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Abstract

To reduce the number of aircrafts on ground, the electrical
design engineers are interested in predicting the oil tem-
perature of the generator during a flight. Changes on the
temperature value may indicate an incorrect functioning of
the generator. An abnormal behavior can be identified by
using machine learning algorithms trained on flights free
from any anomalies to predict the generator oil temperature.
These predictions can then be compared to the observed
values, here the sensor data collected from the aircraft during
flight. If the observed value is far from the predicted value,
a failure warning is raised and a maintenance action shall
be performed.
In this paper, we build a digital twin of the electrical
generator which predicts the oil generator temperature at
a given time thanks to the history of features. We compare
several machine learning algorithms and the most promising
appears to be a neural network which was implemented as
part of the electrical generator digital twin.
The digital twin is tested by using real flight data containing
generator failures and it is verified that the algorithm is able
to detect an anomaly prior to the failure events (early failure
detection).
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I. Introduction

Several electrical generator failures can lead to a No-Go
case, meaning that the aircraft is not allowed to take-off
until the failure is fixed. The aircraft has the status of
“Aircraft On the Ground” (AOG). The electrical design
engineers want to reduce this cost by detecting the abnormal
behavior before it turns into AOG and suggest to perform
a maintenance action on the generator. Instead of doing a
periodic maintenance inspection (preventive maintenance)

that immobilizes the aircraft, inspection is performed only
when required (predictive maintenance).
The oil circuit cools the generator and its temperature
may be used as a measure of proper functioning of the
generator. An overheating or a very low oil temperature
may indicate a generator anomaly. To monitor the health
of the generator (health monitoring), a virtual model that
distinguishes anomalies from normal behavior is built. This
model can be seen as a Digital Twin (DT) that describes
the normal behavior of the electrical generator based on the
generator oil temperature. The oil temperature data recorded
during the flight represents the physical model that describes
the real health of the generator, while the predicted oil
temperature represents the virtual model thus the DT.
The idea is to train the DT algorithm using only flights
free of anomalies. The prediction of the oil temperature
will diverge from the real value when the generator behaves
abnormally. Figure 1 shows how the DT operates to detect
an abnormal behavior on simulated flights. The plot of Fig-
ure 1 gives the tracking of the prediction error per flight. The
flights are ordered in time, the flight number 50 corresponds
to a generator failure. We see that the prediction error starts
to diverge 7 flights before the generator failure. An anomaly
warning can be raised after the flight number 45 to launch a
second DT that investigates the anomaly cause and to select
the appropriate maintenance actions. In this paper we will
focus on the anomaly detection DT only.
The DT concept is widely used in the area of industrial
systems maintenance as it saves costs by performing the
maintenance only when a warning is raised. A recent state
of the art and gap analysis is performed by [1] where various
applications of the DT concept and its implementation for
the maintenance in industrial manufacturing are presented.
The authors give the two main reasons why the DT is used
which are design validation and product mastering. Our DT
model is based on product mastering where the product is
the electrical generator.
The paper [17] referenced by [1] is related to the DT
concept in the aeronautic field. The DT built by the authors
concerns the design and the maintenance of the U.S. Air
Force aircraft. The authors used a sub-model for different
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Figure 1: Predictive maintenance using DT for a simulated
flights with anomaly

sub-systems and statistical methods to estimate uncertainty
of each sub-model. Moreover in [13] and [14], the authors
compute the remaining useful life of a system using several
methodologies based on the survival analysis. On top of that
we add the recent work done by [2] to design and monitor
the ice protection system under IT infrastructure constraints.
Our approach differs from the ones mentioned above. To
build our DT we decided not to use any physical equations
that describe the behaviour of the electrical generator, but to
rely only on data measured in service. In fact, the electrical
equipments in aeronautics become more and more complex,
which makes it difficult to build a reliable generator model
based on physical knowledge. The aim of this DT is to allow
system designers to identify failures by combining their high
level knowledge of the electrical system equipment and the
data coming from the aircraft.
The novelty of our approach is to build a DT based on
a machine learning algorithm that uses functional data to
detect anomalies. We choose a functional data framework
to predict the oil temperature at time T thanks to the T last
records of selected features. This choice is motivated by
the high time dependency between the recorded values and
is adapted to capture the history of the features. Anomaly
detection in the functional data framework is a quite recent
research field. Papers have been published recently in the
aerospace area (see [4] and [12]).
The Functional Data Analysis (FDA) encompasses the anal-
ysis and theory for functional data [10]. Such data include
data recorded during a time interval. In this paper we use
FDA tools to reduce the dimension by expanding our func-
tions onto orthonormal bases and keep the first coefficients
of each function. By reducing the dimension we reduce also
the model complexity, but decrease the model accuracy. A
trade off between complexity and accuracy needs to be done.
The commonly used machine-learning procedures detailed
in [9] were applied to the coefficients to predict the oil
temperature. The procedure that has the smallest prediction
error is selected and implemented in the DT.
In this paper we explain the functional data representation in
Section II, we recall the prediction procedures and the model
selection in Section III. Finally, we test the DT on real flights
containing a failure event in Section IV. A perspective of

