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The opportunity of using a kinetic Lattice Boltzmann (LB) approach for the numerical
simulation of three-dimensional magneto-hydrodynamic (MHD) turbulence is examined.
A signi�cant advantage of dealing with a kinetic representation of the plasma (even in
simulating the MHD scales) is that the derivatives of the magnetic �eld are directly
encompassed in the solution, thus allowing for an intrinsically accurate description of the
small-scale current density structures. A novel LB framework is proposed here to address
the three-dimensional Orszag-Tang vortex problem at increasing Reynolds numbers. Our
analysis shows that both small-scale dynamics and spectral properties of LB runs are
compatible with the outcome of analogous pseudo-spectral simulations (Mininni et al.
2006) generated with a well-established pseudo-spectral code (Mininni et al. 2011; Pou-
quet et al. 2019). This study shows how phenomenology of MHD turbulence is suitably
captured by our LB simulations, which reproduced it with accuracy and computational
e�ciency. The newly developed algorithm couples two LB schemes for �uid dynamics
including the Lorentz force and the magnetic induction equation respectively. The �uid
incompressibility is achieved in the low-Mach-number limit, whereas the divergence-
free condition for the magnetic �eld is preserved within machine precision. It is also
emphasized how such novel scheme is amenable to a high level of parallelism and can
exploit the computational power of many-core accelerators such as Graphic Processing
Units (GPUs) thus leading to very advantageous turnaround times. This is supported by
a preliminary benchmark that shows the high scalability of our model implementation.

1. Introduction

Magnetohydrodynamics (MHD) is used to describe the motion of quasi-neutral �uid
material elements containing at least two types of particles with opposite charges such
as in liquid metals, electrolytes, hot ionized gases in the presence of a magnetic �eld or
rare�ed plasma such as the solar wind (Marino et al. 2008) at scales where the local
thermal equilibrium is granted. MHD brings together the concepts of �uid dynamics and
electromagnetism and is used to describe plasma dynamics in the frame of the space
weather and the heliospheric physics (Marino et al. 2012), nuclear fusion, industrial
processing of liquid metals, etc. It provides also the theoretical framework for the devel-
opment of a wide spectrum of technological devices ranging from magnetohydrodynamic

† Email address for correspondence: emmanuel.leveque@ec-lyon.fr



2 E. Lévêque, A. De Rosis, F. Feraco and R. Marino

pump to magnetic drug targeting inside the human body and plasma thrusters to adjust
the orbits of the satellites (Désangles et al. 2020).

Numerical simulations represent a major tool of investigation of MHD �ows in sit-
uations where experiments cannot be accomplished because it is too dangerous or
not feasible due to technical constraints. When the �ow is turbulent, pseudo-spectral
methods are widely recognized as one of the best options, as they allow for an accurate
representation of all the scales involved in turbulent motions (Patterson & Orszag 1971).
In the present work, a novel lattice Boltzmann (LB) implementation is proposed as
an alternative to classical pseudo-spectral codes in order to reach a pro�table trade-
o� between accuracy of the simulated plasma dynamics and computational e�ciency.
Unlike more conventional methods that solve the dynamics of neutral and magnetized
�ows at the macroscopic level, the LB method operates at the kinetic (or mesoscopic)
level.Therefore, the �ow complexity emerges from the repetition of simple rules of collision
and streaming of collections of particles living on a regular lattice (Krüger et al. 2016).
Originally validated by the intuition, the link between such idealized description and
the Boltzmann equation is now well established, thus placing the method on solid
theoretical and mathematical grounds (Shan & He 1998). Furthermore, the method is
computationally very e�cient due to its particulate nature and its focus on the local
dynamics (Körner et al. 2006).

A decisive contribution to the kinetic simulation of MHD �ows has been made by Dellar
(2002) who demonstrated that the LB framework could be extended to encompass both
the �uid dynamics driven by the Lorentz force and the magnetic induction equation. The
LB scheme introduced by Dellar fully complies with the MHD equations (in a weakly-
compressible formulation, see �2) but is prone to numerical instabilities. These latter
are mainly related to the growing of spurious non-hydrodynamic high-order modes when
strong velocity gradients develop in the �ow (Latt & Chopard 2006). To overcome such
limitation, De Rosis et al. (2018) successfully proposed to replace the classical Bhatnagar-
Gross-Krook (BGK) collision operator (Bhatnagar et al. 1954a) by a collision in the
space of central moments allowing an explicit damping of non-hydrodynamic statistical
moments. This recent progresses have encouraged us to deepen into the LB modelling
and evaluate its practical utility for the study of MHD turbulence.

The paper is organized as follows. In �2, the kinetic scheme is detailed and its numerical
implementation discussed. The three-dimensional Orszag-Tang vortex problem at increas-
ing Reynolds numbers is then used as a reference test case of MHD turbulent �ows in �3.
It is shown how characteristic features of MHD turbulence are suitably captured by our
developed kinetic scheme; comparisons are carried out with the pseudo-spectral MHD
turbulence realization by Mininni et al. (2006). In �4, the computational e�ciency of the
scheme is presented, tested and discussed through a preliminary benchmark associated
with the porting of the algorithm on some leading-edge devices. Finally, conclusions and
potential applications are discussed in the context of plasma studies in the last section.
With this work, we want to demonstrate that LB has reached maturity to address complex
MHD �ows, opening a new horizon for its application in the research on plasma �ows.

