N

N
N

HAL

open science

Ranking Online Social Users by their Influence

Anastasios Giovanidis, Bruno Baynat, Clémence Magnien, Antoine Vendeville

» To cite this version:

Anastasios Giovanidis, Bruno Baynat, Clémence Magnien, Antoine Vendeville. Ranking Online Social

Users by their Influence. IEEE/ACM Transactions on Networking, 2021. hal-02970215v1

HAL Id: hal-02970215
https://hal.science/hal-02970215v1
Submitted on 17 Oct 2020 (v1), last revised 10 Jun 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02970215v1
https://hal.archives-ouvertes.fr

Ranking Online Social Users by their Influence

Anastasios Giovanidis, Bruno Baynat, Clémence Magnien, and Antoine Vendeville

Abstract—We introduce an original mathematical model to
analyse the diffusion of posts within a generic online social
platform. The main novelty is that each user is not simply
considered as a node on the social graph, but is further equipped
with his own Wall and Newsfeed, and has his own self-posting and
re-posting activity. As a main result using our developed model,
we derive in closed form the probabilities that posts originating
from a given user are found on the Wall and Newsfeed of any
other. These are the solution of a linear system of equations.
Comparisons with simulations show the accuracy of our model
and its robustness with respect to the modelling assumptions.
Using the probabilities from the solution we define a new measure
of per-user influence over the entire network, the WU-score, which
combines the user position on the graph with the user (re-)posting
activity. Furthermore, we compare the new model and its W-score
against the empirical influence measured from very large data
traces (Twitter, Weibo). The results illustrate that these new tools
can accurately rank influencers for such real world applications.

Index Terms—online social network, ranking, influence, model,
Markov chain, graph, Twitter, Weibo.

I. INTRODUCTION

Nline Social Platforms (OSPs) play a major role in the
way individuals communicate with each other, share
news and get informed. Today such platforms host billions
of user profiles. Although OSPs differ from one another, most
of them share a common structure, which allows users to post
messages on their Wall and read posts of others on a separate
Newsfeed. Most OSPs also permit re-posting from Newsfeed
to Wall, in order to facilitate information diffusion. With each
re-post (or “share”, or “re-tweet”) the information becomes
visible to a new audience, which may choose to adopt it or not,
thus spreading further the post or halting its diffusion. In this
way, posts originally generated by some user circulate inside
the social network [2]]. When the post is gradually adopted by
a considerable proportion of the users, we see large cascades
of information appear, and we call such posts “viral” [3].
Understanding how information spreads through OSPs is
very important as it affects the opinion of the population over
several subjects of every-day social life. Companies want to
determine the set of most influential users (“influencers”) for
better marketing of their products [4], and they would like to
predict information cascades [3)]. Such research is critical also
because spreading of influence can have malevolent purposes
instead [6], such as the spread of misinformation (‘“fake
news”). To be able to develop defence mechanisms against
such social attacks, a concrete mathematical analysis of post
diffusion through OSPs is necessary.

The preliminary version of this article appeared in the Proc. of INFOCOM
2019 [1]. This material is based in part upon work supported by the Agence
Nationale de la Recherche (ANR) under grant ANR-19-CE25-0011-01, project
“FairEngine”. The authors are with the LIP6 Laboratory, Sorbonne University
and French National Center for Scientific Research (UMR 7606 Sorbonne
University - CNRS), Paris, France, Email: {firstname.lastname} @lip6.fr

Existing literature on the topic has mainly focused on
models for opinion dynamics given the social graph as input.
These include the voter model [7], the SI(R) [L1, Ch. 17],
the threshold and cascade models [4] and the DeGroot 8]
model, among others. In each of these, the social graph
structure, together with simplified user interaction, has been
assumed sufficient to describe the diffusion of a single opinion.
However, the authors of the highly cited paper about the
“million follower fallacy” [9], argue that graph topological
measures alone reveal very little about the true influence of
a user in a platform; they use large traces from Twitter to
support their claim. The authors in [[10]] further use Facebook
data to identify real indicators of user interactions, beyond
social links. Our paper has the ambition to fill this gap between
analysis and data-driven conclusions by introducing a new
dynamic model which combines the information over the
social graph together with user activity and the OSP structure,
in order to explain more accurately how posts from different
origins diffuse and compete among each other inside the social
platform.

Viral marketing wants to identify users with high social
influence [4]. To this aim, users are ranked based on certain
impact measures, which mainly depend on user graph position
(e.g. number of follower links), similar to the existing opinion
models discussed above. For example, [11, Ch. 7] presents
degree, eigenvector and Katz centrality, as well as PageRank
score [12]], and [13] alternatives for large-scale graphs. We
claim that such measures are not suitable to rank the influence
of social users, because they do not include user activity, or
OSP structure and they will hence mislead when used to iden-
tify “influencers”. We propose instead a new W-score to rank
users, based on our proposed model. Our main contributions
are summarised as follows.

A. Main Contributions and Paper Structure
Our main contributions are summarised as follows:

o The entire OSP is described as a continuous-time Markov
chain. This model is original in the sense that it combines
(i) the social graph, with (ii) dynamic user posting and
re-posting activity, and incorporates elements of (iii) the
platform structure (Walls, Newsfeeds and the Newsfeed
suggestion algorithm). The model can include various
Newsfeed mechanisms (FIFO, Random, TTL) as well as
user post sharing behaviour. Also, competition among
posts to gain the user’s attention on the Newsfeed is
naturally included.

o By analysing the above chain we result in a linear
system of equations, which exactly describes the chain’s
behaviour in steady-state (Theorem [T} Theorem [2)). This
has as unknown variables the influence of a given user

on the Wall and Newsfeed of any other. This system
actually consists of the balance equations of posting
activity on each Wall and Newsfeed and can be solved for
an arbitrary input graph and arbitrary user activity rates.
Theorem [3] provides its solution.

o An iterative method (Theorem [) proposed to compute
the system solution facilitates numerical implementation.
It allows to implement a sparse algorithm, which scales
well as the size of the social graph increases.

o The solution gives rise to a new way to rank OSP users by
their influence. We call the new ranking metric, the “W-
score”. The performance of our model and the W¥-score is
tested on two large real-world traces from famous social
platforms, one from Twitter and another from Weibo.

The implementation code is made available online [14].

The paper is organised as follows. The social platform under
study and the performance metrics of interest are introduced
in Section The Markovian model describing the generic
OSP and its balance equations are given in Section Here,
we explain how these linear equations naturally constitute the
Newsfeed and Wall balance equations, and show their exact-
ness and general validity. The system’s closed-form solution
is provided in Section In the same section we provide an
iterative method that is computationally cheap and converges
to this solution. The ranking algorithm based on the W-score
and its implementation for large data-traces is detailed in
Section [V-A] Extended numerical experiments using synthetic
data in Section [V]] verify the model’s validity and robustness
over modelling assumptions. Massive real-world traces from
Twitter and Weibo are used to evaluate the W-ranking and
the sparse algorithm, in Section Our VU-ranking is further
compared against standard user ranking metrics (out-degree,
PageRank, and user posting rate). Conclusions are drawn in

Section [VIII

B. Related Literature

In most relevant research on opinion dynamics, individuals
are seen as agents whose relation is described by a social
graph. Each agent has a certain opinion and at each step this
opinion is updated through interaction with his direct peers.
Such models can be grouped into two general categories. /)
Dynamics with Binary opinions: There are only two possi-
ble opinions that agents can take. A large amount of work
descends from the voter model [, where opinion dynamics
are based on imitation. The work in [15]] studies a variation
that includes agents with persisting opinions. For further
extensions, see also [L6]. Another group of work is related to
epidemic spread. An agent is “susceptible” when his opinion is
0 and becomes “infected” when he adopts opinion 1, through
social interaction [[L1]. In [4] two opinion update mechanisms
are studied: the threshold and the cascade. 2) Dynamics with
Continuous opinions: Several works in the literature have
inherited and extended the original model of DeGroot [§]. In
this, each agent updates his continuous opinion by forming
per-step a weighted linear combination of the current opinions
of his peers. Variations of this model consider the inclusion of
persistent agents [17]. In [18]] this update mechanism is used

to formulate and solve an opinion manipulation problem. To
account for more realistic social behaviour, the authors in [[19]
consider opinion dynamics where agents interact in pairs only
when their opinions are already close.

Data, OSPs, and Cascades: Instead of modelling opinion
dynamics, recent works rather use available data to inves-
tigate more practically how posts spread within OSPs. The
authors in [2] describe diffusion patterns that arise in specific
online domains. Data analysis of large Facebook cascades is
performed in [3]]. Interestingly, the authors in [S]] propose ways
to predict cascade growth using machine learning tools. The
insufficiency of using graph-based only information to evaluate
user influence is studied in [9] and [10].

User activity: In [20] the authors identify user activity as
an important control tool for influence maximisation. Making
extensive use of datasets, they study the appropriate times for
a user to post or re-post in an OSP in order to maximise
the probability of audience response. An interesting analytical
effort to relate user activity with OSP design and post diffusion
is made in [21]. The authors use temporal point processes
to model posting and re-posting activity of a user. They
highlight the importance of the Newsfeed in post propagation
and map user activity to post visibility, building on the idea
that a post can be adopted by a follower when it is visible
on his Newsfeed and not pushed away by competing posts.
Their model, however, treats only a single user Newsfeed
and does not consider the dynamics of the entire social
graph. Furthermore, the dynamics of the Newsfeed list are
inaccurately mimicked by a FIFO queue. Another relevant line
of research includes [22]] and [23l], where the authors study
the bias of Facebook’s News Feed algorithm. They consider a
bipartite graph of a set of users following a set of publishers,
and model post activity as Poisson. Newsfeeds are here again
approximated by infinite queues with TTL or FIFO service.