Table 1: Recorded features by flight at each second used to
predict the generator oil temperature

Description Unit (Min, Mean, Max)
Generator oil temperature C◦ (38, 72, 136)
Engine speed Knot (kts) (24, 81, 95)
Static air temperature C◦ (-72, -29, 37)
Total air temperature C◦ (-46, -7, 41)
Computed air speed kts (116, 253, 345)
Altitude ft (151, 27140, 39070)
Generator load KVA (20, 26, 51)

this work is given in the concluding section.

II. Functional data

We consider 6 aircrafts and we sample N = 606 flights of
distinct lengths. These flights were checked to be free of
anomalies. For each flight, we observe the features defined
in Table 1. The sampling rate of the records is one record
per second.

For a given flight ` ∈ {1, . . . , N}, we have n` observations
of (y,X1, . . . , Xq) where y stands for the oil temperature
and X1, . . . , Xq are the observed values taken by the fea-
tures. The goal is to predict the oil temperature at a given
time thanks to the observations of X1, . . . , Xq during the
T last seconds. For that, we need to split each flight into
segments of length T , where T < min{n1, . . . , nN}. Then,
for a flight ` ∈ {1, . . . , N} we obtain τ` segments where
τ` = bn`/T c and b.c stands for the floor part function.
Then for a given flight `, the resulting segmented flight is
given by a matrix

. . . Xj(1) . . . Xj(T ) . . .

. . . Xj(T + 1) . . . Xj(2T ) . . .
...

...
...

...
...

. . . Xj(τ` − 1)T + 1) . . . Xj(τ`T ) . . .


with τ` rows and qT columns. The output vector is defined by
y = (y(T ), y(2T ), . . . , y(τ`T )). Figure 2 shows a visual example
of the engine speed feature segmentation.

Figure 2: Split of engine speed feature into τ` segments of
length T for the flight `



Associated to the discrete observations of variables X1, . . . , Xq ,
we consider, for any j ∈ {1, . . . , q} and k ∈ {1, . . . , τ`}, the
functions

xjk : [0, 1] −→ R
ti 7−→ xjk(ti) = Xj((k − 1)T + i)

with ti = i/T , i ∈ {1, . . . , T}.
As shown in Table 1 we are handling features with different
units and scales. To normalize the data, we center and scale the
functions. For a given function xj , j ∈ {1, . . . , q}, we introduce
its average function x̄j defined by

x̄j(t) =
1

n

n∑
i=1

xji (t), t ∈ {1, . . . , T}

where n is the row number of the segmented matrix for all flights
(n = τ1 + · · · + τN ). The squared distance between xj and the
average x̄j is given by∥∥∥xji − x̄j∥∥∥2

T
=

1

T

T∑
t=1

(
xji (t)− x̄

j(t)
)2
, i ∈ {1, . . . , n}.

Thus, its variance is equal to

Var(xj) =
1

n

n∑
i=1

∥∥∥xji − x̄j∥∥∥2
T
.

In what follows, we consider all functions centred and scaled as
given by

xj − x̄j√
Var(xj)

, j ∈ {1, . . . , q}.

Let {ξd}d∈N be an orthonormal basis of the space L2 =
L2([0, 1], dt) of square integrable functions on [0, 1] with respect
to Lebesgue measure dt. We consider the usual inner product,

∀f, g ∈ L2, 〈f, g〉L2 =

∫ 1

0

f(t) g(t) dt.

The expansion of a function f ∈ L2 according to the orthonormal
basis is given by

∀t ∈ [0, 1], f(t) =
∑
d∈N

cd ξd(t), with cd = 〈f, ξd〉L2 .

In our application, only discretizations of our auxiliary functions
are observed. The cd are estimated on a regular grid of step 1/T
in [0, 1] by

ĉd =
1

T

T∑
i=1

f

(
i

T

)
ξd

(
i

T

)
.

There are many ways to represent functional data. In this paper
we consider two common ones, Fourier and Haar wavelet bases
[10]. To reduce the dimension, we plan to handle a truncation by
selecting the first D ∈ N coefficients for the features X1, . . . , Xq .
This means that we have the same number of coefficients D per
auxiliary function.
On the matrix C of the coefficients ĉd, d ∈ {1, . . . , D}, we apply
machine learning procedures for regression prediction based on Dq
variables instead of Tq with D � T .
To satisfy orthonormality constraints and to stick to industrial
practices, the length T is set to 256 = 28 seconds in the sequel.

