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Ranking Online Social Users by their Influence
Anastasios Giovanidis, Bruno Baynat, Clémence Magnien, and Antoine Vendeville

Abstract—We introduce an original mathematical model to
analyse the diffusion of posts within a generic online social plat-
form. The main novelty is that each user is not simply considered
as a node on the social graph, but is further equipped with
his/her own Wall and Newsfeed, and has his/her own individual
self-posting and re-posting activity. As a main result using our
developed model, we derive in closed form the probabilities that
posts originating from a given user are found on the Wall and
Newsfeed of any other. These are the solution of a linear system of
equations, which can be resolved iteratively. In fact, our model is
very flexible with respect to the modelling assumptions. Using the
probabilities derived from the solution, we define a new measure
of per-user influence over the entire network, the Ψ-score, which
combines the user position on the graph with user (re-)posting
activity. In the homogeneous case where all users have the same
activity rates, it is shown that a variant of the Ψ-score is equal
to PageRank. Furthermore, we compare the new model and its
Ψ-score against the empirical influence measured from very large
data traces (Twitter, Weibo). The results illustrate that these
new tools can accurately rank influencers with asymmetric (re-
)posting activity for such real world applications.

Index Terms—online social network, PageRank, influence,
model, Markov chain, graph, Twitter, Weibo.

I. INTRODUCTION

ONline Social Platforms (OSPs) play a major role in the
way individuals communicate with each other, share

news and get informed. Today such platforms host billions
of user profiles. Although OSPs differ from one another, most
of them share a common structure, which allows users to post
messages on their Wall and read posts of others on a separate
Newsfeed. Most OSPs also permit re-posting from Newsfeed
to Wall, in order to facilitate information diffusion. With each
re-post (or “share”, or “re-tweet”) the information becomes
visible to a new audience, which may choose to adopt it or not,
thus spreading further the post or halting its diffusion. In this
way, posts originally generated by some user circulate inside
the social network [2]. When the post is gradually adopted by
a considerable proportion of the users, we see large cascades
of information appear, and we call such posts “viral” [3].

Understanding how information spreads through OSPs is
very important as it affects the opinion of the population over
several subjects of every-day social life. Companies want to
determine the set of most influential users (“influencers”) for
better marketing of their products [4], and they would like to
predict information cascades [5]. Such research is critical also
because spreading of influence can have malevolent purposes
instead [6], such as the spread of misinformation (“fake
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news”). To be able to develop defence mechanisms against
such social attacks, a concrete mathematical analysis of post
diffusion through OSPs is necessary.

Existing literature on the topic has mainly focused on
models for opinion dynamics that take only the social graph as
input. These include the voter model [7], the SI(R) [8, Ch. 17],
the threshold and cascade models [4], bootstrap percolation
[9], and the DeGroot [10] model, among others. In each
of these, the social graph structure together with simplified
user interaction, has been assumed sufficient to describe the
diffusion of a single opinion. However, the authors of the
highly cited paper about the “million follower fallacy” [11],
argue that graph topological measures alone reveal very little
about the true influence of a user in a platform; they use large
traces from Twitter to support their claim. The authors in [12]
further use Facebook data to identify real indicators of user
interactions, beyond social links. Our paper has the ambition
to fill this gap between analysis and data-driven conclusions
by introducing a new dynamic model which combines the
information over the social graph together with user activity
and the OSP structure, in order to explain more accurately
how posts from different origins diffuse and compete among
each other inside the social platform.

Viral marketing wants to identify users with high social
influence [4]. To this aim, users are ranked based on certain
impact measures, which mainly depend on user graph position
(e.g. number of follower links), similar to the existing opinion
models discussed above. For example, [8, Ch. 7] presents
degree, eigenvector and Katz centrality, as well as PageRank
score [13], and [14] alternatives for large-scale graphs. We
claim that such measures are not suitable to rank the influence
of social users, because they do not include user activity,
or OSP structure and they will hence mislead when used to
identify “influencers”. We propose instead a new Ψ-score to
rank users, based on our proposed model.

A. Main Contributions and Paper Structure

Our main contributions are summarised as follows:
• The entire OSP is described as a continuous-time Markov

chain. This model is original in the sense that it combines
(i) the social graph, with (ii) dynamic user posting
and re-posting activity, and incorporates elements of
(iii) the platform structure (Walls, Newsfeeds and the
Newsfeed suggestion algorithm). The model can include
various Newsfeed mechanisms (First-In-First-Out (FIFO),
Random, Time-To-Live (TTL)) and user post sharing
behaviour. Also, competition among posts to gain the
user’s attention on the Newsfeed is naturally included.

• By analysing the above chain we result in a linear
system of equations, which exactly describes the chain’s
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behaviour in steady-state (Theorem 1, Theorem 2). This
has as unknown variables the influence of a given user
on the Wall and Newsfeed of any other. This system
actually consists of the balance equations of posting
activity on each Wall and Newsfeed and can be solved for
an arbitrary input graph and arbitrary user activity rates.
Theorem 3 provides its solution.

• An iterative method (Theorem 4) proposed to compute
the system solution facilitates numerical implementation.
It allows to implement a sparse algorithm, which scales
well as the size of the social graph increases.

• The solution gives rise to a new way to rank OSP users by
their influence. We call the new ranking metric, the “Ψ-
score”. The performance of our model and the Ψ-score is
tested on two large real-world traces from famous social
platforms, one from Twitter and another from Weibo.

• We prove in Theorem 5 that in the homogeneous activity
case where all users post and repost with the same rate
a variant of the Ψ-score coincides with PageRank.

The implementation code is made available online [15].
The paper is organised as follows. The social platform

under study and the performance metrics of interest are
introduced in Section II. The Markovian model describing the
generic OSP and its balance equations are given in Section
III. Here, we explain how these linear equations naturally
constitute the Newsfeed and Wall balance equations, and show
their exactness and general validity. The system’s closed-form
solution is provided in Section IV. In the same section we
provide an iterative method that is computationally cheap
and converges to this solution. In Section V we discuss
relations with PageRank. The ranking algorithm based on
the Ψ-score and its implementation for large data-traces is
detailed in Section VI. Extended numerical experiments using
synthetic data in Section VII verify the model’s validity and
robustness over modelling assumptions. Massive real-world
traces from Twitter and Weibo are used to evaluate the Ψ-
ranking and the sparse algorithm, in Section VIII. Our Ψ-
ranking is further compared for these traces against standard
user ranking metrics (number of followers, PageRank, and user
posting rate). Conclusions are drawn in Section IX. The proof
of exactness (Theorem 1) is made available in the Appendix.

B. Related Literature

In most relevant research on opinion dynamics, individuals
are seen as agents whose relation is described by a social
graph. Each agent has a certain opinion and at each step
this opinion is updated through interaction with his/her direct
peers. Such models can be grouped into two general cate-
gories.

1) Dynamics with Binary opinions: There are only two
possible opinions that agents can take. A large amount of
work descends from the voter model [7], where opinion
dynamics are based on imitation. The work in [16] studies
a variation that includes agents with persisting opinions. For
further extensions, see also [17], [18]. Another group of work
is related to epidemic spread. An agent is “susceptible” when
his/her opinion is 0 and becomes “infected” when he/she

adopts opinion 1, through social interaction [8]. In [4] two
opinion update mechanisms are studied: the threshold and the
cascade.

2) Dynamics with Continuous opinions: Several works in
the literature have inherited and extended the original model
of DeGroot [10]. In this, each agent updates his/her continuous
opinion by forming per-step a weighted linear combination of
the current opinions of his/her peers. Variations of this model
consider the inclusion of persistent agents [19]. In [20] this
update mechanism is used to formulate and solve an opinion
manipulation problem. To account for more realistic social
behaviour, the authors in [21] consider opinion dynamics
where agents interact in pairs only when their opinions are
already close.

Data, OSPs, and Cascades: Instead of modelling opinion
dynamics, recent works rather use available data to inves-
tigate more practically how posts spread within OSPs. The
authors in [2] describe diffusion patterns that arise in specific
online domains. Data analysis of large Facebook cascades is
performed in [3]. Interestingly, the authors in [5] propose ways
to predict cascade growth using machine learning tools. The
insufficiency of using graph-based only information to evaluate
user influence is studied in [11] and [12].

User activity: In [22] the authors identify user activity as
an important control tool for influence maximisation. Making
extensive use of datasets, they study the appropriate times for
a user to post or re-post in an OSP in order to maximise
the probability of audience response. An interesting analytical
effort to relate user activity with OSP design and post diffusion
is made in [23]. The authors use temporal point processes to
model posting and re-posting activity of a user. They highlight
the importance of the Newsfeed in post propagation and map
user activity to post visibility, building on the idea that a
post can be adopted by a follower when it is visible on
his/her Newsfeed and not pushed away by competing posts.
Their model, however, treats only a single user Newsfeed
and does not consider the dynamics of the entire social
graph. Furthermore, the dynamics of the Newsfeed list are
inaccurately mimicked by a FIFO queue. Another relevant line
of research includes [24] and [25], where the authors study
the bias of Facebook’s News Feed algorithm. They consider a
bipartite graph of a set of users following a set of publishers,
and model post activity as Poisson. Newsfeeds are here again
approximated by infinite queues with TTL or FIFO service.

Compared to these works, we propose here a more correct
and complete OSP model; we accurately model Newsfeeds
as lists, we consider here an arbitrary graph of any size and
include re-posting – among other realistic features. Finally, we
verify our model’s validity by large real-world data traces.

II. SYSTEM DESCRIPTION

Let us first describe a generic social network platform, such
as Facebook, Twitter or Weibo. A set of users generate and
share some content, denoted as posts, through the platform.
Each user has a list of followers and a list of leaders. A
user can simultaneously be follower and/or leader of others.
As a follower, he/she is interested in the content posted
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by his/her leaders. With each user two lists of posts are
associated, namely a Newsfeed and a Wall. A user’s Newsfeed
is constantly fed by the content that all of his/her leaders post
on their Walls. A user’s Wall is fed (i) by his/her self-generated
posts that draw influence from the “outside world”, and (ii)
by posts that he/she shares from his/her Newsfeed. Hence, a
user’s Wall is a list of self-posts and re-posts. The generic
social network platform is illustrated in Figure 1.

