weighted random allocation method. This
step was based on the proportion of each STU informed
by the RRP database.

3. Decision tree generation once the full set of sampling
points had been spatially intersected with the selected
environmental covariates. This geo-referenced data set
was then used as a calibration data set to build the de-
cision tree, which allowed the prediction of an STU
as a function of environmental covariates. C5.0 created
explicit models which were applied to the covariates
rasters to generate a realisation of the STU distribution
over the study area at a 50 m resolution.

These three steps were repeated 100 times to generate
100 realisations of the potential soil type distribution over
the study area at a 50 m resolution.

To compute the probabilities of occurrence, the 100 real-
isations were stacked to calculate the probability of occur-
rence of each predicted STU by counting the frequency of
each STU at each pixel. This procedure led to a set of 171
rasters depicting the probability of occurrence for 171 STUs.

2.4.2 Original DSMART algorithm and soil observations
(method 2)

This disaggregation approach is similar to the original DS-
MART algorithm. However, the main difference is that 755
additional soil profiles, spatially co-located, were added to
the calibration data set to build decision trees. These soil
profiles make it possible to incorporate real field observa-
tions into established soil landscape relationships. For each
realisation, a calibration data set (15 125 samples), including
virtual samples randomly selected from polygon units, and
soil observations were used to model soil types with envi-
ronmental covariates. From this fitted model we computed
predictions for each node of the 5S0m grid throughout the
study area.

https://doi.org/10.5194/s0il-6-371-2020
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Table 1. Description of the environmental covariates selected.

375

Environmental SCORPAN Type Unitor Original
covariate factor number resolution
of classes (m)
Terrain attributes derived from the digital elevation model
Elevation R Q m 50
Slope R Q % 50
Compound topographic index (TPI) R Q Log (m3) 50
Topographic position index R C 5 classes 50
Pedology and geology
Soil parent material P C 22 classes 50
Soil map units R C 96 classes 250000
Aeolian silt deposits P C 2 classes 50
Waterlogging index S C 4 classes 50
Organism
Landscape units (0] C 19 classes 250

Gamma ray spectrometry from 250 m airborne geophysical survey interpolations

K : Th ratio

P Q 250

Summary of environmental covariates: P — parent material; S — soil properties; R — relief; O — organisms; C —

categorical; and Q — quantitative.

2.4.3 Original DSMART algorithm and expert rules
(method 3)

Including soil landscape relationships in the disaggregation
process was explored by Vincent et al. (2018) in a specific re-
gional pedoclimatic context in Brittany (France). Expert soil
landscape relationships were used to assign STUs to sam-
pling points. These relationships were based on expert pedo-
logical knowledge, which considers the soil parental material
and topography and waterlogging in the STU-allocation pro-
cedure. This approach combines two sources of the data set
to calibrate the model. The first one was derived from seman-
tic information for each SMU-STU combination. It consists
of attributing a barcode to each SMU-STU combination, de-
rived from a concatenation of four features contained in the
RRP database (namely soil parent material, SMU identifier,
TPI and waterlogging index), and comparing these barcodes
to a stack of regional covariates representing the same four
features and then assigning each pixel of the study area to a
suitable STU. This procedure allowed the matching of soils
exhibiting specific features with their potential spatial dis-
tribution. For instance, hydromophic soils occur with slope
sequences and valley positions, while well-drained soils oc-
cur in upslope or mid-slope positions. Using a random sam-
pling stratified by the SMU area, a set of sampling points
was selected with a proportion of one sample for every 5h
and a minimum of five samples per polygon unit (3950 vir-
tual samples).

https://doi.org/10.5194/s0il-6-371-2020

The second data set was derived from a random sampling
of a fixed number of sampling points in each polygon unit.
This procedure ensured that all polygons had been sampled.
The STU allocation was based on the SMU area proportions.
The full set of each realisation (18 320 samples), combining
the expert calibration data set (3950 samples) and the data
set derived from the random sampling procedure (14 370 vir-
tual samples), was spatially intersected with existing environ-
mental covariates and used as a calibration data set to build
decision trees.

2.4.4 Prediction of the most probable STUs

From all the soil type probability rasters obtained, only the
three most probable STUs (with the highest probability of
occurrence) were considered; for each pixel, the final pre-
diction was the combination of the three most probable pre-
dicted STUs (first, second and third STUs) and their associ-
ated probability of occurrence.

The classification confusion index (CI) between the first
most probable STU and the second most probable STU was
calculated in the following Eq. (1):

Cl=1— (Psstu — PandsTu) (1

where Pigstu and Popgstu denote, respectively, the highest
probability of occurrence for the first STU and the second-
highest probability of occurrence for second STU calculated
at each pixel (Burrough et al., 1997; Odgers et al., 2014).

