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The paper consists of two parts. The aim of Part I is to develop optimization-based solutions for the dissipative control and observation of a linear system with general delay structures. Specifically, our system's model considers multiple pointwise-delay channels with general distributed-delays (DDs) existing at the states, inputs and outputs, where the DD kernels can be any square-integral function over a bounded interval.

By applying a novel decomposition approach to the distributed delays, users can choose which squareintegral functions inside of the DDs are directly handled and which are approximated by any differentiable function. In addition, the proposed decomposition scheme allows one to construct Krasovskiĭ functionals whose integral kernels are independent of the system's DD kernels. We then present our proposed methods in several theorems concerning the topics of dissipative state-feedback control, observation and observer-based control design. Sufficient solutions are derived in terms of matrix inequalities which can be solved directly by standard numerical solvers of semidefinite programming if they are convex, or solved by some iterative algorithms. To the best of our knowledge, the dissipative control and observation problem investigated in this paper has not been considered by the existing results in the literature. Numerical examples are presented to demonstrate the effectiveness of the proposed methodologies.

Introduction

Dynamical systems with time delays [START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF] can characterize real-time processes affected by transport, propagation or aftereffects [START_REF] Michiels | Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach[END_REF]. Mathematically, systems with delays generally can be denoted by functional differential equations [START_REF] Hale | Introduction to Functional Differential Equations[END_REF]; [START_REF] Kolmanovskii | Introduction to the Theory and Applications of Functional Differential Equations[END_REF] or posed as infinite-dimensional systems [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF]; [START_REF] Safi | Tractable sufficient stability conditions for a system coupling linear transport and differential equations[END_REF]. For systems operating in a real-time environment, delays can be introduced by engineering devices such as actuators, sensors, wires or communication channels etc. It has been shown that the presence of delays in a system can lead to positive [START_REF] Ramírez | Multiple Intentional Delays Can Facilitate Fast Consensus and Noise Reduction in a Multiagent System[END_REF] or negative [START_REF] Silva | PI stabilization of first-order systems with time delay[END_REF] consequences. As a result, developing effective methodologies for the analysis and control of time-delay systems is a vital part of the study on control engineering.

In contrast to finite-dimensional systems which are usually denoted by ordinary differential equations, the dimension of the systems with delays is generally infinite. This renders the analysis of time-delay
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Preprint submitted to Automatica systems (TDSs) significantly more intricate, even only linear systems are considered. Generally speaking, two different directions, which are based on time and frequency domains, have been proposed to deal with the stabilization and stability analysis of linear delay systems.

To the best of the author's knowledge, the newest trend of frequency-domain-based methods for the stabilization of linear delay systems is represented by the results in [START_REF] Gumussoy | Fixed-Order H-Infinity Control for Interconnected Systems Using Delay Differential Algebraic Equations[END_REF]; [START_REF] Michiels | Design of fixed-order stabilizing and H 2 -H ∞ optimal controllers: An eigenvalue optimization approach[END_REF]; [START_REF] Michiels | Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach[END_REF] and Apkarian et al. (2018); Apkarian & Noll (2018) 1 . These methods are predominately nourished by the recent development of non-smooth optimization Noll & Apkarian (2005a,b); [START_REF] Lewis | Nonsmooth optimization via quasi-Newton methods[END_REF]; [START_REF] Apkarian | Nonsmooth Bundle Trust-region Algorithm with Applications to Robust Stability[END_REF]. Though stabilizing a linear system with pointwise-delays may be perfectly handled by the frequency-domain based methods, it seems that no such approaches may handle the synthesis problem of a linear system with general distributed-delays (DDs). Specifically, it is not easy to analyze the spectrum of a general DD if its Laplace transform cannot be denoted analytically.

On the other hand, the LMIs-based Krasovskiĭ functional (KF) approach [START_REF] Gu | Stability of Time-Delay Systems[END_REF]; [START_REF] Kharitonov | Time-Delay Systems: Lyapunov Functionals and Matrices[END_REF] is one of the major time-domain-based methods for the stability analysis and controller synthesis (observer design) of linear systems with pointwise-delays, which has produced a significant amount of research outputs [START_REF] Li | LMI approach to delay-dependent robust stability and stabilization of uncertain linear delay systems[END_REF]; [START_REF] Choi | Robust observer-based H ∞ controller design for linear uncertain time-delay systems[END_REF]; [START_REF] Fridman | New bounded real lemma representations for time-delay systems and their applications[END_REF]; [START_REF] Fiagbedzi | Finite-Dimensional Observers for Delay Systems[END_REF]; [START_REF] Sename | H ∞ observer design for uncertain time-delay systems[END_REF]; [START_REF] Seuret | Wirtinger-based integral inequality: application to time-delay systems[END_REF]; [START_REF] Feng | Integral partitioning approach to robust stabilization for uncertain distributed time-delay systems[END_REF]; [START_REF] Safi | Tractable sufficient stability conditions for a system coupling linear transport and differential equations[END_REF]; [START_REF] Peet | A Dual to Lyapunov's Second Method for Linear Systems with Multiple Delays and Implementation Using SOS[END_REF].

For comprehensive collections of the existing literature on this topic, see the monographs in [START_REF] Fridman | Introduction to Time-Delay Systems[END_REF]; [START_REF] Briat | Linear Parameter Varying and Time-Delay Systems[END_REF]. In contrast, research on using the KF approach for systems with general distributed-delays is still underdeveloped, where most existing results have obvious shortcomings. In general, these results often subject to mathematical conservatism and weaknesses, such as imposing restrictions on the DD kernels [START_REF] Fridman | H ∞ control of distributed and discrete delay systems via discretized Lyapunov functional[END_REF]; [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF]; [START_REF] Feng | Stabilization of uncertain linear distributed delay systems with dissipativity constraints[END_REF] or system's structure [START_REF] Münz | Robust stabilization and H ∞ control of uncertain distributed delay systems[END_REF]. In addition, we found out that no existing methods in the peer-revised literature have dealt with a synthesis problem concerning both multiple pointwise and general DD delays. Based on the aforementioned summary, this clearly motives us to develop non-conservative methodologies for the control and observation of linear systems with general delay structures, ideally imposing minimal restriction on the system's structure.

In this paper, we propose new methods for the control and observation of a linear system with general delay structure based on the LKF approach, where the DD kernels can be any L 2 function over a bounded interval. Our system considers multiple pointwise and distributed-delays at system's states, inputs and outputs where an arbitrary number of delays can be considered. The main results of this paper are summarized in several theorems and algorithms concerning the topics of dissipative state-feedback design (DSFD), dissipative observer design (DOD) and dissipative observer-based controller design, (DOBC) where all these three problems can be solved via standard numerical solvers of semidefinite programming. Moreover, when no input or output delays are considered, our proposed methods can be further modified to solve variant control and observation problems where the controllers and observers possessing more general forms.

The major contributions of this paper are summarized as follows

• We believe the control and observation problems investigated in this paper has not been considered by existing results in the literature. This is especially true for the problems of observer design and observer-based control. Moreover, the model of the considered system is sufficiently general with the consideration of dissipativity, imposing no constraints on the number of pointwise and distributeddelays. Moreover, all distributed-delays can contain any L2 function which is clearly sufficient for the modeling of practical delay systems.

• The L 2 distributed-delay kernels are coped with by a novel decomposition approach, which allows users to determine which DD kernels are directly handled and which are approximated via any continuous function. The proposed decomposition scheme also enables one to construct an LKF whose integral terms can be totally different from the DD kernels. This implies that theoretically the integral terms of the LKF in this paper can contain any function as long as they are differentiable, which significantly indicates the generality of our LKFs.

• For each case of the control or observation or observer-based control, we propose two theorems with an iterative algorithm. Specifically, the second theorem in each case is a convexified version of the first theorem based on the application of Projection Lemma which implies that the structure of the parameters of the LKF is not weakened by the procedure of convexification. Moreover, the first theorem in each case can be solved by the proposed iterative algorithm initiated by a feasible solution of the second theorem in each case. As a result, our proposed methodologies essentially are convex solutions which do not need to be solved by nonlinear optimizations solvers.

The organization of the rest of the paper is outlined as follows. The synthesis problem in this paper is first presented in Section 2. Next, some important lemmas and definition are presented in Section 3 which include a novel integral inequality. The main results on dissipative controller synthesis are presented in Section, whereas the main results on dissipative observer design and dissipative observer-based control are presented in Section 5 and Section 6, respectively. Several Numerical examples are tested in Section 7 prior to the final conclusion.

Notation

Y X = {f (•) : f (•) is a function from X onto Y } and R ≥a = {x ∈ R : x ≥ a} and S n = {X ∈ R n×n : X = X ⊤ }. Moreover, C(X R n ) := f (•) ∈ (R n ) X : f (•) is continuous on X and C k ([a, b] R n ) := f (•) ∈ C([a, b] R n ) : d k f (x) dx k ∈ C([a, b] R n ) in which the derivatives at a and b are one sided. M L(X )/B(R) X R = f (•) ∈ X R : ∀Y ∈ B(R), f -1 (Y) ∈ L(X )
denotes the space of all L (X ) /B(R) measurable functions from X onto R, where L (X ) contains all the subsets of X which are Lebesgue measurable with X ∈ L (R), and B(R) is the Borel σ-algebra on R. In addition,

L p (X R n ) := {f (•) ∈ M L(R)/B(R n ) X R n : ∥f (•)∥ p < +∞} where X ⊆ R n and ∥f (•)∥ p := X ∥f (x)∥ p 2 dx 1 p .
The notations of universal quantifier ∀ and the existential quantifier ∃ are frequently utilized throughout this paper. Sy(X) := X + X ⊤ stands for the sum of a matrix with its transpose.

Col n i=1 x i := Row n i=1 x ⊤ i ⊤ = x ⊤ 1 • • • x ⊤ i • • • x ⊤ n ⊤ denotes
a column vector containing a sequence of mathematical objects (scalars, vectors, matrices etc.). The symbol * is used as abbreviations for

[ * ]Y X = X ⊤ Y X or X ⊤ Y [ * ] = X ⊤ Y X or [ A B * C ] = A B B ⊤ C . O n×m stands for a n × m zero matrix which can be abbreviated into O n with n = m, whereas 0 n denotes a n × 1 vector. The notation ⊕ is defined as X ⊕ Y = X O * Y with its n-ary form ν i=1 X i = X 1 ⊕ X 2 ⊕ • • • ⊕ X ν to
denote the diagonal sum of matrices. ⊗ stands for the Kronecker product. We use √ X to represent 2 the unique square root of X ≻ 0. The order of matrix operations in this paper is matrix (scalars) multiplications

> ⊗ > ⊕ > +.
Finally, empty matrices are applied in this paper, which follow the same definition and rules in Matlab. Note that we define Col n i=1 = [] when n < 1, where [] is an empty matrix with an appropriate column dimension based on specific contexts.

Problem formulations

Consider a linear distributed-delay system

ẋ(t) = ν i=0 A i x(t -r i ) + ν i=1 -ri-1 -ri A i (τ )x(t + τ )dτ + ν i=0 B i u(t -r i ) + ν i=1 -ri-1 -ri B i (τ )u(t + τ )dτ + D 1 w(t), z(t) = ν i=0 C i x(t -r i ) + ν i=1 -ri-1 -ri C i (τ )x(t + τ )dτ + ν i=0 B i u(t -r i ) + ν i=1 -ri-1 -ri B i (τ )u(t + τ )dτ + D 2 w(t) ∀θ ∈ [-r ν , 0], x(t 0 + θ) = ψ(τ ), t ≥ t 0 ∈ R (1) to be stabilized, where ψ(•) ∈ C([-r ν , 0] R n ), and r ν > r ν-1 > • • • > r 2 > r 1 > r 0 = 0 are given constants. Furthermore, x : [t 0 -r ν , ∞) → R n satisfies (1), u(t) ∈ R p denotes input signals, w(t) ∈ R q represents disturbance, z(t) ∈ R m
is the regulated output. The size of the given state space parameters in (1) is determined by the values of n ∈ N and m; p; q ∈ N 0 . Note that the distributed-delay integrals in (1) can be recast into the form of

ν i=1 -ri-1 -ri A i (τ )x(t + τ )dτ = ν i=1 0 -1 ŕi A i (ŕ i τ -r i-1 ) x(t + ŕi τ -r i-1 )dτ (2) 
where ŕi = r i -r i-1 and all the integrals at the right side of (2) are defined over [-r i , -r i-1 ]. Finally, the matrix-valued distributed-delay terms in (1) satisfy

∀i = 1 • • • ν, A i (•) ∈ L 2 ([-r i , -r i-1 ] R n×n ), C i (•) ∈ L 2 ([-r i , -r i-1 ] R m×n ) B i (•) ∈ L 2 ([-r i , -r i-1 ] R n×p ), B i (•) ∈ L 2 ([-r i , -r i-1 ] R m×p ).
(3)

Proposition 1. (3) is true if and only if there exists f i (•) ∈ C 1 ([-r i , -r i-1 ] R di ), φ i (•) ∈ L 2 ([-r i , -r i-1 ] R δi ), ϕ i (•) ∈ L 2 ([-r i , -r i-1 ] R µi ), M i ∈ R di×κi , A i ∈ R n×κin , B i ∈ R n×κip , C i ∈ R m×κin and B i ∈ R m×κip with i = 1 • • • ν such that ∀τ ∈ [-r i , -r i-1 ], A i (τ ) = A i (g i (τ ) ⊗ I n ) , B i (τ ) = B i (g i (τ ) ⊗ I p ) , ( 4 
) ∀τ ∈ [-r i , -r i-1 ], C i (τ ) = C i (g i (τ ) ⊗ I n ) , B i (τ ) = B i (g i (τ ) ⊗ I p ) , ( 5 
) ∀τ ∈ [-r i , -r i-1 ], df i (τ ) dτ = M i f i (τ ), f i (τ ) = φ i (τ ) f i (τ ) , ( 6 
)
G i := -ri-1 -ri g i (τ )g ⊤ i (τ )dτ ≻ 0 (7) hold for all i = 1 • • • ν, where g i (τ ) = ϕ ⊤ i (τ ) φ ⊤ i (τ ) f ⊤ i (τ ) ⊤ and κ i = d i + δ i + µ i , κ i = d i + δ i with d i ; δ i ; µ i ∈ N 0 for all i = 1 • • • ν.
Moreover, the derivatives in (6) at τ = -r i and τ = -r i-1 are one-sided derivatives.

