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There is research-based evidence that logical analysis of language is a relevant tool for revealing 

ambiguities in a given language. We discuss in this paper in which respect logical analysis of 

mathematical statements might provide a common reference allowing identifying and dealing with 

unavoidable ambiguities that might occur in multilingual educational contexts.  
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Introduction  

A main problem in multilingual educational context concerns the possible misunderstandings that can 

emerge as a consequence of differing grammatical structures between the language of instruction and 

the vernacular languages of students, as claimed by Edmonds-Wharten, Trinick, and Durand-Guerrier 

(2016):  

The impacts of features of grammatical structures on mathematical thinking are still 

underresearched. We have shown that languages express mathematical ideas in diverse ways. 

These different ways of exploring mathematical ideas provide an opportunity to enrich the 

mathematical experience of learners in multilingual contexts. They can also introduce ambiguities 

or misunderstandings between teachers and students and impede the process of mathematical 

learning.” (p. 41) 

In a first section, I will briefly provide arguments that logical analysis of mathematical statements in 

predicate calculus is a relevant tool for mathematics education (Barrier, Durand-Guerrier, & Mesnil, 

2018; Durand-Guerrier, 2008; Selden & Selden, 1995), in particular for what concerns proof and 

proving (Durand-Guerrier, Boero, Douek, Epp, & Tanguay, 2012; Epp, 2003). In a second section, I 

will focus on negation, showing first some features of negation in French likely to introduce 

ambiguities or misunderstandings in class (Durand-Guerrier, 2016), and giving then the main results 

of two studies, one in Tunisia, the other one in Cameroon, supporting the hypothesis of an impact of 

differing grammatical structures. In the third section, I will illustrate on the expression “deux à deux” 

(pairwise) that logical analysis provides a tool for overcoming possible grammatical 

misunderstandings in mathematics education.  

Predicate Calculus - A logical reference for mathematics education  

In mathematics classes, it is often assumed that every statement is either true of false. In a logical 

perspective, this refers to propositional calculus, in which the basic unit is the propositional variables, 

that are interpreted either by singular statement such as “119 is a prime number” (false statement) or 

“ is an irrational number” (true statement), or by close statements such as “All prime numbers except 

2 are odd)” (true statement) or “There is a rational number whose square is 2” (false statement). 

However, we have evidenced in our research that this logical reference is not sufficient for the needs 
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of mathematics education. Indeed, object properties and relationships are fundamental categories 

involved in mathematics activities, and issues of quantification play an essential role (Dawkins & 

Roh, 2019; Durand-Guerrier & Arsac, 2005; Durand-Guerrier, 2008). Classical first order logic 

(predicate calculus) allows analysing mathematical statement precisely, e.g. those proposed above 

that we recall here:  

1. 119 is a prime number 

2.  is an irrational number 

3. All prime numbers except 2 are odd 

4. There is a rational number whose squared is 2 

In statements 1 and 3, the property ‘to be a prime number’ is involved. It is modelled by a one place 

predicate P(x), where P is a letter for predicate, and x a letter for a free variable (a place holder). In 

the considered interpretation, this property applies to natural numbers. Assigning a natural number to 

the free variable provides a singular statement that is either true of false, depending on the assigned 

object such as in statement 1. In sentence 3, there is no assignation; a universal quantifier bounds the 

free variable; the quantification domain is mentioned (the set of prime natural numbers deprived of 

2). Such sentences are closed sentences and are either true of false. For sentence 2 and 4, the analysis 

is rather similar, considering an existential quantifier.  

In addition, in first order logic, relationships are modelled by two (or more) places predicate. For 

examples, the relation ‘is divisible by’ on the set of integers is modelled by a two places predicate 

P(x, y); while the relationship ‘is the GCD of … and of …’ is modelled by a three places predicate. 

With a two places predicate, there are four possibilities to provide a close statement (a proposition) – 

1. for all x, for all y P(x, y) (AA statements); 2. For all x, there exists y P(x, y) (AE statements); 3. 