SOIL, 6, 371-388, 2020
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Figure 2. Schematic of the DSMART-based approaches algorithm. The steps in DSMART are as follows: method 1 — construct the calibration
data set; method 2 — train the C5.0 model; and method 3 — estimate the STU maps and their associated probabilities of occurrence.

This index was considered to be an indicator of the cer-
tainty assessment of the most probable predicted soil class
and ranges between 0 and 1. It tends to 1, when the first and
second STUs are predicted with a similar probability of oc-
currence, and 0, when the probability of occurrence of the
second STU is close to 0.

2.5 Validation of disaggregated soil maps

The quality of soil maps resulting from the three DSMART
algorithm-based approaches was assessed by combining both
spatial- and semantical-validation methods. Spatial valida-
tion is divided into two sub-approaches, namely pixel to pixel
and window of 3 x 3 pixels. For detailed soil maps and ac-
curate soil profiles, the pixel-to-pixel validation consists of
checking, at each pixel, if the predicted STU respects the ob-
served STU value (Heung et al., 2014; Nauman et al., 2014;
Chaney et al., 2016; Mgller et al., 2019). The window-of-
3 x 3-pixels validation assumes that, for each pixel, the pre-
dicted STU respects the observed STU value if it matches at
least one of its nine surrounding neighbours (Heung et al.,
2014; Chaney et al., 2016). This method provides some flex-
ibility by compensating for the spatial referencing error of
soil maps and avoiding the impact of fine-scale spatial noise.

The semantical validation was also performed by consid-
ering either each STU or a group of STUs sorted by experts
on the basis of similar pedogenesis factors and similar di-
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agnostic horizons (Vincent et al., 2018; Mgller et al., 2019).
From the initial 171 STUs described in the soil database, the
sorting procedure led to 78 groups and 11 STUs remained
single.

In this study, the validation data set with 755 observations
was used to assess the accuracy of the digital maps derived
from method 1 and method 3, but it was used as an additional
calibration data set for method 2.

Moreover, to assess the performance of the three
DSMART-based approaches, the confusion matrix was used
to derive the Kappa index. This Kappa index corresponds to
a chance-corrected index of the agreement between observed
and predicted soil types (Cohen, 1960; Elith et al., 2008). It
assumes values between —1 and 1; the higher the value, the
better the prediction (Bergeri et al., 2002).

2.6 Pairwise comparisons of disaggregated soil maps

To compare the soil type rasters derived from the three
DSMART-based approaches, pairwise comparisons were
performed using the Viyeasure method implemented as open
source software in an R package called the Spatial Asso-
ciation Between REgionalizations (SABRE; Rosenberg and
Hirschberg, 2007). This is a spatial method developed to
compare maps in the form of vector objects, and it was
commonly used in computer science to compare (nonspatial)
clustering.

https://doi.org/10.5194/s0il-6-371-2020
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We divided the entire study area into two different sets of
regions referred to as regionalisation R and Z. The first re-
gionalisation, R, divides the domain into n regions r; (i =1
to n), and the second regionalisation, Z, divides the do-
main into m zones z; (j =1 to m). The superposition of
the two regionalisations, R and Z, divides the domain into
n x m segments with g;; area. The total area of a region 7; is
A; =3 aij, the total area of a zone z; is Aj =3} jai
and the total of the domainis A =7 3% a;;.

The SABRE package calculates the degree of the spatial
agreement between two regionalisations using an informa-
tion theoretical measure called the Vineasure- Vimeasure provides
two intermediate metrics, namely homogeneity and com-
pleteness. Homogeneity is a measure of how well the regions
from the first map fit inside the zones from the second map
Eq. (2). Completeness measures how well the zones from the
second map fit inside the regions from the first map Eq. (5).
The final value of Vipeasure 18 calculated as the weighted har-
monic mean of the homogeneity and completeness Eq. (8).
All metrics range between 0 and 1, where larger values in-
dicate a better spatial agreement. Vipeasure, homogeneity and
completeness are global measures of association between the
two regionalisations.

Additional indicators of the disaggregation quality were
calculated using the Shannon entropy index of regions and
zones (Shannon, 1948; Nowosad and Stepinski, 2018). These
indicators qualify local associations by highlighting the re-
gion’s inhomogeneities (Eqs. 3—4) or the zone’s inhomo-
geneities (Eqs. 6-7). Two normalised Shannon entropies
were also computed using the ratios (S ,R /S®) and (SiZ /5%)
to derive maps of local spatial agreement between the two
regionalisations of R and Z. These measures have a range
between 0 and 1.