III. Prediction procedures

In this section we discuss the statistical procedures that we
consider to predict the generator oil temperature through
the regression model given by Y = f(C) + ε where Y =
(y1, . . . , yn) ∈ Rn is the observed vector, f is the prediction
procedure, ε ∈ Rn is an error vector and C is a n × Dq
coefficients matrix.
We compare the accuracy of neural network (NN), ridge
regression (RR) and random forest (RF) procedures using
the mean squared error (MSE) criterion given by

MSE(f̂) =
1

n

∥∥∥Y − f̂(C)∥∥∥2
where ‖.‖2 is the `2-norm defined by ‖x‖2 =

n∑
i=1

x2i .

Hereafter we recall the regression prediction procedures that
we use:

• Ridge regression [8, Chap 3] assumes a linear
relationship between the input matrix C and the
output Y with the model Y = Cβ + ε, where
β = (β0, β1, . . . , βDq)

t ∈ RDq+1. The ridge regres-
sion regularizes the MSE by adding a penalty term
to the MSE and the parameters β are obtained as

β̂ = argmin
β

{
‖Y − Cβ‖2 + λ ‖β‖2

}
,

where λ > 0 is the shrinkage parameter. The local
minimum solution is given by

β̂ = (XtX + λI)−1XtY.

.
• Neural network [5;8, Chap 11 is a collection of

neurons connected together and organized in layers
to predict the output Y . There are at least 3 layers:
input, hidden and output. Each connection between
two neurons has a weight. The output is a function
of the weighted input features]

g(β0 +

Dq∑
j=1

βjc
j
i ), i = 1, . . . , n,

where β = (β0, β1, . . . , βDq) ∈ RDq+1 is a weight
vector and g : R → R is called the activation
function which quantifies the activation status of the
neuron. Several activation functions can be consid-
ered, the most widely used are the rectified the linear
unit, the sigmoid and the identity (see [18] for more
details).
We use a multi-layer perceptron proposed by [15]
with one hidden layer that contains λ ∈ N∗ number
of neurons and the Sigmoid activation function is
applied to the hidden layer. For the output layer
we use the identity activation function. The weight
matrix is trained using the backpropagation learning.

• Random forest [8, Chap 15;16 is an aggregation
of a multitude of decision trees. Each decision tree



is built according to the CART approach. Such an
approach is obtained by recursively splitting the
data space and fitting a simple prediction model
within each partition. To reduce the variance of the
CART algorithm, individual trees are combined by
using bagging (boostrap aggregation) together with
features selection. The idea of bagging is to draw m
new training sets with replacement from X and Y .
Theses samples are known as bootstrap samples. A
decision tree is built for each bootstrap. The output
variable is fitted by averaging the m predictions from
all the individual decision trees.]
Random forests improve the bagging technique by
adding randomness in the choice of the features dur-
ing the learning process. For each bootstrap sample,
the decision tree is built by selecting λ ∈ N∗ features
draw randomly from Dq features at each splitting
iteration. In the sequel, the number of trees to grow
is set to m = 20.

The hyperparameter λ of each procedure needs to be cali-
brated. To this end, we use a common approach known as
10-fold cross-validation [9, Chap 5].
To compare our prediction procedures, we need first to set
the number D of selected coefficients for the features. The
choice of D is crucial, because the higher D the higher
the model complexity. Thus, we need to balance between
model performance and model complexity to find a tradeoff.
Moreover, D is also limited by the features history length
T (D � T ).
To set the optimal D, we train the selected procedures with
85% of random flights and keep the 15% to test the accuracy
of the procedures. In Figure 3, we plot the link between the
model performance MSE and the model complexity which
is equal to Dq using Fourier basis coefficients.
We differentiate the prediction models RR, NN and RF by
respectively solid, dashed and dotted lines. This comparison
shows that the RF is the most accurate model followed by
NN and RR models. Similar results are observed for Haar
basis and are not reported in the present paper.