2. Methodology

In this section, we shall �rst recall the macroscopic dynamics that are simulated. The
related underlying kinetic schemes are detailed in a second step.
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2.1. The macroscopic governing equations

At the macroscopic level, the MHD description for an electrically conductive �uid
consists of the incompressible Navier-Stokes equations including the Lorentz force, i.e.

∂tu+ (u ·∇)u = − 1

ρ0
∇p+

1

ρ0
J ×B + ν∆u (2.1)

∇ · u = 0 (2.2)

where ρ0 and ν denote the mass density and kinematic viscosity, respectively. These
equations are coupled with the Maxwell-Faraday equation for the magnetic �eld

∂tB = −∇×E = −∇× (− (u×B) + η∇×B) (2.3)

under the divergence-free constraint

∇ ·B = 0. (2.4)

In Eq. (2.3), the electric �eld E is usually approximated according to the resistive Ohm's
law by E = − (u×B) + η∇ ×B, where η is the (constant) magnetic resistivity of the
�uid. In Eq. (2.1), the electric current density expresses as J = 1

µ 0
∇ × B. However,

the magnetic permittivity µ0 can be absorbed in the magnetic �eld (by replacing B by

µ
1/2
0 B) so that the Lorentz force J ×B eventually simpli�es as (∇×B)×B. Note that

this change of variables does not a�ect the other equations.
In a kinetic approach, the condition of incompressibility cannot be strictly ful�lled

(particles cannot move at an in�nite speed) but only approached in a low-Mach limit

(McNamara & Zanetti 1988). This latter is achieved when the speed of sound waves (cs)
becomes much larger that the macroscopic �uid velocity or, equivalently, when the Mach
number Ma = |u|/cs → 0. Therefore, the original incompressible Eqs. (2.1) and (2.2)
should be abandoned in favour of a compressible formulation

∂t (ρu) + ∇ ·
(
ρu⊗ u+ pI +

1

2
|B|2I −B ⊗B

)
= ρν∆u (2.5)

∂tρ+ ∇ · (ρu) = 0 (2.6)

in which the Lorentz force has been expressed in a conservative manner as minus the
divergence of the Maxwell stress tensor Mαβ = 1

2 |B|
2δαβ − BαBβ . By convention, the

tensor product (a ⊗ b)αβ = aαbβ . Compressibility imposes to resort to an additional
equation of state between the pressure, the mass density and the temperature of the
�uid. Here, the low-Mach limit justi�es to use the simple isothermal relation†

p = ρc2s (2.7)

where cs identi�es as the speed of sound (Krüger et al. 2016). For the magnetic �eld, the
simulated equation is unchanged and writes in a divergence form (resembling Eq. (2.5))
as

∂tB + ∇ · (u⊗B −B ⊗ u) = η∆B. (2.8)

The divergence-free condition on the magnetic �eld is preserved by Eq. (2.8) which means
that it is su�cient to impose ∇ ·B = 0 initially. A particular attention will be paid to
verify that this condition is indeed well preserved numerically.
The coupled system of Lattice Boltzmann schemes introduced in the following is

designed to conform to Eq. (2.5), Eq. (2.6), Eq. (2.7) and Eq. (2.8) at the macroscopic
level.

† Relative �uctuations of temperature and mass density are both O(Ma2).
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2.2. Kinetic representation of the macroscopic governing equations

Capturing the evolution of collections of �uid particles distributed throughout a regular
lattice is here preferred to solving non-linear PDEs. It may sound unrealistic, however,
the kinetic theory suggests that most of the details at this mesoscopic level play actually
no role on macroscopic dynamics. Therefore, much simpler dynamics can be conceived
by retaining in the kinetic framework only the basic features pertaining the macroscopic
level. This is the rationale behind the LB method, which can be viewed as a minimalist
and computationally e�cient kinetic model. Such framework can be extended to simulate
the dynamics of the magnetic �eld.

In the LB approach to classical hydrodynamics, macroscopic variables such as the �uid
density or the velocity are given by the statistical moments

ρ(x, t) =

N−1∑
i=0

fi(x, t) and ρu(x, t) =

N−1∑
i=0

fi(x, t)ci (2.9)

where the distribution functions f0, · · · , fN−1 are associated with a discrete set of
prescribed microscopic velocities c0, · · · , cN−1. The sums replace here the integrals
over c in the standard kinetic theory. In brief, this discretization stems from expanding
(and truncating) the solution of the continuum Boltzmann equation onto a �nite basis
of Hermite polynomials in velocity, and resorting to a Gaussian quadrature formula to
express statistical moments†. Therefore, the fi(x, t) evolve according a discrete-velocity
analogue of the Boltzmann equation

∂tfi + ci ·∇fi = −1

τ

(
fi − f (0)i (ρ,u)

)
(2.10)

where the BGK approximation (Bhatnagar et al. 1954b) to the collision (right-hand side)
term is often used. In this latter, the distribution functions fi(x, t) relax locally towards
their values at absolute equilibrium with a unique relaxation time τ = ν/c2s related
to collisions. This is su�cient to ensure that the slowly varying (on timescales smaller
than τ) solution of the hierarchy of statistical equations obtained from Eq. (2.10) satisfy
the isothermal Navier-Stokes equations with third-order corrections in the Mach number.
Eq. (2.10) is discretized in space and time by integration along characteristics to yield the
LB scheme. The set of velocities c0, · · · , cN−1 determines the lattice so that collections
of particles move from one node to a neighbouring node during exactly one time step,
then collide, reorient and spread again during the next time step, and so on. The LB
scheme governs the evolution in time of the number of particles moving along each link
of the lattice.