A. Assumptions on the system and notations

We consider a constant number N of active users, forming
the set N . Users are labelled by an index n = 1, . . . , N .
We denote by F (n) and L(n) the list of followers and the
list of leaders of user n. Without loss of generality, we draw
the directed Follower-graph G = (N , E). Each pair of nodes
(j, i) ∈ E , corresponds to a directed edge from j to i, when j
is a follower of i, i.e., j ∈ F (i). Such graph points to leaders.
We denote by F the N×N adjacency matrix of the Follower-
graph, whose coefficients are given by: fj,i = 1{j∈F(i)},
where 1{.} is the indicator function. We assume that each user
n has at least one leader, L(n) 6= ∅, ∀n. The Leader-matrix is
by definition L := FT , so that `i,j = fj,i. Note, that the case
of self-loops is excluded, i.e. `i,i = fi,i = 0, ∀i ∈ N .

The sizes of both Wall and Newsfeed are considered to be
constant. We thus fix K ≥ 1 the size of a Wall (total number
of posts on the Wall of each user) and M ≥ 1 the size of a
Newsfeed. This is reasonable if we assume that only a certain
number of most recent posts is considered relevant, and users
don’t tend to scroll down to access older posting history.

We denote by λ(n) [posts/unit time] the rate with which
user n generates new posts on his/her Wall, and by µ(n) the
rate with which user n visits his/her Newsfeed and selects
one of the M entries to re-post on his/her Wall (note here
that each visit implies re-posting). As a result, posts arrive on
the n-th Wall with a total rate λ(n) +µ(n) [posts/unit time].
Additionally, we make the assumption that content posted on
a users’s Wall instantaneously appears on the Newsfeeds of
his/her followers. As a result, the input rate of posts in the n-
th Newsfeed, is

∑
j∈L(n)(λ(j) +µ(j)). Given that the two lists

associated per user have fixed size, then with each new entry
one element has to be removed from the list and replaced by
the new one. For the user activity we require λ(n) +µ(n) > 0,
∀n.

Finally, any post originally generated by a given user n
takes as label the author’s index n, and will keep this label
throughout its lifespan inside the network.

B. Influence metric of interest

The aim is to estimate the influence of a specific user, say
user i, over the entire network. In order to define the metric
of interest, we first define the influence of user i on user n,
denoted by q(n)i , as the expected percentage of posts of origin
i found on the Wall of user n. They obviously satisfy for each
Wall n,

∑N
i=1 q

(n)
i = 1, ∀n. We can also interpret q(n)i as

the probability that, when picking at random a post from Wall
n, this post is of origin i. These performance quantities will

News 
feed

User n

Wall

Wall Wall Wall

User i User j User k

Leaders of
user n

Re-post

Self-post

λ( j) +µ( j)λ(i) +µ(i) λ(k) +µ(k)

… …

λ(n)

µ(n)
KM

Fig. 1. The social platform from the point of view of user n.

be the output of the developed models. With the above, we
propose the following metric of influence,

Ψi =
1

N − 1

∑
n 6=i

q
(n)
i ∈ [0, 1] . (1)

It corresponds to the average percentage of posts of origin i
on the Walls of any user n 6= i. The suggested metric averages
over all users in the network, but excludes the original user i.
It holds

∑N
i=1 Ψi < N/(N−1). Although the defined measure

is somewhat natural, we will see that a similar measure

Ψ̃i =
1

N

N∑
n=1

q
(n)
i = (1− 1

N
)Ψi +

1

N
q
(i)
i , (2)

which does not exclude self-influence is very important, as it
coincides with PageRank in the homogeneous activity case
λ(n) = λ and µ(n) = µ for all n (see Theorem 5). For
this variation

∑N
i=1 Ψ̃i = 1. Other metric definitions are also

possible. As an example, we could use the probability to find
at least one post of label i on the Wall of user n. This is
equal to 1− (1−q(n)i )K , where the independence among slots
holds for specific user behaviour and post replacement policies
(e.g. random selection/eviction) as we will see next. Based
on this we can define an alternative metric. In any case, by
associating an influence score to each user, the social users
can be ranked by decreasing order of their influence. From
now on, we will call the expression in (1) (resp. (2)) which
quantifies the influence of a user in the platform, the Ψ-score
(resp. Ψ̃-score) of user i. In this work we will focus only on
this metric, leaving others for future investigations.

III. MODEL

A. Markovian model

The model relies on the following assumptions:
• Poisson arrivals. For any user n the generation of new

posts on his/her Wall follows a Poisson process with rate
λ(n) and the re-posting activity from his/her Newsfeed
follows a Poisson process with rate µ(n).

• Random selection. When a user visits his/her own News-
feed, we assume that he/she selects at random one of the
M entries to re-post on his/her Wall.

• Random eviction. A novel entry on the Wall or Newsfeed
list will push out an older entry of random position.
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Thanks to these assumptions, the resulting models devel-
oped in the following are Markovian. Indeed, all inter-arrival
times between posts and re-posts are exponential and all
choices are probabilistic. The random selection/random evic-
tion policy will be assumed throughout the solution process
to derive the Newsfeed and Wall balance equations. Random
selection models the case where users pick a post at random
from their Newsfeeds, i.e. without order of preference. We
will show later that our solution is actually robust to other
selection choices, like the newest selection where a user always
picks up the object from the top of his/her Newsfeed list
(see Section III-G). Random eviction can model platforms
which put new posts to Newsfeeds (and less realistically to
Walls) in a random order. This could model the Facebook
News Feed, where content curation algorithms decide the order
of content appearance based on some background machine
learning algorithms. In Twitter, however, both Newsfeeds and
Walls normally show posts in a First-In-First-Out fashion,
so the appropriate policy in this case would be the FIFO
eviction i.e., the oldest object is removed from the list and
the fresh content is placed at the top. We will show in
Section III-G that this eviction policy (and others) satisfies the
same balance equations as the random one. Alternative options
for the selection and eviction policies will be compared to our
solution by simulation in Section VII-B. Generalisation of our
solution to realistic user behaviour or Newsfeed mechanisms
is an important topic for future research.

B. Detailed model

The full state-description for this system is an N-tuple
U := (U(1), . . . ,U(N)), where U(n) = (x(n),y(n)) is the
state of user n (at a given time t, omitted in notations for
sake of clarity). x(n) is the state of his/her Newsfeed and
y(n) the state of his/her Wall. The random eviction and
random selection assumptions allow to describe the system-
state evolution without using information over the order of
posts in the lists. Then, x(n) = (x

(n)
1 , . . . , x

(n)
N ), where x(n)i

counts the number of posts with user-origin i found on the
Newsfeed of user n. Similarly, y(n) = (y

(n)
1 , . . . , y

(n)
N ), where

y
(n)
i counts the number of posts with origin i found on the

Wall of user n.
With all the assumptions described in Section III-A, the

stochastic process with full state U is a continuous-time
Markov chain model with finite state-space. This process
obtains a unique stationary distribution. However, even for
very small values of the system parameters the number of
states will be enormous, whereas the state of a user’s Newsfeed
and Wall is coupled with the state of other users. As a
result, any numerical method to find the solution, would be
computationally intractable. For this reason we first introduce
in the next subsections a state aggregation and a simple
decoupling of the state-space that considerably reduce the
solution complexity. Following that, we prove that the resulting
balance equations we find are exact for the detailed model.

It is important to understand where the coupling between
states of different users appears in the detailed model, before
presenting the aggregated and decomposed model. Consider

user n and focus on label i posts. A leader k of user n will
re-post from his/her own Newsfeed to his/her own Wall a post
of label i with probability x(k)i /M , due to the random selection
policy. This post will appear immediately on the Newsfeed of
user n, thus changing its state x(n). Hence, the evolution of
the state of user n depends not only on his/her own current
state and on his/her own activity, but also on the current states
of his/her leaders (in this example x(k)i ).

Note here that the Markov process which describes the
evolution of system state U is non-reversible [27]. To see this,
we can use a simple example, given in Appendix A.

C. State aggregation

To simplify the solution process we first need to describe
the state-space in a more compact way. To do so, we focus on
posts from a particular user i and calculate the influence of this
user i on the entire network. Of course, one can successively
apply the technique to all i = 1, . . . , N in order to determine
eventually the influence and Ψ-scores of everyone.

The state aggregation is as follows. On all N Walls and
N Newsfeeds we consider only two types of posts; those of
origin i, and those issued from other users labelled as −i.
In other words we aggregate the effect of all users except i.
Remember that the detailed state of user’s n Newsfeed was the
N -dimensional vector x(n). By applying the state-aggregation
this is now described by (x

(n)
i , x

(n)
−i ), whose sum is equal to

the Newsfeed size M , so that x(n)−i = M−x(n)i . As a result, the
state of the Newsfeed of user n is reduced to a single integer
x(n) = x

(n)
i with values ranging from 0 to M . Similarly, the

state of user n’s Wall becomes also 1-dimensional y(n) = y
(n)
i

with values ranging from 0 to K.

D. Decomposition by mean-field approximation

After state aggregation, the states (x
(n)
i , y

(n)
i ) of different

users n are always coupled among each other. We decom-
pose here the state-description, to obtain 2N independent 1-
dimensional Markov Chains, each one associated with the
Newsfeed and the Wall of a user. To do so, we use a
“mean-field” approximation [26]: for a given user n, the state
transitions of his/her Newsfeed and Wall will still be a function
of his/her own current state and activity, as well as the activity
of all of his/her leaders. But they will not depend anymore on
the current Newsfeed and Wall states of the user’s leaders
x
(k)
i (t), y(k)i (t) but rather on their average probabilities in

steady-state, which at this stage are unknown values.
More precisely, let us consider user n. We denote by p

(n)
i

the steady-state probability for a post on Newsfeed n to be of
label i, i.e., to originate from user i. Similarly, we have already
defined in Section II-B q

(n)
i as the steady-state probability for a

post on the Wall of user n to be of label i. These quantities for
n = 1, . . . , N are the model unknowns after aggregation. Note
that these probabilities are actually the ergodic means of the
related user states, i.e., p(n)i = E[

X
(n)
i

M ] and q(n)i = E[
Y

(n)
i

K ].
We distinguish here between the Newsfeed and Wall of user

i (particularized user) and the Newsfeeds and Walls of users
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n = j 6= i. Consider the Newsfeed of user j; the state x(j)i
can evolve as follows:

x
(j)
i

f
(j)
+ (x

(j)
i )

−→ x
(j)
i + 1 & x

(j)
i

f
(j)
− (x

(j)
i )

−→ x
(j)
i − 1.