Compared to these works, we propose here a more correct
and complete OSP model; we accurately model Newsfeeds
as lists, we consider here an arbitrary graph of any size and
include re-posting — among other realistic features. Finally, we
verify our model’s validity by large real-world data traces.

II. SYSTEM DESCRIPTION

Let us first describe a generic social network platform, such
as Facebook, Twitter or Weibo. A set of users generate and
share some content, denoted as posts, through the platform.
Each user has a list of followers and a list of leaders. A
user can simultaneously be follower and/or leader of others.
As a follower, he (she) is interested in the content posted
by his (her) leaders. With each user two lists of posts are
associated, namely a Newsfeed and a Wall. A user’s Newsfeed
is constantly fed by the content that all of his leaders post
on their Walls. A user’s Wall is fed (i) by his self-generated
posts that draw influence from the “outside world”, and (ii) by
posts that he shares from his Newsfeed. Hence, a user’s Wall
is a list of self-posts and re-posts. The generic social network
platform is illustrated in Figure [I]

User n
Re-post
M | | News » Wall ||K
feed u®
A TSeIf—post
A
NOINOZEPYOINE) PYSTRL
Leaders of |y, Wall Wall
user n
User i User j User k

Fig. 1. The social platform from the point of view of user n.

A. Assumptions on the system and notations

We consider a constant number N of active users, forming
the set NV. Users are labelled by an index n =1,..., N. We
denote by F(™ and L™ the list of followers and the list
of leaders of user n. Without loss of generality, we draw the
directed Leader-graph G = (N, £). Each pair of nodes (i, j) €
&, corresponds to a directed edge from 7 to 7, when ¢ is a leader
of j, ie., i € L), We denote by L the N x N adjacency
matrix of the Leader-graph, whose coefficients are given by:
b = 1{i€£(j)}, where 1(is the indicator function. We

assume that each user n has at least one leader, i.e., £ £,
Vn. The Follower-matrix is by definition F := L7,

The sizes of both Wall and Newsfeed are considered to be
constant. We thus fix K > 1 the size of a Wall (total number
of posts on the Wall of each user) and M > 1 the size of a
Newsfeed. This is reasonable if we assume that only a certain
number of most recent posts is considered relevant, and users
don’t tend to scroll down to access older posting history.

We denote by A(™) [posts/unit time] the rate with which
user n generates new posts on his Wall, and by ;™) the rate
with which user n visits his Newsfeed and selects one of the
M entries to re-post on his Wall (note here that each visit
implies re-posting). As a result, posts arrive on the n-th Wall
with a total rate A" + p(™) [posts/unit time]. Additionally,
we make the assumption that content posted on a users’s Wall
instantaneously appears on the Newsfeeds of his followers.
As a result, the input rate of posts in the n-th Newsfeed, is
Y jerm (AU) 4 19)). Given that the two lists associated per
user have fixed size, then with each new entry one element
has to be removed from the list and replaced by the new one.
For the user activity we require A" 4 () > 0, Vn.

Finally, any post originally generated by a given user n
takes as label the author’s index n, and will keep this label
throughout its lifespan inside the network.

B. Influence metric of interest

The aim is to estimate the influence of a specific user, say
user %, over the entire network. In order to define the metric
of interest, we first define the influence of user 7 on user n,
denoted by ngn), as the expected percentage of posts of origin
1 found on the Wall of user n. They obviously satisfy for each
Wall n, Zi\il qz(") = 1, Vn. We can also interpret qz(") as

the probability that, when picking at random a post from Wall
n, this post is of origin ¢. These performance quantities will
be the output of the developed models. With the above, we
propose the following metric of influence,

1 (n)
U, = m;% €1[0,1]. (1)

It corresponds to the average percentage of posts of origin @
on the Walls of any user n # ¢. The suggested metric averages
over all users in the network, but excludes the original user %.

Other metric definitions are also possible. As an example,
we could use the probability to find at least one post of label ¢
on the Wall of user n. This is equal to 1 — (1 — qEn))K, based
on which we can define an alternative metric.

In any case, by associating an influence score to each user,
the social users can be ranked by decreasing order of their
influence. From now on, we will call the expression in (EI)
which quantifies the influence of a user in the platform, the
W-score of user i. In this work we will focus only on this
metric, leaving other alternatives for future investigations.

III. MODEL
A. Markovian model

The model relies on the following assumptions:

« Poisson arrivals. For any user n the generation of new
posts on his Wall follows a Poisson process with rate \(")
and the re-posting activity from his Newsfeed follows a
Poisson process with rate ().

« Random selection. When a user visits his own Newsfeed,
we assume that he selects at random one of the M entries
to re-post on his Wall.

« Random eviction. A novel entry on the Wall or Newsfeed
list will push out an older entry of random position.

Thanks to these assumptions, the resulting models devel-
oped in the following are Markovian. Indeed, all inter-arrival
times between posts and re-posts are exponential and all
choices are probabilistic. The random selection/random evic-
tion policy will be assumed throughout the solution process
to derive the Newsfeed and Wall balance equations. Random
selection models the case where users pick a post at random
from their Newsfeeds, i.e. without order of preference. We will
show later that our solution is actually robust to other selection
choices, like the newest selection where a user always picks up
the object from the top of his Newsfeed list. Random eviction
models platforms which put new posts to Newsfeeds (and less
realistically to Walls) in a random order. In Facebook, content
curation algorithms decide the order of content appearance
based on some background machine learning algorithms. In
Twitter, however, both Newsfeeds and Walls normally show
posts in a First-In-First-Out fashion, so the appropriate policy
in this case would be the FIFO eviction i.e., the oldest object
is removed from the list and the fresh content is placed at
the top. We will show that such eviction policy satisfies the
same balance equations as the random one. More complicated
options for the selection and eviction policies will be compared
to our solution by simulation in Section

B. Detailed model

The full state-description for this system is an N-tuple
U = (UWD, ..., UM), where U™ = (x(") y(™) is the
state of user n (at a given time ¢, omitted in notations for
sake of clarity). x(™ is the state of his Newsfeed and y(™
the state of his Wall. The random eviction and random selec-
tion assumptions allow to describe the system-state evolution
without using information over the order of posts in the lists.
Then, x(") = (xgn), . ,xg\?)), where xl(”) counts the number
of posts with user-origin ¢ found on the Newsfeed of user
n. Similarly, y™ = (..., 4®), where y{"™ counts the
number of posts with origin 7 found on the Wall of user n.

With all the assumptions described in Section the
stochastic process with full state U is a continuous-time
Markov chain model with finite state-space. This process
obtains a unique stationary distribution. However, even for
very small values of the system parameters the number of
states will be enormous, whereas the state of a user’s Newsfeed
and Wall is coupled with the state of other users. As a
result, any numerical method to find the solution, would be
computationally intractable. For this reason we first introduce
in the next subsections a state aggregation and a simple
decoupling of the state-space that considerably reduce the
solution complexity. Following that, we prove that the resulting
balance equations we find are exact for the detailed model.

It is important to understand where the coupling between
states of different users appears in the detailed model, before
presenting the aggregated and decomposed model. Consider
user n and focus on label 7 posts. A leader k of user n will
re-post from his own Newsfeed to his own Wall a post of label
1 with probability xgk) /M., due to the random selection policy.
This post will appear immediately on the Newsfeed of user n,
thus changing its state x("). Hence, the evolution of the state
of user n depends not only on his own current state and on
his own activity, but also on the current states of his leaders
(in this example xl(k)).

C. State aggregation

To simplify the solution process we first need to describe
the state-space in a more compact way. To do so, we focus on
posts from a particular user ¢ and calculate the influence of this
user ¢ on the entire network. Of course, one can successively
apply the technique to all ¢ = 1,..., N in order to determine
eventually the influence and W-scores of everyone.

The state aggregation is as follows. On all N Walls and
N Newsfeeds we consider only two types of posts; those of
origin ¢, and those issued from other users labelled as —q.
In other words we aggregate the effect of all users except <.
Remember that the detailed state of user’s n Newsfeed was the
N-dimensional vector x("). By applying the state-aggregation
this is now described by @"%ﬂ_’?), whose sum is equal to
the Newsfeed size M, so that x(_ni) =M fxz(-"). As a result, the
state of the Newsfeed of user n is reduced to a single integer
x(") = xgn) with values ranging from O to M. Similarly, the
state of user n’s Wall becomes also 1-dimensional y(™) = yl(")
with values ranging from 0 to K.

D. Decomposition by mean-field approximation

After state aggregation, the states (x§n),y§”)) of different
users n are always coupled among each other. We decom-
pose here the state-description, to obtain 2N independent 1-
dimensional Markov Chains, each one associated with the
Newsfeed and the Wall of a user. To do so, we use a
“mean-field” approximation [24]]: for a given user n, the state
transitions of his Newsfeed and Wall will still be a function of
his own current state and activity, as well as the activity of all
of his leaders. But they will not depend anymore on the current
Newsfeed and Wall states of the user’s leaders a:l(»k) (1), ygk) (t)
but rather on their average probabilities in steady-state, which
at this stage are unknown values.

More precisely, let us consider user n. We denote by pgn)
the steady-state probability for a post on Newsfeed n to be of
label 4, i.e., to originate from user 7. Similarly, we have already
defined in Sectio q§”> as the steady-state probability for a
post on the Wall of user n to be of label i. These quantities for
n =1,..., N are the model unknowns after aggregation. Note
that these probabilities are actually the ergodic means of the
related user states, i.e., p\™ = E[%] and ¢\ = E[g]

We distinguish here between the Newsfeed and Wall of user
¢ (particularized user) and the Newsfeeds and Walls of users
n = j # i. Consider the Newsfeed of user j; the state mgj)
can evolve as follows:

0 12

)) (@) ,
$§J)+1 & 1:5]) fﬁﬁﬁ)9:(»3)—1.