In the same way, the magnetic �eld can be represented as

B(x, t) =

M−1∑
i=0

gi(x, t) (2.11)

where the vector-valued distributions gi(x, t) are associated with fractions of the mag-
netic �eld carried by particles evolving on a lattice superimposed on the �uid lattice.
Interestingly, Dellar showed that it was possible to consider for the magnetic �eld a
sub-lattice of the lattice used for the �uid.

† The discrete set of velocities may be thought of as the nodes in the Gaussian quadrature
formula.
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Figure 1. Set of microscopic velocities of the D3Q27 lattice. At each lattice node, microscopic
velocities point towards the center, the 6 centers of faces, the 12 centers of edges and the 8
corners of a cube.

2.2.1. Central-moment-based Lattice Boltzmann algorithm for the �uid

For the �uid, the discretization (in velocity) of phase space refers here to a D3Q27
cubic lattice associated with the set of microscopic velocities {ci}i=0,...,26 given by the
Cartesian components

|cx〉 = [0,−1, 0, 0,−1,−1,−1,−1, 0, 0,−1,−1,−1,−1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1]>

|cy〉 = [0, 0,−1, 0,−1, 1, 0, 0,−1,−1,−1,−1, 1, 1, 0, 1, 0, 1,−1, 0, 0, 1, 1, 1, 1,−1,−1]>

|cz〉 = [0, 0, 0,−1, 0, 0,−1, 1,−1, 1,−1, 1,−1, 1, 0, 0, 1, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1]>

in lattice units (see Fig. 1). Lattice units are obtained by rescaling space and time by
the lattice spacing and the time step of the LB algorithm, respectively. Note that the
peculiar ordering of the ci is consistent with the proposal made by Latt (2007) to swap
and update distributions during the streaming step to halve the memory usage.

The lattice node values are the sets of distributions |f〉 = [f0 . . . f26]
>
associated locally

with the particles moving along the links i = 0, . . . , 26 with velocities c0, . . . , c26. The
LB scheme (in lattice units) advances the solution according to

fi(x+ ci, t+ 1) = fi(x, t)− ω
[
fi(x, t)− f

(0)
i (ρ(x, t),u(x, t))

]
(2.12)

which obviously resembles Eq. (2.10). Nevertheless, this resemblance is misleading be-
cause fi does not exactly refers to the solution fi of the discrete-velocity Boltzmann
equation (Eq. (2.10)) but to

fi = fi +
1

2

∆t

τ
(fi − f (0)i ). (2.13)

This change of variable results from the use of a second-order accurate trapezoidal rule
to approximate the integral of the collision term. It also calls for a rede�nition of the
relaxation time from τ to τ +∆t/2 so that

1

ω
=

(
ν

c2s∆t
+

1

2

)
(2.14)

where cs refers to the sound speed. ∆x/∆t =
√

3cs by construction so that cs = 1/
√

3
in lattice units. On the hand, the formulation of the mass density and �uid velocity in
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terms of statistical moments remains valid, i.e.

ρ(x, t) =

N−1∑
i=0

fi(x, t) and ρu(x, t) =

N−1∑
i=0

fi(x, t)ci (2.15)

which justi�es to some extent the quali�cation of fi as a distribution function. Finally,
Eq. (2.12) is commonly divided into a two-step stream-collide algorithm, in which a
streaming step

fi(x+ ci, t+ 1) = f?i (x, t) (2.16)

is consecutive to a local collision operation

f?i (x, t) = fi(x, t) + ω
[
f
(0)
i (x, t)− fi(x, t)

]
. (2.17)

The superscript ? denotes post-collision variables here and henceforth.

In classical �uids, the distribution f
(0)
i at equilibrium is given by the truncated Hermite

expansion of the (continuous) Maxwell-Boltzmann equilibrium distribution. This expan-
sion is commonly truncated at the second order, however, several groups (Malaspinas
2015; Coreixas et al. 2017, 2019; De Rosis & Luo 2019; De Rosis et al. 2019) have
very recently shown that a gain in accuracy and stability was expected by accounting for
higher-order terms. Here, the use of the D3Q27 lattice allows us to develop an equilibrium
distribution up to the sixth-order:

f
(0)
i = wiρ

{
1 +

ci · u
c2s

+
1

2c4s

[
H(2)
ixxu

2
x +H(2)

iyyu
2
y +H(2)

izzu
2
z

+2

(
H(2)
ixyuxuy +H(2)

