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Optimal Design and Energy Management

of a Hybrid Power Generation System

Based on Wind/Tidal/PV Sources: Case

Study for the Ouessant French Island

O.H. Mohammed, Y. Amirat, M.E.H. Benbouzid and G. Feld

Abstract Hybrid power generation systems have become a focal point to meet

requirements of electric power demand. This kind of system combines several

technologies and is considered as one of the appropriate options for supplying

electricity in remote areas, such islands, where the electric utility is not available. It

is one of the promising approaches due to its high flexibility, high reliability, higher

efficiency, and lower costs for the same produced energy by traditional resources.

Typically, hybrid power generation systems combine two or more conventional and

renewable power sources. They will also incorporate a storage system. This chapter

will focus on a typical hybrid power generation system using available renewables

near the Ouessant French Island: wind energy, marine energy (tidal current), and

PV. This hybrid system is intended to satisfy the island load demand. It will

therefore explore optimal economical design and optimal power management of

such kind of hybrid systems using different approaches: (1) Cascaded computation

(linear programming approach); (2) Genetic algorithms-based approach; (3) Particle

swarm optimization. In terms of economical optimization, different constraints

(objective functions) will be explored for a given 25 years of lifetime; such as

minimizing the Total Net Present Cost (TNPC), minimizing the Levelized Cost of
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Energy (LCE). The concept of reliability will also be explored to evaluate the

hybrid system based on renewables to satisfy the island load requirements. In this

chapter, the Equivalent Loss Factor (ELF) is considered.

Keywords Hybrid power generation system � Renewable energy � Optimal siz-

ing � Island

1 Introduction

Nowadays, the renewable energy is evolving in the same manner as expansion of

energy demand. As conventional plants are reaching the end of their useful lives,

they are expected to replace by renewable energy resources and cleaner technology

such as wind, solar, tidal, gas, etc. Although renewable energy penetration in

electricity is expected to have a spectacular growth in the forthcoming years, it still

however has very low participation rate compared to other nonrenewable energies.

In addition, it is necessary to integrate the renewable energy technologies into the

power grid so as to support it, raising therefore reliability, improving power quality,

increasing efficiency, and decreasing fluctuations [1]. Many studies have investi-

gated the potential contribution of renewables to global energy supplies, indicating

that in the second half of the twenty-first century their contribution might range

from the present figure of nearly 20% to more than 50% with the right policies in

place. About 30% contribution to world energy supply from renewable energy

sources by year 2020 is reported in [2]. However, integrating those renewable

energy resources into the grid is made more complex by a number of issues that are

related to intermittent availability of those resources and to the electrical charac-

teristics of the associated generators. To overcome these issues and to enhance the

energy system reliability, these generation unit should be working together in two

or more sources in the so-called hybrid system concept. Hybrid power station

concept is not new, but has gained popularity and rapid development in the recent

year. There are many types of hybrid energy systems including renewable and

nonrenewable sources that have been considered. Figure 1 summarizes all the

possible architectures and combinations including a grid connection. Nevertheless,

it is essential that renewable energy hybrid systems to be cost-effective and achieve

high reliability to meet the load requirements. Hence, designing a renewables-based

hybrid energy system must fulfill different constraints. These constraints can be

divided into two categories: The first category is a technical one and encompasses

energy sources availability, generation components, battery systems state of charge,

and electric load location. The second category is an economical one including

reliability, flexibility, efficiency, and costs.

Various literature [3–5], has demonstrated that hybrid renewable electrical

systems in off-grid applications are cheaply feasible in isolated areas. Moreover,

environment can make a topology of hybrid system more efficient than another one.
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For example, a hybrid system (Wind/Diesel/Battery) is ideal in areas where there

are substantial wind resources rates all over the year [6]; since a photovoltaic hybrid

system (Photovoltaic/Diesel/Battery) is perfect in areas with significant solar radi-

ation. Hybrid renewable power generation systems optimal design is a very chal-

lenging task as far as most renewable energy resources are random and

weather/climatic conditions-dependent. Figure 2 illustrates the general process of

a hybrid generation system optimization. For that purpose, different techniques and

various mathematical models have been used to design hybrid systems so as to

reach various goals and get the optimization, such as particle swarm optimization

technique (PSO), genetic algorithms (GA), fuzzy algorithms, cascade analysis,

artificial neural network, etc. [7].