Proof. First of all, it is straightforward to see that (3) is implied by ( 4)-( 7) since

φ i (•) ∈ L 2 ([-r i , -r i-1 ] R δi ), f i (•) ∈ C 1 ([-r i , -r i-1 ] R di ) ⊂ L 2 ([-r i , -r i-1 ] R di ) and ϕ i (•) ∈ L 2 ([-r i , -r i-1 ] R µi ) for all i = 1 • • • ν.
Now we start to prove that the conditions in (3) implies the existence of the parameters in Proposition 1 satisfying (4)-(7). Given any

f i (•) ∈ C 1 ([-r i , -r i-1 ] R di ), i = 1 • • • ν satisfying -ri-1 -ri f ⊤ i (τ )f i (τ )dτ ≻ 0, one can always construct appropriate ϕ ⊤ i (τ ) and φ i (•) ∈ L 2 ([-r i , -r i-1 ] R δi ) with M i ∈ R di×κi such that the conditions in (6)-(7) are satisfied with g i (τ ) = ϕ ⊤ i (τ ) φ ⊤ i (τ ) f ⊤ i (τ ) ⊤ . Note that -ri-1 -ri f ⊤ i (τ )f i (τ )dτ ≻ 0 is implied by (7) which indicates that the functions in g i (•) in (6) are linearly independent 3 in a Lebesgue sense over [-r i , -r i-1 ] for each i = 1 • • • ν. The aforementioned conclusion is true because dfi(τ ) dτ (•) ∈ C([-r i , -r i-1 ] R di ) ⊂ L 2 ([-r i , -r i-1 ] R di ) for all i = 1 • • • ν,
and the dimensions of φ i (τ ) and ϕ i (τ ), i = 1 • • • ν can be arbitrarily enlarged with more linearly independent functions. Note that if any vector-valued function f i (τ ), φ i (τ ), ϕ i (τ ) is [] 0×1 , then it can be handled by properties of empty matrices.

Since the dimensions of g i (τ ) in ( 6)-( 7) can be arbitrarily increased, hence there always exist Ái

,j ∈ R n×n , Ći,j ∈ R m×n , Bi,j ∈ R n×p , Bi,j ∈ R m×p and g i (τ ) = Col κi j=1 g i,j (τ ) = ϕ ⊤ i (τ ) φ ⊤ i (τ ) f ⊤ i (τ ) ⊤ for the distributed delay terms in (3) such that ∀τ ∈ [-r i , -r i-1 ], A i (τ ) = κi j=1 Ái,j g i,j (τ ), C i (τ ) = κi j=1 Ći,j g i,j (τ ), ( 8 
) ∀τ ∈ [-r i , -r i-1 ], B j (τ ) = κi j=1 Bi,i g i,j (τ ), B i (τ ) = κi j=1 Bi,j g i,j (τ ) (9) 
with 8)-( 9) can be further rewritten as

κ i ∈ N 0 for i = 1 • • • ν, where φ i (•) ∈ L 2 ([-r i , -r i-1 ] R δi ), f i (•) ∈ C 1 ([-r i , -r i-1 ] R di ) and ϕ i (•) ∈ L 2 ([-r i , -r i-1 ] R µi ) satisfy (6)-(7) for some M i ∈ R di×κi , i = 1 • • • ν. Now (
∀τ ∈ [-r i , -r i-1 ], A i (τ ) = κi Row i=1 Ái,j (g(τ ) ⊗ I n ) , C i (τ ) = κi Row i=1 Ći,j (g(τ ) ⊗ I n ) ∀τ ∈ [-r i , -r i-1 ], B i (τ ) = κi Row i=1 Bi,j (g(τ ) ⊗ I p ) , B i (τ ) = κi Row i=1 Bi,j (g(τ ) ⊗ I p ) (10) 
which are in line with the decompositions in (4)-( 5) by letting

A i = Row κi i=1 Ái,j , C i = Row κi i=1 Ći,j , B i = Row κi i=1 Bi,j and B i = Row κi i=1 Bi,j for all i = 1 • • • ν.
Given all the aforementioned statements we have presented, then Proposition 1 is proved. ■ Remark 1. The decompositions in (4)-( 5) provide an effective way to handle the infinite-dimensional distributed-delay terms in (1) by using groups of "basis" functions to decompose them at each delay interval

[-r i , -r i-1 ].
The potential choice of the functions in (4)-( 5) will be further discussed in the next section in light of the construction of a KF related to f i (•).

Remark 2. The method proposed in this paper allows users to decide which L 2 functions in the distributeddelay terms to be approximated and which are handled directly without using approximations. Considering (4)-( 6), it indicates that φ i (τ ) is handled directly together with f i (τ ) and ϕ i (τ ) can be approximated. Note that (4)-( 7) are assumed based on the requirements of constructing a KF to derive synthesis conditions. Thus in order to fully understand the rationale behind the mathematical structures in (4)-( 7), one should refer to the main results on stabilization in later sections.

Formulation of closed-loop system

The following property of the Kronecker product will be used throughout the paper.

Lemma 1. ∀X ∈ R n×m , ∀Y ∈ R m×p , ∀Z ∈ R q×r , (X ⊗ I q )(Y ⊗ Z) = XY ⊗ Z = XY ⊗ ZI r = (X ⊗ Z)(Y ⊗ I r ). ( 11 
) (X ⊗ I q )(Y ⊗ Z) = XY ⊗ Z = I m XY ⊗ (ZI r ) = (I m ⊗ Z)(XY ⊗ I r ). ( 12 
)
Moreover, ∀X ∈ R n×m , we have

A B C D ⊗ X = A ⊗ X B ⊗ X C ⊗ X D ⊗ X ( 13 
)
for any A, B, C, D with appropriate dimensions which make the block matrix at the left hand of the equality in (13) to be compatible.

Considering the decompositions in Proposition 1, let

χ(t, θ) = Col ν i=1 x(t + ŕi θ -r i-1 ) ∈ R nν with θ ∈ [-r i , -r i-1
] and apply a state feedback controller u(t) = Kx(t), K ∈ R p×n to (1), then the resulting closed loop system can be expressed as

ẋ(t) = (A 0 + B 0 K) x(t) + ν Row i=1 (A i + B i K) χ(t, -1) + D 1 w(t) + ν i=1 -ri-1 -ri A i + B i (I κi ⊗ K) (g i (τ ) ⊗ I n ) x(t + τ )dτ, t ≥ t 0 z(t) = (C 0 + B 0 K) x(t) + ν Row i=1 (C i + B i K) χ(t, -1) + D 2 w(t) + ν i=1 -ri-1 -ri C i + B i (I κi ⊗ K) (g i (τ ) ⊗ I n ) x(t + τ )dτ ∀θ ∈ [-r ν , 0], x(t 0 + θ) = ψ(τ ) (14)
where the form of the distributed-delays are obtained via the relations

(g i (τ ) ⊗ I p ) K = (g i (τ ) ⊗ I p ) (1 ⊗ K) = I κi g i (τ ) ⊗ KI n = (I κi ⊗ K) (g i (τ ) ⊗ I n ) , i = 1 • • • ν. ( 15 
)
Remark 3. The use of χ(t, θ) in ( 14) is inspired by the state variable z(t, θ) of the ODE-PDE coupled system in [START_REF] Safi | Tractable sufficient stability conditions for a system coupling linear transport and differential equations[END_REF]. By introducing χ(t, θ) = Col ν i=1 x(t + ŕi θ -r i-1 ) with θ ∈ [-r i , -r i-1 ], the expressions in ( 14) can be denoted by a more compact form. The advantage of utilizing χ(t, θ) will be further illustrated in light of the derivation of the synthesis conditions in the next section.

In this paper, f i (τ ) is utilized to approximate the function ϕ i (τ ) in g i (τ ) based on the application of Hilbert projection theorem. Namely,

ϕ i (τ ) = Γ i f (τ ) + ε i (τ ), i = 1 • • • ν, τ ∈ [-r i , -r i-1 ] (16) 
where

Γ i := -ri-1 -ri ϕ i (τ ) f ⊤ i (τ )dτ 𝟋 i , 𝟋 i = -ri-1 -ri f i (τ ) f ⊤ i (τ )dτ i = 1 • • • ν (17)
and ε i (τ ) := ϕ i (τ ) -Γ i f i (τ ) defines the error of approximations. Note that 𝟋 -1 i in (28) are well defined given the conditions in (7). To measure the error residual of the approximation scheme in (16), we utilize

E i := -ri-1 -ri ε i (τ )ε ⊤ i (τ )dτ ∈ S µi , i = 1 • • • ν (18)
where E -1 i are well defined given the conclusion of the eq.( 18) in [START_REF] Feng | Stability Analysis of Linear Coupled Differential-Difference Systems With General Distributed Delays[END_REF].

Now by ( 16) and the definition of f i (τ ) in Proposition 1, we have

g i (τ ) = ϕ ⊤ i (τ ) φ ⊤ i (τ ) f ⊤ i (τ ) ⊤ = Γ i f i (τ ) + I i ε i (τ ), Γ i = Γ i I κi , I i = I µi O κi×µi (19)
which further gives the identity

(I κi ⊗ K) (g i (τ ) ⊗ I n ) = (I κi ⊗ K) Γ i f i (τ ) + I i ε i (τ ) ⊗ I n = (I κi ⊗ K) Γ i ⊗ I n f i (τ ) ⊗ I n + (I κi ⊗ K) I i ⊗ I n (ε i (τ ) ⊗ I n ) = Γ i ⊗ I p (I κi ⊗ K) f i (τ ) ⊗ I n + I i ⊗ I p (I κi ⊗ K) (ε i (τ ) ⊗ I n ) , i = 1 • • • ν (20)
considering the relation in ( 15) with ( 11). Moreover, we can also obtain the identities

ν Row i=1 A i + B i (I κi ⊗ K) (g i (τ ) ⊗ I n ) = ν Row i=1 A i Γ i ⊗ I n + B i Γ i ⊗ K f i (τ ) ⊗ I n + ν Row i=1 A i I i ⊗ I n + B i I i ⊗ K (ε i (τ ) ⊗ I n ) = ν Row i=1 A i Γ i √ 𝟋 i ⊗ I n + B i Γ i √ 𝟋 i ⊗ K ν i=1 𝟋 -1 i f i (τ ) ⊗ I n + ν Row i=1 A i I i E i ⊗ I n + B i I i E i ⊗ K ν i=1 E -1 i ε i (τ ) ⊗ I n (21) ν Row i=1 C i + B i (I κi ⊗ K) (g i (τ ) ⊗ I n ) = ν Row i=1 C i Γ i √ 𝟋 i ⊗ I n + B i Γ i √ 𝟋 i ⊗ K ν i=1 𝟋 -1 i f i (τ )⊗I n + ν Row i=1 C i I i E i ⊗ I n + B i I i E i ⊗ K ν i=1 E -1 i ε i (τ ) ⊗ I n (22)
based on ( 19) and ( 11) with the properties of block matrices, where 19)-( 21) with (11), the system in ( 14) can be further simplified into

ν i=1 X i = X 1 ⊕ X 2 ⊕ • • • ⊕ X ν . Now by (
ẋ(t) = A + B 1 [(I 1+ν+κ ⊗ K) ⊕ O q ] ϑ(t) z(t) = (C + B 2 [(I 1+ν+κ ⊗ K) ⊕ O q ]) ϑ(t), t ≥ t 0 ∀θ ∈ [-r ν , 0], x(t 0 + θ) = ψ(θ) (23) with t 0 and ψ(•) in (1), where κ = ν i=1 κ i with κ i = d i + δ i + µ i and A = ν Row i=0 A i ν Row i=1 A i Γ i √ 𝟋 i ⊗ I n ν Row i=1 A i I i E i ⊗ I n D 1 (24) B 1 = ν Row i=0 B i ν Row i=1 B i Γ i √ 𝟋 i ⊗ I p ν Row i=1 B i I i E i ⊗ I p O n,q (25) C = ν Row i=0 C i ν Row i=1 C i Γ i √ 𝟋 i ⊗ I n ν Row i=1 C i I i E i ⊗ I n D 2 (26) B 2 = ν Row i=0 B i ν Row i=1 B i Γ i √ 𝟋 i ⊗ I p ν Row i=1 B i I i E i ⊗ I p O m,q (27) ϑ(t) =             x(t) χ(t, -1) Col ν i=1 -ri-1 -ri 𝟋 -1 i f i (τ ) ⊗ I n x(t + τ )dτ Col ν i=1 -ri-1 -ri E -1 i ε i (τ ) ⊗ I n x(t + τ )dτ w(t)             (28)