In the above f (j)+ and f (j)− are the transition rates between the
states, respecting the range 0 to M . The rate f (j)+ (x

(j)
i ) is

f
(j)
+ =

λ(i)1{i∈L(j)} +
∑
k∈L(j)

µ(k)p
(k)
i

M − x(j)i
M

. (3)

Indeed, λ(i) is the rate with which user i generates a new
own post on his/her Wall, post that instantaneously appears
on the Newsfeed of user j, if i ∈ L(j). A post of label i can
as well appear in the Newsfeed of j through re-posting. This
occurs when one of the j’s leaders visits his/her own Newsfeed
and re-posts a label i post on his/her own Wall. For leader k
such event occurs with rate µ(k) x

(k)
i

M , following the random
selection policy. We propose that µ(k)p

(k)
i is an estimation of

this rate and this is where the “mean-field” approximation
that decomposes the state-space lies. Finally, M−x(j)

i

M is the
probability that an incoming post (with label i) replaces an
old post of label −i, by the principle of random eviction.

The rate f (j)− (x
(j)
i ) is defined in a similar manner as

f
(j)
− =

 ∑
k∈L(j),k 6=i

λ(k) +
∑
k∈L(j)

µ(k)(1− p(k)i )

 x
(j)
i

M
. (4)

As a consequence, the rate transitions from x
(j)
i to +1 or −1

depend only on the current state of Newsfeed j and not that
of its leaders. We can thus describe x(j)i as a 1-dimensional
Markov Chain. Similar arguments hold for the Newsfeed state
of user n = i. These simple Markov Chains are shown at
the top part of Figure 2. From the stationary probabilities
of the chain for Newsfeed n, we can derive the steady-state
probabilities p(n)i :

p
(n)
i =

M∑
x
(n)
i =0

π(x
(n)
i )

x
(n)
i

M
. (5)

Observe that the unknown probabilities p(n)i depend on the
steady-state solution of the 1-dimensional Markov chain,
whose transition rates depend in their turn on the probabilities
p
(.)
i (see e.g. (3)). As a result, the probabilities p(n)i result from

the solution of a fixed-point problem.
For the Walls of users we can follow a similar process. In

the Wall of user j 6= i, the state y(j)i can evolve as follows:

y
(j)
i

g
(j)
+ (y

(j)
i )

−→ y
(j)
i + 1 & y

(j)
i

g
(j)
− (y

(j)
i )

−→ y
(j)
i − 1.

In the above g(j)+ and g(j)− are the transition rates between the
states, respecting the range 0 to K. The rate g(j)+ (y

(j)
i ) is

g
(j)
+ (y

(j)
i ) = µ(j)p

(j)
i

K − y(j)i
K

. (6)

Indeed, the state of posts i on the Wall of user j 6= i can only
evolve by reposting. Such posts enter the Wall j with average

rate µ(j)p
(j)
i , because the user re-posts with rate µ(j) and has

p
(j)
i probability to choose posts of label i, due to random

selection. This is again the “mean-field” approximation. The
incoming post will replace an old post of label −i with
probability K−y(j)i

K due to random eviction. The corresponding
rate g(j)− (y

(j)
i ) is defined in a similar fashion. Hence, the state

evolution of posts i on the Wall of user j can be described
by an independent 1-dimensional Markov Chain. We proceed
similarly for the Wall of user n = i. These simple Markov
chains are illustrated in detail at the bottom part of Figure 2.
From the stationary probabilities of the chain associated with
user’s n Wall, we can derive the q(n)i :

q
(n)
i =

K∑
y
(n)
i =0

π(y
(n)
i )

y
(n)
i

K
. (7)

Note from (6) and Fig. 2 that the Wall probabilities q(n)i do
not result from a fixed-point solution, because they are directly
expressed as a function of the Newsfeed probabilities p(n)i .

E. Derivation of the balance equations

Here we further develop and simplify the equations (5) and
(7). We first consider the Markov chain associated with the
Newsfeed of user n = j 6= i (see top right part of Fig. 2). To
solve this birth-and-death process we define the quantity

τj :=
λ(i)1{i∈L(j)} +

∑
k∈L(j) µ(k)p

(k)
i∑

k∈L(j),k 6=i λ
(k) +

∑
k∈L(j) µ(k)(1− p(k)i )

.

Note that τj depends on all probabilities p(k)i for k ∈ L(j).
The steady-state probability of the Markov chain associated
with the Newsfeed of user j can then be derived using τj (see
[27, Section 1.3, eq.1.9] and transition rates in Fig. 2):

π(x
(j)
i ) = π(0)

(
M

x
(j)
i

)
τ
x
(j)
i

j ,

where π(0) is obtained by normalization (thanks to the Bino-
mial formula):

π(0) =
1

(1 + τj)M
.

Then, applying this result in (5) we get:

p
(j)
i =

1

(1 + τj)M

M∑
m=1

(
M
m

)
τmj

m

M

m′:=m−1
=

τj
(1 + τj)M

M−1∑
m′=0

(
M − 1
m′

)
τm
′

j

Binomial
=

τj
1 + τj

.

By replacing the expression for τj , we obtain the following
very simple expression for posts of origin i in the Newsfeed
of user j. The fixed-point is now visible: ∑
k∈L(j)

(
λ(k) + µ(k)

) p(j)i = λ(i)1{i∈L(j)}+
∑
k∈L(j)

µ(k)p
(k)
i .

(8)
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User i

yi
(i)yi
(i) yi

(i) +1yi
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(i)

K
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xi
(i)xi
(i) xi
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(i) −1xi
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Newsfeed µ(k ) pi
(k )

k∈L( i )
∑
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(i)

M

λ (k ) +µ(k ) 1− pi
(k )( )⎡

⎣⎢
⎤
⎦⎥

k∈L( i )
∑

xi
(i)

M

yi
( j)yi
( j) yi

( j) +1yi
( j) +1yi

( j) −1yi
( j) −1 K0

µ( j) pi
( j) K − yi

( j)

K

λ ( j) +µ( j) 1− pi
( j)( )⎡

⎣⎢
⎤
⎦⎥
yi
( j)

K

… …

Wall

xi
( j)xi
( j) xi

( j) +1xi
( j) +1xi

( j) −1xi
( j) −1 M0

λ (i)1 i∈L( j ){ } + µ(k ) pi
(k )

k∈L( j )
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

M − xi
( j)

M

λ (k )

k∈L( j )
k≠i

∑ + µ(k ) 1− pi
(k )( )

k∈L( j )
∑

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

xi
( j)

M

… …

Newsfeed

Fig. 2. Aggregated continuous-time Markov Chain model results in 2N birth-and-death processes.

Following a similar reasoning, we get for the Newsfeed of any
user n = i, the following equation: ∑

k∈L(i)

(
λ(k) + µ(k)

) p(i)i =
∑
k∈L(i)

µ(k)p
(k)
i . (9)

As a result, the set of N equations (8) and (9) constitute
the new equations of the fixed point, whose solution gives the
required Newsfeed probabilities p(n)i for n = 1, . . . , N .

In the same fashion, the steady-state probabilities for the
Wall can be directly derived from the steady-state probabilities
for the Newsfeed through the following equations:(

λ(j) + µ(j)
)
q
(j)
i = µ(j)p

(j)
i , (10)(

λ(i) + µ(i)
)
q
(i)
i = λ(i) + µ(i)p

(i)
i . (11)

F. Explanation of the balance equations

Interestingly, equations (8)-(9) and (10)-(11) allow for a
simple intuitive interpretation: they balance the incoming and
outgoing flow of posts of origin i on each Newsfeed and Wall
list. More precisely, equation (8) equalizes the incoming rate
and the outgoing rate of posts of origin i in the Newsfeed of
user j (for j 6= i). Here,

∑
k∈L(j)

(
λ(k) + µ(k)

)
is the average

number of posts per unit of time that enter the Newsfeed of
user j. From the random eviction policy, each of these arriving
posts replaces a post of origin i with probability p(j)i . Indeed,
by assuming that post and re-post processes are Poisson, the
PASTA property holds which tells us that arriving posts see
the Newsfeed in steady-state. As a result, the left-hand side
of equation (8) is just the outgoing rate of posts of origin i in
the Newsfeed of user j. Now looking at the right-hand side of
this equation, µ(k) is the average number of posts per unit of
time that arrive on the Newsfeed of user j because a leader k
of j reposts something on his/her Wall. Each of these posts is
of origin i with probability p(k)i , due to the random selection
policy in Newsfeeds. In addition, if i is a leader of j, the λ(i)

self-posts of i per unit of time also appear on the Newsfeed
of j. As a result, the right-hand side of equation (8) is the
incoming rate of posts of origin i in the Newsfeed of user j.

Similarly, equation (9) equalizes the incoming rate and the
outgoing rate of posts of origin i in the Newsfeed of user

i. The only difference is that a new post that has just been
created by i does not appear on his/her own Newsfeed.

Equation (10) equalizes the incoming rate and the outgoing
rate of posts of origin i in the Wall of user j. Indeed λ(j)+µ(j)

is the average number of posts per unit of time that enter the
Wall of user j. Each of these posts replaces a post of origin
i with probability q

(j)
i , due to the random eviction policy in

Walls and the PASTA property. As a result, the left-hand side
of equation (10) is the outgoing rate of posts of origin i from
the Wall of user j. Obviously, µ(j)p

(j)
i is the average number

of posts of origin i per unit of time that arrive on the Wall of
user j, due to the random selection policy in Newsfeeds.

Similarly, equation (11) equalizes the incoming and outgo-
ing rate of posts of origin i on the Wall of user i. We just
have to add at the incoming rate the λ(i) self-posts per unit
of time from i.

The balance equations involve the expected percentage of
posts on the Newsfeeds and Walls of users and have been
derived based on an approximation (mean-field) on the rates
of state transition. We prove in the following Theorem that,
under some tighter assumptions, these equations are actually
exact. However, note here that the detailed distribution of the
number of posts on Newsfeeds and Walls π(x), π(y), from
the birth-and-death processes in Fig. 2 are an approximation.

Theorem 1 (Exactness). For Poisson posting and re-posting
activity with λ(n), µ(n) > 0, ∀n ∈ N , strongly connected
Follower graph and the random selection / random eviction
policy, the equations (8)-(9) and (10)-(11) describe exactly the
original detailed model in steady-state.

The proof can be found in Appendix B, and is based on the
conservation law of posts in the Newsfeed and in the Wall of
each user.

The balance equations further give an important structural
property of the steady-state solution as a side product.