This chapter will focus on a typical hybrid power generation system using

available renewables near the Ouessant French Island: wind energy, marine energy

(tidal current), and PV as illustrated by Fig. 3. This hybrid power generation system

is intended to satisfy the island load demand illustrated by Fig. 4. It will therefore

explore optimal economical design and optimal power management of such kind of

hybrid systems using different approaches: (1) Cascaded computation (linear pro-

gramming approach); (2) Genetic algorithms-based approach; (3) Particle swarm

optimization. In terms of economical optimization, different constraints (objective

functions) will be explored for a given 25 years of lifetime; such as minimizing the

Total Net Present Cost (TNPC), minimizing the Levelized Cost of Energy (LCE),

etc. The concept of reliability will also be explored to evaluate the hybrid system

ability to satisfy the island load requirements. In this chapter, the Equivalent Loss

Fig. 1 Hybrid generation systems general architecture
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Fig. 2 Hybrid generation system optimization general model [10]
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Fig. 3 Configuration of hybrid Wind/tidal/PV/battery stand-alone energy system

Fig. 4 Ouessant Island load demand
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Factor (ELF) is considered. This approach can be extended with no a priori to any

islanded or off-grid sites. It should be mentioned that previous studies have already

attempted to address islands typical issue of energy management using marine

renewable energies [8, 9].

2 Design, Analysis, and Optimization Software Tools

for Hybrid Generation Systems

In the existing literature, there are various software and design tools to evaluate and

to optimize hybrid energy systems. Each of these available softwares and tools has

their specific advantages and drawbacks. This section is therefore is devoted to

briefly present the most commonly used software for hybrid energy systems design

and optimization.

2.1 RETScreen

RETScreen is a free clean energy management software system for co-generation

project feasibility analysis, and energy performance evaluation. The Ministry of

Environment of Canada has released it. The first version was introduced for on-grid

applications, the RETScreen PV model was currently upgraded to deal with off-grid

applications. These include stand-alone, hybrid and water pumping systems. The

software guides the users in the design of their systems, by giving initial estimates

of an array, battery, or pump size. By modifying few of the system parameters,

users have the ability to quickly screen the most helpful technology and system size

depending upon the load, weather conditions, and season of use. It has capabilities

for evaluating both financial and environmental costs, assists in the decision,

determine, and make the most of the advantages of renewable energy technologies

for any location around the world [11–13]. RETScreen has several worksheet for

carrying out detailed project analysis, including energy modeling, cost analysis,

emission analysis, financial analysis and sensitivity and risk analyzes sheets. It has a

global climate data database of over 6000 ground stations (month wise solar irra-

diation and temperature data for the year), hydrology data, energy resource maps

(such as wind maps), product data like solar photovoltaic panel information and

wind turbine power curves. It also offers a link to the climate database of NASA. it

is used for the analysis of various types of energy-efficient and renewable tech-

nologies (RETS) dealing with mainly energy production, life-cycle costs, and

greenhouse gas emission reduction. RETScreen Plus is based upon an energy

management software tool to study the energy performance.

The main limitations of RETScreen are: it does not consider the effect of tem-

perature on PV performance analysis, the data sharing problem, limited options for

search and sensitivity analysis, no possibility of time series data files and import
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retrieval, does not support more advanced estimations and visualization features

[12, 14].

2.2 LEAP

LEAP (Long Range Energy Alternatives Planning) was developed at the Stockholm

Environment Institute in 2008. It is a widely used software tool for the analysis of

energy policy and evaluation of the impact of climate change. It includes a scenario

manager that can be used to describe individual measures. It allows investigating the

economic potential for energy performance and low emission development strategies to

reduce gas emission asCO2. It ismainly used to analyze national energy systems. It uses

a yearly time step and timehorizonmay extend over a number of years (usually between

20 and 50 years). However, neither optimization nor controls are possible [15, 16].

2.3 HYSIM

HYSIM is a hybrid energy simulation model produced by Sandia National

Laboratory of the US DOE. It is used for evaluating stand-alone off-grid hybrid

systems consisting in PV panels, Diesel generators and battery storage combination

with system reliability in 31 remote locations. The objective of this model was to

look at increasing overall system reliability by adding PV and battery storage, in

addition to financial analysis that LCOE, life-cycle, fuel cost, operation and

maintenance costs. HYSIM appears to have been used up until 1996 [17, 18].

2.4 iHOGA

iHOGA (ImprovedHybridOptimization byGeneticAlgorithms) is a software formerly

known as HOGA (Hybrid Optimization by Genetic Algorithm), developed for

the simulation and optimization of hybrid renewable energy systems. It has been

developed at the University of Zaragoza (Spain) [19–21]. It is a single-purpose or

multi-optimization software target hybrid renewable energy systems. It uses genetic

algorithms to optimize the control strategies of hybrid systems consisting in PV panels,

wind turbines, Diesel generators, batteries, hydraulic turbines, H2 tanks, electrolyzers,

fuel cells, rectifiers, and inverters. The simulation is performedusing one-hour intervals,

during which all parameters remain constant. Optimization is obtained by minimizing

the total cost of the system throughout its lifetime. However, this software allows for

multi-objective optimization,where additional variables can also beminimized, such as

the equivalent CO2 emissions or unmet load (energy not served). Since all these vari-

ables (costs, emissions or unmet load) are mutually against-productive in many cases,
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more than one solution is provided. Some of these solutions show better performance

when applied to emissions or unmet loadwhile other solutions are better suited for costs.

It is used for controlling system components. Indeed, the command with iHOGA is

limited to energy flow management strategies [12, 21, 22].