Important lemmas and definition

In this section, some lemmas and definition are presented which are crucial for the derivations of the results in the next section. A novel integral inequality is also derived to handle the presence of multiple delay channels in the context of constructing KFs. Firstly, we define the following weighted Lebesgue function space

L 2 ϖ K R d := ϕ(•) ∈ M L(R)/B(R d ) K R d : ∥ϕ(•)∥ 2,ϖ < ∞ (29) with d ∈ N and ∥ϕ(•)∥ 2,ϖ := K ϖ(τ )ϕ ⊤ (τ )ϕ(τ )dτ where ϖ(•) ∈ M L(R)/B(R) (K R ≥0 ) and the function ϖ(•)
has only countably infinite or finite number of zero values. Furthermore, K ⊆ R ∪ {±∞} and the Lebesgue

measure of K is non-zero. Lemma 2. Given K and ϖ(•) in (29) and U ∈ S n ⪰0 := {X ∈ S n : X ⪰ 0} with n ∈ N. Let f i (•) ∈ L 2 ϖ K R li and g(•) ∈ L 2 ϖ K R λi with l i ∈ N and λ i ∈ N 0 , i = 1 • • • ν, in which the functions f i (•) and g i (•) satisfy K ϖ(τ ) g i (τ ) f i (τ ) g ⊤ i (τ ) f ⊤ i (τ ) dτ ≻ 0, i = 1 • • • ν. ( 30 
)
Then the inequality

K ϖ(τ )x ⊤ (τ ) ν i=1 U i x(τ )dτ ≥ [ * ] ν i=1 F -1 i ⊗ ν i=1 U i K ϖ(τ ) ν i=1 f i (τ ) ⊗ I n x(τ )dτ + [ * ] ν i=1 E -1 i ⊗ ν i=1 U i K ϖ(τ ) ν i=1 e i (τ ) ⊗ I n x(τ )dτ (31) holds for all x(•) ∈ L 2 ϖ (K R nν ), where F i = K ϖ(τ )f i (τ )f ⊤ i (τ )dτ ∈ S d ≻0 . In addition, e i (τ ) = g i (τ ) - A i f i (τ ) ∈ R λi and A i = K ϖ(τ )g i (τ )f ⊤ i (τ )dτ F i ∈ R λi×li and E i := K ϖ(τ )e i (τ )e ⊤ i (τ )dτ ∈ S λi . Proof.
By using the inequality in eq.( 10) in ν times, then (31) can be obtained. Note that the definition of F i here is different from the definition of the related term in ■

A stability criterion based on the KF approach and the definition of dissipativity are presented as follows.

Lemma 3. Let w(t) ≡ 0 q in (23) and r 2 ≥ r 1 ≥ 0, r 2 > 0 be given, then the trivial solution

x(t) ≡ 0 n of (23) is uniformly asymptotically stable in C([-r ν , 0] R n ) if there exist ϵ 1 ; ϵ 2 ; ϵ 3 > 0 and a differentiable functional v : C([-r ν , 0] R n ) → R with v(0 n (•)) = 0 such that ∀ϕ(•) ∈ C([-r 2 , 0] R n ), ϵ 1 ∥ϕ(0)∥ 2 2 ≤ v(ϕ(•)) ≤ ϵ 2 ∥ϕ(•)∥ 2 ∞ , ( 32 
)
∀t ≥ t 0 ∈ R, d dt v(x t (•)) ≤ -ϵ 3 ∥x(t)∥ 2 2 (33) for any ϕ(•) ∈ C([-r ν , 0] R n ) in (23), where t 0 is given in (23) and ∥ϕ(•)∥ 2 ∞ := sup -rν ≤τ ≤0 ∥ϕ(τ )∥ 2 2 and d + dx f (x) := limsup η↓0 f (x+η)-f (x) η . Furthermore, x t (•) in (33) is defined by ∀t ≥ t 0 , ∀θ ∈ [-r ν , 0], x t (θ) = x(t + θ) in which x : [t 0 -r ν , ∞) → R n satisfies (23) with w(t) ≡ 0 q .
The following definition of the dissipativity of ( 23) is based on the general definition of dissipativity in [START_REF] Willems | Dissipative dynamical systems part I: General theory[END_REF].

Definition 1. The closed-loop system (23) with a supply rate function s(z(t), w(t)) is said to be dissipative if there exists a differentiable functional v :

C([-r ν , 0] R n ) → R such that ∀ t ≥ t 0 , v(x t (•)) -s(z(t), w(t)) ≤ 0 ( 34 
)
with t 0 in (23) and z(t), w(t) in ( 23). Moreover,

x t (•) in (34) is defined by the equality ∀t ≥ t 0 , ∀θ ∈ [-r ν , 0], x t (θ) = x(t + θ) with x(t) satisfying (23).
Note that ( 34) is equivalent to the original definition of dissipativity via the application of the properties of Lebesgue integrations. To characterize dissipativity, a quadratic supply function

s(z(t), w(t)) = z(t) w(t) ⊤ J ⊤ J -1 1 J J 2 * J 3 z(t) w(t) , S m ∋ J ⊤ J -1 1 J ⪯ 0, S m ∋ J -1 1 ≺ 0, J ∈ R m×m (35)
is applied in this paper where the structure of ( 35) is constructed in this paper based the general quadratic constraints applied in [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF] together with the idea of factorizing the matrix U j in [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF]. Note that ( 35) is able to characterize numerous performance criteria such as

• L 2 gain performance: J 1 = -γI m , J = I m , J 2 = O m,q , J 3 = γI q where γ > 0.

• Passivity:

J 1 ∈ S m ≺0 , J = O m , J 2 = I m , J 3 = O m with m = q.

Main results on dissipative state feedback controller synthesis

The main results on dissipative controller synthesis are presented in this section, which are summarized in two theorems and an algorithm. Specifically, the second theorem is proposed as a convexification of the bilinear term in a condition of the first theorem which can be further solved iteratively by the proposed algorithm.

Theorem 1. Let all the parameters in Proposition 1 be given, then the closed-loop system (23) with the supply rate function in (35) is dissipative and the trivial solution of (23) with w(t) ≡ 0 q is uniformly asymptotically stable if there exist K ∈ R p×n and

P 1 ∈ S n , P 2 ∈ R n×ϱ , P 3 ∈ S ϱ with ϱ = n ν i=1 d i , and Q i ; R i ∈ S n , i = 1 • • • ν such that P 1 P 2 * P 3 + [O n ⊕ (I d ⊗ Q)] ≻ 0, (36) 
Q = ν i=1 Q i ≻ 0, R = ν i=1 R i ≻ 0, (37) 
Ψ Σ ⊤ J ⊤ * J 1 = Sy P ⊤ Π + Φ ≺ 0 ( 38 
)
where where A,B 1 are given in ( 24)-( 25) and

Σ = C + B 2 [(I 1+ν+κ ⊗ K) ⊕ O q ] and Ω = A + B 1 [(I 1+ν+κ ⊗ K) ⊕ O q ] with C
Ψ = Sy               I n O n,ϱ O νn×n O νn×ϱ O κn×n I ⊤ O µn×n O µn×ϱ O q×n O q×ϱ        P 1 P 2 * P 3 Ω F ⊗ I n O ϱ×(nµ+q) - O (n+nν+nκ)×m J ⊤ 2 Σ        + Ξ (39) Ξ = (Q + RΛ) ⊕ O n ⊕ O κn ⊕ O q -O n ⊕ Q ⊕ (I κ ⊗ R) ⊕ (I µ ⊗ R) ⊕ J 3 , ( 40 
)
I = ν i=1 ŕi F -1 i O di×δi I di √ 𝟋 i ⊗ I n , Λ = ν i=1 ŕi I n , ŕi = r i -r i-1 (41) F = ν i=1 F -1 i f i (0) 0 d O d×κ -O d ν i=1 F -1 i f i (-1) ν i=1 F -1 i M i √ 𝟋 i (42) with κ = ν i=1 κ i , κ i = d i + δ i and µ = ν i=1 µ i ,
F i = 0 -1 f i (τ )f ⊤ i (τ )dτ , i = 1 • • • ν.
Moreover, the rest of the parameters in (38) is defined as

P = P 1 O n×νn P 2 I O n×nµ O n,q O n,m , Π = Ω O n,m (43) 
and

Φ = Sy       P 2 O νn×ϱ I ⊤ P 3 O (nµ+q+m)×ϱ    F ⊗ I n O ϱ×(nµ+q+m) +    O (n+nν+nκ)×m -J ⊤ 2 J    Σ O m    + Ξ ⊕ (-J 1 ) . (44)
Proof. The proof of Theorem 1 is based on the construction of the KF:

v(x t (•)) = η ⊤ (t) P 1 P 2 * P 3 η(t) + 0 -1 χ ⊤ (t, τ ) QΛ + (1 + τ )RΛ 2 χ(t, τ )dτ (45) 
where x t (•) follows the same definition in (34), and P 1 ∈ S n , P 2 ∈ R n×ϱ , P 3 ∈ S ϱ , and

Q = ν i=1 Q i , R = ν i=1 R i , Q i ∈ S n , R i ∈ S n , i = 1 • • • ν (46) η(t) := Col x(t), ν Col i=1 -ri-1 -ri F -1 i f i (τ ) ⊗ I n x(t + τ )dτ (47) 
with

F i = -ri-1 -ri f i (τ )f ⊤ i (τ )dτ , i = 1 • • • ν. Note that F -1 i , i = 1 • • • ν are
well defined and unique due to the conditions in (7).

From the definition of χ(t, θ) = Col ν i=1 x(t + ŕi θ -r i-1 ) with ( 46), one can derive the following relations

∂χ(t, τ ) ∂t = Λ -1 ∂χ(t, τ ) ∂τ , Λ = ν i=1 ŕi , QΛ = ΛQ, RΛ = ΛR (48) ν i=1 d dt -ri-1 -ri x ⊤ (t + τ )Q i x(t + τ )dτ = d dt 0 -1 χ ⊤ (t, τ )QΛχ(t, τ )dτ = 2 0 -1 χ ⊤ (t, τ )QΛ d dt χ(t, τ )dτ = 2 0 -1 χ ⊤ (t, τ )Q d dτ χ(t, τ )dτ = 2χ ⊤ (t, 0)Qχ(t, 0) -2χ ⊤ (t, -1)Qχ(t, -1) -2 0 -1 d dτ χ ⊤ (t, τ )Qχ(t, τ )dτ = χ ⊤ (t, 0)Qχ(t, 0) -χ ⊤ (t, -1)Qχ(t, -1) (49) ν i=1 d dt -ri-1 -ri (τ + r i )[ * ]R i x(t + τ )dτ = ν i=1 d dt -ri-1 -ri (ŕ i τ + ŕi )[ * ]R i x(t + ŕi τ -r i-1 )d(ŕ i τ ) = d dt 0 -1 χ ⊤ (t, τ )(1 + τ )RΛ 2 χ(t, τ )dτ = 2 0 -1 χ ⊤ (t, τ )(1 + τ )RΛ 2 d dt χ(t, τ )dτ = 2 0 -1 χ ⊤ (t, τ )(1 + τ )RΛ d dτ χ(t, τ )dτ = 2χ ⊤ (t, 0)RΛχ(t, 0) -2 0 -1 χ ⊤ (t, τ )RΛχ(t, τ )dτ -2 0 -1 d dτ χ ⊤ (t, τ )(1 + τ )RΛχ(t, τ )dτ = χ ⊤ (t, 0)RΛχ(t, 0) - 0 -1 χ ⊤ (t, τ )RΛχ(t, τ )dτ. ( 50 
)
Given

t 0 ∈ R in (23) with r ν > • • • r 2 > r 1 > r 0 = 0 and the relations in (48)-(50), differentiating v(x t (•))
along the trajectory of ( 23) and consider (35) produces

∀t ≥ t 0 , v(x t (•)) -s(z(t), w(t)) = ϑ ⊤ (t) Sy             I n O n,ϱ O νn×n O νn×ϱ O κn×n I ⊤ O µn×n O µn×ϱ O q,n O q,ϱ       P 1 P 2 * P 3 A + B 1 [(I 1+ν+κ ⊗ K) ⊕ O q ] F ⊗ I n O ϱ×(nµ+q) - O (n+nν+nκ)×m J ⊤ 2 Σ       ϑ(t) + χ ⊤ (t, 0) (Q + RΛ) χ(t, 0) -χ ⊤ (t, -1) Qχ(t, -1) - 0 -1 χ ⊤ (t, τ )RΛχ(t, τ )dτ -w ⊤ (t)J 3 w(t) -ϑ ⊤ (t)Σ ⊤ J ⊤ J -1 1 JΣϑ(t) (51)
where Λ = ν i=1 r i I n and ϑ(t) is given in (28) and Σ, I and F are defined in the statements of Theorem 1. Note that I and F in (41)-( 42) are obtained by the identities