Corollary 1 (Insensitivity in list size). In view of (8)-(9) and
(10)-(11), the steady-state probabilities to find posts from user
i on the Newsfeed of any user n (p(n)i , n = 1, . . . , N ) as well
as on the Wall of any user n (q(n)i , n = 1, . . . , N ), depend
neither on the size M of the Newsfeed, nor on the size K of
the Wall.
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G. Alternative selection and eviction policies

Looking at the model through the balance equations enables
us to relax random selection and random eviction assump-
tions, and introduce alternative policies. We will show now
that a number of different policies satisfy the same balance
equations, thus granting generality to the result.

1) Random selection / FIFO eviction: Let us modify the
eviction policy in both Newsfeeds and Walls, and replace
“Random” by a more realistic FIFO policy: now, a new post
enters at the top of the list and evicts the oldest post out of
the list. To do so, we define φ(j)i as the new outgoing rate of
posts of origin i in the Newsfeed of user j. This will replace
the left-hand side of eq. (8)). From Little’s law,

φ
(j)
i = X

(j)

i /T
(j)

i , (12)

where X
(j)

i is the average number of posts of origin i in the
Newsfeed of user j, and T

(j)

i is the average time a post of
origin i stays in the Newsfeed of user j.

The total arrival rate of posts in the Newsfeed of user
j is

∑
k∈L(j)

(
λ(k) + µ(k)

)
. The mean time between two

successive arrivals in the Newsfeed of user j is thus the inverse
of this quantity. As a result any post arriving in the Newsfeed
of user j will stay on average M times this mean value:

T
(j)

i =
M∑

k∈L(j)

(
λ(k) + µ(k)

) . (13)

Since X
(j)

i = Mp
(j)
i per definition, we conclude that:

φ
(j)
i = p

(j)
i

∑
k∈L(j)

(
λ(k) + µ(k)

)
[FIFO evict], (14)

which has the same expression as the left-hand side of equation
(8). In other words, when we replace the “Random” eviction
policy by the FIFO eviction policy in the Newsfeed, equation
(8) does not change. We can easily show by a similar reasoning
that equations (9), (10) and (11) remain also unchanged under
the FIFO eviction policy.

We now show that the set of balance equations remain
the same also if we choose a TTL (Time-To-Live) eviction
principle [25], [28]. Here, each post stays at the Newsfeed for
a fixed amount of time T before leaving. In this case, the size
of the list is not constant M , but rather varies over time. By
Little’s law, the mean Newsfeed size is equal to

M
(j)

= T
∑
k∈L(j)

(λ(k) + µ(k)), (15)

where again
∑
k∈L(j)(λ(k) + µ(k)) is the total arrival rate

of posts in Newsfeed j. Then in (12) we substitute X
(j)

i =

M
(j)
p
(j)
i and T

(j)

i = T , to get

φ
(j)
i = p

(j)
i

∑
k∈L(j)

(
λ(k) + µ(k)

)
[TTL evict]. (16)

2) Newest selection / Random eviction: We come back to
our original model with a “Random” eviction policy, and
where Newsfeeds are of limited size M and Walls are of
limited size K. We have proved in Theorem 1 that the steady-
state probabilities p(j)i and q(j)i , being solutions of the system

(8)-(11)) depend neither on M nor on K. In order to change
the selection policy from “Random” to “Newest”, we just have
to take M = 1. Indeed, when the size of Newsfeeds is unitary,
the “Random” selection will necessarily choose the newest (i.e.
latest, freshest) entry of the Newsfeed to repost on the Wall
of a user. As a result, the system (8)-(11) remains true also
under the “Newest” selection policy.

Further extensions that incorporate user preferences towards
posts of specific origins, or that consider user engagement
metrics are very interesting topics for future research. Since
the balance equations are derived based on the conservation
law of posts on Newsfeeds (see Theorem 1 and its proof in
the Appendix) the latter can be the basis to analyse various
alternative post selection and eviction policies.

IV. CLOSED FORM SOLUTION

A. Linear system

We can re-write (8)-(9) and (10)-(11) for posts with label i
in a compact form and summarize our findings as follows.

Theorem 2 (Linear System). The unknown column vectors
pi := (p

(1)
i , . . . , p

(N)
i )T and qi := (q

(1)
i , . . . , q

(N)
i )T are the

solution of the following linear system

pi = A · pi + bi (17)
qi = C · pi + di. (18)

In the above, A and C are N ×N matrices independent of
i, whereas bi and di are N-column vectors that depend on i.
Hence, a standard linear system should be resolved for each i.
The entries of the above matrices and vectors are summarised
in Table I. It is interesting to note that aj,j = 0 for all j,
bi,i = 0, C is diagonal, and also there is a unique positive dj,i
entry for i = j.

TABLE I
ENTRIES FOR THE MATRICES/VECTORS OF THE LINEAR SYSTEM.

A aj,k := µ(k)∑
`∈L(j)

(λ(`)+µ(`))
1{k∈L(j)}

bi bj,i := λ(i)∑
`∈L(j)

(λ(`)+µ(`))
1{i∈L(j)}

C cj,k := µ(j)

λ(j)+µ(j) 1{j=k}

di dj,i := λ(i)

λ(i)+µ(i) 1{j=i}

The matrix A is non-negative. In addition, it is row sub-
stochastic, meaning that the sum of all its rows is less than
or equal to 1, with at least one row sum strictly less than 1
(if we reasonably assume that at least one user injects self-
posts). Another interesting property is that A is a weighted
version of the Follower-matrix F = LT , so that if 1{j∈F(k)} =

1{k∈L(j)} = 0 ⇒ aj,k = 0. There are cases however where

j follows `, but aj,` = 0 in the matrix A, because µ(`) = 0.
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Hence, users that never re-post from their Newsfeed alter the
possibilities of post propagation in the graph. This is why we
call A, the propagation matrix.

B. Closed-form solution

Theorem 3 (Solution). If the spectral radius ρ(A) < 1, then
the solution of the linear system (17)-(18) is unique,

pi = (IN −A)
−1

bi (19)
qi = C (IN −A)

−1
bi + di. (20)

Proof. This results directly from [29, Chapter 6, Lemma 2.1],
that we also include in Appendix C.

An interesting observation is that the inverse (IN −A)−1

involved in the derivation of pi (relation (19)) is independent
of i. Thus, in the solution process the inverse should be
calculated only once, and then applied to the expressions in
(19)-(20) for labels i = 1, . . . , N .

We would like to know under which conditions a solution to
the linear system exists, in other words when does ρ(A) < 1
holds true, based on the specific structure of the non-negative
matrix A given in Table I. We show the following property.

Lemma 1. It holds ρ(A) ≤ 1. Strict inequality is guaranteed
in the following non-exclusive non-exhaustive cases (cs):
(cs1) λ(n) > 0, ∀n ∈ N .
(cs2) For every cycle in the Leader-graph, at least one partic-

ipating user has a leader k with positive self-post rate.

Proof. Let us denote the row sums of A by r(j), j = 1 . . . N .
Then r(j) ≤ 1 by definition from Table I. It is known that
([30, Theorem 8.1.22]) the following bounds are valid for
the spectral radius of a non-negative matrix: minNj=1 r(j) ≤
ρ(A) ≤ maxNj=1 r(j). The right-hand side in our case is 1 and
the first part is proven.

(cs1) When λ(n) > 0, ∀n, then ∀j and k ∈ L(j), aj,k <
µ(k)/

∑
`∈L(j) µ(`), so that r(j) < 1, ∀j. Then the matrix is

strictly sub-stochastic, and ρ(A) ≤ maxNj=1 r(j) < 1.
(cs2) In this case, suppose the length of a particular cycle

is γ > 1 and the participating nodes are n1, . . . , nγ . Then
at least one row sum r(j) < 1, j ∈ {n1, . . . , nγ}. By direct
application of the Al’pin, Elsner, van den Dreissche bound
[31, Theorem A], we conclude that ρ(A) < 1. An additional
condition for this bound is that r(j) > 0, ∀j, which is satisfied
when L(j) 6= ∅, ∀j ∈ N and not all leaders of some user have
µ(k) = 0.

Remark 1. A special instance of (cs2) is when A is irre-
ducible and λ(j) > 0 for at least one j ∈ N .

C. Fixed-point algorithm

For large N it can be practically very difficult to calculate
the inverse (IN −A)

−1. A different way to proceed in order
to solve the system (17) is to use an iterative approach.

Theorem 4. For the two cases of Lemma 1 and any ini-
tialization vector pi(0), the discrete-time linear system (21)
converges towards the fixed-point solution (19) when t→∞.

pi(t) = A · pi(t− 1) + bi. (21)

Fig. 3. Example graph with adjacency matrix: the edge j → i here means that
j refers to i (PageRank) or that j follows i, i.e. 1{j∈F(i)} = 1{i∈L(j)} = 1

(Newsfeed), and we set `i,j = 1 in the leader matrix L.

The rate of convergence is the spectral radius of A, ρ(A),

min
j=1...N

r(j) ≤ ρ(A) ≤ max
j=1...N

r(j), (22)

where r(j) =
∑

`∈L(j)

µ(`)/
∑

`∈L(j)

(λ(`) + µ(`)). In the homoge-

neous case where µ(`) = µ, λ(`) = λ ∀`, it holds ρ(A) = µ
λ+µ .

Proof. We first write pi(t) as a function of pi(0) and t,

pi(t) = Atpi(0) +

(
t−1∑
n=0

An

)
bi.

We need to find the limiting value pi := limt→∞ pi(t).
For the two cases in Lemma 1 we have ρ(A) < 1, so that
from [30, pp.137–138, or Theorem 5.6.12] it holds A∞ :=
limt→∞At = 0. Additionally, from [29, Chapter 6, Lemma
2.1] (see Lemma 2) the limit of the matrix series for t→∞
converges to (IN −A)

−1. Hence, the iteration converges to
the solution (19), and is independent of the initialisation pi(0).

The error is defined as ε(t) = pi(t)− pi, where pi solves
(17). Then from (21) we get ε(t) = Atε(0), which tends
to zero with rate that is dominated by the largest eigen-
value. From ([30, Theorem 8.1.22]) minNj=1 r(j) ≤ ρ(A) ≤
maxNj=1 r(j), where r(j) is the sum of row j.

Note that once the Newsfeed-vector pi := limt→∞ pi(t)
has been obtained, the Wall-vector qi can be calculated from
relation (18). The influence score for user i, i.e. the value Ψi

is then directly derived from (1). We need to solve for all i’s
to derive all scores {Ψi}Ni=1, however notice that the matrices
A and C are the same for all users, and only bi and di differ.