2.5 ARES

ARES (Autonomous Renewable Energy Systems) is a software designed by the

Cardiff school of engineering (UK). It is applied to simulate PV/Wind hybrid

systems with battery storage [20, 23]. This software can calculate the system loss of

load possibility and system autonomy by the prediction of the storage battery

voltage if input load and essential weather profile are provided.

2.6 SOMES

The University of Utrecht (NL) developed SOMES (Simulation and Optimization

Model for renewable Energy Systems). It is intended to simulate and to analyze the

operation of a PV/Wind/Diesel hybrid system with batteries for storage. It allows

economic analysis optimization of projects but it does not provide control systems.

Optimal operating strategies and criteria for starting and stopping the Diesel gen-

erator are provided by the user [24, 25].

2.7 RAPSIM

RAPSIM (Remote Area Power Supply Simulator) is a windows-based software

package developed by the Murdoch, University Energy Research Institute in

Australia. It is intended to simulate PV arrays—wind turbines—Diesel generators

with battery storage. It allows the user to select a hybrid system (PV and/or wind

and/or Diesel), to simulate and calculate the total cost [12, 23, 26].

2.8 HOMER

HOMER (Hybrid Optimization Model for Electric Renewables) is the most com-

monly used software. It has developed by the National Renewable Energy

Laboratory (USA). It is designed for both on- and off-grid systems and it is

appropriate for carrying out fast pre-feasibility, optimization, and sensitivity anal-

ysis in multiple possible system configurations. HOMER has been used extensively
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in the literature for hybrid renewable energy system optimization and different case

studies [27, 28]. It will be particularly exploited in this study for comparative

purposes.

3 Hybrid Power Generation System Model

The aim of modeling is to formulate a general model to evaluate the total invest-

ment depending on the location, renewable resources opportunities, and the load

demand. For this purpose a macroscopic modeling of a stand-alone hybrid power

generation system consisting of wind turbine generator (WTG), photovoltaic

(PV) panels, tidal turbine generators (TTG) and storage batteries (SB) and other

devices to feed a load demand is presented.

3.1 Wind Turbine Model

The wind turbine extracted obtained power depends on the power curve given by

the manufacturer and also on the height of turbine h, and the roughness of the land

surface. The available power at the front end of the wind energy conversion system

is expressed by Eq. (1)

Pw ¼
1

2
� q� Cp � p� R2 � v3 � gw ð1Þ

where ηw is the wind turbine efficiency (assumed to be 90% in this study), R is the

blades radius, q is the air density, Cp the power coefficient, and v is the wind speed.

The relationship between available output power Pw(t) and wind speed can be

approximated by Eq. (2).

Pw ¼
0; v\vcutin; v[ vcutout
Pwmax �

v�vcutin
vrated�vcutin

; vcutin\v\vrated
Pwmax; vrated � v� vcutout

8

<

:

ð2Þ

Table 1 Wind turbine
parameters

Cut-in speed, vcutin 5 m/s

Cut-out speed, vcutout 25 m/s

Rated speed, v 15 m/s

The maximum output power, Pwmax 2300 kW

Swept area 3959 m2

Number of blades 3

Rotor diameter 71 m

Hub height 57/64/85/98/113 m
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where Pwmax is the maximum output power. v; vcutin; vrated, vcutout are the wind

turbine cut-in, cut-out, and rated speed, respectively. The ENERCON E-70 wind

turbine is used. Some of its parameters are described in Table 1 [29–32].

The height of the wind turbine tower is a very important factor significantly

influencing the operating performance of the turbine. It may also be more than half

of the wind turbine system cost. To adjust the measured wind speed to the hub

height, Eq. (3) is used.

vðtÞ ¼ vrðtÞ:
h

hr

� �c

ð3Þ

where v is the wind speed at the desired height h, vr is the wind speed measured at a

known reference height hr, the power law exponent c is a factor that depends on the

roughness of the terrain. For this study this factor is set 0.2 [27, 33].

Figure 5 illustrates wind speeds of the considered island and wind turbine power

production at different hub heights.

3.2 Photovoltaic Array Model

The output power of a PV module depends on the surface of semiconductors

exposed to solar radiation, the tiled surfaces of the PV module, the ambient tem-

perature, and the characteristics of the PV cells under industrial standard test

conditions of solar radiation [34]. The output power Ppv can therefore be calculated

by Eq. (4) [35, 36].

Fig. 5 Wind speed and power production at different hub heights
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Ppv ¼ Npv � gpv � Am � Gt ð4Þ

where ηpv is the instantaneous PV module generator efficiency, Npv is the number of

modules, Am is the area of a single module used in a system and Gt is the global

incident irradiance on the titled plane. In this analysis, each PV module has a rated

power of 285 W.

Figure 6 illustrates monthly solar radiation close to the considered island and the

generated power in one PV module.

3.3 Tidal Current Turbine Model

The output power of a tidal current turbine system Ptid has a similar dependence as

a wind turbine and is expressed by Eq. (5).