When S ,R in Eq. (3) is close to zero, this denotes that the
zone j is homogenous in terms of the regions (each zone
is within a single region). However, when the S f value in-
creases, the zone is increasingly inhomogeneous in terms of
the regions (it overlays an increasing number of regions).
Therefore, Sf Eq. (3) assesses the degree of this inhomo-
geneity or a variance of the region in zone j. A global indi-
cator that measures the homogeneity of a given zone in terms
of regions is given via Eq. (2).

Analogous to homogeneity, but with the roles of regions
and zones reversed, the dispersion of zones over the entire
area is also computed using a Shannon entropy (Eqs. 4 and
7), and a global indicator of C Eq. (5) measures the homo-
geneity of a given region in terms of zones as follows:

h=1-— Z’;’zl (%)

Variance of regions in zone; = S¥
: @

Variance of regions in the domain = S&
R _ N il 4irj
o= 2 () e () ®
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B is a coefficient that allows the promotion of the first or the
second regionalisation and, by default, 8 equals 1. Vg has a
range between 0 and 1. It equals O in the case of no spatial
association and 1 in the case of a perfect association.

The Vieasure method was applied in two main situations,
namely DSMART with expert rules with original DSMART
and DSMART with expert rules and DSMART with extra
soil observations. The reference map is always the map de-
rived from the DSMART algorithm with expert soil land-
scape relationships.

3 Results

3.1 Disaggregated soil maps

Applying DSMART-based approaches yielded a set of soil
maps and associated probability of occurrence rasters. The
original DSMART approach allowed for the disaggregation
of the 96 SMUs into 108 STUs, while DSMART with the
expert rules approach yielded 158 STUs and DSMART with
the extra soil observations approach yielded 172 STUs with
respect to the first most probable STU map. A total of 171
STUs were identified in the Ille-et-Vilaine region within the
RRP database. Unpredicted STUs correspond mainly to rare
STUs, with low proportions ranging between 2 % and 10 %
within the SMUs containing them.

Figure 3 shows the three maps of the first most proba-
ble STUs derived from each approach and the original soil
map. Overall, the three most probable STU maps captured
the main pattern of soil distribution of the coarse soil map. As
one could expect according to the geological parent material
map (Lacoste et al., 2011), extensive areas of deep silty soils
are developed in aeolian loam deposits encountered in the
northeast and in the north-central parts of the study area. Col-
luvial and alluvial soils were mainly predicted in the north
coast and large valley zones.

A visual comparison of the disaggregated soil maps high-
lighted that the global similarities in the soil spatial distribu-
tion were markedly affected by SMU boundaries. The three
approaches distinguished soils developed in marsh parent
material in the coastal part (north) of the study area very well.
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Figure 3. Digital soil map of the most probable STUs and their associated probability of occurrence for the whole study area and for a focus
zone. The legacy soil map shows the (a) most probable STUs for each SMU, (b) original DSMART approach, (¢c) DSMART with expert

rules and (d) DSMART with extra soil observations.

However, DSMART with the soil landscape expert rules map
and DSMART with extra soil observations map remained
more detailed and underlined a clear internal disaggrega-
tion of SMUs, especially in the northern and central parts
of the Ille-et-Vilaine region. A visual inspection of the ob-
tained DSMART with the extra soil observations map and
DSMART with the expert rules map showed an increase in
soil heterogeneity when compared to the original DSMART
map. More importantly, legacy soil profiles made it possi-
ble to consider that some rare soil types with low probability
would be predicted. Therefore, adding supplementary sam-
pling points via the expert calibration data set and the 755
extra soil profiles allowed for the prediction of STUs charac-
terised by a low spatial extent in the soil database. Neverthe-
less, the three DSMART-based approaches spatially disag-
gregated the most frequent components and disregarded the
less frequent ones.

Figure 4 shows maps of the global probability of redoxi-
morphic soils across the study area. STU probability rasters,
depicting hydromorphic soils, were added together to pro-
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duce continuous maps of hydromorphic soil probability. A
visual inspection of the three maps highlighted the global
similarities, but local differences were recorded along the
hydrographic network and in the southern part of the study
area. As could be expected, DSMART with expert rules pre-
dicted hydromorphic soils in valleys and coastal areas well,
with a probability of occurrence exceeding 80 %. Adding soil
landscape relationships to the allocation process constrained
the hydromorphic soil predictions in specific landscape posi-
tions. The same trend characterised DSMART with the extra
soil observations map, particularly in the central part of the
study area. Therefore, including 755 soil profiles had an im-
portant role in the disaggregation process in the northern and
the central parts where these profiles were located.