ν Col i=1 -ri-1 -ri F -1 i f i (τ ) ⊗ I n x(t + τ )dτ = 0 -1 ν i=1 F -1 i f i (ŕ i τ -r i-1 ) ⊗ I n Λχ(t, τ )dτ = ν i=1 F -1 i ⊗ I n 0 -1 ν i=1 f i (ŕ i τ -r i-1 ) ⊗ I n Λχ(t, τ )dτ = ν i=1 F -1 i O di×δi I di ⊗ I n 0 -1 ν i=1 f i (ŕ i τ -r i-1 ) ⊗ I n Λχ(t, τ )dτ = ν i=1 F -1 i O di×δi I di ⊗ I n ν Col i=1 -ri-1 -ri 𝟋 -1 i f i (τ ) ⊗ I n x(t + τ )dτ (52) 0 -1 ν i=1 F -1 i f i (ŕ i τ -r i-1 ) ⊗ I n Λ dχ(t, τ ) dt dτ = 0 -1 ν i=1 F -1 i f i (τ ) ⊗ I n dχ(t, τ ) dτ dτ = ν i=1 F -1 i f i (0) ⊗ I n χ(t, 0) - ν i=1 F -1 i f i (-1) ⊗ I n χ(t, -1) - ν i=1 F -1 i M i √ 𝟋 i ⊗ I n ν Col i=1 -ri-1 -ri 𝟋 -1 i f i (τ ) ⊗ I n x(t + τ )dτ (53) 
which are derived via ( 6)-( 7) and ( 11)-( 13) and the fact that

0 -1 d dτ ν i=1 F -1 i f i (τ ) ⊗ I n χ(t, τ )dτ = ν i=1 F -1 i ŕi M i √ 𝟋 i ⊗ I n 0 -1 ν i=1 𝟋 -1 i f i (τ ) ⊗ I n χ(t, τ )dτ = ν i=1 F -1 i M i √ 𝟋 i ⊗ I n ν Col i=1 -ri-1 -ri 𝟋 -1 i f i (τ ) ⊗ I n x(t + τ )dτ . ( 54 
)
Note that also the parameters A, B 1 , C and B 2 in (51) are given in ( 24)-( 27). Given ( 37) and ( 48), apply (31) with ϖ(τ ) = 1 and

f i (τ ) = f i (ŕ i τ -r i-1 ), i = 1 • • • ν to the integral terms 0 -1 χ ⊤ (t, τ )ΛRχ(t, τ )dτ = ν i=1 -ri-1 -ri x ⊤ (t + τ )R i x(t + τ )dτ in (51). Then we have 0 -1 χ ⊤ (t, τ )ΛRχ(t, τ )dτ = ν i=1 -ri-1 -ri x ⊤ (t + τ )R i x(t + τ )dτ ≥ ν i=1 -ri-1 -ri x ⊤ (t + τ ) f ⊤ i (τ ) 𝟋 -1 i ⊗ I n dτ I κ ⊗ R i -ri-1 -ri 𝟋 -1 i f i (τ ) ⊗ I n x(t + τ )dτ = [ * ] I κ ⊗ R ν Col i=1 -ri-1 -ri 𝟋 -1 i f i (τ ) ⊗ I n x(t + τ )dτ (55) 
through which one can derive the inequality

∀t ≥ t 0 , v(x t (•)) -s(z(t), w(t)) ≤ ϑ ⊤ (t) Ψ -Σ ⊤ J ⊤ J -1 1 JΣ ϑ(t) (56)
with Ψ in (39) and ϑ(t) in ( 28). Now it is obvious to conclude that if (37) and

Ψ -Σ ⊤ J ⊤ J -1 1 JΣ ≺ 0 are satisfied, then ∃ϵ 3 > 0 : ∀t ≥ t 0 , v(x t (•)) -s(z(t), w(t)) ≤ -ϵ 3 ∥x(t)∥ 2 . ( 57 
)
Moreover, considering the structure of Ψ -Σ ⊤ J ⊤ J -1 1 JΣ ≺ 0, one can conclude that (57) infers 23) with t = t 0 and w(t) ≡ 0 q . Note that x t (•) in ( 58) is in line with the definition in (33). As a result, it is obvious that the existence of the feasible solutions of (37) and Ψ -Σ ⊤ J ⊤ J -1 1 JΣ ≺ 0 infers that (45) satisfies ( 34) and (33). Finally, applying the Schur complement to

∃ϵ 3 > 0, d + dt v(x t (•)) t=t0,xt 0 (•)=ϕ(•) ≤ -ϵ 3 ∥ϕ(0)∥ 2 (58) for any ϕ(•) ∈ C([-r ν , 0] R n ) in (
Ψ -Σ ⊤ J ⊤ J -1
1 JΣ ≺ 0 with (37) and J -1 1 ≺ 0 gives (38). Therefore we have proved that the existence of the feasible solutions of (37) and (38) infer the existence of a functional (45) and ϵ 3 > 0 satisfying (34) and ( 33). Now we start to show that there exist ϵ 1 > 0 and ϵ 2 > 0 such that (45) satisfies ( 32) if ( 36) and (37

) are satisfied. Let ∥ϕ(•)∥ 2 ∞ := sup -rν ≤τ ≤0 ∥ϕ(τ )∥ 2 2
and consider the structure of (45) with t = t 0 , it follows that there exists λ > 0 such that 23), where ( 59) is derived via the property of quadratic forms: ∀X ∈ S n , ∃λ > 0 : ∀x ∈ R n \ {0}, x ⊤ (λI n -X) x > 0 together with the application of (31) with ϖ(τ ) = 1 and appropriate f(τ ). Consequently, the inequality in (59) shows that it is possible to find an upper bound for (45) which satisfies (32) with a ϵ 2 > 0. Now we want to prove that the existence of the feasible solutions of ( 36) and (37) infer that ( 45) satisfies (32) with certain ϵ 1 > 0 and ϵ 2 > 0. Applying (31) to (45) with ϖ(τ ) = 1 and appropriate f(τ ) produces

v(x t0 (•)) = v(ϕ(•)) ≤ η ⊤ (t 0 )λη(t 0 ) + 0 -rν ϕ ⊤ (τ )λϕ(τ )dτ ≤ λ ∥ϕ(0)∥ 2 2 + λr ν ∥ϕ(•)∥ 2 ∞ + r ν ν i=1 -ri-1 -ri ϕ ⊤ (τ ) F -1 i f i (τ ) ⊗ I n ⊤ dτ (I di ⊗ λI n ) -ri-1 -ri F -1 i f i (τ ) ⊗ I n ϕ(τ )dτ ≤ λ ∥ϕ(0)∥ 2 2 + λr ν ∥ϕ(•)∥ 2 ∞ + r ν ν i=1 -ri-1 -ri ϕ ⊤ (τ )λϕ(τ ) ≤ (λ + λr ν ) ∥ϕ(•)∥ 2 ∞ + λr ν 0 -rν ϕ ⊤ (τ )ϕ(τ )dτ ≤ λ + λr ν + λr 2 ν ∥ϕ(•)∥ for any ϕ(•) ∈ C ([-r ν , 0] R n ) in (
0 -1 χ ⊤ (t, τ )ΛQχ(t, τ )dτ = ν i=1 -ri-1 -ri x ⊤ (t + τ )Q i x(t + τ )dτ ≥ -ri-1 -ri x ⊤ (t + τ ) f ⊤ i (τ ) F -1 i ⊗ I n dτ I d ⊗ Q i -ri-1 -ri F -1 i f i (τ ) ⊗ I n x(t + τ )dτ = [ * ] I d ⊗ Q ν Col i=1 -ri-1 -ri F -1 i f i (τ ) ⊗ I n x(t + τ )dτ (60) 
provided that (37) holds. Moreover, by utilizing ( 60) to ( 45) with ( 37) and ( 59), it is clear to see that the existence of the feasible solutions of ( 36) and (37) infer that ( 45) satisfies (32) with some ϵ 1 ; ϵ 2 > 0.

In conclusion, we have shown that the existence of the feasible solutions of ( 36)-( 38) infers the existence of a functional (45) and ϵ 1 ; ϵ 2 > 0 satisfying the dissipative condition in (34), and the stability criteria in (32)-( 33). As a result, it shows that the existence of the feasible solutions of ( 36)-( 38) infers that the trivial solution of (23) with w(t) ≡ 0 q is uniformly asymptotically stable, and ( 23) with ( 35) is dissipative. ■ Remark 4. Theoretically, f i (τ ) in ( 47) can be any differentiable function since the decompositions in ( 4)-( 5) are always achievable via the proper choices of φ i (τ ) and ϕ i (τ ). This gives great flexibility to the structure of the KF (45) in this paper. On the other hand, the functions in f i (τ ) can be selected based on the elements in the distributed-delay terms of (1).

The inequality in ( 38) is bilinear if a synthesis problem is concerned, where it cannot be solved directly via standard semidefinite programming solvers. In the following theorem, a convex dissipative synthesis condition is derived via the application of Projection Lemma [START_REF] Gahinet | A linear matrix inequality approach to H ∞ control[END_REF] whose feasible

solutions infer the existence of the feasible solutions of the conditions in Theorem 1.

Lemma 4 (Projection Lemma). [START_REF] Gahinet | A linear matrix inequality approach to H ∞ control[END_REF] Given n; p; q ∈ N, Π ∈ S n , P ∈ R q×n , Q ∈ R p×n , there exists Θ ∈ R p×q such that the following two propositions are equivalent :

Π + P ⊤ Θ ⊤ Q + Q ⊤ ΘP ≺ 0, (61) 
P ⊤ ⊥ ΠP ⊥ ≺ 0 and Q ⊤ ⊥ ΠQ ⊥ ≺ 0, ( 62 
)
where the columns of P ⊥ and Q ⊥ contain bases of null space of matrix P and Q, respectively, which means

that P P ⊥ = O and QQ ⊥ = O.
Proof. Refer to [START_REF] Gahinet | A linear matrix inequality approach to H ∞ control[END_REF] and [START_REF] Briat | Linear Parameter Varying and Time-Delay Systems[END_REF]. ■ Theorem 2. Given the functions and parameters in Proposition 1 with {α i } 1+ν+κ i=1 ⊂ R, then the closed-loop system (23) with the supply rate function in (35) is dissipative and the trivial solution of (23) with w(t) ≡ 0 q is uniformly asymptotically stable if there exists

Ṕ1 ∈ S n , Ṕ2 ∈ R n×ϱ , Ṕ3 ∈ S ϱ and Qi ; Ŕi ∈ S n , i = 1 • • • ν and V ∈ R p×n such that Ṕ1 Ṕ2 * Ṕ3 + O n ⊕ I d ⊗ Q ≻ 0, (63) 
Q = ν i=1 Qi ≻ 0, Ŕ = ν i=1 Ŕi ≻ 0 (64) Sy     I n Col 1+ν+κ i=1 α i I n O (q+m),n   -X Π   + O n Ṕ * Φ ≺ 0 (65)
where Ṕ = Ṕ1 O n×νn Ṕ2 I O n×(nµ+q+m) and

Π = A [(I 1+ν+κ ⊗ X) ⊕ I q ] + B 1 [(I 1+ν+κ ⊗ V ) ⊕ O q ] O n,m
with I in (41) and

Φ = Sy         Ṕ2 O νn×ϱ I ⊤ Ṕ3 O (nµ+q+m)×ϱ     F ⊗ I n O ϱ×(nµ+q+m) +    O (n+nν+nκ)×m -J ⊤ 2 J    Σ O m     -O n ⊕ Q ⊕ I κ ⊗ Ŕ ⊕ I µ ⊗ Ŕ ⊕ J 3 ⊕ (-J 1 ) + Q + Λ Ŕ ⊕ O n ⊕ O κn ⊕ O q+m (66) with F in (42) and Σ = C [(I 1+ν+κ ⊗ X) ⊕ I q ] + B 2 [(I 1+ν+κ ⊗ V ) ⊕ O q ] and A,B 1 ,B 2 ,C in (24)-(27). The controller gain is calculated via K = V X -1 .
Proof. First of all, note that the inequality Sy P ⊤ Π + Φ ≺ 0 in (38) can be reformulated into

Sy P ⊤ Π + Φ = Π I n+nν+nκ+q+m ⊤ O n P * Φ Π I n+nν+nκ+q+m ≺ 0 (67) 
which is equivalent to (38). It is easy to observe that the structure of ( 67) is similar to one of the inequalities in (62) as part of the statements of Projection Lemma. Given the fact that two matrix inequalities are presented in (62), thus a new matrix inequality must be constructed accordingly. Now consider the following inequality

Υ ⊤ O n P * Φ Υ ≺ 0 (68) 
with Υ ⊤ := O (q+m),(2n+nν+κn) I q+m , which can be further simplified into

Υ ⊤ O n P * Φ Υ = -J 3 -Sy(D ⊤ 2 J 2 ) D ⊤ 2 J * J 1 ≺ 0. (69) 
Note that (69) is the very matrix produced by extracting the 2 × 2 block matrix at the bottom right of the matrices Sy P ⊤ Π + Φ or Φ. As a result, it is clear that ( 69) is automatically satisfied if (67) or (38) holds.