There exists x such that for all x P(x, y) (EA statements); 4. There exists x, there exists y such that 

P(x, y) (EE statements). As evidenced by Dubinsky and Yiparaki (2000), in natural language, the 

interpretation of AE and EA statements are interpreted according to the context. For example, the 

statement “There exists a mother for each child” (apparently EA) will be interpreted as “For each 

child there exists a mother” (AE), due to the context. In mathematics, such flexibility in interpretation 

is not possible. For example, it is necessary to clearly distinguish between “There exists a number 

greater than all other numbers” (EA), which is false in the set of natural numbers, and “For every 

number, there exists a number that is greater” (AE) which is true in this set. Chellougui (2009) showed 

that Tunisian first year university’s students consider that EA and AE statements have the same 

interpretation, even in a mathematical context. The number of possibilities for providing a close 

statement with quantifiers is increasing with the number of places in the predicate: 23 for a three 

places predicate, 24 for a four place predicate and so on.  

The complexity of the logical structure of quantified mathematical statements is still increasing as 

soon as logical connectors in particular negation and implication, are involved. In such cases, for a 

correct interpretation, it is necessary to identify the respective scopes of connectors and quantifiers.  

Let us consider the following example (from Njomgang Ngansop & Durand-Guerrier, 2011): 

For any function � from the set ℝ of real number into itself, for any � in ℝ, if for any sequence � 

with values in ℝ converging to �, � ∘ � converge to �(�), then � is continuous at �. (1) 
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It is possible to formalize the statement as below, showing the complexity of its logical structure. 

∀� ∀� [(∀� ��(�, �) ⇒ �(�, �, �)�) ⇒ �(�, �)] (2) 

where �(�, �) formalizes the relation ‘� converges to �’, �(�, �, �) formalizes ‘the composition of 

� with � converges to �(�)’, and � formalizes ‘� is continuous in �.’ The domain of quantification 

are: the set of functions from ℝ to ℝ for the variable �, the set ℝ of real number for the variable �, 

the set of sequences with values in ℝ for the variable �. It is to notice that there are three universal 

quantifiers, among two are in heading positions, the scope being indicated by the brackets, while the 

third one is in the antecedent of the external implication; the scope of this third quantifier being 

indicated by the parenthesis.  

Being able to unpack the logic of mathematical statements is a core competence for proof and proving 

in mathematics education (Selden & Selden, 1995), in particular the logical structure of a statement 

is likely to orient the way to engage a proof. Coming back to example (1) above, as the antecedent of 

the external implication is a universal conditional statement, it is difficult to think of a direct proof 

consisting in considering a function and a real satisfying this antecedent. Opposite, the consequent of 

this external implication is an atomic formula. For this reason, the classical proof of this statement is 

a proof by contraposition. The proof by contraposition relies on the following logical theorem in first 

order logic (a statement true for all interpretation of its letters in any non empty universe, Quine, 

1950) 

∀� ∀� (�(�, �) ⇒ �(�, �))  ⇔  ∀� ∀� (¬�(�, �) ⇒ ¬ �(�, �)) (3) 

A consequence of this logical theorem is that a quantified conditional statement has the same truth 

value as its contrapositive whatever the interpretation and the domain of quantification, so that a proof 

of the contrapositive counts as a proof of the statement.  

The logical form of the contrapositive of the initial statement is  

∀� ∀� [¬�(�, �) ⇒ ¬(∀� ��(�, �) ⇒ �(�, �, �)�)] (4) 

Using the rules for negating a conditional statement in the formal system, we get 

∀� ∀� [(¬�(�, �)) ⇒ (∃� ��(�, �) ∧ ¬�(�, �, �)�)] (5) 

and finally, the contrapositive in the vernacular language: 

For any function � from the set ℝ of real number into itself, for any � in ℝ, if � is not continuous at 

�, then there exist a sequence � such that � converges to � and � ∘ � does not converge to �.  

In this section we have provided examples supporting the claim that classical first order logic 

(predicate calculus) provides relevant tools to analyse mathematical statements, which is a core 

competence in proof and proving. In the last example, we have shown a methodology consisting in 

unpacking the logical structure of the statement in order to formalize it in the language of predicate 

calculus, then providing the contrapositive of this formalized statement and then give the 

contrapositive in the vernacular language. This last step is necessary because in order to engage in a 

mathematical proof, it is necessary to consider objects, properties and relations involved.  Considering 

this, it is reasonable to conjecture that such work would be difficult for students learning mathematics 
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in a non-native language. In the following section, I will present some features of negation in French 

and I will briefly report on two studies on negation in a bilingual context in the Francophone area.  