V. EXAMPLE AND RELATION WITH PAGERANK

In this section we show and prove that PageRank [13] is a
special case of the Ψ̃-score variant in (2), for uniform activity
of all users. As an illustrative example, we use the toy-graph
in Fig. 3, which is strongly connected. For notation, column-
vector e has 1’s in all entries, and column-vector ei has all
entries 0, except position i with value 1.
PageRank: The famous PageRank score π (column-vector) is

calculated [32] based only on the graph topology,

π = βWπ + (1− β)
e

N
. (23)

Here, W = LD−1out, where Dout is a diagonal matrix with non-
zero entries the out-degrees of the nodes [deg

(1)
out, . . . , deg

(N)
out ].

Its inverse multiplies on the right the leader-adjacency matrix
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L, so that the matrix LD−1out is column-stochastic, i.e. the sum
of all columns is 1. For the toy example in Fig. 3,

W =


0 1/2 1 0

1/3 0 0 1/2
1/3 0 0 1/2
1/3 1/2 0 0

 .
With probability (1 − β) the random surfer teleports from
his/her current state, to any other state chosen uniformly at
random. This trick is useful to avoid dead-ends. We can solve
iteratively (23) to find the PageRanks [πA, πB , πC , πD] =
[0.331, 0.223, 0.223, 0.223], whose sum equals 1. We observe
that node A has highest PageRank, whereas the other three
nodes have equal PageRank.

Ψ-score: For the sake of comparison, we let all λ(i) = λ and
µ(i) = µ, for i = 1, . . . , N . Furthermore, let us choose values
of µ and λ such that β = µ/(λ + µ). In this homogeneous
case, only the graph topology is important and the Newsfeed
system of equations in (17) is written for row-vector pTi as

pTi = βpTi W + (1− β)W(i,:), ∀i ∈ N . (24)

Here, the unknown row vector multiplies W from the left.
Note that A = βWT in (17). Furthermore, the teleportation
is towards the row-vector W(i,:), where W(i,:) is the i-th row
of the matrix W. There are N such systems of equations (24),
one for each node i ∈ {A,B,C,D}. For each user i, we can
calculate his/her influence column-vector pi on the Newsfeed
of every other user, by power iteration as in (21), and gather
our findings in matrix P. Having calculated pi for each node,
we replace in (18), which in our homogeneous case becomes

qi = βpi + (1− β)ei, (25)

so we get the influence of i on every Wall in the network.
All column-vectors of Wall-influence are grouped in matrix
Q. Using the Ψ̃-score definition in (2), Ψ̃i =

∑N
n=1 q

(n)
i /N

for origin i, we average over all entries of column i in the
Q matrix including self-influence at the diagonal. Repeat-
ing for i ∈ {A,B,C,D} we get

[
Ψ̃A, Ψ̃B , Ψ̃C , Ψ̃D

]
=

[0.331, 0.223, 0.223, 0.223], equal to the PageRank π score.

Theorem 5. In the homogeneous case of uniform user activity
with λ(n) = λ and µ(n) = µ , ∀n ∈ N , the score Ψ̃i =∑N
n=1 q

(n)
i /N from (2) is PageRank πi with damping factor

β = µ
λ+µ ∈ (0, 1) (teleportation 1− β = λ

λ+µ ).

Proof. To show this, let us first write the homogeneous activity
Newsfeed and Wall equations of all users in matrix form, using
the influence matrices P and Q. From (24) and (25)

PT = βPTW + (1− β)W, (26)
QT = βPT + (1− β)I, (27)

where as discussed W := β−1AT from Table I. Using (27)
we can derive the score column-vector Ψ̃ defined in (2)

Ψ̃ =
1

N
QTe = β

1

N
PTe + (1− β)

1

N
e. (28)

We solve (26) over PT and do the following manipulation

PT = (1− β)W(I− βW)−1

(∗)
= (1− β)W

∞∑
t=0

(βW)t =
1− β
β

∞∑
t=1

(βW)t

=
1− β
β

(
(I− βW)−1 − I

)
, (29)

where (*) uses Lemma 2 in Appendix, because βW (the
matrix AT ) is column sub-stochastic. Replacing the above in
(28)

Ψ̃ = (1− β)
1

N

(
(I− βW)−1 − I

)
e + (1− β)

1

N
e.

= (1− β)(I− βW)−1e
1

N
⇒

Ψ̃ = βWΨ̃ + (1− β)e
1

N
. (30)

The last equation is the same as PageRank in (23).

Since activity is homogeneous here, then µ/(λ + µ) is
the probability that some user reposts and λ/(λ + µ) the
probability that some user posts. Then the score of a user is fed
from the reposts of its direct followers and its own self-posts.

The greatest powers of our method and the Ψ-score, how-
ever, are revealed when ranking users with asymmetric activity.
• Suppose a scenario with the same toy-graph and activities
µ = 2 for all users re-posting, but λA = λB = λD = λ =
0.105, λC = 3λ = 0.315 for posting. Then λ, µ are again such
that µ/(λ + µ) = β = 0.95, but user C posts with 3-times
higher frequency than the others. After solving the system
(17)-(18) for these new parameter values, we can calculate
the new Ψ-score using (2), to get

[
Ψ̃′A, Ψ̃

′
B , Ψ̃

′
C , Ψ̃

′
D

]
=

[0.234, 0.156, 0.451, 0.159]. User C is now ranked first with
users A, B and D following; our score takes the increased
posting activity into account.
• In another scenario with the same toy-graph and activities
µA = µB = µD = µ = 2, µC = 0, and λ = 0.105
for all users, user C decides to stop re-posting anything. We
can again solve the system (17)-(18) and get the new scores[
Ψ̃′′A, Ψ̃

′′
B , Ψ̃

′′
C , Ψ̃

′′
D

]
= [0.122, 0.231, 0.468, 0.179]. This be-

haviour of user C results again in him/her ranking higher than
the other users, by not sharing anything on his/her Wall.

From the above examples, we can safely conclude that
the Ψ-score is much more expressive than PageRank: it
incorporates the user posting and reposting activity in an
appropriate way in the score. This is shown more emphatically
in Section VIII for real world traces, where the user Ψ-
scores are quite different from other scores in practice (e.g.
PageRank, #Followers). For its calculation one derives the
pi and qi vectors, which contain detailed information of the
influence of i on any Newsfeed and Wall in the network. To
obtain such fine grained information, we pay in complexity; to
derive the Ψi-score for user i using Theorem 4 every iteration
in (21) includes a weighted matrix-vector multiplication plus a
vector addition to find pi. Such iteration is very similar to the
power method that calculates the PageRanks. Since we need to
solve the system for every user i = 1, . . . , N , to calculate all
the Ψ-scores requires N -times the complexity that PageRank
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would need. Other algorithms with lower complexity or faster
convergence that work for PageRank (see e.g.[32]) could also
apply for the Ψ-score. This is a very interesting topic for future
investigations.

VI. IMPLEMENTATION AND NUMERICAL ASPECTS

For the numerical implementation we coded the following
programs, that we make available in [15]: (A) an algorithm to
derive the Ψ-rank for each user from the balance equations
of the model; two versions are coded, one for small OSP
sizes and a sparse one for real-world sizes, (B) a discrete-event
simulator, to simulate over time the behaviour of an OSP with
arbitrary input traffic and user/platform policies, and (C) an
emulator, which takes a real data-trace as input and outputs
empirical Ψ-scores.

A. Ψ-ranking by the model

We remind the reader that the Ψ-score of user i’s influence
in the social platform was introduced in (1), as a function
of the q

(j)
i ’s (j = 1, . . . , N ), i.e. the steady-state Wall

probabilities. These values have been derived in closed form,
through the balance equations. The two methods to calculate
them, one using Theorem 3 with matrix inversion and a second
using Theorem 4, are coded in [15] for small OSP sizes. The
algorithm takes as input the vector of all posting and reposting
rates λ = (λ1, . . . , λN ) and µ = (µ1, . . . , µN ), as well as the
graph G and outputs the Ψ-scores.

Since the size N of real-world social graphs is of the
order of millions of users, an efficient algorithm that runs in
reasonable time-scales is necessary to calculate these scores
for all users in the platform. A tedious matrix inversion
(IN −A)

−1 is not recommended for such cases, as it is com-
putationally very expensive - typically of the order of O(N3).
We have programmed here another algorithm to calculate the
Ψ-score in large graphs, which implements a sparse version
of the iterative solution introduced in Theorem 4. It computes
first the pi’s by involving at each iteration a matrix-vector
multiplication A · pi and then a vector addition bi, which
take into account the sparsity of both the propagation matrix
A, and each vector bi. Sparsity comes from the fact that the
number of leaders and followers of any user i is very small
compared to the total population N ; as a second step - to
calculate the qi’s we also use the fact that C is diagonal and
sparse, and di has a single non-zero element. We can break the
user set in subsets of users and parallelise the computational
process on several machines, because solving for the influence
of one user i does not affect the process of solving for others.

B. Discrete-event simulator

Additionally, we have developed our own discrete-event
simulator (also available in [15]) to validate the mathematical
analysis through simulation, and to evaluate the robustness of
the modelling assumptions presented in Section III-A against
alternative traffic and policies. Unlike the code in the previous
section VI-A which solves the model’s balance equations, the
simulator precisely implements the behaviour of the generic

OSP over time as described in Section II: i) The global state
description consists of dynamic lists (of length K for Walls
and M for Newsfeeds); ii) A variety of selection and eviction
policies are implemented (“Random”, in a first phase, and
“Newest”, FIFO, “Popular” later to evaluate robustness); iii)
Self- and re-posts can be generated according to Poisson or
other processes. As such, the simulator does not decouple the
state space, does not estimate average probabilities, and does
not rely on Markovian assumptions. For each simulation we
set M = 20 and K = 10 and ran long enough simulations to
reach the steady-state with small confidence intervals. More
specifically, in all experiments, we let the simulator run for a
total of 300 000 events (self- and re-posts).