3

In the above fij) and fﬁj) are the transition rates between the
states, respecting the range 0 to M. The rate ff)(xl(-])) is

(7)

i kK| M~z

Aoy + >0 W | === @
ke

F9 =

Indeed, A is the rate with which user i generates a new
own post on his Wall, post that instantaneously appears on
the Newsfeed of user j, if ¢ € £, A post of label ¢ can
as well appear in the Newsfeed of j through re-posting. This
occurs when one of the j’s leaders visits his own Newsfeed
and re-posts a label ¢ post on his own Wall. For leader k
CE
M
selection policy. We propose that u(’“)pgk) is an estimation of
this rate and this is where the “mean-field” appm)_c)imation
that decomposes the state-space lies. Finally, M;\;EJ is the
probability that an incoming post (with label ¢) replaces an
old post of label —i, by the principle of random eviction.
The rate fY)(xl(j)) is defined in a similar manner as

D

kL) ki

such event occurs with rate pu , following the random

()

AW+ 3 i -p) | S)
kel

F9

As a consequence, the rate transitions from 335]) to +1or —1
depend only on the current state of Newsfeed j and not that

@) as a 1-dimensional
Markov Chain. Similar arguments hold for the Newsfeed state

of its leaders. We can thus describe x;
of user n = ¢. These simple Markov Chains are shown at

User i

i)

M - x{
Newsfeed 2 M(k)pl_(k) Mr

O~ @ DHO
1
E{N) <k)(1 p(k))}M
keL”
Wall K-y
(/1(%,4(’),;(1))

(:)(1 m)
u P

Userj=i

Newsfeed

M- X(l)

W pk)
feryt 2 H
ker”

IR ‘“(1 p(k>) le1
ker” kerL”
Wall ki ()

o, K=y" y

w-rp;

)
[/W) +um(1_p(n)].V, Y
: tlk

©

Fig. 2. Aggregated Markov Chain model.

the top part of Figure [2] From the stationary probabilities
of the chain for Newsfeed n, we can derive the steady-state
probabilities p!™

) _ (m)Zi 4
p" =))T 4)

zﬁ"'):o

Observe that the unknown probabilities p(") depend on the
steady-state solution of the 1-dimensional Markov chain,
whose transition rates depend in their turn on the probabilities
pg') (see e.g.) As a result, the probabilities p(7 result from
the solution of a fixed-point problem.

For the Walls of users we can follow a similar process. In
the Wall of user j # i, the state y(]) can evolve as follows:

[€)]

(j) g+ (J)) . (J)((J))

L B
@) and o)

(v

— y(j) — 1.

?

are the transition rates between the
(J)((J)) is

’L

In the above g’ and g~

states, respecting the range 0 to K. The rate g

))] ,K_yz(j)
0w’ = Wp) = ()

Indeed, the state of posts ¢ on the Wall of user j # i can only
evolve by reposting. Such posts enter the Wall j with average
rate pu() p(j), because the user re-posts with rate 1) and has
(J) probability to choose posts of label i, due to random
selectlon This is again the “mean-field” approximation. The
incoming post will replace an old post of label —¢ with
. K—y(J)
probability —=
(J)((]))

due to random eviction. The corresponding
rate g is defined in a similar fashion. Hence, the state
evolution of posts 7 on the Wall of user j can be described
by an independent 1-dimensional Markov Chain. We proceed
similarly for the Wall of user n = i. These simple Markov
chains are illustrated in detail at the bottom part of Figure [
From the stationary probabilities of the chain associated with
user’s n Wall, we can derive the q§")

K (n)

g™ = Z (y™M)di. ©)

Note from H and Fig. |2| that the Wall probabilities qf") do
not result from a fixed-point solution, because they are directly

expressed as a function of the Newsfeed probabilities pE”)

E. Derivation of the balance equations

Here we further develop and simplify the equations and
(6). We first consider the Markov chain associated with the
Newsfeed of user n = j # 4 (see top right part of Fig. [2). To
solve this birth-and-death process we define the quantity

1{Zegu>} + D kero p®p ()

—.
)4+ hero BB (1 — pz('))

Note that 7; depends on all probabilities p() for k € L),
The steady-state probability of the Markov chain associated
with the Newsfeed of user j can then be derived using 7;:

M e
xgj) T

where 7(0) is obtained by normalization (thanks to the Bino-
mial formula):

T =
Zkeﬁ(j>7k7éi

el =0

1
(]. _|_7-j)]V['

Then, applying this result in @) we get:

() _ m M
bi 1+TJ mz_l() g M

M—-1

m(0) =

m’::zm—l Tj Z M—-1 Tml
14 7,)M m/ J
(+ J) m’=0

Binomial Tj
L4750

By replacing the expression for 7;, we obtain the following
very simple expression for posts of origin ¢ in the Newsfeed
of user 7. The fixed-point is now visible:

> (A(k)ﬂw(k)) p = A1 oyt D uPp

keL() keL()
(7N

Following a similar reasoning, we get for the Newsfeed of any
user n = 17, the following equation:

S (A4 u®) | p0 = 3T u®pM. @)

keL® keL®

As a result, the set of N equations (7) and (8) constitute
the new equations of the fixed point, whose solution gives the
required Newsfeed probabilities pgn) forn=1,...,N.

In the same fashion, the steady-state probabilities for the
Wall can be directly derived from the steady-state probabilities
for the Newsfeed through the following equations:

(A<.7>+ u(j)) ¢ = p@pD,)

(O +u@) g = AD+uOp a0

%

F. Explanation of the balance equations

Interestingly, equations (7)-(8) and (©)-(I0) allow for a
simple intuitive interpretation: they balance the incoming and

outgoing flow of posts of origin ¢ on each Newsfeed and Wall
list. More precisely, equation equalizes the incoming rate
and the outgoing rate of posts of origin ¢ in the Newsfeed of
user j (for j # i). Here, >, ;) ()\(k) + u(k)) is the average
number of posts per unit of time that enter the Newsfeed of
user j. From the random eviction policy, each of these arriving
posts replaces a post of origin ¢ with probability pgj), Indeed,
by assuming that post and re-post processes are Poisson, the
PASTA property holds which tells us that arriving posts see
the Newsfeed in steady-state. As a result, the left-hand side
of equation is just the outgoing rate of posts of origin ¢ in
the Newsfeed of user j. Now looking at the right-hand side of
this equation, (®) is the average number of posts per unit of
time that arrive on the Newsfeed of user j because a leader
k of j reposts something on his Wall. Each of these posts is
of origin ¢ with probability pgk), due to the random selection
policy in Newsfeeds. In addition, if ¢ is a leader of j, the A
self-posts of ¢ per unit of time also appear on the Newsfeed
of j. As a result, the right-hand side of equation is the
incoming rate of posts of origin 7 in the Newsfeed of user j.

Similarly, equation (8) equalizes the incoming rate and the
outgoing rate of posts of origin ¢ in the Newsfeed of user
i. The only difference is that a new post that has just been
created by ¢ does not appear on his own Newsfeed.

Equation (9) equalizes the incoming rate and the outgoing
rate of posts of origin 7 in the Wall of user 5. Indeed A7) 4, (%)
is the average number of posts per unit of time that enter the
Wall of user j. Each of these posts replaces a post of origin
1 with probability qu), due to the random eviction policy in
Walls and the PASTA property. As a result, the left-hand side
of equation (9 is the outgoing rate of posts of origin i from
the Wall of user j. Obviously,)pgj) is the average number
of posts of origin ¢ per unit of time that arrive on the Wall of
user j, due to the random selection policy in Newsfeeds.

Similarly, equation (I0) equalizes the incoming and outgo-
ing rate of posts of origin ¢ on the Wall of user i. We just
have to add at the incoming rate the A\(*) self-posts per unit
of time from <.

Theorem 1 (Exactness). For Poisson posting and re-posting
activity and for the random selection / random eviction policy,
the equations (7)-(8) and (9)-({I0) describe exactly the original

detailed model in steady-state.

The proof can be found in the Appendix.
The balance equations further give an important structural
property of the steady-state solution as a side product.

Corollary 1 (Insensitivity in list size). In view of (7)-(8) and
(9-(Z0), the steady-state probabilities to find posts from user
i on the Newsfeed of any user n (p;"’, n=1,...,N) as well
as on the Wall of any user n (qgnz), n =1,...,N), depend
neither on the size M of the Newsfeed, nor on the size K of
the Wall.

G. Alternative selection and eviction policies

Looking at the model through the balance equations enables
us to relax random selection and random eviction assump-
tions, and introduce alternative policies. We will show now
that a number of different policies satisfy the same balance
equations, thus granting generality to the result.

1) Random selection / FIFO eviction: Let us modify the
eviction policy in both Newsfeeds and Walls, and replace
“Random” by a more realistic FIFO policy: now, a new post
enters at the top of the list and evicts the oldest post out of
the list. We thus have to modify only the left-hand side of
equation H To do so, we define gbl(.J) as the new outgoing
rate of posts of origin ¢ in the Newsfeed of user j. This will
replace the left-hand side of eq. (7)). From Little’s law,

o _ X
o =)’
T

i

(1)

where YEJ) is the average number of posts of origin ¢ in the
Newsfeed of user j, and TEJ) is the average time a post of
origin ¢ stays in the Newsfeed of user j.

The total arrival rate of posts in the Newsfeed of user
Jis Yperm (A® +u®)). The mean time between two
successive arrivals in the Newsfeed of user j is thus the inverse
of this quantity. As a result any post arriving in the Newsfeed
of user j will stay on average M times this mean value:

7 _ M
. = .
Ler (AW +p)

Since ng) =M pgj) per definition, we conclude that:

3 (A<k>+ u(’“)) [FIFO evict], (13)
keL@)

(12)

) = p

which has the same expression as the left-hand side of equation
(ﬂ[). In other words, when we replace the “Random” eviction
policy by the FIFO eviction policy in the Newsfeed, equation
does not change. We can easily show by a similar reasoning
that equations (8), (9) and (I0) remain also unchanged under
the FIFO eviction policy.