Ptid ¼
1

2
� Ntid � gtid � Cpðb; kÞ � qt � A� V3 ð5Þ

where Ntid the total number of current turbines, ηtid is the efficiency of the tidal

turbine is selected according to tidal current characteristics, qt is the seawater

density, A is the cross sectional area of the tidal turbine rotor, V is the tidal current

velocity, Cp is the turbine power coefficient and is estimated to be in the range of

(0.35–0.5) [37, 38]. For the considered system, the pitch has a fixed value, thus, the

power coefficient depends only on the tip speed ratio k, defined by Eq. (6).

Fig. 6 Monthly solar radiation input data with power production
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k ¼ Rh�xh

vh

kih ¼
1

1
k
�0:003

CpðkÞ ¼ 0:73� ð151
kih

� 13:2Þ � e
�18:4

kih

8

>

>

>

<

>

>

>

:

ð6Þ

where Rh is the tidal turbine rotor radius and xh is the rotor mechanical rotational

speed. The maximum Cp value is 0.44, which corresponds to a tip speed ratio of

7.59. This value is considered as the optimal one (kopt) to achieve maximum power

point tracking (MPPT) under rated tidal current speeds. The turbine maximum

speed to follow (MPPT) is 25 rpm (2.1 rad/s) for a tidal current of 2.25 m/s. When

the marine current exceeds 2.25 m/s, the extracted power will be limited by control

strategies. The extracted power for different tidal current speeds is calculated by (5).

A typical 500 kW direct-driven turbine is considered and the corresponding char-

acteristics described in Table 2 [39]. Figure 7 illustrates typical tidal speed near the

considered island and power generated by one marine turbine.

Table 2 Tidal turbine parameters

Cut-in tidal speed vcutintid <1(m/s)

Rated tidal speed vratedtid 2.25 m/s

Cross-sectional area of turbine A 201.06 m2

Power coefficient Cp 0.44

Cut-out tidal speed vcutoutid >5 m/s

Fig. 7 Tidal speed and power production by one turbine
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3.4 Storage Batteries Model

Storage batteries are used to store the energy surplus generated by the hybrid power

generation system. They are also used to supply the load during low generation or

deficit period. The battery state is related to the previous state of charge and to the

system energy flow from t − Dt to t. The battery capacity mainly depends on the

load energy during the day and the period required for supplying the load from the

battery bank in case of energy deficit. In all cases, the storage battery capacity (state

of charge) is subject to the following constraint as shown in Eq. (7).

SOCmin � SOCt � SOCmax ð7Þ

where SOC(t) is the state of charge at time t, SOCmin is the minimum value of

battery state of charge, SOCmax is the maximum value of battery state of charge.

The battery SOC can be considered as the balance between the powers absorbed

and generated every hour. The power generated by the hybrid power generation

system PGHt, at any time t, can be expressed using Eq. (8).

PGHt ¼ Ppvt þPwt
þPtidt ð8Þ

Energy from batteries is required when the power generated by hybrid renewable

system is unable to satisfy the load demand during time t. Furthermore, the energy

is stored in the batteries whenever the supply from tidal turbine, wind turbines or

PV panels exceeds the load demand. At any time, the state of charge of batteries

SOCt is related to the previous state of charge SOCt−Dt and the energy flow between

batteries and other sources during time lapse from t − Dt to t. Therefore two cases

are considered in expressing the energy stored in the batteries at time t.

• Case 1: During charging, if the total output by other sources exceeds the load

demand, the SOCt is given by Eq. (9).

SOCt ¼ SOCt�Dt þðPGHt � PLtÞ ð9Þ

• Case 2: When the load demand is equal or greater than the available generated

power, the batteries will then be discharged to cover this deficit, and the SOCt

will be given by Eq. (10).

SOCt ¼ SOCt�Dt � ðPGHt � PLtÞ ð10Þ

The SOCmax is 1, and the SOCmin is determined as expressed in Eq. (11).

SOCmin ¼ 1� DOD ð11Þ

where DOD is the depth of discharge. As its maximum is considered 80%, SOCmin

is 20%.
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3.5 Load Model

The number of electric power sources of the hybrid renewable system is determined

by the electric load demand. The load profile of the considered island remote site is

given in Fig. 4. The maximum load demand is 16 GWh/year with a pick demand of

2 MW, which usually happens in January.

3.6 Reliability Index

The concept of reliability index is extremely broad. It covers the system ability to

satisfy the load requirement. There are several indicators in the reliability evaluation

of a hybrid power generation system. Those indicators are the Loss of Load Expected

(LOLE), the Loss of Energy Expected (LOEE) or the Expected Energy Not Supplied

(EENS), the Loss of Power Supply Probability (LPSP), and the Equivalent Loss

Factor (ELF). In this study, the ELF is considered in evaluating the proposed topology

reliability. At each year time step, it should be calculated using Eq. (12).