C. Emulator (Trace-based empirical influence)

Finally, we have coded the emulator, which uses a real data-
trace as input from Twitter, Weibo or other platform. The
emulator differs from the simulator in the sense that it does
not simulate the post propagation or specific policies, rather
it directly outputs numerical values of influence, as read from
the post sequence in the trace. To do so, we first pre-process
the available data trace, so that each line of the input is just
the quadruple [PostID, TimeStamp, UserID, RePostID],
where the fourth entry is −1 in case of an original post,
else the PostID of the original post which was reposted. The
program calculates the influence of each user i on another
user j directly from data qemu[i][j], as the percentage of time
that posts with origin i are found on the Wall of user j. With
these empirical values we derive the empirical score Ψemu

i for
all users in the trace. The empirical influence is determined
by the Wall occupancy periods divided by the total duration
of the data-trace, and no further information about the social
graph is necessary. We provide the emulator code in [15].

VII. NUMERICAL EVALUATION

A. Influence of graph topology and posting rates

In this section we evaluate the performance of our analytical
model and the Ψ-score of influence for various types of graphs:
• Binary Tree: We use a perfect undirected binary tree of

depth 9, which includes N = 1023 nodes. Specifically,
the 0-node is the root, and there are 512 leaves at level-9.

• Scale-free: We build an undirected scale-free network of
N = 50, 000 nodes with power-law degree distribution
exponent 2.5, using a configuration model.

• Erdös-Rényi (E-R): For the undirected random graph
with binomial degree distribution, we choose again N =
50, 000 nodes with mean degree 3 neighbours per node.

The evaluation for these graphs is illustrated in Fig. 4. We
start with the binary tree.

Node position: For the binary tree, we evaluate the Ψ-
score on the nodes of each level {0, 1, . . . , 9}, where level-0
is the root level. Regarding user activity, we apply here the
homogeneous case where all nodes have the same (λ, µ) pair.
We evaluate for two activity choices (0.25, 1) and (1, 0.25)
and plot the score-per-level at Fig. 4a. We observe that each
level has a different score. The highest score is attributed to
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the parents of the leaf nodes (level-8), whereas the smallest
score to the leaf nodes (level-9). The root node also gets a
lower score, being a boundary one. Note that the Ψ-score will
coincide with PageRank in this homogeneous case.

q-influence: Our model goes beyond PageRank even in the
homogeneous activity case, to further explain in detail how
each node’s influence is distributed among the nodes of the
network, through the vector qi. In Fig. 4b we plot the influence
q-vector for (λ, µ) = (0.25, 1) and three types of nodes i =
{leaf (level-9), leaf’s parent (level-8), root (level-0)}. Specif-
ically, we select a single branch which spans the tree from
root (level-0) to leaf (level-9), and plot the influence of i
on each level of this branch, i.e. q(j)i for j = 0, . . . , 9.
There are several noteworthy observations. For the chosen
activity values, self-influence q(i)i is the highest for all three
node types. Interestingly, the influence on direct neighbours
is considerably higher than indirect ones, in all three cases.
The leaf’s parent collects the largest part of its Ψ-score from
its influence on the leaf, because the latter does not have any
other direct neighbours to be influenced by. On the other hand,
the influence of the leaf to its parent is considerably less.

Increasing the leaf’s posting rate: Our model generalises
PageRank, since it can calculate the Ψ-scores for nodes with
asymmetric activity. We allow the λleaf of a given leaf to
increase between [0.25, 2.5], whereas all others keep their
posting activity λ = 0.25, and we calculate the new Ψ-scores
of all nodes. In Fig. 4c we illustrate how the score evolves
for the leaf node, its parent and the root node. We see that
as λleaf increases the Ψleaf increases and the Ψleaf ′s parent

decreases. In fact, for λleaf > 1, the ranks are inverted and the
leaf node becomes more influential than its parent. The root’s

score does not change much, because of its distance from the
leaf (9 levels away). As a conclusion the leaf has a naturally
low score due to its position but can improve it by increasing
its posting rate.

Scale-free: Next, we evaluate the Ψ-scores for the nodes
of the scale-free graph. We first fix the same pair (λ, µ) =
(0.25, 1) for all nodes and select a specific target node with
degree = 20. For this node, we increase its posting rate
λ20 ∈ [0.25, 2.5] and plot the change of its Ψ-score, as well
as the score of some of its neighbours and non-neighbours in
Fig. 4d. In this graph the degree plays an important role and for
homogeneous λ and µ the Ψ-scores are almost proportional to
the degree, as can be expected from its relation with PageRank.
But, as in the tree case, we observe that the score of the target
node increases as λ20 increases, whereas the score of its direct
neighbours diminishes. The effect is more pronounced for a
neighbour with degree 1, since the target node is the only
neighbour that can be influenced by this one; the effect is less
strong but still visible for a neighbour of degree 4. Other nodes
of same degree 1 and 4 that are not direct neighbours of the
target node do not exhibit a change in their score.

The importance of re-posting rate µ can be visualised in
Fig. 4e where we fix (λ, µ) = (0.25, 1) for all nodes, but
decrease µ20 of the same target node with degree 20 as before,
while keeping λ20 = λ fixed. In this scenario, we observe that
as the target’s re-posting decreases, its score increases, while
the scores of its direct neighbours with degree 1 and 4 decrease
as expected. The reduction is more pronounced for the degree
1 direct neighbour. Again, the scores of nodes further away
are less sensitive to changes in µ20.

A tragedy of the commons: We have seen in the tree and
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Fig. 5. (a)-(c): Sensitivity with respect to modeling assumptions.

scale-free graph that a node can improve its score if it posts
with a larger λi. The same phenomenon can be observed in
the Erdös-Rényi case. We will study now what happens when
more and more nodes adopt such strategy and increase their
posting rates in this example of E-R graph. For Fig. 4f we
consider a random graph where initially all nodes have λ < µ,
specifically (λ, µ) = (0.25, 1). These nodes are marked with
orange colour and we call them “listeners”. Gradually more
and more nodes adopt the strategy to increase their posting
rate and decrease their re-posting rate to (1, 0.25) in order
to improve their individual score. These nodes are marked
with blue and we call them “influencers”. The plot illustrates
how the average score of listeners and influencers changes
as the number of influencers gradually increases. For 5, 000
influencers and 45, 000 listeners, the influencers’ average score
is much higher than that of the listeners and their strategy to
change activity bears fruit. But, as the number of influencers
increases, both types get a smaller score because there are
less nodes in the graph willing to be influenced. As soon as
the influencers become the majority, the score of both types
becomes less than the initial average score when everyone was
a listener. At the extreme case where everyone is an influencer,
the average Ψ-score is three times less than the other extreme
where everyone is a listener. We observe here a typical case
of the tragedy of the commons.

B. Robustness

We further evaluate the robustness of the model with respect
to the modelling assumptions. For this purpose, we first show
the convergence time of our simulator to the theoretical value.
We then modify our simulator to take into account inter-arrival
distributions alternative to Poisson, as well as selection and
eviction policies other than random.

a) Convergence: We evaluate the convergence speed of
the simulator to the solution of the balance equations by
increasing the number of iterations T iter and plotting the
relative error; this is the ratio of the 2-norm of the difference
between simulated and analytical values, divided by the 2-
norm of the analytical values. We choose for the experiment
a ring graph of N = 8 with random λi ∈ [0, 1], µi ∈ [0, 1]
per user and random association of 4 followers on average per
node. The convergence till a relative error of 1.5% is shown
in Fig. 5a.

b) Alternative inter-arrival times: In Fig. 5a, we plot
in addition to the exponential inter-arrival case, also the
convergence of the simulator to the solution from the bal-
ance equations when applying alternatively the following
two distributions for both posting and re-posting: (i) hyper-
exponential (with same mean but higher variance than Poisson)
and (ii) deterministic (with same mean and zero variance).
The figure shows that the hyper-exponential converges to the
same solution as the Poisson albeit more slowly. It exhibits
a 1.6% relative error compared to the analytical solution for
T iter = 107. The convergence for fixed interval process is
non-monotone with a relative error of 5% for T iter = 107.
Intuitively, since the balance equations are based on the
conservation law of posts, these will hold for any arrival
distribution that guarantees convergence to some steady-state
distribution p and q.

c) Policies: We use here a complete graph with a varying
number N of users, and set (λ, µ) = (10, 5). We programmed
our simulator (see VI-B) to test alternative policies for user
selection and post eviction, based on age and post-popularity.
In (III-G) we showed that certain alternatives give the same
balance equations as the basic “Random/Random” policy;
specifically the “newest selection” policy, where a user always
chooses to re-post the most recent post on his/her Newsfeed,
and the “FIFO (oldest) eviction” where the new post enters
the top of the list and pushes out the oldest one. Figure 5b
shows that indeed “Random/Random”, “Newest/Random”,
“Random/FIFO (oldest)” and “Newest/FIFO” have the same
average performance, as these curves coincide. Furthermore,
we test the “least popular (resp. most popular) selection”,
where the user chooses to re-post from his/her Newsfeed
the post with the maximum (resp. minimum) current global
number of re-posts. These policies use extra information on
re-post history. We observe in Fig. 5b that with such choices,
the absolute difference with a random policy becomes higher.
The comparison is more pronounced when we observe the
individual influences on a complete graph with 16 users in
Fig. 5c. Interestingly, all policies behave similarly, except the
”most popular” selection, which tends to give all influence to
a single user. We conclude that our model is robust regarding
the choice of selection and eviction policies when only local
information involved. For other cases further investigations
should shed more light on this very interesting question.
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VIII. NUMERICAL RESULTS FROM REAL-WORLD TRACES

Traces: We evaluate our model and Ψ metric using two
real datasets, one from Twitter and the second from the Weibo
social platform. The first trace found in Kaggle is referred to as
Russian1. It contains roughly 2 million (re-)tweets emitted
from 180, 000 users during the Russian presidential elections
of 2018. The second trace referred to as Weibo2 comes from
[33] and contains roughly 34 million messages exchanged
over the Chinese microblogging platform Sina Weibo. For
both traces, user IDs are anonymised. Posts are ordered
in time and their content is removed. Each line contains:
[PostID, TimeStamp, UserID, RePostID]. Basic statistics
for both datasets are summarised in Table II. The related
friendship graphs are both sparse with an average in-degree
(#Followers) of 5.70 for Russian and 236.9 for Weibo and
their degree distribution is heterogeneous and close to a power
law. Their statistics are summarised in Table III.

Methodology: Before starting, we need to extract some
information from the traces. For each available data trace the
input vectors of user activity λi, µi, ∀i can be estimated as
the sample means of each user’s posting activity, λ̂i, µ̂i, ∀i
i.e., the ratio of the number of posts or re-posts over the total
trace duration; the social follower graph G if not provided
should also be inferred from the available traces, as we will
show later in the case of Russian.