The uncertainty of the maps resulting from DSMART-
based approaches was quantified via the probabilities of oc-
currence for each STU predicted and the confusion index
maps (Fig. 5). The latter measure indicated areas where the
probability of occurrence of the two most probable soil types
was close. Over the study area, the average probability of oc-
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Figure 4. Global probability of hydromorphic soils over the study area derived from (a) original DSMART, (b) DSMART with soil landscape
relationships and (¢) DSMART with extra soil observations. The probabilities of the three STUs with the highest prediction occurrence are

summed if they are hydromorphic.

currence for the most probable soil type achieved 0.41 for
DSMART map (method 1), 0.28 for DSMART with extra
soil observations maps (method 2) and 0.68 for DSMART
with expert rules (method 3), respectively. Meanwhile, the
average confusion index reached 0.8 for the original DS-
MART approach (method 1), while DSMART with extra
soil observations (method 2) and DSMART with expert rules
(method 3) achieved 0.9 and 0.43, respectively. Although the
most probable soil classes provide plausible maps of the soil
distribution, there is a significant prediction uncertainty as
depicted by these measures.

In regions where disaggregated soil maps showed a low
confusion index, particularly in the northwest and on the
north coast areas of Ille-et-Vilaine region, high confidence in
predictions was suggested. These areas were predominantly
deep loamy soils or developed in alluvial and colluvium de-
posits.

Figure 6 compares the cumulative area of the STUs es-
timated from the three disaggregated maps and those de-
rived from the regional soil database. For each STU, its rel-
ative predicted area was estimated by counting the num-
ber of pixels where it was predicted. For the regional soil
database, each STU area was computed from the total SMU
area multiplied by the proportion of the STUs. This com-
parison shows that some STUs were overestimated by the
disaggregation approaches when comparing them to the soil
database. DSMART with the extra soil observations and orig-
inal approaches showed similar cumulative STU areas under
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the curve, whereas DSMART with expert rules had a shape
similar to the regional soil database.

The most abundant STUs in the database (431: Stagnic
Fluvisol developed from alluvial and colluvium deposits)
were predicted to be the most frequent STUs by DSMART
with extra soil observations and DSMART with expert rules,
and it was predicted as the second most abundant STUs
by the original DSMART algorithm. The 10 most abundant
STUs in the soil database cover almost 43 % of the study
area. Of these, seven belong to the 10 STUs most predicted
by the three disaggregation approaches (Table 2).

3.2 Covariates importance in the decision trees

Figure 7 gives the relative importance of the covariates
used in DSMART-based approaches. Soil parent material and
SMU boundaries were used systematically in the conditional
rules regardless of the disaggregation method. This was con-
sistent with the contrasting pattern of the geology and the de-
pendence relationship between SMUs and their soil compo-
nents. Considering the original DSMART approach (Fig. 7a),
the distribution functions of aeolian silt deposits, the air-
borne gamma ray spectrometry variables (K: Th ratio) and
the elevation contributions were more dispersed, according to
the STUs considered, than those of other covariates. For in-
stance, the aeolian silt deposits contribution varied between
20 % and 80 %, with a median value of 42 %, whereas the
slope contribution ranged between 20 % and 40 %, with a
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Figure 5. Confusion index maps for the (a) original DSMART approach, (b) DSMART with expert rules and (¢) DSMART with extra soil

observations.

median value of 28 %. Aeolian silt deposits are significant
due to their ability to represent soils inherited from superfi-
cial parent material which is poorly represented in lithologi-
cal maps.

DSMART with soil landscape relationships (Fig. 7b)
showed almost the same distribution function of all the co-
variates, except for elevation where the distribution function
was more dispersed. Since a part of the training samples was
chosen with expert knowledge based on three environmental
covariates, namely TPI, a waterlogging index and soil parent
material, we would expect the prominent role of the water-
logging index and TPI to constrain hydromorphic soil pre-
dictions and to achieve an STU distribution in the appropri-
ate order along the toposequence. This most likely explains
the dominance of Fluvisol Stagnic in valley areas, followed
by a transition to Cambisols commonly found at upslope and
mid-slope positions along the toposequences.

Analogous to the original DSMART algorithm, DSMART
with the extra soil observations (Fig. 7c) highlighted almost
the same distribution of the use of the soil environmental co-
variates in the decision trees, except for aeolian silt deposits,
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K: Th ratio and elevation. The latter covariate contributions
remained less dispersed compared to the original DSMART
approach.

3.3 \Validation of disaggregated soil maps

The validation procedure was performed for each DSMART-
based approach applied, considering the three most probable
soil types and using both the semantic objects (STUs or soil
groups) and spatial neighbourhood (per pixel or 3 x 3 window
of pixels).