We now show that the set of balance equations remain
the same also if we choose a TTL (Time-To-Live) eviction
principle [23]], [25]. Here, each post stays at the Newsfeed for

a fix amount of time 7' before leaving. In this case, the size
of the list is not constant M, but rather varies over time. By
Little’s law, the mean Newsfeed size is equal to

(J) :TZ

kel

AR (kD) (14)

where again 3,) (A% + p®) is the total arrival rate
of posts in Newsfeed j. Then in we substitute YE]) =

M(J) (]) and T(]) T, to get

o = (A(k) i qu)) [TTL evict].
keLl)

15)

2) Newest selection / Random eviction: We come back to
our original model with a “Random” eviction policy, and
where Newsfeeds are of limited size M and Walls are of
limited size K. We have proved in Theorem [I] that the steady-
state probabilities p§” and q(J being solutions of the system
(7)-(10)) depend neither on M nor on K. In order to change
the selection policy from “Random” to “Newest”, we just have
to take M = 1. Indeed, when the size of Newsfeeds is unitary,
the “Random” selection will necessarily choose the newest (i.e.
latest, freshest) entry of the Newsfeed to repost on the Wall
of a user. As a result, the system (7)-(I0) remains true also
under the ‘“Newest” selection policy.

IV. CLOSED FORM SOLUTION

A. Linear system

We can re-write (8)-(7) and (I0)-(9) for posts with label i
in a compact form and summarize our findings as follows.

Theorem 2 (Linear System). The unknown column vectors

pi == (pl(-l), ... 7pEN))T and q; = (qi(l)7 . qu)) are the
solution of the following linear system
pi = A-p;+b; (16)
9 = C-p;+d. 17

In the above, A and C are N x N matrices independent of
i, whereas b; and d; are N-column vectors that depend on <.
Hence, a standard linear system should be resolved for each i.
The entries of the above matrices and vectors are summarised
in Table [Il It is interesting to note that a; ; = 0 for all j,
b;; = 0, C is diagonal, and also there is a unique positive d; ;
entry for i = j.

The matrix A is non-negative. In addition, it is row sub-
stochastic, meaning that the sum of all its rows is less than
or equal to 1, with at least one row sum strictly less than 1
(if we reasonably assume that at least one user injects self-
posts). Another interesting property is that A is a weighted
version of the Follower-matrix F = LT, so that if 1 (jeFm) =
1{k€£<j)} = 0 = a; = 0. There are cases however where
j follows £, but a; , = 0 in the matrix A, because u(@ =0.
Hence, users that never re-post from their Newsfeed alter the
possibilities of post propagation in the graph. This is why we
call A, the propagation matrix.

TABLE I
ENTRIES FOR THE MATRICES/VECTORS OF THE LINEAR SYSTEM.
A (k)
a; = —_—
gk e O [(OFON {keﬁ(ﬂ)}
b, b = A
i i = 2265(1)0‘(4)*“(0) {zeg(J)}
219
C Cj,k =)\(J)+#(J) 1{J =k}
, o A@
d; dji = @0 Hi=i)

B. Closed-form solution

We would like to know under which conditions a solution to
the linear system in (I6) - and as a consequence (I7) - exists.
To this aim we first recall the following known Lemma, where
Iy is the N x N identity matrix. It relates the solution of our
system to the spectral radius of A, denoted by p(A).

Lemma 1. [26] Chapter 6, Lemma 2.1] Given a nonnegative
matrix T € RfXN, its spectral radius is p(T) < 1 if and
only if (In — T)~! exists, which can be written as the series

ZT">O

From the specific structure of the non-negative matrix A
we have the following property.

(In =T)~ (18)

Lemma 2. Ir holds p(A) < 1. Strict inequality is guaranteed
in the following non-exclusive non-exhaustive cases (cs):

(csI) XM >0, ¥n e N.
(cs2) For every cycle in the Leader-graph, at least one partic-
ipating user has a leader k with positive self-post rate.

Proof. Let us denote the row sums of A by r(j), 7 =1...N.
Then 7(j) < 1 by definition from Table [I] It is known that
([28, Theorem 8.1.22]) the following bounds are valid for
the spectral radius of a non-negative matrix: minN_1 r(j) <
p(A) < maxé\',1 (7). The right-hand side in our case is 1 and
the first part is proven.

(cs1) When A > 0, ¥n, then Vj and k € L), ajr <
1P)3 e pi 1, so that r(j) < 1, V4. Then the matrix is
strictly sub-stochastic, and p(A) < max}, r(j) < 1.

(cs2) In this case, suppose the length of a particular cycle
is 7 > 1 and the participating nodes are ng,...,n,. Then
at least one row sum r(j) < 1, j € {n1,...,n,}. By direct
application of the Al’pin, Elsner, van den Dreissche bound
[27, Theorem A], we conclude that p(A) < 1. An additional
condition for this bound is that r(j) > 0, Vj, which is satisfied
when £) £ (), Vj € N and not all leaders of some user have
p®) = 0. O

Remark 1. A special instance of (cs2) is when A is irre-
ducible and \U) > 0 for at least one j € N.

Theorem 3 (Solution). For the two cases of Lemma |2| the
solution of the linear system ([6)-(I7) is unique, and given by
(In —A) " 'b;

C(Iy—A) 'b; +d,.

19)
(20)

p: =
q; =

Proof. Lemma 2] g uarantees that p(A) < 1 in both cases, so
that from Lemma 1 the inverse (I — A)71 > 0 exists and
the solution is unique. O

An interesting observation is that the inverse (Iy — A)~!
involved in the derivation of p; (relation (I9)) is independent
of i. Thus, in the solution process the inverse should be
calculated only once, and then applied to the expressions in

(I9)-(20) for labels i =1,..., N.

C. Fixed-point algorithm

For large N it can be practically very difficult to calculate
the inverse (Iy — A)~'. A different way to proceed in order
to solve the system (I6) is to use an iterative approach.

Theorem 4. For the two cases of Lemma 2| and any ini-
tialization vector p;(0), the discrete-time linear system
converges towards the fixed-point solution when t — oo.

pi(t)

Proof. We first write p;(t) as a function of p;(0) and ¢,

t—1
+ (Z A”) b;
n=0

We need to find the limiting value p; := lim; o pi(t).
For the two cases in Lemma [2| we have p(A) < 1, so that
from [28| pp.137-138, or Theorem 5.6.12] it holds A*® :=
lim; o, A* = 0. Additionally, from Lemma | I the limit of the
matrix series for ¢ — oo converges to (Iy — A) . Hence, the
iteration converges to the solution (I9), and is independent of
the initialisation p;(0). O

= A pi(t—1)+b; 1)

pi(t) = A’

Note that once the Newsfeed-vector p; := lim;_, o pi(t)
has been obtained, the Wall-vector q; can be calculated from
relation . The influence score for user ¢, i.e. the value W,
is then directly derived from (I)). We need to solve for all s
to derive all scores {¥;}¥ |, however notice that the matrices
A and C are the same for all users, and only b; and d; differ.

V. IMPLEMENTATION AND NUMERICAL ASPECTS

For the numerical implementation we coded the following
programs, that we make available in [14]: (A) an algorithm to
derive the W-rank for each user from the balance equations
of the model; two versions are coded, one for small OSP
sizes and a sparse one for real-world sizes, (B) a discrete-event
simulator, to simulate over time the behaviour of an OSP with
arbitrary input traffic and user/platform policies, and (C) an
emulator, which takes a real data-trace as input and outputs
empirical W-scores.

A. VU-ranking by the model

We remind the reader that the W-score of user ¢’s influence
in the somal platform was introduced in (I, as a function
of the g, (3)-g g = .,N), ie. the steady-state Wall
probabilities. These Values have been derived in closed form,
through the balance equations. The two methods to calculate
them, one using Theorem [3| with matrix inversion and a second
using Theorem [4] are coded in [14] for small OSP sizes. The
algorithm takes as input the vector of all posting and reposting
rates A = (A1,...,An) and = (p1,...,un), as well as the
leader-graph G and outputs the W-scores.

Since the size N of real-world social graphs is of the
order of millions of users, an efficient algorithm that runs in
reasonable time-scales is necessary to calculate these scores
for all users in the platform. A tedious matrix inversion
Iy — A)_1 is not recommended for such cases, as it is com-
putationally very expensive - typically of the order of O(N?).
We have programmed here another algorithm to calculate the
W-score in large graphs, which implements a sparse version
of the iterative solution introduced in Theorem [It computes
first the p;’s by involving at each iteration a matrix-vector
multiplication A - p; and then a vector addition b;, which
take into account the sparsity of both the propagation matrix
A, and each vector b;. Sparsity comes from the fact that the
number of leaders and followers of any user ¢ is very small
compared to the total population N; as a second step - to
calculate the g;’s we also use the fact that C is diagonal and
sparse, and d; has a single non-zero element. We can break the
user set in subsets of users and parallelise the computational
process on several machines, because solving for the influence
of one user ¢ does not affect the process of solving for others.

B. Discrete-event simulator

Additionally, we have developed our own discrete-event
simulator (also available in [14])) to validate the mathematical
analysis through simulation, and to evaluate the robustness of
the modelling assumptions presented in Section against
alternative traffic and policies. Unlike the code in the previous
section [V-A] which solves the model’s balance equations, the
simulator precisely implements the behaviour of the generic
OSP over time as described in Section |lIf i) The global state
description consists of dynamic lists (of length K for Walls
and M for Newsfeeds); ii) A variety of selection and eviction
policies are implemented (“Random”, in a first phase, and
“Newest”, FIFO, “Popular” later to evaluate robustness); iii)
Self- and re-posts can be generated according to Poisson or
other processes. As such, the simulator does not decouple the
state space, does not estimate average probabilities, and does
not rely on Markovian assumptions. For each simulation we
set M = 20 and K = 10 and ran long enough simulations to
reach the steady-state with small confidence intervals. More
specifically, in all experiments, we let the simulator run for a
total of 300000 events (self- and re-posts).