Negation in French – impact in multilingual context 

In French, the sentences in the form “For all A, A is not B” are ambiguous. In the linguistic norms, 

they must be interpreted as “some A are (is) B, and some are (is) not”, or in a more formal way “There 

exists some A that are (is) not B”. However, in everyday contexts it might be used with a different 

interpretation, namely, no A is B. For example, in a very cold winter in Lyon (France), the Public 

Transportation Company had widespread the following message: “Aujourd’hui, tous les bus ne 

circulent pas” (Today, all buses do not circulate). It seems that a number of people called to ask which 

buses circulated. In any case, three hours later, they changed their message to “Aujourd’hui, aucun 

bus ne circule” (Today, no bus is circulating). This non-standard interpretation is rather common in 

oral discourse, including radio and broadcast. In addition, it is noticeable that this linguistic norm 

does not respect the fundamental rule that “replacing a term by an equivalent expression should 

preserve the truth value of the statement”. Here “equivalent expression” means to be satisfied/not 

satisfied by exactly the same elements of a given domain. For example, in the domain of natural 

numbers ‘to be odd’ is equivalent to ‘not to be even.’  

Let us consider now the following statement:  

“Tous les diviseurs de 12 sont pairs” (All the divisors of 12 are even) - False 

Its standard negation in French  

“Tous les diviseurs de 12 ne sont pas pairs” (All the divisors of 12 are not even) - True 

Then change “ne sont pas pairs” (are not even) in “sont impairs” (are odd) 

“Tous les diviseurs de 12 sont impairs” (All divisors of 12 are odd) - False 

In addition, the negation of the universal statement in French, according to the linguistic norm, is not 

congruent with the logical structure. Indeed, a word-for-word formalization would lead to the 

formalized statement “x ¬P(x)” which is not the negation of “x P(x)” 

We might anticipate that such ambiguities inherent to the French grammar could be source of 

difficulties for non-francophone natives studying mathematics in French, and this especially as 

teachers are generally not aware of this. This has been confirmed by two studies, one In Tunisia, the 

other in Cameroon. I briefly summarize below the results.  

In his PhD (Ben Kilani, 2005), Ben Kilani studied the differing grammatical structures between 

Arabic, French and predicate calculus. He showed that French and Arabic were not congruent for 

what concerns the negation of universal statements, while Arabic is congruent with predicate calculus. 

Indeed, in Arabic, when the negation is on the predicate, the scope of the negation is the predicate, 

not the sentence. The experimental results show that for most students, the French universal 

statements with negation on the predicate were not interpreted as the negation of the sentence, in 

coherence with the standard interpretation in Arabic and, as already said, in logic. He also showed 

that nobody took care of this: neither the language teachers (Arabic or French), nor the mathematics 

teachers, where in Tunisia, mathematics is first taught in Arabic from grade 1 to grade 9 (Ecole de 
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base), and then in French at secondary school (Durand-Guerrier & Ben Kilani, 2004; Durand-

Guerrier, Dias, & Ben Kilani, 2006).  

Following the work by Ben Kilani, Njomgang Ngansop and Durand-Guerrier (2011) examined the 

impact of the grammatical structure of Ewondo in the teaching and learning of logical concepts. There 

are two educational systems in Cameroon, one is Anglophone, the other one is Francophone. The 

study concerns the latter, and among the great number of languages, the Ewondo. For what concerns 

negation, as for Arabic, the grammatical structure of Ewondo is differing from the French 

grammatical structure. The results of the exploratory study support the conjecture of an impact on the 

teaching and learning of mathematics.  

Logical analysis as a tool for overcoming grammatical misunderstandings in 
mathematics education 

The previous examples on negation highlight the impact of differing grammar on the interpretation 

of statements. It also emphasizes the fact that formalization in predicate calculus is a means to identify 

possible differing interpretations given by interlocutors. Summarizing briefly, we could claim that 

formalizing is choosing an interpretation.  

Beyond negation, there are other mathematical expressions likely to introduce ambiguities in 

mathematical discourse. For example, in French, we often use in definitions involving a binary 

relation the expression “deux à deux” (in English: pairwise) as in the following examples. 