Considering the 755 legacy soil profiles prospected in the
framework of the Sols de Bretagne project, per pixel vali-
dation accuracy reached 27 % for original DSMART maps
and 34 % for DSMART with expert rules (Table 3). A sim-
ilar comparison using 135 validation sites derived from the
Soilserv project showed that 18.1 % of soil profiles match
DSMART maps, 19.8 % match DSMART with expert rules
maps and only 16.9 % match DSMART with extra soil ob-
servations maps (Table 3). Using a 3 x 3 window of pix-
els markedly improved the global accuracy, which increased
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Figure 6. Cumulative area of the 171 STUs estimated from the regional soil database and predicted by different DSMART-based approaches.

for the two validation data sets (Table 3). DSMART with
soil landscape relationships remained the best-performing
method.

When compared to accurate soil maps (1 : 25000), the val-
idation procedure showed that DSMART with extra soil ob-
servations and DSMART with soil landscape expert rules had
almost the same performance (namely 37 % and 38 %), while
the best accuracy (44%) was observed for original DSMART
maps (44 %; Table 3). These scores were clearly improved by
considering the soil groups and 3 x 3 pixels neighbourhoods.
For instance, the accuracy of DSMART with the expert rules
maps using the soil group reached 45.9 % and increased to
62.1 % when considering 3 x 3 pixels windows (Table 3).

Moreover, disaggregated soil maps were compared to soil
type maps extracted from existing 1 : 25000 scale soil maps
using the Kappa index, which was computed based on the
confusion matrix of the first most probable soil type of each
soil mapping approach (namely method 1, method 2 and
method 3). Overall, the Kappa index ranged from 0.43 to
0.49, which can be considered moderate. Method 3 showed
a better performance with a higher Kappa index (0.49). The
most accurately predicted soil types were Cambisol and Flu-
visol. The Kappa index of method 1 reached 0.45, while
method 1 (original DSMART algorithm) showed the worst
Kappa index (0.43)

3.4 Comparing disaggregated maps

Figure 8 shows the inhomogeneity maps measured by the
Shannon entropy. The map derived from DSMART with soil
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landscape relationships was chosen as a reference map. This
map deeply disaggregates the initial SMUSs into 120 653 re-
gions with irregular shapes. By contrast, the original DS-
MART map remained very similar to the original map and
delineated the study into 40 459 regions. Both disaggregated
maps reflect the main pattern of soil distribution over the
study area despite the difference in the disaggregation pro-
cess. A visual inspection of the maps of DSMART with the
soil landscape rules and original DSMART revealed an over-
all similarity between the disaggregated maps, but local dif-
ferences between them were depicted.

We calculated 71 = 0.49, ¢; =0.58 and V| = 0.53 as the
global measures of the spatial agreement between the two
maps (DSMART with expert rules and original DSMART).
The average homogeneity of DSMART with the soil land-
scape rules map with respect to the original DSMART map
was qualified via the 7 homogeneity index. Similarly, the av-
erage homogeneity of the original DSMART map, with re-
spect to the DSMART with soil landscape rules map, was
qualified via the ¢ completeness index. Visually, the Fig. 8b
map seems to be more homogeneous than the map in Fig. 8a,
which is in agreement with the statistical assessment that
c>h. The large number of DSMART with soil landscape
rules map regions, which was 3 times higher than original
DSMART map zones, might explain this difference. It is
more likely that DSMART with soil landscape rules map re-
gions cross through multiple original DSMART map zones
than vice versa. However, the two disaggregated maps re-
mained spatially associated according to the high V| score.
The two inhomogeneity maps (Fig. 8a—b) highlighted the
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Table 2. The 10 most extended STUs, according to the regional soil database, and their respective rank by area using three DSMART-based
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disaggregation procedures.

STUs 1:250000 Original DSMART with DSMART
data set DSMART extra soil with expert
approach profiles rules
Label WRB Parent Rank Estimated | Rank Predicted | Rank Predicted | Rank Predicted
classification material area area area area
(km?) (km?) (km?) (km?)
431 Fluvisol Alluvial and 1 688 2 757 1 983 1 740
Stagnic colluvial
deposits
248 Cambisol Brioverian 2 480 1 1154 2 461 2 492
schists
51 Cambisol Brioverian 3 402 5 397 4 395 3 424
schists
61 Cambisol Gritty schists 4 227 ‘ 9 177 30 53 14 128
183 Cambisol Sandstone 5 216 11 162 5 308 10 192
Stagnic
256 Cambisol Aeolian loam 6 200 ‘ 6 385 3 418 6 314
286 Cambisol Brioverian 7 179 23 62 9 187 24 80
Stagnic schists
86 Cambisol Brioverian 8 169 12 126 15 124 4 358
schists
340 Albeluvisol Granite and 9 168 7 347 10 177 11 189
Stagnic gneiss
54 Cambisol Brioverian 10 167 4 451 18 98 5 324
schists

locations of greatest differences between two maps, mainly
along the hydrographic network.