ELF ¼
1

H

X

H

h¼1

QðhÞ

DðhÞ
ð12Þ

where is H, is the total number of step time, D(h) is the total energy demand, Q(h) is

the loss of load. The ELF contains information about both the number of outages

and their magnitude, and in most cases it should be less than 0.01 [1].

4 Optimal Sizing Strategies

The most used strategies to size and design a hybrid power generation system based

on renewable aim to select the optimal number of renewable energies converters,

such as WTG, PV panels, TTG, and SB. Optimal sizing is achieved according to:

(1) Renewables resources availability; (2) Equipment’s costs and O&M services;

(3) Maximum energy capacity for the load. It should be mentioned that a previous

study has already dealt with a comparison of some optimal sizing approaches of

hybrid renewable energy systems [10].

4.1 Cascade Algorithm

This algorithm is an optimized linear programming based on a cascade calculation.

First, the main renewable energy source device feeds the main electric load,

therefore calculating it optimal. After that, the energy shortfall is considered as a

14



(a)

Fig. 8 Flowchart of the cascade algorithm
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load demand for the consecutive renewable energy source (for optimal number of

power generators devices), and so on for the next renewable energy source device

as illustrated by the flowchart of Fig. 8.

Conducting energy balance calculations and ensuring high reliability of the system

develop this approach. It also maintains the battery SOC between the minimum and

(b)

Fig. 8 (continued)
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maximum values and ensures that this value remains equal or greater than the initial

value of SOC the battery at the beginning of the year. It simulates different scenarios to

obtain the optimal number of renewable sources available (wind, solar, tidal, and

battery) for supplying the load considering a minimum cost, satisfying constraints

such as the battery state of charge, limited operation times, and the assumption that no

interruption in power supply occurs with a system reliability of 100%. To assess these

algorithm different scenarios were carried out as follow.

• Scenario 1: One of the available sources, wind, tidal, or PV is considered with

battery regardless the system operating hours.

• Scenario 2: It is the same as scenario 1 except of taking into consideration the

determinant daily WTG and TTG working times. This scenario is used in a case

of presence of residential areas close to the hybrid power generation system.

This allows reducing the noise caused by wind turbine blades rotation.

• Scenario 3: In this case, more than one renewable resource is available. The

daily working time is also considered. In this scenario, a particular attention is

paid to the priority order of renewable resources. The user selects the first

renewable resource, and the algorithm determines its optimal number and reuses

it as an entry of the cascade calculation.

4.2 Cascade Algorithm Optimization Results

The cascaded algorithm is implemented and applied to design and to optimally size

the hybrid power generation feeding Ouessant Island (AC load—2 MW,

16 GWh/year). Simulation input data consists in the annual wind speed profile, the

annual tidal current speed profile, and the hourly data of the solar radiation. The

estimated power production for each resource is illustrated in Figs. 5, 6, and 7 [40].

For scenario 1, a stand-alone system is considered including only one renewable

resource wind, or tidal, or PV with storage batteries system, and with full-time

operating hours. Results of the sizing of each component are detailed in Table 3.

For this case, Fig. 9a depicts the difference between the total generated power and

the load demand, the total generated energy, and the storage batteries energy

variations for one year. For scenario 2, the stand-alone hybrid power generation

system also includes only one renewable resource wind, or tidal, or PV with a

storage batteries system, and a constraint of reduced operation working time. Sizing

results are presented in Table 3B. Figure 9b illustrates the difference between the

generated power and load demand, the total generated energy, and the storage

batteries energy variations for one year. For Scenario 3, it is assumed that more

than one renewable resource is available. The hybrid power generation system can

be a collection of WTG, TTG, PV panels, and a storage batteries system. The

constraints of renewable resource priority order and the reduced operation working

time are also imposed. Sizing results are given in Table 3C, while the difference

17



between the total generated power and load demand, the total generated energy, and

the storage batteries energy variations are illustrated in Fig. 9c for one year.

4.3 Genetic Algorithm

A genetic algorithm (GA) represents a heuristic search strategy based on the evolu-

tionary ideas of natural selection, and genetics as crossing and mutation. GAs are

usually used to solve optimization problems by exploitation random searches with

many possible solutions in parallel and usesGAoperators instead of deterministic ones.

A GA does not need other auxiliary knowledge, except fitness functions or objective

function. It is being able to find the global optimal solution that is difficult to approach

with other techniques in multidimensional search area [41]. In this study, GAs are

applied to searches for configurations of wind turbines, tidal turbines, PV panels, and

storages batteries that minimize the hybrid systemTNPCwith respect to all constraints.

Figure 10 depicts the flowchart of genetic algorithm-based optimization.