Definition 1 (plane Euclidean geometry): A non-degenerated plan quadrilateral is a parallelogram 

iff its opposite sides are pairwise parallels. 

Definition 2 (set theory): A partition of a given set E is a finite collection of non empty sub-sets of 

E that are pairwise disjoint and such that their union is exactly the set E. 

Definition 3 (probability): Events are pairwise independent iff the occurrence of one event does 

not affect the probability of the other events. 

Definition 4 (plane Euclidean geometry): Two triangles are similar iff the corresponding angles 

are pairwise congruent. 

Definition 5 (space Euclidean geometry): A polyhedron is regular iff it is convex, its faces are 

regular polygons that are pairwise superimposable, and there is the same number of faces meeting 

at each vertex. 

Theorem (complex numbers): Given a polynomial with real coefficients, the non-real complex 

zeros of this polynomial, if any, are pairwise conjugate. 

In a teacher training session, we had asked participants to determine all the regular polyhedral 

(definition 5), with the possibility of using materials to build such polyhedral, or of doing drawings 

or of making patterns. They were working in small groups. During the session, one of the groups of 

participants discussed the meaning of the expression “deux à deux” (pairwise). The discussion was: 

does it means whenever you consider two faces, they are congruent (superimposable) (interpretation 

1) or does it mean whenever you consider a face, you can find another one (different from the initial) 

that is congruent (superimposable) (meaning 2)? The members of the group did not manage to reach 
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an agreement, until the researcher came and gave the correct interpretation in this context 

(interpretation 1). It is noticeable that in this case, it was not possible to refer to the empirical 

possibility of the realization, because both interpretations allow it. At a first glance, and considering 

the strong willing of univocity in mathematical language, one could think that this was the standard 

interpretation in mathematics. However, the four other definitions and the theorem given above show 

that both interpretation are currently used in mathematics. Indeed, in definitions 2 and 3, pairwise 

refers to interpretation 1, while in definitions 1 and 4 and in the theorem, pairwise refers to 

interpretation 2.2  

Once I presented and discussed this example in a seminar, a PhD student attending the seminar told 

me that, when he arrived in France for preparing a master degree, he encountered this expression in 

a topology course, and that it took him time before he understood that he misinterpreted it. His 

insufficient knowledge of the mathematical context did not permit him to choose immediately the 

right interpretation. It seems rather clear that such misinterpretation is likely to impact the 

understanding of the concept at stake, and consequently the learning. A path to overcome such 

ambiguities is to express the corresponding expressions in the formalized language of predicate 

calculus.  

Given a binary relation, it is modelled in predicate calculus by a two-places predicate. Let us name 

it S (x, y). The two interpretations refer to the two following formalized expressions 

Interpretation 1 - ∀� ∀� �(�, �) 

Interpretation 2 - ∀� ∃� (� ≠ � ∧ �(�, �)) 

Although the aim of mathematical language is to avoid ambiguities, such examples show that this is 

not always possible. Indeed, formalizing these statements has lead to considering two interpretations. 

In such cases, to formalize is to choose an interpretation.  

It seems rather clear that in multilingual contexts, being able to deal explicitly with such ambiguities 

would open paths for remediation. As we have seen, in case of non-grammatical congruence, 

translating from one language to the other might change the interpretation, introducing 

misunderstandings likely to impede the learning process.  

Conclusion and perspective 

In this paper I have evidenced that logical analysis is likely to shed light on possible mis-

understandings in mathematics education due to differing grammatical structures in multilingual 

educational context. There are two future lines of research. The first one consists in considering a 

greater variety of languages. The second one consists in testing empirically the following hypothesis: 

I hypothesize that, given a mathematical statement with possible problematic interpretation in 

multilingual contexts, asking students to first formalize the statement in predicate calculus, and then 

move to their own preferred language might help them to overcome misunderstandings resulting of 

 

2 For a wider presentation and discussion in English, see Durand-Guerrier (in press).  
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differing grammatical structures between the language of instruction and their preferred language. 

And, additionally, that this would contribute to a better understanding of the concept at stake. 