For each trace, we want to show how well our model can
evaluate user influence in the respective platform. First, we
rank the users based on the model influence Ψmodel, where
we use the sparse version of the code described in Section
VI-A with input (λ̂, µ̂,G), and compare this list with the
ranking based on user empirical influence, as derived from
the emulator Ψemu in Section VI-C. The empirical influence
qemu[i][j] in a trace is equal to the percentage of time that
posts of origin i occupy the first position on the Wall of user
j, assuming a FIFO principle and K = 1 Wall size.

As a second step we compare the model ranking, with
the ranking based on alternative influence measures: the user
(i) number of followers (in-degree), (ii) post activity λ̂, (iii)
PageRank [13].

To compare two ranking lists between each other we use two
types of plots: A 2D scatter plot, where each point corresponds
to a user and is the tuple of his/her predicted rank based
on the Ψemu (x-axis) and the Ψmodel (y-axis); in such plots
we also visualise the distance of the rankings from the line
x = y, which describes the ideal perfect match of ranks. The
second type of plot illustrates a metric similar to the Jaccard
index to compare the two rankings, called “Common users
proportion”. More precisely, if {u1, . . . , uX} are the top-X
UserIDs according to the emulator list, whereas {v1, . . . , vX}
are the top-X UserIDs for the model list, we define the
proportion of common users at depth X of the emulator list
by

CX =
|{u1, . . . , uX} ∩ {v1, . . . , vX}|

X
.

1Available at https://www.kaggle.com/borisch/russian-election-2018-twitter
2Available at https://aminer.org/influencelocality from the paper [33].
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TABLE II
BASIC STATISTICS ON BOTH DATASETS.

Russian Weibo
Time window 57 days 1 216 days
# users 181 621 1 340 816
# posts 674 292 232 978
# reposts 1 271 073 33 307 189
Mean #posts/user 3.71 0.17
Mean #reposts/user 7.00 24.84
Max #posts 4 834 3 718
Max #reposts 2 811 1 032
% users with #posts > 0 54.45 03.55
% users with #reposts > 0 63.60 99.54

TABLE III
STATISTICS OF INPUT SOCIAL GRAPHS.

Russian (Star) Weibo (Real)
#nodes 181 621 1 340 816
#edges 517 421 291 761 716

mean #followers (in-degree) 5.70 236.90
max #followers (in-degree) 7 868 431 385
max #leaders (out-degree) 389 8 107

Note that the quantity CX converges to 1 as X grows to N ,
because the two full lists contain the same set of users. But for
some given X < N (e.g. top-10), the curve shows how well
the model manages to rank users in relation to the emulator
in the top-X positions.

https://www.kaggle.com/borisch/russian-election-2018-twitter
https://aminer.org/influencelocality
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TABLE IV
TOP-10 INFLUENCERS IN RUSSIAN AS RETURNED BY THE EMULATOR

AND COMPARED WITH THE MODEL (STAR GRAPH).

User Ψemu Ψmodel Rank Rank #Follow λ[s−1]
ID # 10−3 10−3 emu model Star 10−7

20905367 12.02 10.23 1 3 6 676 42.9
82299300 11.29 7.03 2 5 7 833 96.0
494076761 7.35 13.80 3 2 6 963 439.3
615422017 5.33 13.82 4 1 5 474 639.5
174953869 5.13 5.81 5 7 1 742 118.5
711363811 4.79 4.12 6 15 1 309 8.2
36309919 4.44 5.23 7 9 4 516 118.5
1867848452 4.15 4.60 8 12 1 235 6.1
34200559 3.68 7.96 9 4 3 571 982.8
50597428 3.36 3.64 10 20 1 156 8.2

A. First Dataset — Russian

To apply our sparse algorithm (see VI-A) we estimate user
activity by the sample means (λ̂, µ̂), i.e. the number of posts
and reposts per user in the trace divided by the total time
window (57 days). The user graph needed as input is not
directly available for Russian and we have to find a way
to recover it. For this we use the following heuristic:

Star G User i is considered to be a follower of user j iff
i has reposted a post of origin j at least once.

With Star we make the simplifying assumption that a user only
reposts content created by his/her direct leaders. This approach
short-circuits the diffusion paths of posts as it links directly
original authors to all the re-posters, drawing a network with
star-shaped communities. The Star graph statistics are given
in Table III. We chose to follow this approach because the
data-trace does not contain extra information over the IDs of
“relay”-users. In such traces we can only know and store the
original author and the total set of users each post reached,
but not the paths. Note here that inferring graphs from data
is a subject of active research and alternative methods can be
found in the recent literature [34]. For the time being we will
use the Star-network as input; in the Weibo section, we will
benefit from a real known graph.

The evaluation of the Russian model against the emulator
is provided in Table IV, and in Figure 6. The top plot in
Figure 6 shows the scatter plot of ranking based on Ψmodel

and Ψemu; note here that the points at the left correspond
to higher influence rank (1st, 2nd,...) compared to points at
the right, which are less significant. We observe a very good
fit between the two rankings in the entire domain, and even
for the top ranks (1st, 2nd,...) at the left part of the plot,
which are of practical interest, e.g. for a company targeting
high-influencers. At the bottom plot we illustrate four curves:
each of them plots the Common users proportion between the
user ranking from the emulator and the ranking from (i) the
model influence Ψmodel using the Star graph, (ii) user post
rate, (iii) user number of followers from the model, and (iv)
user PageRank from the Star graph with damping factor β =
0.85. We observe that our model (i) explains much better than
the other metrics the ranking by the emulator, and is able
to find 80% of emulator top-X users, in the largest part of
the X range. The two curves (iii) and (iv) which describe
only the graph structure perform much lower. Finally, in this

specific example, the curve (ii) about user posting rate has
no considerable importance in explaining influence, as such
ranking seems unrelated to the emulator.

Precise results for the top-10 Ψemu ranked users are shown
in Table IV. We observe a very good fit between actual values
of Ψmodel and Ψemu. Specifically, the model manages to find
7-out-of-10 influencers in the emulator top-10 list. An impor-
tant observation comes from the two last columns of the table,
namely the user number of followers and the user posting rate.
We see that neither the number of followers nor the posting
frequency follows the ranked order of the top influencers, in
support of our observations already in Figure 6. By inspection,
the user with maximum #followers (7833 followers in Star
= 7833 users who shared posts originating from him/her) is
ranked 2nd by the emulator and 5th by the model, whereas
the user with maximum posting rate is ranked 9th by the
emulator and 4th by the model. Impressively, we find in the list
a top-influencer (ranked 8th by the emulator) with low posting
rate (e.g. 6.13 · 10−7 [posts/sec] ≈ 0.00221 [posts/day]) and
relatively low #followers (1235 “followers” in Star). Hence,
neither the #followers as a measure of importance in the social
graph, nor the posting rate as an activity measure are alone
sufficient to rank users by influence. Our Ψ-score mixes user
activity with graph position.

For Russian, an important part of the user influence is
already present in the Star-graph, due to the way we chose to
draw it (all users who shared a post are assumed as followers
of its original author). The correlation between the influence
score Ψmodel and Star in-degree (#followers), is very high,
equal to 0.82, whereas the correlation between Ψmodel and
posting activity λ is only 0.11. For the above reasons, we
study the second dataset ( Weibo), accompanied by its true
social graph.

B. Second Dataset — Weibo

For the second dataset (Weibo) we have access to the
underlying friendship graph i.e., who follows whom. The
graph statistics are given in Table III3. We use this Real
graph to compute values of influence from our model Ψmodel,
whereas the Ψemu is derived directly from the trace. The
Weibo trace is special, because of the way it was collected
to serve the study of cascades (see [33]); the authors isolated
and kept in the dataset only certain (approx. 200K) microblog
episodes, which were massively re-posted. Specifically, as can
be seen from Table II there are 10× more users than the
Russian, but only 3.5% of users post, in comparison to
99.5% who re-post. The number of original posts is very small
compared to much larger (100×) number of re-posts, meaning
that the trace has a small user set of potentially very large
influence. Here, we expect user activity to play an important
role in determining influence, not just graph structure. On the
other hand, the Real graph contains 291 million (M) edges (see
Table III), most of which are never observed to be active in the
available trace for post forwarding. In fact the trace contains
≈ 33M re-posts. Even if each repost passed through a different

3The friendship graph contains users that do not appear in the trace; since
no further information is available over their activity we ignore them.
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edge from the Real graph, there would be 291− 33 = 258M
edges unused. Let us see how our model behaves in this
particular case.

User ranking for Weibo using the model and the emulator
are shown in Figure 7 and Table V. Specifically, Figure 7 (left)
presents the scatter plot for ranking by Ψmodel and Ψemu. The
fit for high influencers is good, but worsens as we move to
the right in the low influence ranks, but the points are always
centered around the line x = y. This behaviour is partly
due to the specific trace and partly due to numerical issues;
the massive size and density of the Weibo graph and the
asymmetry in activity slowed-down computation of Ψmodel,
when using our sparse algorithm for the model, and we had
to trade-off accuracy for run-time.

Figure 7 (centre) shows the Common users proportion
metric between the rank list from Ψemu and the ranking from:
(i) #followers, (ii) PageRank (with β = 0.85), (iii) post rate,
and (iv) the model Ψmodel. The performance of Ψmodel is
again the best and it can explain around 60% of the user top-
X ordering by Ψemu. The reason for the lower performance
compared to Russian Star is that, in the Real graph most
of the edges do not participate in the post diffusion described
in the Weibo trace. Our model in this paper does not include
contextual preferences towards users or topics, but rather gives
equal probability to all posts visible in the Newsfeed to be
re-posted. We believe that a pre-processing of the real graph
to keep only active relationships (edges) could significantly
improve the model performance. Even in this unfavourable
situation, however, we observe once again that our model
using the Real graph outperforms the other three measures
in explaining the top-X influencers found in the emulator
ranking list. Interestingly, the graph-related measures of in-
degree (#followers) and PageRank behave very badly, whereas
the post rate explains much better the empirical influence;
this is to be expected because only cascades of posts from
specific origins are kept in the trace. The Ψ metric from our
model combines both graph position and user activity to give
a better estimation of social influence. Finally, Figure 7 (right)
compares ranking by the model with ranking by the post rate
and the in-degree. Although Ψmodel and post rate performance
seem very close in the (centre) plot, less than 80% of the
Ψmodel ranking can be explained just by the post rate. This
means that the Ψmodel cannot be replaced simply by the post
rate - even in this special case of dataset, because it contains
different information over user influence.