Hence the constructed inequality (69) has no impact to the solvability of the original condition in (38). On the other hand, the following identities Applying Lemma 4 to ( 67) and ( 69) with (70) yields the conclusion that ( 67) and ( 69) are true if and only if

-I n Π Π I n+nν+nκ+q+m = O n×(n+nν+nκ+q+m) , -I n Π ⊥ = Π I n+nν+nκ+q+m , I 2n+nν+κn O (2n+nν+κn),(q+m) O ( 
∃W ∈ R (2n+nν+κn)×n : Sy I 2n+nν+κn O (q+m),(2n+nν+κn) W -I n Π + O n P * Φ ≺ 0. ( 71 
)
Now the inequality in ( 71) is still bilinear due to the product between W and Π. To convexify (71), consider 72), ( 71) becomes

W := Col W, Col 1+ν+κ i=1 α i W (72) with W ∈ S n and {α i } 1+ν+κ i=1 ⊂ R. With (
Θ = Sy     W Col 1+ν+κ i=1 α i W O (q+m),n   -I n Π   + O n P * Φ ≺ 0 (73) 
which infers (67). Note that having the structural constraints in (72) infers that ( 73) is no longer an equivalent but only a sufficient condition implying (67) or (38). It is also important to stress that an invertible W is automatically implied by ( 73) since the expression -2W is the only element at the first diagonal block of Θ.

Let X ⊤ = W -1 , we apply congruence transformations to the matrix inequalities in ( 36),( 37) and ( 73) with the fact that an invertible W is implied by (73). Then one can conclude that

(I ν ⊗ X) Q (I ν ⊗ X) ≻ 0, (I ν ⊗ X) R (I ν ⊗ X) ≻ 0, I 2+ν+κ ⊗ X ⊤ ⊕ I q+m Θ [(I 2+ν+κ ⊗ X) ⊕ I q+m ] ≺ 0, [ * ] P 1 P 2 * P 3 (I 1+ν ⊗ X) ≻ 0 (74) 
hold if and only if ( 36),( 37) and ( 73) hold. Moreover, with (11) and

Ṕ1 Ṕ2 * Ṕ3 := [ * ] P 1 P 2 * P 3 (I 1+ν ⊗ X) , Q = ν i=1 Qi = ν i=1 XQ i X = (I ν ⊗ X) Q (I ν ⊗ X) , ( 75 
)
the inequalities in (74) can be rewritten into ( 63) and ( 64) and

[ * ] Θ [(I 2+ν+κ ⊗ X) ⊕ I q+m ] = Θ = Sy     I n Col 1+ν+κ i=1 α i I n O (q+m),n   -X Π   + O n Ṕ * Φ ≺ 0 (76) 
where

Ṕ = XP [(I 1+ν+κ ⊗ X) ⊕ I q+m ] = Ṕ1 O n×νn Ṕ2 I O n×µn O n,q O n,m (77) 
and

Π = Π [(I 1+ν+κ ⊗ X) ⊕ I q+m ] = A [(I 1+ν+κ ⊗ X) ⊕ I q ] + B 1 [(I 1+ν+κ ⊗ KX) ⊕ O q ] O n,m = A [(I 1+ν+κ ⊗ X) ⊕ I q ] + B 1 [(I 1+ν+κ ⊗ V ) ⊕ O q ] O n,m (78) 
with V = KX and Φ in (66). Note that (76) is the same as (65), and the form of Φ in (66) is derived via the relations I (I κ ⊗ X) = (I d ⊗ X) I and

F ⊗ I n O ϱ,(q+m) [(I 1+ν+κ ⊗ X) ⊕ I q+m ] = I d F ⊗ XI n O ϱ,(q+m) = (I d ⊗ X) F ⊗ I n O ϱ,(q+m) , (79) 
which are derived from the properties of matrices with (11),(13). Furthermore, since -2X is the only element at the first diagonal block of Θ in (65), thus X is invertible if (65) holds. This is consistent with the fact that an invertible W is implied by the matrix inequality in (73).

As a result, we have shown the equivalence between ( 36)-( 37) and ( 63)-( 64). Meanwhile, it has been shown that ( 65) is equivalent to (73) which infers (38). Consequently, (36)-( 38) are satisfied if ( 63)-( 65) hold with some W ∈ S n and {α i } 1+ν+κ i=1 ⊂ R. Thus it demonstrates that the existence of the feasible solutions of ( 63)-( 65) ensures that the trivial solution x(t) ≡ 0 n of the closed-loop system (23) with w(t) ≡ 0 q is uniformly asymptotically stable and ( 23) with ( 35) is dissipative. ■ Remark 5. The use of Projection Lemma in (71) successfully decouples the bilinear term in (38) between K and P which contains variables which are part of the functional in (45). Although the assumption in (72) can introduce conservatisms compared to the original condition in (38), the structure of ( 63) is not simplified compared to (36) as the structure of Ṕ in ( 65) is identical to P in (38). As a result, it is not unreasonable to believe that the resulting synthesis condition in Theorem 2 is less conservative than the condition constructed via simplification of the functional parameters P 1 and P 2 .

Remark 6. Theorem 2 is specifically derived to solve a synthesis problem. If an open-loop system is concerned with

B i = B i (τ ) = O n,p and B i = B i (τ ) = O m,p , i = 1 • • • ν,
then Theorem 1 should be applied instead of Theorem 2 as the introduction of the slack variables in Theorem 2 does not introduce extra feasibility with reference to the optimization constraints in 1. 65), some values of α i can be more significant than others in terms of their impact on the feasibility of (65). For example, the value of α 1 may have a significant impact on the feasibility of (65) since it may determine the feasibility of the very diagonal block related to A 0 in (65). A simple assignment of {α i } 1+ν+κ i=1 ⊂ R can be α i = 0 for i = 2 • • • 1 + ν + κ which allows one to only adjust the value of α 1 ∈ R to use Theorem 2.

Remark 7. For {α

i } 1+ν+κ i=1 ⊂ R in (

An inner convex approximation solution of Theorem 1

By fixing the values of {α i } 1+ν+κ i=1 ⊂ R, Theorem 2 provides a convex synthesis solution of (23). Nevertheless, the simplification applied in (72) can render Theorem 2 to be more conservative than Theorem 1.

In this subsection, an iterative algorithm is derived based on the method proposed in [START_REF] Dinh | An inner convex approximation algorithm for BMI optimization and applications in control[END_REF] to solve the conditions in Theorem 1 in an iterative fashion, where the algorithm can be initiated by a feasible solution of Theorem 2. Thus the advantage of both Theorem 1 and 2 are combined together in the proposed algorithm without the need to solve nonlinear optimization constraints.

First of all, note that the inequality in (38) is nonconvex in general whereas (36) and (37) remain convex even when a synthesis problem is considered. Now it is obvious that (38) can be rewritten into 

U(H, K) := Sy P ⊤ Π + Φ = Sy P ⊤ B [(I 1+ν+κ ⊗ K) ⊕ O p+m ] + Φ ≺ 0 ( 
∆ G, G, Γ, Γ := G ⊤ -G ⊤ Γ ⊤ -Γ ⊤ [Z ⊕ (I n -Z)] -1 G -G Γ -Γ + Sy G ⊤ Γ + G ⊤ Γ -G ⊤ Γ + T (81) with Z ⊕ (I n -Z) ≻ 0 satisfying ∀G; G ∈ R n×l , ∀Γ; Γ ∈ R n×l , T + Sy G ⊤ Γ ⪯ ∆ G, G, Γ, Γ , T + Sy G ⊤ Γ = ∆(G, G, Γ, Γ), (82) is a psd-convex overestimate of ∆(G, Γ) = T + Sy G ⊤ Γ with respect to the parameterization vec( G) vec( Γ) = vec(G) vec(Γ) . ( 83 
) Let T = Φ, G = P = P 1 O n×νn P 2 I O n×nµ O n,q O n,m , G = P = P 1 O n×νn P 2 I O n×nµ O n,q O n,m , H = P 1 P 2 , H := P 1 P 2 , P 1 ∈ S n , P 2 ∈ R n×dn Γ = BK, K = [(I 1+ν+κ ⊗ K) ⊕ O p+m ] , Γ = B K, K = I 1+ν+κ ⊗ K ⊕ O p+m (84)
in ( 81) with l = n + nν + nκ + q + m and Z ⊕ (I n -Z) ≻ 0 and Φ, H and K are in line with the definition in (80). Then one can obtain

U(H, K) = Φ + Sy P ⊤ B [(I 1+ν+κ ⊗ K) ⊕ O p+m ] ⪯ S H, H, K, K := Φ + Sy P ⊤ BK + P ⊤ B K -P ⊤ B K + P ⊤ -P ⊤ K ⊤ B ⊤ -K ⊤ B ⊤ [Z ⊕ (I n -Z)] -1 [ * ] (85)
by ( 82), where S( • , H, • , K) is a psd-convex overestimate of U(H, K) in ( 80) with respect to the parameter-

ization vec( H) vec( K) = vec(H) vec(K) . ( 86 
)
From (85), it is obvious that S H, H, K, K ≺ 0 infers (80). Moreover, it is also true that S H, H, K, K ≺ 0 holds if and only if

   Φ + Sy P ⊤ BK + P ⊤ B K -P ⊤ B K P ⊤ -P ⊤ K ⊤ B ⊤ -K ⊤ B ⊤ * -Z O n * * Z -I n    ≺ 0 (87)
holds based on the application of the Schur complement given Z ⊕ (I n -Z) ≻ 0. Now ( 80) is inferred by (87) which can be handled by standard numerical solvers of semidefinite programmings provided that the values of H and K are known.

By compiling all the aforementioned procedures according to the expositions in [START_REF] Dinh | An inner convex approximation algorithm for BMI optimization and applications in control[END_REF], an iterative algorithm is constructed in Algorithm 1 where x consists of all the variables in P

3 , Q 1 , Q 2 R 1 , R 2
in Theorem 1 and Z in (87). Furthermore, H, H, K and K in Algorithm 1 are defined in (84) and ρ 1 , ρ 2 and ε are given constants to achieve regularizations and determine error tolerance, respectively.

Remark 8. To initialize the iterative algorithm based on the results in [START_REF] Dinh | An inner convex approximation algorithm for BMI optimization and applications in control[END_REF], one has to obtain certain initial data which in our case are for H and K. Hence a right candidate for the values of H and K must be part of a feasible solution of ( 36)-( 38) in Theorem 1. Namely, P 1 ← P 1 , P 2 ← P 2 and K ← K can be used for the initial data of H and K, if P 1 , P 2 and K are the feasible solutions of ( 36)-(38).

Remark 9. When a convex objective function is considered in Theorem 1, for instance L 2 gain γ > 0 minimization, a termination condition [START_REF] Dinh | An inner convex approximation algorithm for BMI optimization and applications in control[END_REF] can be added to Algorithm 1 concerning the improvement of the objective function between two successive iterations. Nonetheless, such a condition has not been considered by the calculation of our numerical examples in this paper.

Algorithm 1: An inner convex approximation solution for Theorem 1 begin solve Theorem 2 with given α i to obtain a controller gain K and then solve Theorem 1 with the aforementioned K to obtain 36)-( 37) and ( 87) obtain H and 36)-( 37) and ( 87) to obtain H and K; end end

H = P 1 P 2 . update H ←-H, K ←-K, solve min x,H,K tr ρ 1 [ * ] H -H + ρ 2 [ * ] K -K subject to (
K while vec(H) vec (K) - vec( H) vec( K) ∞ vec( H) vec( K) ∞ + 1 ≥ ε do update H ←-H, K ←-K; solve min x,H,K tr ρ 1 [ * ] H -H + ρ 2 [ * ] K -K subject to (

A variant scheme of controller design

The proposed methodologies in Theorem 1, 2 and Algorithm 1 can be modified to solve a different synthesis problem if no input delays exist at (1). 1), which gives a distributed-delay system without input delays. Now assume that the open-loop system considered is stabilized by the following state feedback controller

Specifically, let B

i = O n , i = 2 • • • ν and B j (τ ) = O n , j = 1 • • • ν and B i = O m×n , i = 2 • • • ν and B j (τ ) = O m×n , j = 1 • • • ν in (
u(t) = ν i=0 K i x(t -r i ) + ν i=1 -ri -ri-1 K i (τ )x(t + τ )dτ (88)
which contains pointwise and distributed-delay terms. Moreover, by using the approximation scheme outlined in ( 16)-( 19) and by adding the condition

∀τ ∈ [-r i , -r i-1 ], K i (τ ) = K i (g i (τ ) ⊗ I n ) , i = 1 • • • ν (89)
in Proposition 1 with some 88) is denoted by

K i ∈ R p×nκi , i = 1 • • • ν, the corresponding closed-loop system stabilized by (
ẋ(t) = A + B 0 K ϑ(t), z(t) = (C + B 0 K) ϑ(t), t ≥ t 0 ∀θ ∈ [-r ν , 0], x(t 0 + θ) = ψ(θ) K = ν Row i=0 K i ν Row i=1 K i Γ i √ 𝟋 i ⊗ I n ν Row i=1 K i I i E i ⊗ I n O n,q (90)
with t 0 and ψ(•) in (1), where A, C, ϑ(t) follows the same definitions in ( 24)-( 28).

Remark 10. Note that the synthesis scheme in (88) can be considered even if no delays exist at the open-loop system. As a result, (88) can be utilized to stabilize a delay-free linear system to improve its performance.