ixzuxuz +H(2)
iyzuyuz

)]
+

1

2c6s

[
H(3)
ixxyu

2
xuy +H(3)

ixxzu
2
xuz +H(3)

ixyyuxu
2
y +H(3)

ixzzuxu
2
z

+H(3)
iyzzuyu

2
z +H(3)

iyyzu
2
yuz + 2H(3)

ixyzuxuyuz

]
+

1

4c8s

[
H(4)
ixxyyu

2
xu

2
y +H(4)

ixxzzu
2
xu

2
z +H(4)

iyyzzu
2
yu

2
z

+2

(
H(4)
ixyzzuxuyu

2
z +H(4)

ixyyzuxu
2
yuz +H(4)

ixxyzu
2
xuyuz

)]
+

1

4c10s

[
H(5)
ixxyzzu

2
xuyu

2
z +H(5)

ixxyyzu
2
xu

2
yuz +H(5)

ixyyzzuxu
2
yu

2
z

]
+

1

8c12s
H(6)
ixxyyzzu

2
xu

2
yu

2
z

}
. (2.18)

The weights wi are related to the lattice connectivity with wcenter = 8/27, wface = 2/27,

wedge = 1/54 and wcorner = 1/216 (see Fig. 1). H(n)
i refers to the nth-order Hermite

polynomial tensors in velocity ci. Eq. (2.18) reduces to the standard second-order

truncated equilibrium distribution if H(3)
i , H(4)

i , H(5)
i and H(6)

i are neglected.
Although the BGK scheme is generally considered as the orthodox approach, it su�ers

from stability issues in the zero-viscosity limit or for non-vanishing Mach numbers unless
the lattice spacing is dramatically reduced. This problem has been mainly addressed by
modifying either the numerical discretization of Eq. (2.10) or the collision operator. If the
former approach leads to more stable schemes, numerical accuracy is also considerably
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degraded compared to the original LB stream-and-collide algorithm. This drawback has
recently motivated many e�orts in developing collision operators with improved stability,
as recently reviewed by Coreixas et al. (2019).
Moment-based LB schemes rely on an isomorphism between the local set of particle

distributions and a related basis of velocity moments. Hence, the main idea is to relax
statistical moments rather than distributions with timescales that can be chosen to arti-
�cially damp spurious non-hydrodynamic moments while ensuring the correct relaxation
of physical moments, e.g. density, velocity or momentum �ux. In this way, stability
can be considerably improved. However, since �uid dynamics is inherently non-linear,
irreducible coupling artefacts appear in the hydrodynamics essentially in the form of an
enhanced bulk viscosity (Coreixas et al. 2019). More recently, Geier showed that further
improvement could be reached by considering statistical moments in the reference frame
of the moving �uid rather than in the rest frame (Geier et al. 2006). This procedure allows
us to reduce the insu�cient degree of Galilean invariance of previous formulations, and
to decrease the coupling artefacts between spurious and physical moments (Geier et al.
2007). Statistical moments computed in the moving frame are commonly called central

moments (CMs). CMs-based LB schemes therefore promise to be an e�ective approach
to simulate �uid �ows in the regime of high Reynolds numbers.
A key ingredient of CMs schemes is the shift of particle velocities by the local �uid

velocity, thus de�ning a new set of local microscopic velocities c̄i = ci−u against which
CMs are evaluated. In the present work, we consider the set of CMs

|k〉 = [k0 . . . k26]
>

= T>|f〉 or ki = 〈Ti|f〉 for each component (2.19)

where the (invertible) transformation matrix T is de�ned explicitly by the column vectors

|T0〉 = |1〉
|T1〉; T̄2〉; |T̄3〉 = [cix]>; [ciy]>; [ciz]

>

|T4〉; |T5〉; |T6〉 = [c̄ixc̄iy]>; [c̄ixc̄iz]
>; [c̄iy c̄iz]

>

|T7〉; |T8〉; |T9〉 = [c̄2ix − c̄2iy]>; [c̄2ix − c̄2iz]>; [c̄2ix + c̄2iy + c̄2iz]
>

|T10〉; |T11〉; |T12〉 = [c̄ixc̄
2
iy + c̄ixc̄

2
iz]
>; [c̄2ixc̄iy + c̄iy c̄

2
iz]
>; [c̄2ixc̄iy + c̄2iy c̄iz]

>

|T13〉; |T14〉; |T15〉 = [c̄ixc̄
2
iy − c̄ixc̄2iz]>; [c̄2ixc̄iy − c̄iy c̄2iz]>; [c̄2ixc̄iy − c̄2iy c̄iz]>

|T16〉 = [c̄ixc̄iy c̄iz]
>

|T17〉; |T18; |T19〉 = [c̄2ixc̄
2
iy + c̄2ixc̄

2
iz + c̄2iy c̄

2
iz]
>; [c̄2ixc̄

2
iy + c̄2ixc̄

2
iz − c̄2iy c̄2iz]>; [c̄2ixc̄

2
iy − c̄2ixc̄2iz]>

|T20〉; |T21; |T22〉 = [c̄2ixc̄iy c̄iz]
>; [c̄ixc̄

2
iy c̄iz]