For all models and both bases, the MSE increases for
a complexity higher than 200. To keep Haar and Fourier
basis comparable, we set D = 31 and have a complexity
Dq = 186. By using Fourier and Haar bases expansion we
reduce our model from 1 536 to 186 parameters to estimate.
Table 2 gives the results of the 10-fold cross-validation MSE
for T = 256, D = 31 in order to compare the procedures
accuracy. For both bases we obtain similar cross-validation
MSE for all procedures. Once again, the RF approach is the
best method. In what follows we focus on the NN and RF
models and use the Fourier basis only.
To compare NN and RF models performance we plot in
Figures 4 and 5 the average MSE per flight respectively
for the NN and RF model. The flights are separated by
aircraft using vertical lines. The ones used in the training
are represented by diamonds and those used in the test
by crosses. Horizontal lines (distance mark) are added at
the MSE (solid line), 2× MSE (dotted line) and 4× MSE
(dashed line) values on both figures.
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Figure 3: Prediction accuracy versus model complexity for
Fourier basis

Table 2: Cross-validation error for RR, NN and RF by basis

MSE Fourier basis Haar basis
RR 0.19 0.20

RF 0.04 0.04

NN 0.10 0.13

The MSE per flight for the NN are more centred around the
global MSE than the RF. It is noticeable that the RF model
suffers form overfitting as the MSE of the test flights are
far from the training set. In what follows, we then keep the
NN model and Fourier basis to detect the anomalies.
From Table 2, we define a reference MSEref = 0.10 for NN
model using Fourier basis. This value is used in the next
section as reference to detect anomalies.

IV. Anomaly detection using digital twin

To validate that our DT can detect anomalies we need to test
it with flights that contain a real anomaly. Unfortunately
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Figure 4: Prediction of the generator oil temperature for the
flights test using the NN model and Fourier basis
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Figure 5: Prediction of the generator oil temperature for the
flights test using the RF model and Fourier basis
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Figure 6: MSE by flight to detect anomaly of case 1

the anomalies are not easy to identify or to label, and
failure occurrences are very rare. We identified two cases of
generator failures which represent a loss of one generator
in cruise phase in our data set.
For each case, the DT was tested on the flights preceding
the generator loss and the results are presented in Figures
6 and 7. The distance markers used in Section III are kept
and the flights preceding the generator loss are presented by
circles. The flights are numbered using a countdown to the
failure, thus the flight number 0 represents the failure.
In case 1 (Figure 6), the DT is tested on 55 flights preceding
the generator loss. The DT starts to detect anomalies 5
flights before it turns into a failure. In Figure 8 we put all
the flights used on this aircraft to benchmark the anomaly
test flights and the training flights. It shows that we are
predicting well normal behavior and abnormal behavior is
identified by an important divergence between prediction
and real values.
For the second case (Figure 7), we have less flights available
but the DT is able to detect the failure 9 flights before the
failure event.

● ●

●

●

●

●

●

●

●

●

0
2

4
6

8

Flight number

M
S

E

9 8 7 6 5 4 3 2 1 0

●

MSE
MSE x 2

MSE x 4
Anomaly test

Figure 7: MSE by flight to detect anomaly of case 2
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Figure 8: Anomaly detection for case 1 using all available
data sets (train, test and anomaly flight)

In these two cases we are facing a huge gap between
the MSE of abnormal flights and the distance markers. To
identify an anomaly profile, we propose to define a limit
defined as a ratio of the MSE of an observed flight over
MSEref. If this limit is exceeded several times in consecutive
flights, a warning is raised.
The limit needs to be chosen carefully, as a too high limit
may lead to a DT that misses a lot of anomalies and a too
low limit to a DT that may detect a lot of false anomalies.
From the 670 flights with a normal behavior used in this DT
the maximum observed MSE by flight is 0.6, thus a limit
of 1 is reasonable which represents 10 times MSEref.

V. Conclusion

In this paper we present a way to detect generator anomalies
before they turn into failures. We build a digital twin model
based on the predicted generator oil temperature value. We
use the functional data theory and machine learning proce-
dures to predict the oil temperature thanks to the history of



features. The procedures are compared and the best one is
selected as part of the digital twin.
We test the DT built on two cases with anomalies and it
shows that the DT is able to detect anomalies several flights
before it turns into failure. The amount of data available
for this study is not enough to conclude on which different
failure types can be detected by this method. However, as
AGOs are very costly for airlines and aircraft manufacturers,
the here proposed DT has an interest even if it allows to
predict a few percentage of failure events.
The main challenges to build this DT was to label the
flights correctly to normal and abnormal flights. To improve
the anomaly profile, we propose to increase the number of
flights with anomalies and to design a limit that will take
into account the history of the detected anomalies.
A perspective of this work is to reinforce the learning by
injecting the normal flights into the DT and the abnormal
flights detected to the anomaly profile to update the limit.
The DT could also be adjusted to the real behavior model
by adding the generator components remaining lifetime to
raise a warning. The warning should raise the probability
and the remaining time to get a failure.
The concept of our DT can be adapted to other fields and
especially for the industrial maintenance (see [6], [3], [7]
and [11]). The most important is to identify the features
that are correlated with the process under study and have a
labeled dataset with abnormal and normal behaviors. Taking
into account the dataset free of anomalies, we are then able
to train the semi-supervised learning algorithms.
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