By modifying the results in Theorem 1 and 2 in accordance to the structure in (90), then the following two corollaries can be derived.

Corollary 1. Let all the parameters in Proposition 1 and (89) be given. Then the closed-loop system (90) with the supply rate function in ( 35) is dissipative and the trivial solution of (90) with w(t) ≡ 0 q is uniformly asymptotically stable if there exist P 1 ∈ S n , P 2 ∈ R n×ϱ , P 3 ∈ S ϱ with ϱ = n ν i=1 d i , and 38) hold with Ω = A + B 0 K and Σ = C + B 0 K where A and C are given in (24),( 26) and K is given in (90).

Q i ; R i ∈ S n , K 0 ; K i ∈ R p×n , K i ∈ R p×κin , i = 1 • • • ν such that (36)-(
Proof. This corollary can be derived via direction substitution of

Ω = A + B 0 K and Σ = C + B 0 K onto (38).
■

Corollary 2. Given the conditions in Proposition 1 with (89) and known parameters {α i } 1+ν+κ i=1

. Then the closed-loop system (90) with the supply rate function in ( 35) is dissipative and the trivial solution of (90) with w(t) ≡ 0 q is uniformly asymptotically stable if there exist Ṕ1 ∈ S n , Ṕ2 ∈ R n×ϱ , Ṕ3 ∈ S ϱ and Qi ; Ŕi ∈ S n and V 0 ; 65) hold with

V i ∈ R p×n , V i ∈ R p×κin , i = 1 • • • ν such that (63)-(
Π = A [(I 1+ν+κ ⊗ X) ⊕ I q ] + B 1 V O n,m , Ώ = C [(I 1+ν+κ ⊗ X) ⊕ I q ] + B 1 V
where A and C are given in (24),( 26) and

V = ν Row i=0 V i ν Row i=1 V i Γ i √ 𝟋 i ⊗ I n ν Row i=1 V i I i E i ⊗ I n O n,q . ( 91 
)
Finally, the controller gains are calculated via the relations K

0 = V 0 X -1 and K i = V i X -1 and K i = V i (I κi ⊗ X) for i = 1 • • • ν.
Proof. The proof of this corollary is straightforward considering the procedure of proving Theorem 2. Note that the corresponding procedure at (78) is 91) can be established by the application of (11). ■

Π = A [(I 1+ν+κ ⊗ X) ⊕ I q ] + B 0 K [(I 1+ν+κ ⊗ X) ⊕ I q ] O n,m = A [(I 1+ν+κ ⊗ X) ⊕ I q ] + B 1 V O n,m (92) with V = K [(I 1+ν+κ ⊗ X) ⊕ I q ] in (91) where V 0 = K 0 X, V i = K i X and V i = K i (I κi ⊗ X) for i = 1 • • • ν . Moreover, the relation K [(I 1+ν+κ ⊗ X) ⊕ I q ] = V in (
Finally, the conditions in Corollary 1 can be solved by a modified version of Algorithm 1 with K in ( 90)

and

K = ν Row i=0 K i ν Row i=1 K i Γ i √ 𝟋 i ⊗ I n ν Row i=1 K i I i E i ⊗ I n O n,q (93)
and the substitution B 1 → B with more prescribed regularization parameters for the decision variables K i ,

K i and K i , K i .

Dissipative Observer Design

As we have solved a state feedback problem in the previous section for (1), we will present the corresponding solution of the observer dual problem in this section.

Still considering the open-loop system in (1) with a measurement output

R p ∋ y(t) = ν i=0 C i x(t -r i ) + ν i=1 -ri-1 -ri C i (τ )x(t + τ )dτ + D 4 w(t). ( 94 
)
Note that this time z(t) in ( 1) is not considered. We want to construct a observer with the mathematical

model 4 ˙ x(t) = ν i=0 A i x(t -r i ) + ν i=1 -ri-1 -ri A i (τ ) x(t + τ )dτ + ν i=0 B i u(t -r i ) + ν i=1 -ri-1 -ri B i (τ )u(t + τ )dτ -L y(t) - ν i=0 C i x(t -r i ) - ν i=1 -ri-1 -ri C i (τ ) x(t + τ )dτ + D 3 w(t) (95)
with the observer gain L ∈ R n×p . Now combine the state equation in ( 1) with the observer in (95) considering the measurement output in (94), we have

ė(t) = ν i=0 (A i + LC i ) e(t -r i ) + ν i=1 -ri-1 -ri A i (τ ) + L C i (τ ) e(t + τ )dτ + (D 1 + LD 4 -D 3 )w(t). ( 96 
)
Remark 11. It is very crucial to stress that the disturbance term D 3 w(t) is not part of the actual implementation of the observer as this term contributes nothing to the stabilization of ( 96) with w(t) ≡ 0 q . D 3 w(t) is introduced into the observer equation so that anti-disturbance (dissipativity) properties of the observer can be secured by the proposed design method. On the other hand, D 2 w(t) is presented in the measurement output equation as a realistic assumption.

Similar to Proposition 1, we assume the distributed-delays in (96) satisfy the following assumption:

Assumption 1. ∃f i (•) ∈ C 1 ([-r i , -r i-1 ] R di ), φ i (•) ∈ L 2 ([-r i , -r i-1 ] R δi ), ϕ i (•) ∈ L 2 ([-r i , -r i-1 ] R µi ), M i ∈ R di×κi , A i ∈ R n×κin , C i ∈ R p×κin with i = 1 • • • ν such that ∀τ ∈ [-r i , -r i-1 ], A i (τ ) = A i (g i (τ ) ⊗ I n ) , ( 97 
) ∀τ ∈ [-r i , -r i-1 ], C i (τ ) = C i (g i (τ ) ⊗ I n ) , ( 98 
) ∀τ ∈ [-r i , -r i-1 ], df i (τ ) dτ = M i f i (τ ), f i (τ ) = φ i (τ ) f i (τ ) , ( 99 
)
G i := 0 -1 g i (τ )g ⊤ i (τ )dτ ≻ 0 (100) hold for all i = 1 • • • ν, where g i (τ ) = ϕ ⊤ i (τ ) φ ⊤ i (τ ) f ⊤ i (τ ) ⊤ and κ i = d i + δ i + µ i , κ i = d i + δ i with d i ; δ i ; µ i ∈ N 0 for all i = 1 • • • ν.
Moreover, the derivatives in (6) at τ = 0 and τ = -r ν are one-sided derivatives.

Remark 12. Given the demonstration in Section ??, the conditions in Proposition 1 indicate that A i (τ ) and C i (τ ) in ( 96) can contain any L 2 function defined over

[-r i , -r i-1 ].
Now assume a regulated output z(t) = e(t) for the closed loop system in (96). Considering the approximation scheme outlined in ( 16)-( 19) and by using the decompositions in Proposition 1, the system in (96)

with z(t) = e(t) is denoted by

ė(t) = (A 0 + LC 0 ) e(t) + ν i=1 (A i + LC i ) χ(t, -1) + 0 -1 ν Row i=1 A i + L C i (g i (τ ) ⊗ I n ) χ(t, τ )dτ + (D 1 + LD 4 -D 3 )w(t), z(t) = e(t), χ(t, θ) = ν Col i=1 e(t + ŕi θ -r i-1 ) ∈ R nν , θ ∈ [-r i , -r i-1 ] (101) 
which can be further rewritten as

ė(t) = (A + LC) ϑ(t), z(t) = I n O n×(nν+nκ+q) ϑ(t), t ≥ t 0 ∀θ ∈ [-r ν , 0], e(t 0 + θ) = ψ(θ) (102) with t 0 ∈ R and ψ(•) ∈ C ([-r ν , 0] R n ), where κ = ν i=1 κ i with κ i = d i + δ i + µ i and A = ν Row i=0 A i ν Row i=1 A i Γ i √ 𝟋 i ⊗ I n ν Row i=1 A i I i E i ⊗ I n D 1 -D 3 (103) C = ν Row i=0 C i ν Row i=1 C i Γ i √ 𝟋 i ⊗ I n ν Row i=1 C i I i E i ⊗ I n D 4 (104) ϑ(t) =              e(t)
χ(t, -1)

Col ν i=1 -ri-1 -ri 𝟋 -1 i f i (τ ) ⊗ I n x(t + τ )dτ Col ν i=1 -ri-1 -ri E -1 i ε i (τ ) ⊗ I n x(t + τ )dτ w(t)              , 𝟋 i = -ri-1 -ri f i (τ ) f ⊤ i (τ )dτ, χ(t, θ) = ν Col i=1 e(t + ŕi θ -r i-1 ). ( 105 
)
Now it is clear that the synthesis conditions proposed in Section 3 can be modified to tackle the closed-loop system in (102), which leads to the following theorems and algorithm.

Theorem 3. Let all the parameters in Proposition 1 be given, then the closed-loop system (102) with the supply rate function s (e(t), w(t)) is dissipative and the trivial solution of (102) with w(t) ≡ 0 q is uniformly asymptotically stable if there exist L ∈ R n×p and P 1 ∈ S n , P 2 ∈ R n×ϱ , P 3 ∈ S ϱ with ϱ = n ν i=1 d i , and Theorem 4. Let all the parameters in Proposition 1 and {α i } 1+ν+κ i=1 be given, then the closed-loop system (102) with the supply rate function s (e(t), w(t)) is dissipative and the trivial solution of (102) with w(t) ≡ 0 q is uniformly asymptotically stable if there exist V ∈ R n×p and

Q i ; R i ∈ S n , i = 1 • • • ν such that (
P 1 ∈ S n , P 2 ∈ R n×ϱ , P 3 ∈ S ϱ with ϱ = n ν i=1 d i , and Q i ; R i ; W ∈ S n , i = 1 • • • ν such that (36)-(37) and Sy     I n Col 1+ν+κ i=1 α i I n O (q+m),n   W -I n A O n,m +   I n Col 1+ν+κ i=1 α i I n O (q+m),n   O n V C   + O n P * Φ ≺ 0 (106)
hold with A, C in (103)-( 104) and Σ = I n O n×(nν+nκ+q) , where P and Φ in (106) are in line with the structure in (43)-( 44). Finally, the observer gain is obtained via

L = W -1 V .
Proof. The proof is straightforward by letting V = LW and considering the procedures from (67) to (73) with reference to the closed-loop system in (102). Note that no congruence transformations need to be applied to derive (106) compared to the synthesis condition in Theorem 2. This is because a structure of LW can be directly obtained at (44) with the parameters in (102). Finally, note that the existence of W -1 is implied by ( 106).

■

Given what has been presented in subsection 4.1, the following iterative algorithm can be constructed for solving Theorem 3. The algorithm include solving optimization programs under the constraint

   Φ + Sy P ⊤ LC + P ⊤ LC -P ⊤ LC P ⊤ -P ⊤ L ⊤ C ⊤ -L ⊤ C ⊤ * -Z O n * * Z -I n    ≺ 0, (107) 
as part of its procedures, where the structure of P, P are given in (84), and

Φ = Sy P ⊤ A O n,m + Φ with Φ in (44) and Σ = I n O n×(nν+nκ+q) .
Algorithm 2: An inner convex approximation solution for Theorem 3 begin solve Theorem 4 with given α i to obtain an observer gain L and then solve Theorem 3 with the aforementioned L to obtain 36)-( 37) and ( 107) obtain H and 36)-( 37), ( 107) to obtain H and L; end end

H = P 1 P 2 . update H ←-H, L ←-L, solve min x,H,L tr ρ 1 [ * ] H -H + ρ 2 [ * ] L -L subject to (
L while vec(H) vec (L) - vec( H) vec( L) ∞ vec( H) vec( L) ∞ + 1 ≥ ε do update H ←-H, L ←-L; solve min x,H,L tr ρ 1 [ * ] H -H + ρ 2 [ * ] L -L subject to (

A variant of observer design

Similar to what presented in subsection 4.2, a different observer design problem can be solved by a modified version of Theorem 3, Theorem 4 and Algorithm 2 if no input and output delays are considered in

(1) and (94).

Specifically, let all the state space parameters related to input and output delays in (1) and (94) to be zero, which gives a distributed-delay system without input delays and measurement output y(t) = C 0 x(t).

Now consider the following mathematical characterization of an observer

˙ x(t) = ν i=0 A i x(t -r i ) + ν i=1 -ri-1 -ri A i (τ ) x(t + τ )dτ + ν i=0 B i u(t -r i ) + ν i=1 -ri-1 -ri B i (τ )u(t + τ )dτ - ν i=0 L i (y(t -r i ) -y(t -r i )) - ν i=1 -ri-1 -ri L i (τ ) (y(t + τ ) -y(t + τ )) dτ + D 3 w(t) (108)
in which the observer gains are

L i ; L i (τ ) ∈ R n×p for i = 1 • • • ν.
Now by utilizing the approximation scheme in ( 16)-( 19) and by adding the condition

∀τ ∈ [-r i , -r i-1 ], L i (τ ) = L i (g i (τ ) ⊗ I n ) , i = 1 • • • ν (109)
in Proposition 1 with some L i ∈ R n×pκi , i = 1 • • • ν, then the corresponding closed-loop system consisting of (1), ( 95) and a regulated output z(t) = e(t) = x(t) -x(t) is denoted by

ẋ(t) = A + LC 0 ϑ(t), z(t) = I n O n×(nν+nκ+q) ϑ(t), t ≥ t 0 ∀θ ∈ [-r ν , 0], x(t 0 + θ) = ψ(θ) L = ν Row i=0 L i ν Row i=1 L i Γ i √ 𝟋 i ⊗ I p ν Row i=1 L i I i E i ⊗ I p O n,q (110) 
with t 0 and ψ(•) in (1), where A, ϑ(t) follows the same definitions in ( 24)-( 28).