In this algorithm, in the first step, a set of initial populations (chromosomes) is

randomly generated from the ranges of possible solutions. Each chromosome is

configured and controlled in order to be an optimal solution for the hybrid power

system. The choice of the best chromosome representation in genetic algorithms

depends upon the variables of the optimization problem being solved, where the

chromosome is a combination of vector of variables and each gene represents one

component parameters of the renewable system and must be an optimum number as

shown in Fig. 11. Then the fitness function is evaluated for each chromosome,

Table 3 Optimal hybrid power generation system configurations

Nwind Ntidal Npv Number and sizes of batteries Initial SOC% Final SOC%

A: Scenario 1

1 0 0 3 1.024 MW, 5.120 MWh 22 85

9 340 kW, 1.71 MWh

0 9 0 6 3 MW, 15 MWh 53 58

18 1.0 MW, 5.0 MWh

0 0 16,743 10 3.35 MW, 16.7 MWh 53.8 55

30 1.12 MW, 5.58 MWh

B: Scenario 2

3 0 0 3 4.92 MW, 24.6 MWh 51 55

9 1.64 MW, 8.2 MWh

0 10 0 4 3.44 MW, 17.2 MWh 53 58

12 1.15 MW, 5.73 MWh

C: Scenario 3

3 4 5829 1 9.3 MW, 46.5 MWh 40 42

3 3.1 MW, 15.5 MWh

18



(b) Scenario 2. 

(c) Scenario 3. 

(a) Scenario 1. 

Fig. 9 Optimal sizing results
of the hybrid power
generation systems
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where chromosomes that meet all the constraints are selected and arranged

according to values from the best to the worst, while others are ignored, as they do

not meet constraints. After that, main operations of the genetic algorithms are

applied to chromosomes. They consist in selection, crossover, and mutation, at each

time. New generations are evaluated and sorted in order of preference, ensuring that

restrictions were investigated, keeping best chromosomes in every generation.

In this work, at the first generation, random 100 chromosomes were generated

according to ranges of each component. Dividing the chromosomes equally into

two groups of parents in each time performs the crossover operation. Application of

the crossover process between 1st parent (n) with 2nd parent (n + 50) is random

and depends on the probability of crossover Pc. Before performing crossover, a

single random crossover point on both parents chromosome strings (hybrid com-

ponents) is selected.

Fig. 10 Flowchart of genetic algorithm-based optimization
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All data beyond that point in either chromosome string is swapped between the

two parent chromosomes. The resulting chromosome represents new children. As

example, for a crossover between two parents when the randomized crossover point

is 2, we can see the following new children.

Parent1 Nwind1 Ntid1 Npv1 Nbat1

Parent2 Nwind51 Ntid51 Npv51 Nbat51

Fig. 11 Hybrid energy systems codification in chromosomes for one generation
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Child1 Nwind1 Ntid1 Npv51 Nbat51

Child2 Nwind51 Ntid51 Npv1 Nbat1

The mutation operation depends on the probability called the probability of

mutation Pm. There are several methods of mutation as the Flip Bit method, the

boundary method, the non-uniform method, the uniform method, and finally the

Gaussian method. In this work, the uniform mutation operation method has been

applied, where the operator replaces the value of the chosen gene to a uniform

random value chosen between the user-defined upper and lower bounds for that

gene as the following example: The boundary of the components for the new genes

are defined as follows:

Wind turbines numbers:

Nwindmin
�Nwindnew �Nwindmax

Tidal turbine numbers:

Ntidmin
�Ntidnew �Ntidmax

PV panels numbers:

Npvmin
�Npvnew �Npvmax

Batteries numbers:

Nbatmin
�Nbatnew �Nbatmax

When mutation is applied in this chromosome in random gene as gene 3, we can

see the new children as follows:

Parent1 Nwind1 Ntid1 Npv1 Nbat1

Child1 Nwind1 Ntid1 Npvn Nbat1

Crossover and mutation processes can also be seen in Fig. 11. It is important to

mention that to get to the optimal result, there are 1000 created generations. In each

generation there are 100 generated chromosomes. The scattered crossover function

is 80% of the total crossover operation, while the probability proportion of mutation

function is 20% of the mutation operation. The initial applied classical GA algo-

rithm has been improved considering genes within winner chromosomes to

accelerate the convergence process to the optimal result. The proposed strategy is

able to frequently modify chromosomes, where, over subsequent generations, the

population develops toward the optimal solution. While giving flexibility in the
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choice of system components, the economic issue has been taken into account

considering the TNPC minimization.

4.4 Genetic Algorithm Optimization Results

The classical then the enhanced genetic algorithms have been applied to design and

to optimally size the hybrid power generation feeding Ouessant Island (AC load—

2 MW, 16 GWh/year). Table 4 summarizes the optimal sizing results (most rec-

ommended chromosomes). The main conclusion that could be drawn from these

results is that a hybrid system based on wind and battery seems to be the best

compromise in terms of cost (TNPC). Indeed, Bretagne region in France has

favorable wind conditions. Conversely, a hybrid system based on PV and battery is

clearly not an interesting solution mainly due to the region low temperatures and

solar radiation. It is important to mention that the achieved results are almost

specific the studied Ouessant Island and could not be generalized. Figures 12 and

13 illustrate the energy management balance in the proposed hybrid power gen-

eration for two scenarios.