>; [c̄ixc̄iy c̄
2
iz]
>

|T23〉; |T24; |T25〉 = [c̄ixc̄
2
iy c̄

2
iz]
>; [c̄2ixc̄iy c̄

2
iz]
>; [c̄2ixc̄

2
iy c̄iz]

>

|T26〉 = [c̄2ixc̄
2
iy c̄

2
iz]
>. (2.20)

The set of CMs at equilibrium is obtained the same way by

|k(0)〉 =
[
k
(0)
0 . . . k

(0)
26

]>
= T>|f(0)〉 or k

(0)
i = 〈Ti|f(0)〉 for each component. (2.21)

Consequently, the sixth-order Hermite expansion (2.18) simply gives

k
(0)
0 = ρ, k

(0)
9 = 3ρc2s, k

(0)
17 = ρc2s, k

(0)
18 = ρc4s, k

(0)
26 = ρc6s (2.22)

and keq1...8 = keq10...16 = keq19...25 = 0. Interestingly, only �ve CMs at equilibrium are
non-zero. Furthermore, their values are the same as those given by the continuous
Maxwell-Boltzmann distributions and are Galilean invariant. Therefore, our basis takes
full advantage of the D3Q27 discretization.
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Moment-based collision generalizes Eq. (2.17) as

|k?〉 = |k〉 − Λ
(
|k〉 − |k(0)〉

)
(2.23)

where the collision matrix Λ is now introduced. The BGK approximation is recovered
by simply taking Λ = ω I . Here, the idea is to relax moments individually. Therefore, Λ
remains diagonal but with speci�c relaxation rate for each moment. The matrix adopted
here is

Λ = diag[1, 1, 1, 1, ω, ω, ω, ω, ω, 1, . . . , 1] (2.24)

which leads explicitly to

k?0 = k
(0)
0

k?4 = (1− ω) 〈T4|f〉
k?5 = (1− ω) 〈T5|f〉
k?6 = (1− ω) 〈T6|f〉
k?7 = (1− ω) 〈T7|f〉
k?8 = (1− ω) 〈T8|f〉
k?9 = k

(0)
9

k?17 = k
(0)
17

k?18 = k
(0)
18

k?26 = k
(0)
26 (2.25)

and k?1...3 = k?10...16 = k?19...25 = 0. This collision matrix Λ allows us to increase

the numerical stability through the damping of acoustic waves
(

k?9 = k
(0)
9

)
and the

equilibration of high-order moments
(

k?10...25 = k
(0)
10...25

)
. Eventually, the post-collision

distributions are readily computed prior the unmodi�ed streaming step (2.16) by invert-
ing the transformation matrix T so that

f?i = 〈T−1i |k
?〉 (2.26)

where T−1i refers to the column vectors of the inverse of T.
The above-outlined procedure refers to classical hydrodynamics. In the case of MHD,

the momentum �ux should be complemented with the Maxwell tensor, which can be
simply incorporated in the previous scheme by adding the corresponding contribution to
the distributions at equilibrium

f
mhd(0)
i = f

(0)
i +

wi
2c4s

[
|B|2|ci|2 − (ci ·B)

2
]

(2.27)

and considering the CMs at equilibrium

k
(0)
i = 〈Ti|f mhd(0)〉. (2.28)

2.3. Vector-valued BGK lattice Boltzmann scheme for the magnetic �eld

The magnetic �eld is represented at the kinetic level byB(x, t) =
∑
i gi(x, t) where the

sum spans over a set of vector-valued distributions g0, . . . , gM−1 associated locally with
the discrete set of microscopic velocities ξ0, . . . , ξM−1. The lattice used for the magnetic
�eld a priori di�ers from the lattice used for the �uid dynamics. However, it is desirable
so that the nodes of the two lattices coincide so that u and B can be readily accessible
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Figure 2. Set of microscopic velocities of the D3Q7 lattice. At each lattice node, microscopic
velocities point towards the center, the 6 centers of faces of a cube.

by the two schemes without interpolation. Accordingly, Dellar established that a D3Q7
lattice (with much less symmetry than the D3Q27 lattice) was su�cient to comply with
the induction equation (Dellar 2002). The corresponding discrete velocities (see Fig. 2)
are

|ξx〉 = [0,−1, 0, 0, 1, 0, 0]>

|ξy〉 = [0, 0,−1, 0, 0, 1, 0]>

|ξz〉 = [0, 0, 0,−1, 0, 0, 1]> (2.29)

in the same (∆x, ∆t) lattice units as the �uid.
In the present case, the (vector-valued) distributions evolve according to

gi(+ξi, t+ 1) = gi(x, t)− ωm
[
gi(x, t)− g

(0)
i (x, t)

]
(2.30)

where the relaxation pulsation ωm is now related to the magnetic resistivity by

1

ωm
=

(
η

C2∆t
+

1

2

)
(2.31)

with ∆x/∆t = 2C for the D3Q7 lattice. Here, C should be viewed as the speed at which
a disturbance (of the magnetic �eld) is carried by �magnetic particles� between lattice
nodes.
The distributions at equilibrium are expanded at �rst order as

g
(0)
iα = Wi

[
Bα +

1

C2
ξiβ (uβBα −Bβuα)