When comparing disaggregated soil maps derived from
the modified DSMART algorithm (DSMART with soil land-
scape rules and DSMART with supplement soil observa-
tions), we note that DSMART with the extra soil observa-
tions map delineated the study area into 132 942 regions. For
both maps, internal disaggregation was well pronounced ex-
cept for DSMART with the extra soil observations map in
the southern part of the study area. A visual inspection of
the selected maps showed a high spatial agreement and high-
lighted some locations of greatest differences, particularly in
the southern part of the Ille-et-Vilaine region. Even if the hy-
drographic network was well detailed in both maps, it ap-
peared more developed in DSMART with the extra soil ob-
servations soil map.

Applying the Vieasure method for assessing the spatial
similarities between DSMART with the soil landscape rules
map and DSMART with the supplement soil observations
map provided similar information in terms of the theoretical
measures, namely iy = 0.47, c; = 0.48 and V, = 0.47. A vi-
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sual comparison of the soil inhomogeneity maps revealed a
constant variance measured by the normalised Shannon en-
tropy. This was in agreement with the quantitative assess-
ment of ¢ = h. Overall, the two disaggregated maps were
spatially correlated, as indicated by the global spatial agree-
ment measure V5.

4 Discussion

4.1 Performance of the disaggregation procedures

The disaggregated soil maps produced closely resemble the
abundant soils in the original soil map (Holmes et al., 2015;
Fig. 3). The first most probable STU map derived from
DSMART-based approaches captured the main spatial pat-
tern of the soil distribution across the study area. More inter-
nal variation within SMUs was found when using DSMART
with added point observations and DSMART with soil land-
scape relationships. Local soil heterogeneity reflecting the
inherent pedological complexity was depicted by the first
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Figure 7. Violin plots of the relative importance of each environmental covariate used in the (a) original DSMART approach, (b) DSMART
with expert rules and (¢) DSMART with extra soil observations.

Table 3. Overall accuracies (%) obtained using various external validation approaches for the three most probable STUs.

Pixel-to-pixel validation of STUs

DSMART approach Most  Second most  Third most ~ Total
probable probable probable
STUs STUs STUs
Soil maps (87 150ha)  Original DSMART 23 13 8 44
DSMART with expert rules 19 11 7 37
DSMART with extra soil observations 22 9 7 38
Independent soil Original DSMART 11 5 3.8 181
profiles (n = 135) DSMART with expert rules 10 4.4 3.7 198
DSMART with extra soil observations 8.2 6 2.7 169
Legacy soil profiles Original DSMART 14 7 6 27
(n =1755) DSMART with expert rules 18 9 7 34
DSMART with extra soil observations
Soil maps (87 150ha)  Original DSMART 26 13 9 48
DSMART with expert rules 22.5 13.7 9.7 459
DSMART with extra soil observations 25 10 7 42
Independent soil Original DSMART 16 7 4.6 27.6
profiles (n = 135) DSMART with expert rules 18 8.4 52 316
DSMART with extra soil observations 15 8 3.8 268
Legacy soil profiles Original DSMART 19 12 9 40
(n =1755) DSMART with expert rules 234 15 11.8  50.2
DSMART with extra soil observations
Soil maps (87 150ha)  Original DSMART 31 16 14 61
DSMART with expert rules 29.6 19.4 13.1 621
DSMART with extra soil observations 28 11 9 48
Independent soil Original DSMART 15 6 43 253
profiles (n = 135) DSMART with expert rules 17 6.7 48 285
DSMART with extra soil observations 11 7 3 21
Legacy soil profiles Original DSMART 19 10 7 36
(n =1755) DSMART with expert rules 27.9 15 11.9 548

DSMART with extra soil observations
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Figure 8. Spatial association between the disaggregated maps of the Ille-et-Vilaine region. (a) Map of the inhomogeneity of DSMART with
the soil landscape relationship map in terms of the original DSMART map. (b) Map of the inhomogeneity of the original DSMART map in
terms of DSMART with the soil landscape relationship map. (¢) Map of the inhomogeneity of DSMART with soil landscape relationship
map in terms of DSMART with extra soil observations map. (d) Map of the inhomogeneity of DSMART with the extra soil observations map
in terms of DSMART with the soil landscape relationship map. Inhomogeneity (variance) is measured by the normalised Shannon entropy.

STU maps, which delivered a deterministic soil landscape
distribution with continuously varying landscape features.