Table 4 Optimization results using GA algorithm

Nwind Ntidal Npv Battery size (MWh) TNPC (M$) COE ($/MWh)

2 0 0 0.59 3.48 94.2

1 1 0 7.57 4.52 122.1

1 1 459 7.22 4.71 127.2

0 6 0 8.94 9.80 264.7

0 5 6819 11.17 12.33 333.1

0 0 19,998 12.94 28.27 763.7

Fig. 12 Hybrid system
powers variation in a day
(scenario 1)
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Scenario 1: It represents the optimal system.

Scenario 2: It represents the system that considers all possible components with

minimum cost.

It can be observed that the load demand is fully satisfied by the hybrid system in

the optimal composition. Figure 14 illustrates the performance of developed

enhanced genetic algorithm-based method. The brought convergence improvements

are obvious, when achieving the optimal hybrid power generation system.

Fig. 13 Hybrid system
powers variation in a day
(scenario 2)

Fig. 14 Genetic algorithm
methods convergence
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4.5 Particle Swarm Algorithm

Particle swarm optimization (PSO) is one of the recent techniques based on

stochastic optimization [42]. The particle swarm optimization (PSO) algorithm is a

member of the wide variety of swarm intelligence methods for solving global

optimization issues. PSO is an evolutionary algorithm technique using individual

improvement called particles, flying through the problem space plus population

cooperation, and competition by following the current optimum particles [43].

In PSO, each individual, referred as a particle, represents a potential solution pre-

sumed to have two properties: a position and a velocity. Each particle wanders

surrounding in the problem space and remembers the best position (objective

function value), which has been already discovered. The fitness value is saved and

called Pbest. The particle swarm optimizer is tracking another best values obtained

so far by any particle in the population. The position and velocity of each particle

are adjusted according to its own experience and that of its neighbors. When a

particle captures all the population as its topological neighbors, the best value is a

global best and it is called Gbest. Let xi denote the position of particle i in the search

space as expressed in Eq. (13).

xi ¼ xi1; xi1; xi2; . . .; xid ; . . .; xiN½ � ð13Þ

In the N-dimensional space, each particle continuously records the best solution

it has reached during its flight (best fitness value Pbest). The best previous position

of the ith particle is memorized under a vector expressed in Eq. (14).

Pbesti ¼ Pbesti1;Pbesti2; . . .;Pbestid ; . . .;PbestiN½ � ð14Þ

where i = 1, 2, 3,…, N. The global best Gbest refers to the best position, which is

ever realized by all the population individuals. The best particle of all the swarm

particles is denoted Gbestd.

The velocity for particle i is represented in Eq. (15).

vi ¼ vi1; vi1; vi2; . . .; vid ; . . .; viN½ � ð15Þ

The velocity and position of each particle can be continuously adjusted based on

the current velocity and the distance from Pbestid to Gbestd using Eqs. (6) and (17).

viðtþ 1Þ ¼ wðtÞviðtÞþ c1r1 PiðtÞ � XiðtÞð Þþ c2r2 GðtÞ � XðtÞð Þ ð16Þ

Xiðtþ 1Þ ¼ XiðtÞþ vviðtþ 1Þ ð17Þ

In the above equations c1 and c2 are acceleration constants that pulls each

particle towards Pbest and Gbest positions and each equal to 1.0 for almost all

applications. r1 and r2 are random real numbers drawn from [0, 1]. Thus, the

particle flies through potential solutions toward Pi(t) and G(t) in a navigated way
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while still exploring new areas by a stochastic mechanism to escape from local

optima. Since there was no actual mechanism for controlling the velocity of a

particle, it was necessary to impose a maximum value Vmax, which controls the

maximum travel distance in each iteration to avoid this particle flying past good

solutions. After updating positions, it must be checked that no particle violates the

boundaries of search space. If a particle has violated the boundaries, it will be set at

the boundary of search space. v is constriction factor, which is used to limit

velocity, here v = 0.7 [44–47].

In (16), w(t) refers to inertia coefficient, which indicates the impact of the pre-

vious history of velocities on the current iteration one and is extremely important to

ensure convergent behavior. There are different strategies to calculate the inertia

weight. These calculations depend on the designer that can assume it as fixes or

variable [48, 49]. In this work we have considered the inertia weight as random and

it is given by Eq. (18). All the PSO algorithm parameters are summarized in

Table 5.

wðtÞ ¼ 0:5þ
randðÞ

2
ð18Þ

4.6 Particle Swarm Optimization Results

The hybrid power generation system economic optimization is based on an

objective function minimizing the COE and the TNPC, besides taking into account

other constraints as meet the load demand with high reliability, system optimal

sizing, battery SOC, and planning expansion for future development. In this con-

text, Fig. 15 illustrates the flowchart of the proposed PSO optimization

methodology.

One of the extremely important tasks in PSO algorithm application is how to

design the objective function and the considered constraints in each individual

particle.