References  

Barrier, T., Durand-Guerrier, V., & Mesnil, Z. (2019). L’analyse logique comme outil pour les etudes 

didactiques en mathématiques [Logical analysis as a didactic tool in mathematics]. Éducation & 

didactique, 13(1), 61–81. 

Ben Kilani, I. (2005). Les effets didactiques des différences de fonctionnement de la négation dans la 

langue arabe, la langue française et le langage mathématique [The didactic effects of the different 

functions of negation in the Arabic, French, and mathematical languages] (Unpublished doctoral 

dissertation). Université Claude Bernard Lyon 1, France. 

Chellougui, F. (2009). L’utilisation des quantificateurs universel et existentiel, entre l’explicite et 

l’implicite [The use of universal and existential quantifiers, between the explicit and the implicit]. 

Recherches en didactique des mathématiques, 29, 123–154. 

Dawkins, P.C., & Roh, K.H. (2020). Assessing the influence of syntax, semantics, and pragmatics in 

student interpretation of multiply quantified statements in mathematics. International Journal of 

Research in Undergraduate Mathematics Education, 6, 1–22.  

Dubinsky, E., & Yiparaki, O. (2000). On students understanding of AE and EA quantification. In E. 

Dubinsky, A.H. Schoenfeld, & J. Kaput (Eds.), Research in collegiate mathematics education. IV 

(pp. 239–289). Providence, RI: American Mathematical Society. 

Durand-Guerrier, V. (2008). Truth versus validity in mathematical proof. ZDM Mathematics 

Education, 40, 373–384. 

Durand-Guerrier, V. (2016). Négation et quantification dans la classe de mathématiques [Negation 

and quantification in the mathematics class]. In E. Hilgert, S. Palma, P. Frath, & R. Daval (Eds.), 

Res per nomen V. Négation et référence (pp. 269–288). Reims, France: ÉPURE.  

Durand-Guerrier, V., & Arsac, G. (2005). An epistemological and didactic study of a specific calculus 

reasoning rule. Educational Studies in Mathematics, 60, 149–172. 

Durand-Guerrier, V., & Ben Kilani, I. (2004). Négation grammaticale versus négation logique dans 

l’apprentissage des mathématiques. Exemple dans l’enseignement secondaire tunisien 

[Grammatical negation versus logical negation in mathematics learning. An example from 

secondary teaching in Tunisia]. Les cahiers du français contemporain, 9, 29–55. 

Durand-Guerrier, V., Boero, P., Douek, N., Epp, S.S., & Tanguay, D. (2012). Examining the role of 

logic in teaching proof. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics 

education: The 19th ICMI study (pp. 369–389). Dordrecht, the Netherlands: Springer. 

Durand-Guerrier, V. Dias, T., & Ben Kilani, I. (2006). Plurilinguisme et apprentissage des 

mathématiques. Ambiguïtés référentielles, négation et quantification [Plurilingualism and the 

learning of mathematics. Referential ambiguities, negation and quantification]. Les langues 

modernes, 3, 75–83. 



The logical analysis of statements. A tool for dealing with ambiguities in multilingual context 

 

Proceedings of the Seventh ERME Topic Conference on Language in the Mathematics Classroom  38 

Edmonds-Wathen, C., Trinick, T., & Durand-Guerrier, V. (2016). Impact of differing grammatical 

structures in mathematics teaching and learning. In R. Barwell, P. Clarkson, A. Halai, M. Kazima, 

J.N. Moschkovich, N. Planas & M. Villavicencio Ubillús (Eds.), Mathematics education and 

linguistic diversity: The 21st ICMI study (pp. 23–46). Cham, Switzerland: Springer. 

Epp, S.S. (2003). The role of logic in teaching proof. The American Mathematical Monthly, 110, 886–

899. 

Njomgang Ngansop, J., & Durand-Guerrier, V. (2011). Negation of mathematical statements in 

French in multilingual contexts – An example in Cameroon. In M. Setati, T. Nkambule, & L. 

Goosen (Eds.), Proceedings of the ICMI study 21 – Mathematics and language diversity (pp. 268–

275). São Paulo, Brazil: ICMI.  

Quine, W.V.O. (1950). Methods of logic. New York, NY, USA: Holt, Rinehart & Winston.  

Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational Studies 

in Mathematics, 29, 123–151. 

 