C. Emulator (Trace-based empirical influence)

Finally, we have coded the emulator, which uses a real data-
trace as input from Twitter, Weibo or other platform. The

emulator differs from the simulator in the sense that it does
not simulate the post propagation or specific policies, rather
it directly outputs numerical values of influence, as read from
the post sequence in the trace. To do so, we first pre-process
the available data trace, so that each line of the input is just
the quadruple [PostID, TimeStamp, UserID, RePostID],
where the fourth entry is —1 in case of an original post, else the
PostID of the original post which was reposted. The program
calculates the influence of each user (author) on another user
directly from data: this is equal to the percentage of time that
posts of a specific origin occupy the first position on a Wall of
another user, assuming a FIFO principle. By finding all these
empirical values g[user][author], we can derive the empirical
Psi-score W$™ for all users in the trace. Note here that for
the emulator, the empirical influence is determined by the Wall
occupancy periods divided by the total duration of the data-
trace, and no further information about the social graph is
necessary. We provide the code for the emulator also in [14].

VI. NUMERICAL EVALUATION

We plot the numerical values of the influence metric
from the model (see for three different user-graph con-
figurations and increasing N: complete graph, grid and ring.
The results are shown in Figure [3h-c. We also include the score
values from the simulator (see [V-B), with T"_iter = 300, 000.

a) Complete graph: In this case, each user follows all
other users. All users have the same activity tuple (A, u). As
the network is totally symmetric, we plot the influence of any
user over the network for three different values of 2 (0.5, 1 and
2), as a function of the network size N. We observe that the
influence of a given user decreases as the size of the network
increases. This is reasonable since the more the users in the
network, the larger the competition between users to influence
the Wall of each other, thus the smaller the influence per user.
Furthermore, we observe that the smaller the %, the higher the
influence. This result shows that in a fully symmetric network,
when everyone decreases his self-post activity, there is more
space left on his Wall for being influenced by others.

b) Grid graph: Depending on his position in the grid,
a user may have 4, 3 or 2 leaders. All users have the same
activity tuple (X, p1), here set to (5, 3). On Fig. [3b} we plot the
influence metric for three different types of users : the central
user (with 4 leaders), a user at the middle of an edge (with 3
leaders) and a user at a corner (with 2 leaders), as a function
of the network size, N = 9,25,49,81,121. We observe that
the corner user has less influence than the edge user, who
in turn has less influence than the central user. This is an
obvious qualitative result, considering the different numbers
of followers each user has, but here we quantify the impact
of the position through our W-score metric.

c) Ring graph: Users are arranged on a circle and each
user ¢ has R; leaders on his right (¢ + 1, ..., ¢ + R;) and R;
leaders on his left : — 1, ..., ¢ — R;), R; being denoted as
the radius of user ¢. For the comparison we use N = 31
users. Each one has been given a random uniform radius
in {1,...,15} and a random uniform activity tuple (\;, ;)
in [0.1,10] x [0.1,10]. We plot the influence for each user

in Fig[3c We observe a very good fit between model and
simulation, even for the user who has the least accurate
estimation (user “20” with a relative error of 2.5%).

d) Convergence: We evaluate the convergence speed of
the simulator to the solution of the balance equations by
increasing the number of iterations 7'_iter and plotting the
relative error; this is the ratio of the 2-norm of the difference
between simulated and analytical values, divided by the 2-
norm of the analytical values. We choose for the experiment a
ring graph of N = 8 with random \;, u; per user and random
radius R;, as above. The convergence till a relative error of
1.5% is shown in Fig.

A. Robustness

We further evaluate the robustness of the model with respect
to the modeling assumptions. For this purpose, we modified
our simulator to take into account inter-arrival distributions
alternative to Poisson, as well as selection and eviction policies
other than random.

a) Alternative inter-arrival times: In Fig. we plot
in addition to the exponential inter-arrival case, also the
convergence of the simulator to the solution from the bal-
ance equations when applying alternatively the following
two distributions for both posting and re-posting: (i) hyper-
exponential (with same mean but higher variance than Poisson)
and (ii) deterministic (with same mean and zero variance).
The figure shows that the hyper-exponential converges to the
same solution as the Poisson albeit more slowly. It exhibits
a 1.6% relative error compared to the analytical solution for
T _iter = 107. The convergence for fixed interval process is
non-monotone with a relative error of 5% for T _iter = 107.

b) Policies: We use here a complete graph with a varying
number N of users, and set (A, 1) = (10, 5). We programmed
our simulator (see to test alternative policies for user
selection and post eviction, based on age and post-popularity.
In we showed that certain alternatives give the same
balance equations as the basic “Random/Random” policy;
specifically the “newest selection” policy, where a user always
chooses to re-post the most recent post on his Newsfeed, and
the “FIFO (oldest) eviction” where the new post enters the
top of the list and pushes out the oldest one. Figure [3¢| shows
that indeed “Random/Random”, “Newest/Random” and “Ran-
dom/FIFO (oldest)” have the same average performance, as
these curves coincide. Furthermore, we test the “least popular
(resp. most popular) selection”, where the user chooses to re-
post from his Newsfeed the post with the maximum (resp.
minimum) current global number of re-posts. This policy uses
extra information on re-post history. We observe in Fig. [3¢|that
with such choice, the absolute difference with a random policy
becomes higher. The comparison is more pronounced when we
observe the individual influences on a complete graph with 16
users in Fig. [3f] Interestingly, all policies behave similarly,
except the “most popular” selection, which tends to give all
influence to a single user. We can conclude that our model
is very robust regarding the choice of selection and eviction
policies when there is no history information involved.

°) L2 L]
. . ,_<RI . .
0251 ¥ ° X p=0.5, model 0.06 4 25 I —o- Central user, simul X model ®z ® ']
o o o p=0.5, simul \ -%- Central user, model 0044 0 simul o o
+- p=1, model 0.054 —~o- Edge user, simul
0201 & \ o p=1, simul - ~A- Edge user, model ®
\ * - p=2, model ©— Corner user, simul 0.03 ®Q
> \\ o p=2, simul > 0.04 8- Corner user, model > 2
£O1 & \ & g c ® ¥ s
E \ \ N 3 0.034 2002{ & ® 2
2 . 2 & ® 2
<010 \ % s = ¥ 2 ® »
Y 0.02 ® s
2 0.01
O ’ ® L]
0.05 B -y S 001 ¥ e ® ®
g O -——%’.’;%;;g ® ® ®
L I S — B 0.00 ®
0.004 T T T T T
3 s 7 9 11 13 15 17 19 21 9 25 29 81 121 13 5 7 9 1113 15 17 19 21 23 25 27 29 31
Number of users N Number of users N User
(a) Complete graph (b) Grid graph (c) Ring graph
0.35
354 —+— exponential 0.16 1 — Random sel. - Random ev. % Random sel. - Random ev.
hyper-exp Random sel. - Oldest ev. 0.30 4 Random sel. - Oldest ev.
_ 304 ® const 0.14 —&— Newest sel. - Random ev. ® Newest sel. - Random ev.
'E —~— Newest sel. - Oldest ev. 0.25 4 * Newest sel. - Oldest ev.
5254 m z 0.12 4 —=— Least popular sel. - Random ev. ®m Least popular sel. - Random ev.
z g —— Most popular sel. - Random ev. > 0204 + Most popular sel. - Random ev.
R 50 @ 0.10 1 <]
T 20 32 2
o T 7]
g < 0.08 2 0137
o 15 g £
2 = 0.06 | 0.104
210 =
« 0.04 4 0.05 4
5 L] L] LB B A] S EmAanm @ ama
0.02 0004 + + + + + i
0 - - - - - - - - - -
10° 10 10° 108 107 3 s 7 9 11 13 15 17 19 21 123 45 6 7 8 91011121314 1516

Number of Iterations

(d) Convergence for various arrival distributions

Number of users N

(e) Selection/Eviction policies

User

(f) Influence per user

Fig. 3. Top (a)-(c): W-scores in three different graphs. Bottom (d)-(f): Sensitivity with respect to modeling assumptions.