Similar to what has been presented in subsection 4.2, the following two corollaries can be derived via the modification of the constraints in Theorem 3 and 4 taking into account the structure in (110).

Corollary 3. Let all the parameters in Proposition 1 and {α i } 1+ν+κ i=1 be given and considering the condition in (109). Then the closed-loop system (110) with the supply rate function s (e(t), w(t)) is dissipative and the trivial solution of (110) with w(t) ≡ 0 q is uniformly asymptotically stable if there exist 38 be given and considering the condition in (109), then the closed-loop system (102) with the supply rate function s (e(t), w(t)) is dissipative and the trivial solution of (102) with w(t) ≡ 0 q is uniformly asymptotically stable if there exist 37 

P 1 ∈ S n , P 2 ∈ R n×ϱ , P 3 ∈ S ϱ with ϱ = n ν i=1 d i , and Q i ; R i ∈ S n , L 0 ; L i ∈ R n×p , L i ∈ R n×κip , i = 1 • • • ν such that (36)-(
P 1 ∈ S n , P 2 ∈ R n×ϱ , P 3 ∈ S ϱ with ϱ = n ν i=1 d i , and Q i ; R i ; W ∈ S n , U 0 ; U i ∈ R n×p , U i ∈ R n×κip , i = 1 • • • ν such that (36)-(
U = ν Row i=0 U i ν Row i=1 U i Γ i √ 𝟋 i ⊗ I n ν Row i=1 U i I i E i ⊗ I n O n,q , ( 112 
)
where P and Φ in (111) are in line with the structure in (43)-( 44). Finally, the observer gains are calculated via the relations

L 0 = W -1 U 0 and L i = W -1 U i and L i = W -1 U i for i = 1 • • • ν.
Proof. Replace V C with UC 0 in (111), then this corollary is derived. Note that the relation U = W L is utilized to calculate the observer gains. ■

Finally, the optimization constraints in Corollary 3 can be solved by a modified version of Algorithm 2 with the substitutions L → L, L → L, C 1 → C with more prescribed regularization parameters for the decision variables

L i ; L i ∈ R n×p , L i ; L i ∈ R n×pκi ,
where L is given in (110) and

L = ν Row i=0 L i ν Row i=1 L i Γ i √ 𝟋 i ⊗ I n ν Row i=1 L i I i E i ⊗ I n O n,q .
(113)

Observer-Based Dissipative Controller Design

Having presented the solutions of both control and observation in the previous sections, now the problem of observer-based controller design can be solved in this section. We will also demonstrate that the principle of separation is preserved by our proposed method.

Consider (1) with the observer equation in ( 95) with a controller u(t) = K x(t) which can be employed if the value of state x(t) is not measurable. The closed-loop system is expressed as

ẋ(t) ė(t) = ν i=0 A i + B i K -B i K O n A i + LC i x(t -r i ) e(t -r i ) + ν i=1 -ri-1 -ri A i (τ ) + B i (τ )K -B i (τ )K O n A i (τ ) + L C i (τ ) x(t + τ ) e(t + τ ) dτ + D 1 D 1 + LD 4 -D 3 w(t), z(t) = ν i=0 C i + B i K -B i K O 0 O n x(t -r i ) e(t -r i ) + ν i=1 -ri-1 -ri C i (τ ) + B i (τ )K -B i (τ )K O 0 O n x(t + τ ) e(t + τ ) dτ + D 2 w(t), ∀θ ∈ [-r ν , 0], x(t 0 + θ) = ψ(τ ), t ≥ t 0 . ( 114 
)
Remark 13. It is easy to see that the characteristic roots of (114) with w(t) ≡ 0 q are equivalent to the combination of the characteristic roots of ( 23) and ( 95). As a result, the separation principle holds for (114) which means that the controller and observer can be designed separately without destroying the stability of the closed-loop system in (114) with w(t) ≡ 0.

To apply the methods proposed in Section 4 and Section 5, the distributed-delays in (114) are assumed to satisfy the following assumption.

Assumption 2. There exist

f i (•) ∈ C 1 ([-1, 0] R di ), φ i (•) ∈ L 2 ([-r i , -r i-1 ] R δi ), ϕ i (•) ∈ L 2 ([-r i , -r i-1 ] R µi ), M i ∈ R di×κi , A i ∈ R n×κin , B i ∈ R n×κip , C i ∈ R m×κin , B i ∈ R m×κip and C i ∈ R p×κin with i = 1 • • • ν such that ∀τ ∈ [-1, 0], ŕi A i (ŕ i τ -r i-1 ) = A i (g i (τ ) ⊗ I n ) , ( 115 
) ∀τ ∈ [-1, 0], ŕi B i (ŕ i τ -r i-1 ) = B i (g i (τ ) ⊗ I p ) , ( 116 
) ∀τ ∈ [-1, 0], ŕi C i (ŕ i τ -r i-1 ) = C i (g i (τ ) ⊗ I n ) , ( 117 
) ∀τ ∈ [-r i , -r i-1 ], ŕi B i (ŕ i τ -r i-1 ) = B i (g i (τ ) ⊗ I p ) , ( 118 
) ∀τ ∈ [-r i , -r i-1 ], ŕi C i (ŕ i τ -r i-1 ) = C i (g i (τ ) ⊗ I n ) , ( 119 
) ∀τ ∈ [-r i , -r i-1 ], df i (τ ) dτ = M i f i (τ ), f i (τ ) = φ i (τ ) f i (τ ) , ( 120 
)
G i := 0 -1 g i (τ )g ⊤ i (τ )dτ ≻ 0 (121) hold for all i = 1 • • • ν, where g i (τ ) = ϕ ⊤ i (τ ) φ ⊤ i (τ ) f ⊤ i (τ ) ⊤ and κ i = d i + δ i + µ i , κ i = d i + δ i with d i ; δ i ; µ i ∈ N 0 for all i = 1 • • • ν.
Moreover, the derivatives in (6) at τ = 0 and τ = -r ν are one-sided derivatives.

Remark 14. Once more, the conditions in Proposition 2 indicate that A i (τ ) and C i (τ ) in ( 96) can contain any L 2 function defined over [-r i , -r i-1 ].

Again we assume that the approximation scheme in ( 16)-( 18) is employed to g i (t) in Proposition 2. Now by utilizing the decompositions in ( 116)-( 119) with ( 16)-( 18) and the relations 123) then ( 114) can be rewritten as

f i (τ ) ⊗ I n O dn * f i (τ ) ⊗ I n = K (κi,n) ⊕ K (κi,n) I n ⊗ f i (τ ) O κin * I n ⊗ f i (τ ) = K (κi,n) ⊕ K (κi,n) K 2n,κi f i (τ ) ⊗ I 2n (122) e i (τ ) ⊗ I n O dn * e i (τ ) ⊗ I n = K (µi,n) ⊕ K (µi,n) I n ⊗ e i (τ ) O µin * I n ⊗ e i (τ ) = K (µi,n) ⊕ K (µi,n) K 2n,µi (e i (τ ) ⊗ I 2n ) , (
ẋ(t) ė(t) = A + B 1 [(I 2+2ν+2κ ⊗ K) ⊕ O q ] + (I 2n ⊗ L)C Yϑ(t) z(t) = (C + B 2 [(I 2+2ν+2κ ⊗ K) ⊕ O q ]) Yϑ(t), t ≥ t 0 ∀θ ∈ [-r ν , 0], x(t 0 + θ) e(t 0 + θ) = ψ(θ) Y = I n+nu ⊕ ν i=1 (K κi,n ⊕ K κi,n ) K 2n,κi ⊕ ν i=1 (K µi,n ⊕ K µi,n ) K 2n,µi ⊕ I q (124) with t 0 ∈ R and ψ(•) ∈ C [-r ν , 0] R 2n in (1), where κ = ν i=1 κ i , κ = ν i=1 κ i with κ i = d i + δ i + µ i and κ i = d i + δ i and A = I 2 ⊗ ν Row i=0 A i I 2 ⊗ ν Row i=1 A i Γ i ⊗ I n I 2 ⊗ ν Row i=1 A i I i ⊗ I n D 1 D 1 -D 3 (125) C = ν Row i=0 (O p×n ⊕ C i ) ν Row i=1 O p×din ⊕ C i Γ i ⊗ I n ν Row i=1 O p×din ⊕ C i I i ⊗ I n D 2 (126) B 1 =   ν Row i=0 B i -B i O n,p O n,p ν Row i=1   B i Γ i ⊗ I p -B i Γ i ⊗ I p O n×dip O n×dip   ν Row i=1 B i I i ⊗ I p -B i I i ⊗ I p O n×µip O n×µip O n,q   (127) C = ν Row i=0 (C i ⊕ O m×n ) ν Row i=1 C i Γ i ⊗ I n ⊕ O m×din ν Row i=1 C i I i ⊗ I n ⊕ O m×din D 2 (128) B 2 =   ν Row i=0 B i -B i O n,p O n,p ν Row i=1   B i Γ i ⊗ I p -B i Γ i ⊗ I p O n×dip O n×dip   ν Row i=1 B i I i ⊗ I p -B i I i ⊗ I p O n×µip O n×µip O n,q   (129) ϑ(t) =             x(t) χ(t, -1) 0 -1 ν i=1 𝟋 -1 i f i (τ ) ⊗ I 2n χ(t, τ )dτ 0 -1 ν i=1 E -1 i ε i (τ ) ⊗ I 2n χ(t, τ )dτ w(t)             , 𝟋 i = 0 -1 f i (τ ) f ⊤ i (τ )dτ, χ(t, τ ) = ν Col i=1 x(t + ŕi τ -r i-1 ) e(t + ŕi τ -r i-1 ) . ( 130 
)
Given the structures in ( 124), now the results in Section 4 and Section 5 can be extended accordingly for (124) which leads to the following theorems.

Theorem 5. Let all the parameters in Proposition 2 be given. Then the closed-loop system (124) with the supply rate function in (35) is dissipative and the trivial solution of (124) with w(t) ≡ 0 q is uniformly asymptotically stable if there exist K ∈ R p×n , L ∈ R n×p and P 1 ∈ S 2n , P 2 ∈ R 2n×ϱ , P 3 ∈ S ϱ with ϱ = 2n ν i=1 d i , and 38) hold with the substitutions 2n → n and Ω

Q i ; R i ∈ S 2n , i = 1 • • • ν such that (36)-(
= A + B 1 [(I 2+2ν+2κ ⊗ K) ⊕ O q ] + (I 2n ⊗ L)C Y and Σ = C + B 2 [(I 2+ν+κ ⊗ K) ⊕ O q ] Y with the parameters A,B 1 ,C,B 2 ,Y in (125)-(129).
Due to the fact that both K and L are decision variables in Theorem 6, one variable among K, L may need to be fixed in order to apply the convex optimization approaches proposed in Theorem 2 and 3. As a result, we present the following two theorems where the first one is with a known L and the second one is with a known K. Theorem 6. Given L ∈ R n×p and the functions and parameters in Proposition 2 with {α i } 1+ν+κ i=1 ⊂ R and {β i } 1+ν+κ i=1 ⊂ R, then the closed-loop system (114) with the supply rate function in (35) is dissipative and the trivial solution of (114) with w(t) ≡ 0 q is uniformly asymptotically stable if there exists

Ṕ1 ∈ S 2n , Ṕ2 ∈ R 2n×ϱ , Ṕ3 ∈ S ϱ , ϱ = 2n ν i=1 d i and Qi ; Ŕi ∈ S 2n , i = 1 • • • ν and V ∈ R p×n such that (63)-(64) and Sy       I 2n 1+ν+κ Col i=1 (α i I n ⊕ β i I n ) O (q+m),n    X ⊕ X Π    + O n Ṕ * Φ ≺ 0 (131)
hold with the substitutions 2n → n and 129), and Ṕ and Φ are in line with the structure in (77) and (66). Finally, the value of the controller gain K is obtained via K = V X -1 .