]
(2.32)

where the weights W0 = 1/4 and W1...6 = 1/8. The D3Q7 lattice permits a substantial
saving in storage, compensating partially for the need to apply the algorithm (2.30) to
each component of gi. It is worth to emphasize that the dynamics of the magnetic �eld
can be represented by using the simplest three-dimensional lattice that requires only
seven velocities. This is due to the fact that B is evaluated as the zero-th order moment
of gi, hence higher-order lattices (encompassing higher-order moments) are not required.
A key advantage of the kinetic approach is to directly yield macroscopic �uxes in terms

of statistical moments of the distributions. Therefore, the viscous stress tensor is given
by the second-order moment of the non-equilibrium part of the distributions for the �uid,
so that the rate of strain expresses as

Sαβ = − ω

2ρc2s

∑
i

(
fi − f

(0)
i

)
ci ⊗ ci + O(Ma3) (2.33)
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where the O(Ma3) term arises from the discretization in velocity of the phase space. In
the same way, one can establish for the magnetic �eld (Pattison et al. 2008) that

∂Bα
∂xβ

= −ωm
C2

∑
i

ξi ⊗
(
gi − g

(0)
i

)
+ O(Ma3) (2.34)

from which the density of electric current readily reads (within a third-order correction
in Mach) as

Jγ ≡ εαβγ
∂Bα
∂xβ

= −ωm
C2

∑
i

εαβγ (ξiαgiβ − 2 uαBβ) (2.35)

where εαβγ is the alternating Levi-Civita tensor. Eq. (2.34) also provides a consistent
approximation to the divergence of the magnetic �eld

∇ ·B ' −ωm
C2

Tr

(∑
i

ξi ⊗ gi

)
(2.36)

by noticing that Tr
(∑

i ξi ⊗ g
(0)
i

)
= 0. Furthermore, one can establish that the O(Ma3)

correction in Eq. (2.34) cancels out by taking the trace. Therefore, the modelling error
is pushed to an higher order, so that ∇ · B = 0 can be approximated with high
accuracy by the condition Tr (

∑
i ξi ⊗ gi) = 0 at the mesoscopic level. In practice, this

later condition is actually maintained to machine round-o� error by the LB algorithm
(2.30) in numerical simulations. Finally, we would like to emphasize that the former
kinetic approach provides an intrinsically accurate representation of the derivatives of
the magnetic �eld, i.e. without resorting to any additional derivation operation. This is
de�nitively a strength of the LB approach in the context of turbulent MHD �ows that
develop �ne-scale magnetic structures.

3. Results

Our scheme is validated against the Orszag-Tang (OT) vortex problem often considered
as a prototypical �ow for the study of MHD turbulence. Here we will use as a reference
the numerical results obtained in (Mininni et al. 2006) from pseudo-spectral simulations
of the incompressible MHD equations (Mininni et al. 2011; Pouquet et al. 2019).
The investigated OT �ow develops in a cubic box of size L = 2π m with periodic

boundary conditions in the three dimensions. The evolution is deterministic from the
initial condition

u(x, 0) = u0 [−2 sin(y), 2 sin(x), 0]

B(x, 0) = b0 [−2 sin(2y) + sin(z), 2 sin(x) + sin(z), sin(x) + sin(y)]

ρ(x, 0) = ρ0 (3.1)

with u0 = 0.01 and b0 = 0.8 u0 in lattice units. The initial mass density is set to unity:
ρ0 = 1. The Mach number Ma = u0/cs ≈ 0.0173 approaching the incompressible limit
with δρ/ρ0 = O(Ma2).
Each dimension is discretized into N grid points. The lattice spacing is therefore ∆x =

L/N (m) and the time step ∆t is such that u0 ∆x/∆t = 1 m/s corresponding to the
reference velocity used in the pseudo-spectral simulations. The Reynolds number based
on the initial velocity is de�ned as Re = u0N/ν in lattice units. For a given resolution, the
viscosity is thus adjusted to reach the expected Reynolds number. Finally, the magnetic
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Figure 3. Time evolution of the maximum value (in the computational domain) of the
electric current density at di�erent Reynolds numbers.

Prandtl number is equal to unity so that η = ν. We performed three LB simulations at
Re = 570, 1040 and 3040 with respective resolutions 1283, 2563 and 3843, comparable to
the de-aliased pseudo-spectral simulations performed in (Mininni et al. 2006).

3.1. Time evolution of the maximum of the electric current density

The time evolution of the maximum value (in the computational domain) of the current
density J(x, t) is plotted in Fig. 3. At early stages, max(J(x, t)) increases independently
of the Reynolds number corresponding to the linear development of current and vorticity
sheets. Then, a faster growth with a self-similar t3 scaling develops before reaching a
turbulent state in which complex current and vorticity sheet instabilities occur (see
Fig. 4). The current density eventually decreases slowly under the e�ect of viscous and
resistive dissipations. This behaviour fully agrees with the outcome of the pseudo-spectral
simulations (see Mininni et al. 2006, Fig. 2).