—— corner user

0.0025

0.0013 —#— diagonal neighbor

—&— central user

0.0012 0.0020

0.0011 0.0015

Influence ¥
Influence W

0.0010

0.0010

0.0009

0.0005

0.0008

0.07
*, %- p=10 *x 19
] \ p=1
_ 006 . . hon ¥ 17
@
% 0.05 15
c
] x * 13
~ 0.04 1
] * ¥ 11
g
Bl *®

5 0.03 X\ J 9
o * >
£ 0.02 * * 7
E] %X *\ﬁ x(* XXX
= > - - 5
£ 0.01 | L / 5

0.00 4 XXX XK RN e KT XK 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 1 3 5 7 9

Usern

Fig. 4. Model exploitation: (a) left: Ring graph, (b) centre: Grid - fixed symmetric activity, (c) right: Grid -

B. Model exploitation

Having demonstrated the accuracy and the robustness of our
model, we now investigate how the influence of a given user
is related to his position in the graph and to the relative values
of his own activity compared to the activity of other users.

a) Direct vs. indirect influence: We first consider a
ring with N = 31 users, each one having the same radius
R = 3, and we plot the influence of user “1” on the
other users. Since R = 3, user “1” has six followers: users
{«27, 437, “47, %297 “30”, “31”}. In Fig. we represent
three curves corresponding to three different values of the ratio
p= %, namely p = 0.1, 1, and 10, assuming that each user in
the network has the same self-post rate A and the same re-post
rate u. First, we observe that all the curves are symmetrical,
which comes from the symmetry of the user graph. More
importantly, we see that user “1” has a greater influence on
his direct followers, than on the other users. And obviously,
the greater the distance from user “1”, the less influence of

0.0000

40 60
A corner

80 100

-
©
o

influence evolution.

user “1” on the considered user. Here user “16” is the one
that is less influenced by user “17.

b) Influence and graph position: We consider in Fig. @b|
a grid graph with 400 users, each one having the same activity
(A, 1) = (10, 10). Each square represents a user and is colored
according to his influence ¥; over the network. As expected,
the peripheral users, i.e., the users located on the outer edges,
and in a more pronounced manner, the corner users are the
ones with the smallest influence. This is due to the fact that
these users have 3 or 2 direct followers, whereas all others have
4. But contrary to intuition, the central users are not the most
influential. In fact, the users with the highest influence (white
colour) are the four diagonal neighbours of the four corner
users. We have verified this property on different graphs. As
an example, on a tree, leaves are the less influential users,
whereas the parents of leaves are the most influential users.
As a conclusion, in a social network, being a leader of users
with few other leaders increases one’s influence. Obviously

this is partly due to our definition of influence, but alternative
metrics have shown to follow the same trend.

c) Influence and activity: We now want to see if a
user with a position that gives him a low influence in the
network can counterbalance his bad placement by increasing
his posting activity. To this aim we consider again the grid of
the previous subsection. We set (A,) = (10, 10) for all users
except for the south-west corner user who is given the same
re-post rate, fieorner = 10, but that can adjust his self-post rate
Acorner- In Fig. we let only A.orner vary from 0.1 to 100,
keeping (A, i) and pieorner fixed, and plot the activity of the
considered corner user, as well as the activity of the central
user and of the diagonal neighbor of the corner user (the most
influential in a network with symmetric activities).

First of all, we observe that the corner user becomes more
and more influential as his posting rate increases, and he even-
tually becomes the most influential user in the network. The
central user is too far away from the corner user to be affected
by the evolution of his posting rate, so his influence remains
constant. However, observe that the raise of A.,rner Causes
a drop in the influence of his diagonal direct neighbor. As a
conclusion, the answer is positive: one can counterbalance his
bad position by increasing his self-posting activity.

VII. NUMERICAL RESULTS FROM REAL-WORLD TRACES

Traces: We evaluate our model and ¥ metric using two real
datasets, one from Twitter and the second from the Weibo
social platform. The first trace comes from Kaggle referred
to as Russianﬂ It contains roughly 2 million (re-)tweets
emitted from 180,000 users during the Russian presidential
elections of 2018. The second trace referred to as Weibd?
comes from [30] and contains roughly 34 million messages
exchanged over the Chinese microblogging platform Sina
Weibo. For both traces, user IDs are anonymised. Posts are
ordered in time and their content is removed. Each line
contains: [PostID, TimeStamp, UserID, RePostID]. Basic
statistics for both datasets are summarised in

Methodology: Before starting, we need to extract some
information from the traces. For each available data trace the
input vectors of user activity \;, p;, Vi can be estimated as
the sample means of each user’s posting activity, 5\,», i, Vi
i.e., the ratio of the number of posts or re-posts over the total
trace duration; the social graph G — if not provided — should
also be inferred from the available traces, as we will show
later in the case of Russian.

For each trace, we want to show how well our model
can evaluate user influence in the respective platform. First,
we rank the users based on the model influence W™edel
where we use the sparse version of the code described in
Section H with input (X, /i, G), and compare this list with
the ranking based on user empirical influence, as derived
from the emulator ¥*™" in Section As a second step
we compare the model ranking, with the ranking based on
alternative influence measures: (i) the user out-degree, (ii) the
user post activity)\ and (iii) the user PageRank [12].

! Available at |https://www.kaggle.com/borisch/russian-election-2018-twitter
2 Available at |https://aminer.org/influencelocality| from the paper [30].

Russian Ranking (Wemu ys ymodel)

105 4
104 <4
2 1004
o
=
g 102 4
<
[=
& 104
10° 4 —— y=x
(Rank(emu), Rank(model))
107

10° 10! 10? 10% 104
Rank from Emulator

Russian Ranking

—— W model

0.2 Post Rate

——- Out-deg Star
—-- PageRank Star

Common Users Percentage

10° 10t 102 103 104
Top-X Highest Influencers

Fig. 5. User ranking comparison for Russian. (a) top: Scatter plot between
Rank(¥™del) and Rank(¥*™") — points on the left rank higher (1st, 2nd,
etc.), (b) bottom: Common users proportion with reference to Rank(We™1).

To compare two ranking lists between each other we use two
types of plots: A 2D scatter plot, where each point corresponds
to a user and is the tuple of his predicted rank based on
the We™' (x-axis) and the W™°del (y.axis); in such plots
we also visualise the distance of the rankings from the line
x =y, which describes the ideal perfect match of ranks. The
second type of plot illustrates a metric similar to the Jaccard
index to compare the two rankings, called “Common users
proportion”. More precisely, if {u1,...,ux} are the top-X
UserIDs according to the emulator list, whereas {v1,...,vx}
the top-X UserIDs for the model list, we define the proportion
of common users at depth X of the emulator list by

CX _ |{U1,...,UX} N {Ul,...,Ux}|.
X
Note that this quantity converges to 1 as X grows to N,
because the two full lists contain the same set of users. But for
some given X < N (e.g. top-10), the curve shows how well
the model manages to rank users in relation to the emulator
in the top-X positions.

A. First Dataset — Russian

To apply our sparse algorithm (see we estimate user
activity by the sample means (), /i), i.e. the number of posts
and reposts per user in the trace divided by the total time
window (57 days). The user graph needed as input is not
directly available for Russian and we have to find a way
to recover it. For this we use the following heuristic:

https://www.kaggle.com/borisch/russian-election-2018-twitter
https://aminer.org/influencelocality

TABLE II
BASIC STATISTICS ON BOTH DATASETS.
Russian Weibo

Time window 57 days 1 216 days
users 181 621 1 340 816
posts 674 292 232 978
reposts 1271 073 33 307 189
Mean #posts/user 3.71 0.17
Mean #reposts/user 7.00 24.84
Max #posts 4 834 3718
Max #reposts 2 811 1 032
% users with #posts > 0 54.45 03.55
% users with #reposts > 0 63.60 99.54

TABLE III

STATISTICS OF INPUT SOCIAL GRAPHS.

Russian (Star) Weibo (Real)
#nodes 181 621 1 340 816
#edges 517 421 291 761 716
mean out-degree 5.70 236.90
max out-degree 7 868 431 385
max in-degree 389 8 107
TABLE IV

TOP-10 INFLUENCERS IN RUSSIAN AS RETURNED BY THE EMULATOR
AND COMPARED WITH THE MODEL (STAR GRAPH).

User pemu T pmodel T Rapk [Rank | Out-dg | A[s—]
ID # 1073 | 1073 emu | model Star 10-7
20905367 1202 | 1023 1 3 6 676 429
82299300 1129 | 7.03 2 5 7 833 96.0
494076761 7.35 13.80 3 2 6 963 4393
615422017 533 13.82 4 1 5 474 639.5
174953869 5.13 5.81 5 7 1742 1185
711363811 479 412 6 15 1309 82
36309919 4.44 523 7 9 4516 1185
1867848452 | 4.15 4.60 8 2 1235 6.1
34200559 3.68 7.96 9 4 3571 982.8
50597428 336 3.64 10 20 1156 82

Star G User i is considered to be a follower of user j iff
¢ has reposted a post of origin j at least once.

With Star we make the simplifying assumption that a user only
reposts content created by his direct leaders. This approach
short-circuits the diffusion paths of posts as it links directly
original authors to all the re-posters, drawing a network with
star-shaped communities. The Star graph statistics are given
in We chose to follow this approach because the
data-trace does not contain extra information over the IDs of
“relay”-users. In such traces we can only know and store the
original author and the total set of users each post reached,
but not the paths. Note here that inferring graphs from data
is a subject of active research and alternative methods can be
found in the recent literature [29]. For the time being we will
use the Star-network as input; in the Weibo section, we will
benefit from a real known graph.

The evaluation of the Russian model against the emulator
is provided in [Table TV] and in The top plot in
Figure 5| shows the scatter plot of ranking based on model
and U°™; note here that the points at the left correspond
to higher influence rank (1st, 2nd,...) compared to points at

the right, which are less significant. We observe a very good
fit between the two rankings in the entire domain, and even
for the top ranks (1st, 2nd,...) at the left part of the plot,
which are of practical interest, e.g. for a company targeting
high-influencers. At the bottom plot we illustrate four curves:
each of them plots the Common users proportion between the
user ranking from the emulator and the ranking from (i) user
out-degree from the model, (ii) user PageRank from the Star
graph, (iii) user post rate, and (iv) the model influence ymodel
using the Star graph. We observe that our model (iv) explains
much better than the other metrics the ranking by the emulator,
and is able to find 80% of emulator top-X users, in the largest
part of the X range. The two curves (i) and (ii) which describe
only the graph structure perform much lower. Finally, in this
specific example, the curve (iii) about user posting rate has
no considerable importance in explaining influence, as such
ranking seems unrelated to the emulator.

