Edge clique covers in graphs with independence number two - Archive ouverte HAL
Article Dans Une Revue Journal of Graph Theory Année : 2021

Edge clique covers in graphs with independence number two

Geňa Hahn
  • Fonction : Auteur
  • PersonId : 1079432
Manuel Lafond
  • Fonction : Auteur
  • PersonId : 1079433
Nicolas Lichiardopol
  • Fonction : Auteur
  • PersonId : 1079434

Résumé

The edge clique cover number ecc(G) of a graph G is size of the smallest collection of complete sub-graphs whose union covers all edges of G. Chen, Jacobson, Kézdy, Lehel, Scheinerman, and Wang conjectured in 2000 that if G is claw-free, then ecc(G) is bounded above by its order (denoted n). Recently, Javadi and Hajebi verified this conjecture for claw-free graphs with independence number at least three. We study the edge clique cover number of graphs with independence number two, which are necessarily claw-free. We give the first known proof of a linear bound in n for ecc(G) for such graphs, improving upon the bound of O (n 4/3 log 1/3 n) due to Javadi, Maleki and Omoomi. More precisely we prove that ecc(G) is at most the minimum of n + δ (G) and 2n − Ω (n log n), where δ (G) is the minimum degree of G. In the fractional version of the problem, we improve these upper bounds to 3 2 n. We also verify the conjecture for some specific subfamilies, for example when the edge packing number with respect to cliques (a lower bound for ecc(G)) equals n, and when G contains no induced subgraph isomorphic to H where H is any fixed graph of order 4.
Fichier principal
Vignette du fichier
Edge_clique_covers_in_graphs_with_independence_number__2_ (11).pdf (244.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02969899 , version 1 (17-10-2020)

Identifiants

  • HAL Id : hal-02969899 , version 1

Citer

Pierre Charbit, Geňa Hahn, Marcin Kamiński, Manuel Lafond, Nicolas Lichiardopol, et al.. Edge clique covers in graphs with independence number two. Journal of Graph Theory, 2021. ⟨hal-02969899⟩
69 Consultations
590 Téléchargements

Partager

More