3.2. Fine-scale turbulent structures and spectral analysis

The structures that generically develop in MHD turbulence are electric current sheets.
Fig. 4 displays the volume of high current density in the simulation box at Re = 3040.
Kelvin-Helmholtz instabilities (KHI) with rolling up of current sheets are visible, which is
again compatible with what reported in (Mininni et al. 2006). This makes LB simulations
of MHD �ows suitable for the study of rare�ed heliospheric and magnetospheric plasmas,
where spacecraft observations have provided evidences of the presence of both KHI
(Hasegawa et al. 2004) and fully developed MHD turbulence (Marino et al. 2008, 2011).
The rapid increase ∼ t3 of max(J) may be associated with energy populating abruptly

a wide range of scales through strong non-linear interactions between dynamical modes.
The kinetic and magnetic energy spectra are displayed in Fig. 5 for the simulation
at Re=3040. As noticed from the evolution of the spectral energy at di�erent times,
both the the kinetic and the magnetic �eld are probably undergoing a direct turbulent
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Figure 4. Regions of high current density obtained from a LB simulation at Re = 3040 with
resolution 3843. The snapshot is taken near the peak of the maximum value of J(x, t). Fine and
elongated sheet structures resulting from stretching and rolling mechanisms are visible.

cascade. Turbulence appears to be fully developed when the simulation reaches the peak
of the current density, this being suggested by the presence of a scaling range close to
the characteristic Kolmorogov slope k−5/3 at t=5, for nearly one decade of scales. The
dynamical range of this simulation appears to be very good, with ∼ 8 order of magnitude
of separation in the power spectral density between the largest and the smallest resolved
scale (see vertical axes in Fig. 5).

A �nal comment should be devoted to the divergence-free condition on the
magnetic �eld. In our simulations, we checked that the equivalent kinetic condition
Tr (

∑
i ξi ⊗ gi) = 0 was maintained within 64-bit �oating-point precision, i.e.

max (|∇ ·B|) ≈ max

(∣∣∣∣∣Tr

(∑
i

ξi ⊗ gi

)∣∣∣∣∣
)

= O(10−16) (3.2)

in lattice units. Let us recall that the reference value of the magnetic �eld is b0 = 8 10−3 in
lattice units. We also reconstructed the magnetic �eld in physical space and computed its
divergence from a Fourier decomposition. At Re = 3040 with resolution 3843, we obtained
max(∇ · B) = O(100) in lattice units, which is considerably larger than the previous
O(10−16) estimate (given from the kinetic solution) but consistent with the second-order
accuracy in space of the LB scheme. On the other hand, the average remains very low
with 〈∇ ·B〉 = O(10−14) in the reconstructed solution. Therefore, we may conclude that
the adopted LB scheme complies (within machine round-o� errors) with the divergence-
free condition on the magnetic �eld, although this condition is not imposed in the design
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Figure 5. Kinetic and magnetic energy spectra in the linear regime (t = 1), in the self-similar
regime (t = 3) and near the peak value of max(J) (t = 5) from the LB simulation at Re = 3040.

The scaling laws k−3 and k−5/3 are given as reference. MHD turbulence eventually populates a
wide range of wavenumbers k.

of the code, but only obtained as an approximation at second order in space in the
reconstructed solution.



14 E. Lévêque, A. De Rosis, F. Feraco and R. Marino

Figure 6. Snapshots of the Orszag-Tang solution at Re = 3040 with resolution 2563 from a
sequential run on CPU (top row) and a multi-threaded run accelerated by a NVIDIA Tesla
V100-PCIE-16GB GPU (bottom row) after 15,000 iterations. The color bars indicate the
maximum and the minimum of the magnitude in the snapshot.

4. Computational e�ciency on various many-core devices

The intrinsic parallel nature of the LB algorithm makes it suitable to perform on
many-core CPU (Central Processing Unit) and GPU (Graphic Processing Unit) high-
performance-computing architectures. The computational e�ciency of our kinetic LB
three-dimensional MHD scheme is highlighted in the following through a preliminary
benchmark based on Orszag-Tang vortex problem (with Re = 3040) ran at the resolution
2563 on variety of multi-core systems. Each simulation performed 15000 time steps,
needed to approximately reach the peak of current density. Multi-threading is handled
automatically by using OpenCL � Open Computing Language, which allowed us to
develop a unique code portable to the di�erent targeted devices.
Brie�y, the LB algorithm is data intensive and memory bound. In order to minimize

the overhead due to uncoalesced memory accesses, a SoA (structure of array) data
organization is preferred, i.e distribution functions with the same index of all lattice
nodes are stored at consecutive memory addresses as an array, and then arrays of di�erent
distributions are stored one after the other. The collision and the streaming are combined
in a unique computing kernel. Two distinct arrays are used to store the input and output
distribution functions and swapped at the end of each time step, reaching an overall
memory usage of 12.5 GB. In order to halve the memory usage, an in-place stream-
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computing devices wall-clock time
Orszag-Tang problem at Re = 3040

2563 � 15,000 iterations

1xCPU AMD Epyc 7302 (16 cores) @ 3GHz (128GB) 465 mins
2xCPU AMD Epyc 7502 (2x 32 cores) @ 2.5GHz (256GB) 41 mins