Precise results for the top-10 ¥°™" ranked users are shown
in We observe a very good fit between actual values
of wmodel and wemu Specifically, the model manages to
find 7-out-of-10 influencers in the emulator top-10 list. An
important observation comes from the two last columns of the
table, namely the user out-degree and the user posting rate.
We see that neither the out-degree nor the posting frequency
follows the ranked order of the top influencers, in support
of our observations already in By inspection, the
user with maximum out-degree (7833 followers in Star =
7833 users who shared posts originating from him) is ranked
274 by the emulator and 5" by the model, whereas the user
with maximum posting rate is ranked 9‘" by the emulator
and 4'" by the model. Impressively, we find in the list a
top-influencer (ranked 8" by the emulator) with low posting
rate (e.g. 6.13 - 10~7 [posts/sec] ~ 0.00221 [posts/day]) and
relatively low out-degree (1235 “followers” in Star). Hence,
neither the out-degree as a measure of importance in the social
graph, nor the posting rate as an activity measure are alone
sufficient to rank users by influence. Our W-score mixes user
activity with graph position.

For Russian, an important part of the user influence is
already present in the Star-graph, due to the way we chose to
draw it (all users who shared a post are assumed as followers
of its original author). The correlation between the influence
score U™odel and Star out-degree, is very high, equal to 0.82,
whereas the correlation between W™°4°! and posting activity
A is only 0.11. For the above reasons, we study the second
dataset (Weibo), accompanied by its true social graph.

B. Second Dataset — Weibo

For the second dataset (Weibo) we have access to the
underlying friendship graph i.e., who follows who. The graph
statistics are given in We use this Real graph to
compute values of influence from our model pmodel whereas
the W™ is derived directly from the trace. The Weibo trace
is special, because of the way it was collected to serve the
study of cascades (see [30]); the authors isolated and kept in

3The friendship graph contains users that do not appear in the trace; since
no further information is available over their activity we ignore them.

the dataset only certain (approx. 200K) microblog episodes,
which were massively re-posted. Specifically, as can be seen
from [Table | there are 10x more users than the Russian, but
only 3.5% of users post, in comparison to 99.5% who re-post.
The number of original posts is very small compared to much
larger (100x) number of re-posts, meaning that the trace has
a small user set of potentially very large influence. Here, we
expect user activity to play an important role in determining
influence, not just graph structure. On the other hand, the Real
graph contains 291 million (M) edges (see [Table III), most of
which are never observed to be active in the available trace
for post forwarding. In fact the trace contains ~ 33M re-posts.
Even if each repost passed through a different edge from the
Real graph, there would be 291 — 33 = 258M edges unused.
Let us see how our model behaves in this particular case.

User ranking for Weibo using the model and the emulator
are shown in [Figure 6] and [Table V] Specifically, (left)
presents the scatter plot for ranking by W™°del and we™u The
fit for high influencers is good, but worsens as we move to
the right in the low influence ranks, but the points are always
centered around the line x = y. This behaviour is partly
due to the specific trace and partly due to numerical issues;
the massive size and density of the Weibo graph and the
asymmetry in activity slowed-down computation of Wwmodel
when using our sparse algorithm for the model, and we had
to trade-off accuracy for run-time.

(centre) shows the Common users proportion
metric between the rank list from W*™" and the ranking from:
(1) out-degree, (ii) PageRank, (iii) post rate, and (iv) the model
ymodel The performance of W™°de! js again the best and
it can explain around 60% of the user top-X ordering by
yemt The reason for the lower performance compared to
Russian Star is that, in the Real graph most of the edges do
not participate in the post diffusion described in the Weibo
trace. Our model in this paper does not include contextual
preferences towards users or topics, but rather gives equal
probability to all posts visible in the Newsfeed to be re-
posted. We believe that a pre-processing of the real graph
to keep only active relationships (edges) could significantly
improve the model performance. Even in this unfavourable
situation, however, we observe once again that our model
using the Real graph outperforms the other three measures in
explaining the top-X influencers found in the emulator ranking
list. Interestingly, the graph-related measures of out-degree and
PageRank behave very badly, whereas the post rate explains
much better the empirical influence; this is to be expected
because only cascades of posts from specific origins are kept
in the trace. The ¥ metric from our model combines both
graph position and user activity to give a better estimation of
social influence. Finally, (right) compares ranking by
the model with ranking by the post rate and the out-degree.
Although W™edel and post rate performance seem very close
in the (centre) plot, less than 80% of the ¥™°4°! ranking can
be explained just by the post rate. This means that the ¥mode!
cannot be replaced simply by the post rate - even in this special
case of dataset, because it contains different information over
user influence.

Finally, referring to [Table

. we see that the model with

TABLE V
TOP-10 INFLUENCERS IN WEIBO AS RETURNED BY THE EMULATOR AND
COMPARED WITH THE MODEL (REAL GRAPH).

User gemu [gmodel T Rapk [Rank | Out-deg | A[s— 1]
ID # 103 103 emu | model Real 10~
519514 37.08 63.88 1 2 459 31.7
490872 24.68 93.99 2 1 595 354
1004172 | 13.30 7.05 3 23 520 2.0
482551 11.53 47.56 4 3 1247 11.0
110361 7.07 13.19 5 5 288 10.3
244531 7.05 12.33 6 7 312 10.4
296675 6.77 8.30 7 17 347 8.7
980392 6.70 5.94 8 27 230 6.2
153610 6.22 2.93 9 54 81 3.6
821785 6.21 11.32 10 11 1084 2.7

Real graph input finds 5-out-of-10 top influencers common
with the emulator. From the out-degree and activity A columns,
we verify again that the influence W-score cannot be explained
by out-degree or activity only, but rather by an appropriate
combination of the two, summarised in ¥™edel,

VIII. CONCLUSIONS

In this work we have introduced an original Markovian
model that analyzes the diffusion of posts in a generic social
platform, and quantifies the influence of a given user over any
other. By resolving it we have derived closed-form expressions
for metrics of influence, which allow to rank users based on
the novel W-score; the latter summarises the combined effect
of user position in the graph with user activity. These results
constitute a novel powerful toolbox that can be further ex-
ploited to understand and design social platforms. To highlight
the importance of these results we have implemented a sparse
version of the solution algorithm in [[14] and have applied it
to massive data traces from real OSPs (Twitter and Weibo).
The model-based W-ranking is verified to correspond well
with the empirical influence as read from the traces, a fact
which validates our model for real world applications. As a
consequence, we believe that the model can serve as a fest
and prediction tool for many social platform and user activity
scenarios, when no trace is available. It is flexible enough
to further include extra OSP features (post-filtering, “likes”,
etc). The W—score, itself, is shown more suitable to rank user
influence compared to standard centrality metrics (out-degree,
PageRank, user activity) and cannot be substituted by any of
them. Hence, it enriches the literature with a novel important
measure that can combine user position in the graph with user
activity to adequately rank user influence inside a platform.

REFERENCES

[1] A. Giovanidis, B. Baynat, and A. Vendeville. Performance
Analysis of Online Social Platforms, IEEE Conference
on Computer Communications (IEEE INFOCOM 2019)
Paris, France, pp. 2413-2421, 2019.

[2] S. Goel, D.J. Watts, D.G. Goldstein, The structure of
Online Diffusion Networks, 13th ACM Conference on
Electronic Commerce (EC), Valencia, Spain, 2012.

Weibo Ranking (Wem vs ymodely

Weibo Ranking

Weibo Ranking

Rank from Model

Common Users Percentage
_

- y=x
- (Rank(emu), Rank(model)) |

e

W

0.4

AN W

—— W model NN W
Post Rate

-- Out-deg Real

—-- PageRank Real /

0.0 -+t

Common Users Percentage

/ \J
0.2 + N
! —— Post Rate
-=- Out-deg Real

10° 10t 102 10° 10 10° 10° 10t 102

Rank from Emulator

Top-X Highest Emulator Influencers

10! 102 10° 10¢
Top-X Highest Influencers from W model

103 104 10°

Fig. 6. User ranking comparison for Weibo. (a) left: Scatter plot between Rank(¥™°del) and Rank(We™") — points on the left rank higher (1st, 2nd, etc.),
(b) centre: Common users proportion with reference to Rank(¥™), (c) right: Common users proportion with reference to Rank(¥model),

[3] P. Alex Dow, L.A. Adamic, A. Friggeri. The Anatomy of
Large Facebook Cascades, Tth int. AAAI Conference on
Weblogs and Social Media (ICWSM), 2013.

[4] D. Kempe, J. Kleinberg, E. Tardos. Maximizing the Spread
of Influence Through a Social Network, ACM KDD’03,
New York, NY, USA, pp.137-146, Aug. 2003.

[5] J. Cheng, L.A. Adamic, P.A. Dow, J. Kleinberg,

J. Leskovec. Can cascades be Predicted?, 23rd int. conf.

on World wide web (WWW), Seoul, Korea, 2014.

S. Zannettou, M. Sirivianos, J. Blackburn, N. Kourtel-

lis. The Web of False Information: Rumors, Fake News,

Hoaxes, Clickbait, and Various Other Shenanigans, ACM

J. Data and Information Quality, no.3, vol.11, July 2019.

R. A. Holley, T. M. Liggett. Ergodic Theorems for Weakly

Interacting Infinite Systems and the Voter Model, Jour-

nal of the American Statistical Association, Vol.3, No.4,

pp-643-663, 1975.

M.H. DeGroot. Reaching a Consensus, Journal of the

American Statistical Association, Vol.69, No.345, pp.118-

121, Mar. 1974.

M. Cha, H. Haddadi, F. Benevenuto, K.P. Gummadi.

Measuring user influence in Twitter: The million follower

falacy, ICWSM, pp. 10-17, Menlo Park, USA, 2010.

[10] C. Wilson, A. Sala, K. Puttaswamy, B. Zhao. Beyond So-
cial Graphs: User Interactions in Online Social Networks
and their Implications, TWEB, 6(4): 17:1-17:31, 2012.

[11] M.E.J. Newman. Networks: An Introduction, Oxford
University Press, 2010.