Finally, referring to Table V, we see that the model with
Real graph input finds 5-out-of-10 top influencers common
with the emulator. From the #followers and activity λ columns,
we verify again that the influence Ψ-score cannot be explained
by #followers (in-degree) or activity only, but rather by an
appropriate combination of the two, summarised in Ψmodel.

IX. CONCLUSIONS

In this work we have introduced an original Markovian
model that analyzes the diffusion of posts in a generic social
platform, and quantifies the influence of a given user over any
other. By resolving it we have derived closed-form expressions

TABLE V
TOP-10 INFLUENCERS IN WEIBO AS RETURNED BY THE EMULATOR AND

COMPARED WITH THE MODEL (REAL GRAPH).

User Ψemu Ψmodel Rank Rank Follow λ[s−1]
ID # 10−3 10−3 emu model Real 10−6

519514 37.08 63.88 1 2 459 31.7
490872 24.68 93.99 2 1 595 35.4
1004172 13.30 7.05 3 23 520 2.0
482551 11.53 47.56 4 3 1247 11.0
110361 7.07 13.19 5 5 288 10.3
244531 7.05 12.33 6 7 312 10.4
296675 6.77 8.30 7 17 347 8.7
980392 6.70 5.94 8 27 230 6.2
153610 6.22 2.93 9 54 81 3.6
821785 6.21 11.32 10 11 1084 2.7

for metrics of influence, which allow to rank users based on
the novel Ψ-score; the latter summarises the combined effect
of user position in the graph with user activity. These results
constitute a novel powerful toolbox that can be further ex-
ploited to understand and design social platforms. To highlight
the importance of these results we have implemented a sparse
version of the solution algorithm in [15] and have applied it
to massive data traces from real OSPs (Twitter and Weibo).
The model-based Ψ-ranking is verified to correspond well
with the empirical influence as read from the traces, a fact
which validates our model for real world applications. As a
consequence, we believe that the model can serve as a test
and prediction tool for many social platform types and user
activity scenarios, when no trace is available. It is flexible
enough to further include extra OSP features (post-filtering,
“likes”, etc), or the balance equations could be modified to
consider user preference towards posts from specific leaders
or origins. The Ψ−score, itself, is shown more suitable to
rank user influence compared to standard centrality metrics
(#followers, PageRank, user activity) and cannot be substituted
by any of them. Hence, it enriches the literature with a novel
important measure that can combine user position in the graph
with user activity to adequately rank user influence inside a
platform.
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APPENDIX

[A. Non-reversibility example] Consider N = 3 users
{a, b, c}, each of whom is leader of the other two. Suppose
also M = 1 for the Newsfeed and K = 1 for the Wall. In this
simple case, the state description is simplified. Let the initial
state of all Newsfeeds and Walls contain a post from a, so we
write news = (a, a, a), and walls = (a, a, a) to summarise
the 3-user system state. Here, news and walls just show
the current posts on the three Newsfeeds and the three Walls
simultaneously, ordered user a as 1st entry, user b as 2nd and
user c as 3rd. Then with rate λ(b) user b posts, so the posts on
the news = (b, a, b) and on the walls = (a, b, a). With rate
µ(c) user c reposts so news = (b, b, b) and walls = (a, b, b).
With rate λ(a) we get news = (b, a, a) and walls = (a, b, b).
With rate µ(b) we get news = (a, a, a) and walls = (a, a, b).
Finally, with rate µ(c) we return to the initial state and the
cycle is complete. However, the rate to traverse the cycle in
reverse order is 0, since there is no way we can transition
from the initial state, to the next state news = (a, a, a)
and walls = (a, a, b), because a post from b can appear on
the c Wall only by re-posting, which is impossible in this case.

[B. Proof of Theorem 1] We will show that (8) is exact
(i.e., holds without any approximation). The proof is based
on the conservation law of posts in the Newsfeed. The same
methodology can be used to prove exactness for the other three
equalities (9), (10), (11).

Let us observe the Newsfeed of user n at the steady-state.
This user has a set of leaders L(n) with index k = 1, . . . , L.
Each leader has a posting activity, described by a homo-
geneous Poisson process (HPP) N (k)

p with rate λ(k) and a
re-posting activity described by a HPP N

(k)
r with rate µ(k)

respectively. The superposition of all 2L processes is itself
a HPP N of rate

∑
k∈L(n)(λ(k) + µ(k)). This is the process

of total incoming posts in the Newsfeed of user n. By fixing
the time origin at t0 = 0 and a time interval (0, T ] we count
N((0, T ]) incoming posts

N((0, T ]) =

L∑
k=1

(
N (k)
p ((0, T ]) +N (k)

r ((0, T ])
)
. (31)

We can write for the re-posts of user k (and similar for posts)

N (k)
r ((0, T ]) =

∑
s

1(0,T ](ts), (32)

where user k reposted at random time instants 0 < t1 < . . . <

tS ≤ T , and the event count S = N
(k)
r ((0, T ]).

We focus on posts of origin i. The state of the Newsfeed
n related to this type of posts at t ∈ (0, T ] is denoted

by X
(n)
i (t) ≤ M and is itself a continuous-time process.

The states of the leaders are denoted by X
(k)
i (t) ≤ M ,

k = 1, . . . , L. Furthermore, the arrival process of posts of
origin i through leader k is the counting process N (k)

r,i , for
k = 1, . . . , L. It holds N (k)

r,i ((0, T ]) ≤ N (k)
r ((0, T ]).

• Incoming posts of origin i to Newsfeed n: Each leader
k when re-posting will choose at random a post from his/her
own Newsfeed. This is the random selection assumption. We
can model the choice of user k to re-post content with label i
at time t < T as a Bernoulli random variable

Z
(k)
i (t) =

{
1 , with probability X

(k)
i (t)

M

0 , with probability 1− X
(k)
i (t)

M

.(33)

This is itself a random process, which depends on the current
state of the leader’s Newsfeed X(k)

i (t). The counting process
N

(k)
r,i results from thinning the re-post process N (k)

r of user k
based on the random variable (33), and we write

N
(k)
r,i ((0, T ]) =

∑
s

1(0,T ](ts)Z
(k)
i (ts). (34)

The expected number of posts of origin i through leader k is

E
[
N

(k)
r,i ((0, T ])

]
= E

[∑
s

1(0,T ](ts)Z
(k)
i (ts)

]
=

E

[∑
s

E
[
1(0,T ](ts)Z

(k)
i (ts)

∣∣∣ ts, X(k)
i (ts)

]]
=

E

[∑
s

1(0,T ](ts)
X

(k)
i (ts)

M

]
.

By the smoothing formula for HPP of rate µ(k) [35, Th.7.1.7],

E
[
N

(k)
r,i ([0, T ])

]
= E

[∫ T

0

X
(k)
i (t)

M
µ(k)dt

]
. (35)

For the expected total incoming number of posts of origin
i in Newsfeed n, we consider re-posts of origin i through the
L leaders, plus self-posts by user i, if user i is a leader of n,

E [Nin,i((0, T ])] =

= λ(i)T1{i∈L(n)} +

L∑
k=1

E

[∫ T

0

X
(k)
i (t)

M
µ(k)dt

]
,(36)

where we used the fact that E[N
(i)
p ([0, T ])] = λ(i)T because

it is a HPP of rate λ(i).
• Outgoing posts of origin i from Newsfeed n: Each of

the posts of any origin entering the Newsfeed of user n (say at
time t) will replace at random an existing post present on the
list. This is the random eviction assumption. The evicted post
will be of origin i with probability X(n)

i (t)/M . We define as
above the Bernoulli random variable

Z
(n)
i (t) =

{
1 , with probability X

(n)
i (t)

M

0 , with probability 1− X
(n)
i (t)

M

.(37)

This is itself a random process, which depends on the current
state of the Newsfeed n. The outgoing process of posts of
origin i from Newsfeed n results from thinning the total
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incoming process N((0, T ]) shown in (31) based on (37).
Using arguments similar to (35), the expected number of posts
of origin i which leave Newsfeed n up to time T is

E[Nout,i((0, T ])] =

= E

[∫ T

0

X
(n)
i (t)

M
dt

]
L∑
k=1

(
λ(k) + µ(k)

)
. (38)

• Newsfeed conservation law: The way we modelled the
Newsfeed, no post is lost and hence all incoming posts will
eventually leave the Newsfeed. The conservation law for posts
of origin i up to time T states that

X
(n)
i (0) +Nin,i((0, T ]) = Nout,i((0, T ]) +X

(n)
i (T ), (39)

where X(n)
i (0), X(n)

i (T ) is the count of origin i posts on the
Newsfeed n at time t = 0 and t = T , respectively.
• Taking expectations: By taking expectation on both sides

of the conservation law, we reach the equation

E[Nin,i((0, T ])] = E[Nout,i((0, T ])], (40)

where, E[X
(n)
i (0)] = E[X

(n)
i (T )] is cancelled out, because we

have assumed that at t = 0 the system is already in steady-
state. Let us divide both side in (40) by the window size T .
At the left-hand side of (40) we get using (36)

λ(i)1{i∈L(n)} +

L∑
k=1

µ(k)E

[
1

T

∫ T

0

X
(k)
i (t)

M
dt

]
. (41)

The detailed Markov chain has finite state-space (finite users
and size M of Newsfeeds), and we assume that the Follower
graph is strongly connected and that λ(n), µ(n) > 0, ∀n ∈ N ,
hence the chain is ergodic. Since we assume that we observe
the chain at its steady-state, then during (0, T ] it behaves
according to its stationary distribution, and it holds

E

[
X

(k)
i (t)

M

]
= p

(k)
i , ∀t ∈ (0, T ]. (42)

At the right-hand side of (35) – and also in (36), (38) –
we can use Tonelli’s theorem to interchange integration and
expectation, so that

E

[
1

T

∫ T

0

X
(k)
i (t)

M
dt

]
=

1

T

∫ T

0

E

[
X

(k)
i (t)

M

]
dt = p

(k)
i . (43)

Then (41) takes the expression at the right-hand side of our
balance equation in (8), and we can similarly prove the left-
hand side of the balance equation with (38) at the steady-state.

[C. Lemma for the proof of Theorem 3]

Lemma 2. [29, Chapter 6, Lemma 2.1] Given a nonnegative
matrix A ∈ RN×N+ , its spectral radius is ρ(A) < 1 if and
only if (IN −A)−1 exists, which can be written as the series

(IN −A)−1 =

∞∑
n=0

An ≥ 0. (44)
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