1xGPU NVIDIA GeForce RTX-2080-Super-8GB 50 mins (in-place)
1xGPU NVIDIA Tesla P100-PCIE-12GB 19,6 mins (in-place)
1xGPU NVIDIA Tesla P100-PCIE-16GB 8,2 mins
1xGPU NVIDIA Tesla V100-PCIE-16GB 5,75 mins

Table 1. Computational e�ciency (in double precision) of the LB scheme on various many-core
devices. The executable code was generated on each device with the same gcc compiling options:
-std=c99 -O3 -march=native.

and-collide algorithm has also been tested (Latt 2007). This latter is detrimental to the
performance but allowed us to use accelerators with limited memory. The performances
are reported in Table 1. Let us mention these are only indicative and can certainly be
optimized for each device, nevertheless, they provide a reliable overview of the remarkable
computational e�ciency of the LB scheme on multi-core devices, especially on high-end
GPUs. The accuracy of the results is suitably maintained as evidenced by the comparison
of the �nal snapshots in Fig. 6.
Finally, a multi-GPU implementation has also been developed to reach higher reso-

lutions. The spatial domain is decomposed along a single direction and each GPU is
assigned a sub-domain. There is a one-to-one mapping between the host CPU processes
and the GPUs. Therefore, the exchange of boundary nodes between the GPUs is handled
through memory transfers with the CPU processes and a message-passing interface (MPI)
between these latter. As for the CPUs benchmark, the number of time steps corresponds
approximately to the number of iterations needed to reach the peak of the current density.
The multi-GPU performances are reported in Table 2 and indicate the good scalability
of the LB algorithm. Again, it is worth to mention that a �ne tuning of the code has not
been conducted to optimize the performances; an improved speed-up should be achieved
by overlapping computations, memory-copy operations and MPI communications for
instance.

5. Conclusion

LB methods have reached su�cient maturity to be employed in the simulation of
turbulent systems with many degrees of freedom, opening a new horizon for the numerical
investigation of plasma �ows. Stability issues, which has long been a handicap for the
application of the LB schemes to turbulent �ows, are now solved thanks to the use of im-
proved collision operators without sacri�cing accuracy. Furthermore, the computational
e�ciency of the LB schemes on many-core devices (in particular accelerators such as
GPUs) allows for advantageous turn-around times.
As already mentioned, a signi�cant advantage of dealing with a kinetic representation

of the plasma is that the derivatives of the magnetic �eld are directly embedded in the
solution, thus allowing for an intrinsically accurate description of the current density.
This should for instance make it possible a step-forward in increasing the performance
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cluster of GPUs wall-clock time
Orszag-Tang problem at Re = 3040

3843 � 22,500 iterations

6x NVIDIA GeForce RTX-2080Ti-11GB 42 mins
8x NVIDIA GeForce RTX-2080Ti-11GB 33 mins
12x NVIDIA GeForce RTX-2080Ti-11GB 26 mins

wall-clock time
Orszag-Tang problem at Re = 5040

5123 � 30,000 iterations

12x NVIDIA GeForce RTX-2080Ti-11GB 84 mins
16x NVIDIA GeForce RTX-2080Ti-11GB 67 mins

Table 2. Computational e�ciency (in double precision) of the LB scheme on clusters of GPUs.

of Hall-MHD simulations, whose bottle-neck is represented by the need for a very small
time-step in order to resolve the dynamics of the Hall terms. Furthermore, the kinetic
LB approach allows us to add physical ingredients such as thermal e�ects, multi-species,
etc. at the cost of new coupled lattice dynamics, therefore preserving the computational
performance. In plasmas as well as in anisotropic �uids, turbulence has compete with
waves in transferring energy across the scales (Marino et al. 2015b). The interplay of
waves and turbulence is responsible for the emergence of new characteristic length scales
and the existence of di�erent regimes Marino et al. (2013); Feraco et al. (2018) in which
various forms of energy can cascade to small or to large scales (Roche et al. (2009; Salort
et al. 2012; Marino et al. 2014), or undergoing a dual energy cascade (Marino et al.

2015a). The computational e�ciency of our LB model for the investigation of dynamics
and energetics of anisotropic turbulent �ows will allow us to run simulations of �uids
and plasmas separating regimes (in terms of spatial and temporal scales) where di�erent
physical phenomena dominate. All that, together with the possibility to simulate �ows
in complex geometries and boundary conditions, provides our kinetic model with the
potential to become a major tool of investigation of for magnetohydrodynamic plasmas
in a variety of con�gurations of interest for engineering and scienti�c research.

We gratefully acknowledge the support of the Centre Blaise Pascal's IT test platform
at ENS de Lyon for benchmarking our code on various many-core computing devices.
Multi-GPU computations have been performed on the local HPC facilities (PSMN) at
ENS de Lyon supported by the Auvergne-Rhône-Alpes region (GRANT CPRT07-13
CIRA) and the national Equip@Meso grant (ANR-10-EQPX-29-01). The test platform
and the HPC center at ENS de Lyon operate the SIDUS solution (Quemener & Corvellec
2013) developed by Emmanuel Quemener.
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