[12] S. Brin, and L. Page. The anatomy of a large-scale
hypertextual web search engine, Computer Networks and
ISDN systems, 30(1-7), pp. 107-117, 1998.

[13] U. Kang, S. Papadimitriou, J. Sun, and H. Tong. Cen-
tralities in Large Networks: Algorithms and Observations,
SIAM SDM 2011, Arizona, USA, pp. 119-120, 2011.

[14] https://github.com/yokaiAG/social-platform-model

[15] E. Yildiz, A. Ozdaglar, D. Acemoglu, A. Saberi,
A. Scaglione. Binary Opinion Dynamics with Stubborn
Agents, ACM Transactions on Economics and Computa-
tion, Vol.1, No.4, Article 19, pp.19:1-19:30, Dec. 2013

[16] V. S. Varma, I.-C. Morarescu, Y. Hayel. Continuous time
opinion dynamics of agents with multi-leveled opinions
and binary actions, INFOCOM, Honolulu, USA, 2018.

[17] M. Grabisch, A. Mandel, A. Rusinowska, and E. Tan-
imura. Strategic Influence in Social Networks, Mathe-

[6]

[9]

matics of Operations Research, 43(1):29-50, 2018.

[18] A. Silva. Opinion Manipulation in Social Networks, Net-
work Games, Control, and Optimization (NETGCOOP),
Springer, pp. 187-198, 2017.

[19] F. Baccelli, A. Chatterjee, S. Vishwanath. Pairwise
stochastic bounded confidence opinion dynamics: Heavy
tails and stability, INFOCOM, pp. 1831-1839, 2015.

[20] N. Spasojevic, Z. Li, A. Rao, P. Bhattacharyya. When-To-
Post on Social Networks, ACM KDD’15, Sydney, NSW,
Australia, pp.2127-2136, Aug. 2015

[21] M. R. Karimi, E. Tavakoli, M. Farajtabar, L. Song,
M. Gomez Rodriguez. Smart Broadcasting: Do You Want
to Be Seen?, ACM KDD’16, San Francisco, CA, USA,
pp-1635-1644, Aug. 2016

[22] A. Reiffers-Masson, E. M. Hargreaves, E. Altman, W.
Caarls, D.S. Menasché. Timelines are Publisher-Driven
Caches: Analyzing and Shaping Timeline Networks, SIG-
METRICS Perform. Eval. Rev., 44(3): 26-29, 2016.

[23] E. Hargreaves, C. Agosti, D. Menasche, G. Neglia,
A. Reiffers-Masson, E. Altman. Fairness in Online Social
Network Timelines: Measurements, Models and Mecha-
nism Design, SIGMETRICS Perform. Eval. Rev. 46(3):
68-69, 2019.

[24] N. Gast. Refinements of Mean Field Approximation,
Habilitation a diriger des recherches (HdR), Université
Grenoble Alpes, tel-02509756 , 2020.

[25] N. Gast, B. Van Houdt. TTL approximations of the cache
replacement algorithms LRU(m) and h-LRU, Perform.
Evaluation 117: 33-57, 2017.

[26] A. Berman, R. J. Plemmons. Nonnegative Matrices in
the Mathematical Sciences, SIAM Classics in Applied
Mathematics; 9, 1994.

[27] L. Elsner, P. van den Driessche. Bounds for the Perron
root using max eigenvalues, Linear Algebra and its
Applications 428, pp. 2000-2005, 2008.

[28] E. A. Horn, C. A. Johnson. Matrix Analysis, Cambridge
University Press, 1985.

[29] M. E. J. Newman. Network Structure from Rich but Noisy
Data, Nature Physics , vol. 14, pp. 542-545, 2018.

[30] J. Zhang, B. Liu, J. Tang, T. Chen, and J. Li. Social
Influence Locality for Modeling Retweeting Behaviors,
IJCAI 2013 pp. 2761-2767, 2013.

[31] P. Brémaud. Probability Theory and Stochastic Pro-
cesses, Springer Universitext, 2020.

https://github.com/yokaiAG/social-platform-model

APPENDIX

The proof is based on the conservation law of posts in the
Newsfeed. We will show that is exact (i.e., holds without
any approximation). The same methodology can be used to
prove exactness for the other three equalities (8), (9) and (10).

[Proof of Theorem [1]] Let us observe the Newsfeed of
user n. This user has a set of leaders £(™) with index k =
1,..., L. Each leader has a posting activity, described by a
homogeneous Poisson process (HPP) N,(,k) with rate \(¥) and
a re-posting activity described by a HPP Nﬁk) with rate (%)
respectively. The superposition of all 2L processes is itself a
HPP N of rate D, (A% 4 1, (%)), This is the process of
total incoming posts in the Newsfeed of user n. By fixing a
time interval [0, 7] we count N ([0,7]) incoming posts

L
N(o.1) = Y (NP(0.7) + NP ((0,7))) . @2
k=1

We focus on posts of origin i. The state of the Newsfeed
n related to this type of posts at ¢ € [0,7] is denoted
by Xi(")(t) < M and is itself a continuous-time process.
The states of the leaders are denoted by Xi(k)(t) < M,
k = 1,..., L. Furthermore, the arrival process of posts of
origin ¢ through leader k is the counting process NT(1), for
k=1,...,L It holds N'®([0,7]) < N ([0, T)).

e Incoming posts of oi‘igin i to Newsfeed n: Each leader
k when re-posting will choose at random a post from his own
Newsfeed. This is the random selection assumption. We can
model the choice of user k£ to re-post content with label 7 at
time ¢ < 7" as a Bernoulli random variable

200 = {1
0

This is itself a random process, which depends on the current
state of the leader’s Newsfeed X i(k)(t). The counting process
N, (k) results from thinning the re- post process Np *) of user
k based on the random variable Now, assume one
realisation of N,)[O T, where user k reposted exactly S > 1
times within [0, 77, at time instants ¢; < ... < ts < 7. Then,

Z PZz" (t,) = 1].

Since Nr(k) is a HPP with rate ;%) the number S of re-posts
within [0,7] and their exact instants are random. Applying
the smoothing formula |31, Th.7.1.7], the expected number of
incoming posts of origin ¢ through leader k up to time 7 is

T
/ Pz () = Du®dt =

t 0

k

_ [T X XV p®dt.

=0 M
For the expected total incoming number of posts of origin %
in Newsfeed n, we consider re-posts of origin ¢ through the
L leaders, plus self-posts by user 4, if user ¢ is a leader of n,

(k)
, with probability

23)

. - x5 (@)
, with probability 1 — ~

E N (0.7)] =

(24)

L T

in = /\(i)Tl{iEL(n)} + Z/ o
k=1"t=

x® ()
Zi YR gt 25
P ; (25)

where we used the fact E[N” ([0, 7])] = AT because it is
a HPP of rate \(V).

e Outgoing posts of origin i from Newsfeed n: Each of
the posts of any origin entering the Newsfeed of user n (say at
time ¢) will replace at random an existing post present on the
list. This is the random eviction assumption. The evicted post
will be of origin ¢ with probability Xi(”) (t)/M. We define as
above the Bernoulli random variable

{1

This is itself a random process, which depends on the current
state of the Newsfeed n. The outgoing process of posts of
origin ¢ from Newsfeed n results from thinning the total
incoming process N([0,7]) shown in based on (26).
Similarly to (24), the expected number of posts of origin ¢
which leave Newsfeed n up to time 7' is

L T
P(Z"(t)
>
L

T
+ D / Pz (t) =)u®dt =
t=0

k=1

(n) L
S U [Z (A + u“‘”)] -

=0 k=1

(t)
X(")(t)
7§

, with probablllty

ZM@) = (26)

, with probability 1 —

out = DAF ar +

o Newsfeed conservation law: The way we modelled the
Newsfeed, no post is lost and hence all incoming posts will
eventually leave the Newsfeed. The conservation law for posts
of origin ¢ up to time 7" states that

X™0) +in = out+ X"(T), (28)
where in is given in , out is given in and Xi(") (0),

Xi(") (T) is the count of origin i posts on the Newsfeed n at
time ¢ = 0 and ¢ = T, respectively.

e Taking the limit: To derive the balance equation for
Newsfeed n found in (7), we divide both sides of the conser-
vation equaht;/ (28) by T and take the limit as T — o0. Then,
hmTﬁooX 0)/T = 0 and hmTﬁOO ()/T = 0. At
the left-hand s1de of (28) we get (see (23)

X

L
/\(l)l{ieﬁ(n)} + Z M() 11_15(10O T
k=1

The detailed Markovian model has finite state-space (finite
users and size M of Newsfeeds), and we assume in this proof
that the leader graph is strongly connected (can be relaxed).
Then this system is ergodic and it holds [31, Th.7.4.18]

(k)
lm— X ()dt = E

R
xM (k)
T—oo T =0 M M '

= p,

(29)

Similarly, for the right-hand side of (28) using out in

X(n)() -X(n)] (n)
lim — dt = E|——| =p, 30
T—r>nooT o M Ao | TP G0
which completes the proof. O

	Introduction
	Main Contributions and Paper Structure
	Related Literature

	System description
	Assumptions on the system and notations
	Influence metric of interest

	Model
	Markovian model
	Detailed model
	State aggregation
	Decomposition by mean-field approximation
	Derivation of the balance equations
	Explanation of the balance equations
	Alternative selection and eviction policies
	Random selection / FIFO eviction
	Newest selection / Random eviction

	Closed Form solution
	Linear system
	Closed-form solution
	Fixed-point algorithm

	Implementation and Numerical Aspects
	-ranking by the model
	Discrete-event simulator
	Emulator (Trace-based empirical influence)

	Numerical Evaluation
	Robustness
	Model exploitation

	Numerical results from Real-world Traces
	First Dataset — Russian
	Second Dataset — Weibo

	Conclusions
	Appendix