Initially, random values for position and velocity are created for 10 individual

particles in each swarm with respect to the PSO characteristics and all constraints

(minimum and maximum of hybrid components, reliability etc.). The maximum

iteration number is 100. Then, (16) and position are carried out with other

parameters values as data in Table 5. Position and velocity will therefore be

updated at each time, safeguarding best values and neglecting the worst ones. The

Table 5 Some of PSO
parameters

c1 and c2 1

r1 and r2 Randomly

w Randomly (18)

Number of iteration 100

Number of population 10
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Fig. 15 PSO algorithm flowchart
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search process will be terminated if the number of iterations reaches a final value or

if the value of optimal solution reaches the tolerance value, which was considered in

this paper equal to 0.0001. The final optimum solution is delegated to the system

designer depending on its experience, development and expansion of a pre-existing

system, or creating a new system hybrid system. In this study, The PSO algorithm is

implemented to achieve the optimal solution for the different following scenarios

and constraints.

Scenario 1: This scenario considers a hybrid renewable system including all the

available renewable sources and the batteries to obtain the minimum COE and the

lowest TNPC. The achieved optimal result is given in Table 6. The PSO algorithm

convergence curve for this scenario is shown in Fig. 16.

Scenario 2: This scenario considers a hybrid renewable system including two

renewable sources (wind turbines and PV panels, tidal turbines and PV panels,

wind and tidal turbines) with batteries. The achieved optimal results are given in

Table 7.

Table 6 Optimization results using PSO algorithm scenario 1

Nwind Ntidal Npv Battery size (MWh) TNPC (M$) COE ($/MWh)

2 0 0 5.9 3.48 94.2

Fig. 16 PSO algorithm convergence for scenario 1

Table 7 Optimization results using PSO algorithm for scenario 2

Nwind Ntidal Npv Battery size (MWh) TNPC (M$) COE ($/MWh)

1 0 11 10.9 3.71 100.3

1 1 0 7.5 4.52 122.1

0 6 1 8.94 9.81 264.7
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Scenario 3: This scenario considers a hybrid renewable system including one

renewable source energy sources (among wind turbines, tidal turbines, and PV

panels) with batteries. The achieved optimal results are given in Table 8.

Scenario 4: This scenario takes into consideration development and expansion

of an existing system that has one tidal turbine with possible contribution of all the

above-mentioned renewable sources with batteries. The achieved optimal result is

given in Table 9.

Scenario 5: This scenario considers a hybrid renewable system including all the

available renewable sources and the batteries to obtain the minimum surplus power,

the minimum COE, and the lowest TNPC. The achieved optimal result is given in

Table 10. The PSO algorithm convergence curve for this scenario is shown in

Fig. 17.

Table 8 Optimization results using PSO algorithm for scenario 3

Nwind Ntidal Npv Battery size (MWh) TNPC (M$) COE ($/MWh)

0 6 0 8.94 9.80 264.6

0 0 21,862 114.5 27.28 736.8

Table 9 Optimization results using PSO algorithm for scenario 4

Nwind Ntidal Npv Battery size (MWh) TNPC (M$) COE ($/MWh)

1 1 1 7.57 4.52 122.2

Table 10 Optimization results using PSO algorithm for scenario 5

Nwind Ntidal Npv Battery size (MWh) TNPC (M$) COE ($/MWh)

1 0 1313 10.17 4.27 115.4

Fig. 17 PSO algorithm convergence for scenario 5
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From all above presented scenarios and achieved results, it can be observed that

load demand has been fully satisfied by the hybrid power generation system in the

optimal composition. For illustration, Fig. 18 shows the optimal energy manage-

ment balance in one day for scenario 1, while, Fig. 19 illustrates batteries SOC

variation.

As for GAs and for the purpose of accelerating the PSO convergence to the

optimal results, the initial classical PSO algorithm has been improved treating now

each component size inside one particle.

The same conclusions as for GAs could be drawn from the achieved results

illustrated by the above-presented tables. Indeed, a hybrid power generation system

based on wind and battery seems to be the best compromise in terms of cost

(TNPC).

Fig. 18 Hybrid system
powers variation in a day
(scenario 1)

Fig. 19 battery SOC
variation in a day (scenario 1)
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5 Summary and Conclusion

This chapter dealt with a comparative study of three approaches devoted to the

optimal sizing of a hybrid power generation system full based on renewables and

storage batteries to fulfill the load demand of a remote area in a specific marine

context, which the Ouessant Island in the Bretagne region (France). The hybrid

system uses the available renewables resources around the island: wind energy,

marine energy (tidal current), and PV. The hybrid system has been designed and

optimally sized based on economical targets, for different scenarios, that minimizes

the COE and the TNPC, in addition to specific constraints.

Three specific optimization approaches have been investigated: (1) Cascaded

computation (linear programming approach); (2) Genetic algorithms-based

approach; (3) Particle swarm optimization. The achieved optimal results have

been also compared to those achieved the well-known commercial software

HOMER. Table 11 illustrates this comparison. This table clearly highlights the

improvements brought by the proposed and enhanced optimization approaches
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