External validation was performed to assess the quality of
the disaggregated soil maps. Using 135 independent soil pro-
files and a per pixel validation approach, the overall accu-
racy reached 18.1 % for the DSMART algorithm’s first STU
map, 19.8 % for DSMART with the expert rules’ first STU
map and 16.9 % for DSMART with the extra soil profiles’
first STU map. In the DSM literature, researchers who ap-
plied classification tree decision methods found similar vali-
dation results. For instance, by applying the DSMART algo-
rithm to eastern Australia and using 285 legacy soil profiles,
Odgers et al. (2014) achieved an overall accuracy of 23 %.
Similarly, Nauman and Thompson (2014) explored the use of
expert rules for the soil landscape relationships in the United
States of America and achieved a global accuracy ranging be-
tween 22 % and 24 %. Similar disaggregation performance
was recorded by Holmes et al. (2015) in Western Australia
(20 %), Chaney et al. (2016) in the United States of America
(17 %) and Mgller et al. (2019) in Denmark (18 %) using DS-
MART algorithm (Table 4). In contrast to the latter studies,
a large number of STUs (171 STUs) comprise our soil data
set. This could certainly decrease the chance of predicting
the right STUs, despite mobilising relevant geographic data
sets to implement soil landscape relationships.

When considering a window of 3 x 3 pixels, the over-
all accuracy increased considerably for the three DSMART-
based approaches maps, but DSMART with the expert soil

SOIL, 6, 371-388, 2020

Table 4. Comparison between the size areas covered, number of
soil map units, soil type units of the original legacy soil maps and
the accuracy achieved in other studies using DSMART algorithms.

Study Area Map Soil type  Accuracy
(kmz) units units

Odgers et al. (2014) 68 000 1110 72 23

Holmes et al. (2015) 2500 000 5069 73 20-22

Chaney et al. (2016) - - - 17

Mgller et al. (2019) 43000 11-14 18-23 12-18

landscape relationships achieved the highest accuracy scores.
Chaney et al. (2016) highlighted a high degree of spatial
noise in the predictions by including pixel validation neigh-
bours. Overall, prediction accuracy increased twofold with a
3 x 3 pixel validation window and when grouping soils to a
coarser level of soil classification (171 vs. 89 soil groups).
This was recorded for all disaggregated maps regardless of
the disaggregation procedure and suggests that fine soil tax-
onomic dissimilarities cannot be accurately mapped by dis-
aggregation processes.

4.2 Legacy soil data

Legacy soil data used in this study provide an overall rep-
resentation of soil over large areas (1 :250000 scale). This
database was derived from several soil surveys and pedo-
logical expert knowledge. SMUs were spatially delineated,
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and their spatial organisation, and STUs features, was de-
scribed according to available soil data and pedological ex-
pertise. STUs and their associated landscape characteristics
were identified as accurately as possible using legacy soil
profiles collected according to a not probabilistic sampling
design between 1968 and 2012. Hence, differences in survey
methods covering a large area over a long sampling period
could lead to errors in the STU definition or to uncertainties
in the estimation of their area in a given SMU.

Moreover, soil survey intensity was not uniform within
SMUs. Thus, SMU components may be derived from the un-
equal representation of soil samples across SMUSs.

Harmonising soil data to reduce the number of STUs is
a great challenge by itself. Grouping some STUs regard-
ing their pedological similarities, such as sharing compara-
ble morphological criteria, having similar pedogenic hori-
zons and occurring in analogous environmental conditions, is
worth investigating. More importantly, unifying soil data ac-
cording to more functional aspects, such as soil agricultural
potential, also allows for the generation of a relevant regional
soil database that is easily handled by soil users to satisfy
their needs. Many countries around the world have already
harmonised their soil databases, such as Denmark and Aus-
tralia, where high pedological complexity was captured with
a reasonable STU number — not exceeding 23 soil groups in
Denmark (Mgller et al., 2019) and 73 soil groups in Australia
(Holmes et al., 2015).

4.3 Taxonomic similarities

In the recent DSM literature, the DSMART approach is
considered as an efficient tool for disaggregating existing
coarse soil maps. In this study, we compared variants of the
DSMART-based approach, which differed according to the
training data set used to calibrate the C5.0 model and the al-
location procedure. Modified DSMART algorithms used ad-
ditional calibration data sets derived from supplement soil
observations and expert sampling of polygons. Hence, taxo-
nomic similarities were not considered in the calibration pro-
cess nor in the current component assignment scheme. Even
if there is a large number of STUs addressing the inherent
soil landscape heterogeneity, there is most likely a short tax-
onomic distance between many of them. As a result, these
STUs may have similar forming conditions, making it a chal-
lenge to suitably constrain the prediction probabilities using
a DSMART algorithm. This likely explains the high confu-
sion index scores recorded in the present study, particularly
for original DSMART and DSMART with the extra soil pro-
file approaches. As demonstrated by Minasny and McBrat-
ney (2007), including taxonomic distance in decision trees
using pedological knowledge is a relevant way to decrease
the misclassification error. Therefore, future efforts, and im-
provements in the DSMART algorithm, should take into ac-
count the taxonomic distance between STUs in the disaggre-
gation procedure.
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4.4 Mapping comparison