Π = A [(I 2+2ν+2κ ⊗ X) ⊕ I q ] Y + B 1 [(I 2+2ν+2κ ⊗ V ) ⊕ O q ] Y + (I 2n ⊗ L)C (I 2+2ν+2κ ⊗ X) Y O n,m and Σ = C [(I 2+2ν+2κ ⊗ X) ⊕ I q ] Y + B 2 [(I 2+2ν+2κ ⊗ V ) ⊕ O q ] Y with the parameters A,B 1 ,C,B 2 ,Y in (125)-(
Proof. With the parameters in ( 125)-( 129), this theorem can be proved by following the procedures of the proof of Theorem 2 with modification at the steps ( 72) and (73). Specifically, here W in ( 72) is assumed to have the form

W = Col W ⊕ W, Col 1+ν+κ i=1 (α i W ⊕ β i W ) which leads to Θ = Sy     W ⊕ W Col 1+ν+κ i=1 (α i W ⊕ β i W ) O (q+m),n   -I n Π   + O n P * Φ ≺ 0 (132) 
corresponding to the step in (73). Finally, the structure of Π and Σ in this theorem is obtained by the application of congruence transformation with V = KX via the relations

(K κi,n ⊕ K κi,n ) K 2n,κi [I κi ⊗ (X ⊕ X)] = (K κi,n ⊕ K κi,n ) [(X ⊕ X) ⊗ I κi ] K 2n,κi = (K κi,n ⊕ K κi,n ) [X ⊗ I κi ⊕ X ⊗ I κi ] K 2n,κi = (I 2κi ⊗ X) (K κi,n ⊕ K κi,n ) (K µi,n ⊕ K µi,n ) K 2n,µi [I µi ⊗ (X ⊕ X)] = (K µi,n ⊕ K µi,n ) [(X ⊕ X) ⊗ I µi ] K 2n,µi = (K µi,n ⊕ K µi,n ) [X ⊗ I µi ⊕ X ⊗ I µi ] K 2n,κi = (I 2µi ⊗ X) (K µi,n ⊕ K µi,n ) Y [(I 4n+2ν+2κ ⊗ X) ⊕ I q+m ] = [(I 4n+2ν+2κ ⊗ X) ⊕ I q+m ] Y (133) 
considering the properties of commutation matrices with the structure of Y in (124). ■

On the other hand, the theorem with a fixed K ∈ R n×p is presented as follows.

Theorem 7. Given K ∈ R p×n and the functions and parameters in Proposition 2 with {α i } 1+ν+κ i=1 ⊂ R and {β i } 1+ν+κ i=1 ⊂ R, then the closed-loop system (114) with the supply rate function in (35) is dissipative and the trivial solution of (114) with w(t) ≡ 0 q is uniformly asymptotically stable if there exists P

1 ∈ S 2n , P 2 ∈ R 2n×ϱ , P 3 ∈ S ϱ , ϱ = 2n ν i=1 d i and Q i ; R i ∈ S 2n , i = 1 • • • ν and U ∈ R n×p such that (36)-(37) and Sy       I 2n 1+ν+κ Col i=1 (α i I n ⊕ β i I n ) O (q+m),n    (W ⊕ W ) Π    + O n P * Φ ≺ 0 (134)
hold with the substitution 2n → n and P, Φ are in line with the structure in (43)-( 44). Moreover,

Π = (W ⊕ W ) AY + (W ⊕ W ) B 1 [(I 2+2ν+2κ ⊗ K) ⊕ O q ] Y + (I 2n ⊗ V )CY O n,m and Σ = CY + B 2 [(I 2+2ν+2κ ⊗ V ) ⊕ O q ] Y with the parameters A,B 1 ,C,B 2 ,Y in (125)-(129). Finally, the value of L is obtained via L = W -1 U .
Remark 15. Though one variable among K and L has to be fixed in order to apply Theorem 6 or Theorem 7, the required values can be simply provided by solving Theorem 1 and Theorem 2 individually based on the separation principle we have proved in this section.

The proposed methods in Theorem 6 and Theorem 7 do not give a solution of simultaneously dissipative controller and observer design. To overcome this drawback, the following iterative algorithm is proposed based on the idea in Algorithm 1 and 2, where ρ 1 > 0, ρ 2 > 0, ρ 3 > 0, ε > 0 are given constant and the procedures of the algorithm require the constraint  If the delays of the inputs of (1) or the outputs of (94) are not considered, then one can modify the results proposed in this section, considering what has been presented in Corollaries 1-4, to construct new synthesis conditions with the controller in (88) or the observer in (108). Note that the formulation of such synthesis conditions needs to take into account the assumptions in ( 89) or (109).

   Φ + Sy P ⊤ K + P ⊤ K -P ⊤ K P ⊤ -P ⊤ K ⊤ -K ⊤ * -Z O n * * Z -I n     ≺ 0 (135) in which K = B 1 [(I 2+2ν+2κ ⊗ K) ⊕ O q ] + (I 2n ⊗ L)C and K = B 1 I 2+2ν+2κ ⊗ K ⊕ O q + (I 2n ⊗ L)C with K, K ∈ R

Numerical examples

In this section, we present four subsections with numerical examples to demonstrate the effectiveness of our proposed methodologies. All the tests in this section are conducted in Matlab using Yalmip [START_REF] Löfberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF] as the optimization interface, and SDPT3 Toh et al. (2012) as the numerical solver for semidefinite programmings.

Stability and dissipativity analysis of systems with pointwise delays

The aim of this subsection is to compare our proposed method against the SoS methodologies presented in Peet ( 2013 

Stability and dissipativity analysis with distributed-delays

Consider a system of the form (1) with r 1 = 2, r 2 = 4.05 and the state space matrices with n = m = 2, q = 1. We find out that the system with ( 136) is stable indicating by the numerical results calculated by the Matlab toolbox of the spectral method in [START_REF] Breda | Stability of linear delay differential equations: A numerical approach with MATLAB[END_REF]. Moreover, we consider γ > 0, J 1 = -γI 2 , J = I 2 , J 2 = 0 2 , J 3 = γ (137)

for the parameters in (35) where γ is the objective to be minimized as the L 2 gain performance criterion for the system. in Proposition 1 to characterize the distributed-delay terms in (136), which corresponds to

M 1 = 0 ⊕ O d d i=1 18i - d i=1 18i O d , M 2 = 0 ⊕ O δ δ i=1 18i - δ i=1 18i
O δ (139) in ( 6). Now by the functions in ( 138) with (11), we can construct

A 1 = r 1 O 2 0 -0.3 0 0 O 2 3 0 0 3 O 2×(4d-2)
A 2 = r 2 0 0 0 0 0.5 0 0 0 O 2×2δ+2 -10 0 0 -10 O 2×2δ-2

C 4 = r 1 O 2×4 0.1 ⊕ 0 O 2×4d , C 5 = r 2 O 2×4 0.2 ⊕ 0.1 O 2×4δ (140) 
for the distributed-delay terms in (136).

Even one assumes the method in [START_REF] Münz | Robust stabilization and H ∞ control of uncertain distributed delay systems[END_REF] can be extended to handle systems with multiple delay channels, it still cannot be applied here given that A 1 is not a Hurwitz matrix. In addition, since ϕ 1 (τ ) = ϕ 2 (τ ) does not satisfy the "differentiation closure" property in [START_REF] Feng | Stabilization of uncertain linear distributed delay systems with dissipativity constraints[END_REF], thus the problem of dissipativity and stability analysis may not be solved by a simple extension of the corresponding conditions in [START_REF] Feng | Stabilization of uncertain linear distributed delay systems with dissipativity constraints[END_REF] for a linear CDDS, even a multiple distinct delays version of the method in [START_REF] Feng | Stabilization of uncertain linear distributed delay systems with dissipativity constraints[END_REF] is derivable.

Now apply Theorem 1 with the parameters in ( 136)-( 140) and ( 16)-( 19) where the matrices in Γ 1 , Γ 2 , E 1 , E 2 and F d , Fδ in ( 16)-( 19 On the other hand, let f (τ ) = j 0,0 d (τ ) 0 -r1 = Col d i=0 j 0,0 k (τ ) 0 -r1 and f (τ ) = j 0,0 d (τ ) -r1 -r2 = Col d i=0 j 0,0 k (τ ) -r1 -r2

which are Legendre polynomials associated with Fd = r -1 1 D d and Fδ = r -1 3 D δ . (See (??) for the definition of orthogonal polynomials) The characteristics of the functions in φ 1 (τ ) = φ 2 (τ ) indicate that they might be very difficult to be approximated by polynomials. Indeed, let d = δ = 15 with the corresponding A 4 ,A 5 and C 4 ,C 5 . In this case, Theorem 1 yields no feasible solutions.

Conclusion

We have proposed new solutions for the dissipative control and observation of a general linear delay system where the number of delays is unlimited. Moreover, both distributed and pointwise delays are included by the system's model at the state, input and output, where the distributed-delay kernels can be any L 2 function. Because of the generality of the considered control and observation problems, the proposed methods can be considered as a milestone of the LMI-based solutions for linear delay systems similar to the LMI approach for an LTI delay-free system. The novelty and contribution of our approach are rooted in the proposed decompositions-approximation scheme to handle the distributed-delay functions, which allows one to construct a KF whose integral terms can be independent of the distributed-delay kernels. The nonconvexity in the proposed synthesis conditions in Theorem 1,3 and 5 can be solved by the proposed Algorithm 1-3, respectively, where the iterative algorithms can be initiated by feasible solutions of the convex synthesis approaches in Theorem 2, 4, 6 and 7. Moreover, we have also demonstrated in Corollary 1-4 that the

  2n+nν+κn),(q+m) I q+m = I 2n+nν+κn O (2n+nν+κn),(q+m) Υ = O (2n+nν+κn),(q+m) , Υ = I 2n+nν+κn O (2n+nν+κn),(q+m) ⊥ = O (2n+nν+κn),(q+m) I q+m (70) which satisfy rank -I n Π = n and rank I 2n+nν+κn O (2n+nν+κn),(q+m) = 2n + nν + κn, imply that the matrix terms in (70) can be utilized with Projection Lemma (Lemma 4) given the rank nullity theorem.

  80) with B = B 1 O n,m and Φ = Sy P ⊤ A O n,m +Φ, where P is given in (43), and A and B 1 are given in (24)-(25), and H := P 1 P 2 with P 1 and P 2 in Theorem 1. Note that there are no products between decision variables in Φ in (80), thus Φ contains no non-convexities. Considering the results of Example 3 in[START_REF] Dinh | An inner convex approximation algorithm for BMI optimization and applications in control[END_REF], one can conclude that ∆ • , G, • , Γ , which is defined as

  36)-(38) hold with the variable assignment Ω = A + LC and Σ = I n O n×(nν+nκ+q) , where A and C are given in (103)-(104). Proof. Substituting Ω = A + LC and Σ = I n O n×(nν+nκ+q) into (38) yields this theorem. ■ Again the corresponding conditions in Theorem 3 are bilinear because of the product term P ⊤ Π with Ω = A + LC. Hence the following theorem is derived based on what has been proposed in Theorem 2.

  ) hold with Ω = A + LC 0 and Σ = I n O n×(nν+nκ+q) where A, L are given in (103) and (110), respectively. Proof. Let Ω = A + LC 0 and Σ = I n O n×(nν+nκ+q) in (38), then this corollary is derived, where A, L are given in (103) and (110), respectively. ■ Corollary 4. Let all the parameters in Proposition 1 and {α i } 1+ν+κ i=1

  hold with A in (103) and Σ = I n O n×(nν+nκ+q) and

  p×n and L, L ∈ R n×p .Algorithm 3: An inner convex approximation solution for Theorem 5 begin solve Theorem 2, 4 individually with given α i to obtain a controller gain K and an observer gain L, then solve Theorem 3 with the aforementioned K, L to obtainH = P 1 P 2 . update H ←-H, K ←-K, L ←-L solve min x,H,K,L tr ρ 1 [ * ] H -H + ρ 2 [ * ] K -K + ρ 3 [ * ] L -L subject to (36)-(37) and (135)to obtain H, K and L while Col [vec(H), vec (K) , vec (L)] -Col vec( H), vec( K), vec( ρ 1 [ * ] H -H + ρ 2 [ * ] K -K + ρ 3 [ * ] L -L subject to (36)-(37) and(135) to obtain H, K and L;

  ); Peet et al. (2009); Peet (2019); Peet & Gu (2019a,b); Peet (2020); Wu et al. (2019), which represents one of the newest trends of time-domain methods based on the application of sum-of-square programming.

C 1

 1 (τ ) = 0.1 ⊕ 0, C 2 (τ ) = 0.2 ⊕ 0.1 (136)

  By observing the functions in the distributed-delays in (136), let φ 1 (τ ) = φ 2 (τ ) = [] 0×1 and ϕ 1 (τ ) = ϕ 2 (τ ) = e sin(18τ )e cos(18τ ) , f 1 (τ

  ) are calculated computationally via the function vpaintegral in Matlab which can ensure high-numerical precisions. With d = δ = 1 a feasible result can be produced with min γ = 0.64655 which requires 196 decision variables. With d = δ = 2, we obtain feasible solutions with min γ = 0.32346 requiring 376 variables. Finally, with d = δ = 10 our method can produce feasible solutions with min γ = 0.31265 with 4120 variables. It is worthy to mention that even with d = δ = 10 which is a relatively large value, the duration of the calculations of Γd , Γδ , Éd , Èδ and Fd , Fδ by vpaintegral is still acceptable (about a minute).

The synthesis schemes inApkarian et al. (2018);Apkarian & Noll (2018) are developed for infinite-dimensional linear systems, hence it may be applied to design a controller for a linear system with delays whenever it is applicable.

Note that √ X -1 = ( √ X ) -1for any X ≻ 0 based on the application of eigendecomposition of X ≻ 0

See Theorem 7.2.10 in[START_REF] Horn | Matrix Analysis. 2 edn[END_REF] for more information

∞(59)

This is the mathematical description of the observer taking into account disturbance stem from uncertainty factors such as the environment of implementation.

aforementioned propositions can be further modified to cope with variant control and observation problems when input or output delays are absent. In Part II of this paper, the methods in Part I are extended to cope with the control and observation problems of linear systems with both state and input delays compensated by predictor-like controllers or observers.