A quantitative comparison between the disaggregated soil
maps was performed using a novel approach called the
Vieasure Mmethod. This method was commonly used to as-
sess the spatial agreement between land cover maps and the-
matic biotic and abiotic factor maps, as done by Nowosad
and Stepinski (2018) in the United States of America, but
never before for soil maps.

In the present study V; (0.53) was larger than V;, (0.47),
suggesting that DSMART with the expert soil landscape re-
lationship map is much more similar to original DSMART
map than DSMART with the extra soil observations map.
This might be explained by the allocation procedure for train-
ing samples. The original DSMART algorithm tends to pro-
mote the most abundant STUs with high proportions of oc-
currence within polygons and penalise STUs with low pro-
portions (comprising between 2 % and 10 %). Therefore, fre-
quent STUs are more likely to be predicted rather than rare
STUs. Meanwhile, by adding supplementary soil profiles
preliminarily assigned to a suitable STU in the training data
set, we constrain STUs with low proportions of occurrence
predictions.

The major differences between DSMART with the expert
rules map and DSMART with the soil observations were
mainly observed in the southern part of the study area and
valley areas. In general, Fluvisol Stagnic soils were overes-
timated by DSMART with extra soil observations. This was
likely due to the purposive sampling design followed to sup-
plement the soil observations. The 755 legacy soil profiles
were selected to characterise hydromorphic soil conditions
and to characterise that inherent soil landscape variability
that was supposed to be organised along the hill slope.

4.5 Improvements and future work

Even though this work emphasises the contribution of pedo-
logical knowledge to the disaggregation process, other path-
ways can also be explored to improve the map’s accuracy.
As recommended by Mulder et al. (2016), compensating
the temporal changes and differences in laboratory analyt-
ics is a good option for improving the quality of legacy
soil data. This suggests harmonising the local soil database
and regrouping some STUs with similar soil-forming fac-
tors through statistical modelling. Moreover, additional en-
vironmental covariates with high spatial resolutions should
be used to capture the micro-landscape variability (Lacoste
et al., 2014; Odgers et al., 2014; Chaney et al., 2016; Mgller
et al., 2019). For example, adding a more detailed digital el-
evation model allowed the capturing of small terrain features
where STUs occurred. Improving both the polygon sam-
pling procedure and current components assignment scheme
turned out to be important for reducing the uncertainty pre-
diction. This suggests drawing virtual soil samples propor-
tionally to polygon areas and using supplementary STU char-
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acteristics based on surveyor observations (namely slope
shape, hill slope position, soil texture, etc.) to guide the STU
allocation procedure (Mgller et al., 2019). Assuming that the
decision tree can be built to relate STU descriptors to legacy
soil data, this method can replace the weighted random allo-
cation procedure and should help minor STU predictions by
constraining raster probabilities.

5 Conclusions

We applied three DSMART-based approaches, including the
original DSMART algorithm, DSMART with the extra soil
observations and DSMART with the soil landscape relation-
ships, to disaggregate legacy soil polygons over a large area
in Brittany (France). Regardless of the disaggregation ap-
proach, the produced soil maps, at a 50m spatial resolu-
tion, successfully address the main soil spatial pattern re-
garding prior the pedological knowledge of our study area.
Performance was assessed against 135 independent soil pro-
files, 755 legacy soil profiles and accurate 1:25000 soil
maps highlighted that DSMART with the expert rules maps
achieved the highest validation measures. Overall, modified
DSMART algorithms allowed for minor STU predictions,
whereas the original DSMART algorithm promoted abun-
dant STU predictions with poor spatial structure improve-
ments. Adding pedological knowledge and extra soil obser-
vations to the prediction process constrained STU probabil-
ities, even for STUs with low proportions. However, some
particular STUs reflecting hydromorphic soils or loamy soils
were greatly overestimated for all the three DSMART-based
approaches.

Soil maps produced using the original DSMART and DS-
MART with the expert rules had a high spatial agreement, but
the latter maps appeared more detailed and provided spatially
continuous and consistent STU predictions. Therefore, gen-
eralising soil landscape relationships that take several STU
descriptors and landscape features into account should be
implemented in the future versions of the DSMART algo-
rithms to capture soil landscape heterogeneity and conse-
quently guarantee coherent variability of the soil properties.
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