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The current scientific framework contemplates substantial modifications in the special relativity (SR). Its incompatibility with quantum gravity and the research that has triggered the violation of the Lorentz Invariance is a clear example of the emerging controversy. In the light of the modifications that have been proposed to the SR, this paper suggests a new perspective of relativism. We study the time interval required in the transmission of an electromagnetic wave between two particles with a relative movement. Using the symmetry of the system, a factor that relates the sending and receiving time intervals is obtained, showing that they are not equal according to the observers. We study the compatibility of these surprising results with the SR, posing a novel notion of time that until now may have gone unnoticed.

Introduction

The coherence between special relativity (SR) and the theories of quantum gravity is currently a topic of research. The main problem, as it is well known, concerns the Lorentz invariance, the fundamental symmetry of SR. Which is violated in entangled particles at the Planck energy scale, [START_REF] Li | Enhancing test precision for local lorentz-symmetry violation with entanglement[END_REF][START_REF] Gingrich | Quantum entanglement of moving bodies[END_REF][START_REF] Rembieliński | Quantum preferred frame: Does it really exist? EPL[END_REF]. In [START_REF] Dzuba | Strongly enhanced effects of lorentz symmetry violation in entangled yb+ ions[END_REF][START_REF] Di Domenico | Search for CPT and lorentz-symmetry violation in entangled neutral kaons[END_REF][START_REF] Babusci | Test of CPT and lorentz symmetry in entangled neutral kaons with the kloe experiment[END_REF][START_REF] Shaniv | New methods for testing lorentz invariance with atomic systems[END_REF][START_REF] Silarski | Kloe-2 Collaboration CPT and lorentz symmetry tests with entangled neutral kaons at kloe/kloe-2[END_REF][START_REF] Shi | Some exact results on CP and CPT violations in a C=-1 entangled pseudoscalar neutral meson pair[END_REF] manifestations of these very small Lorentz-violating signals are studied. In the context of searching traces of these signals, Kislat [START_REF] Kislat | Constraints on Lorentz Invariance Violation from Optical Polarimetry of Astrophysical Objects[END_REF], analyzes the optical polarization measurements from 63 Active Galactic Nuclei and Gamma-ray Bursts. The most recent astrophysical limits on the Lorentz Invariance Violation (LIV) are presented in [START_REF] Martínez-Huerta | Invariance Violation Tests in Astroparticle Physics[END_REF]. Other authors have considered implementing "minimalist" violations of Lorentz invariance( [START_REF] Baccetti | Inertial frames without the relativity principle[END_REF]), which results into physically compelling models. Nevertheless, the quantization of the ADM decomposition (3+1) of GR ensures the compatibility of the Lorentz invariance [START_REF] Bojowald | Anomaly freedom in perturbative loop quantum gravity[END_REF].

An important concept, yet not trivial, is understanding the role of the observer in the entanglement. In this regard, [START_REF] Alsing | Observer-dependent entanglement[END_REF] shows that the entanglement is observer-dependent. The dependence of the observer is the cornerstone of the theory developed in the present paper. Where the symmetric nature of a dual-particle system is leveraged to combine the results obtained from each observer.

Following this train of thought, several reformulations of the foundations of SR have emerged recently [START_REF] Liberati | Tests of Lorentz invariance: A 2013 update[END_REF][START_REF] Kostelecky | Lorentz violation, and the standard model[END_REF][START_REF] Mattingly | Modern tests of Lorentz invariance[END_REF]. An example of that is the "Very Special Relativity" [START_REF] Gibbons | Very special relativity is Finsler geometry[END_REF][START_REF] Cohen | Very special relativity[END_REF][START_REF] Bogoslovsky | Lorentz symmetry violation without violation of relativistic symmetry[END_REF], which changes some of the SR postulates with the intend to solve this issue. In [START_REF] Carmona | Bounds on Relativistic Deformed Kinematics from the Physics of the Universe Transparency[END_REF][START_REF] Albalate | Twin Peaks: A Possible Signal in the Production of Resonances beyond Special Relativity[END_REF] are the experimental results that quantify the low-energy modifications the SR would need for it to be compatible with the observations. Doubly or deformed special relativity (DSR) is another example of a modified theory of SR, where an observer-independent maximum energy scale for the possible states of a particle is defined [START_REF] Bruno | Deformed boost transformations that saturate at the Planck scale[END_REF][START_REF] Amelino-Camelia | Doubly special relativity: First results and key open problems[END_REF][START_REF] Amelino-Camelia | Doubly-Special Relativity: Facts, Myths and Some Key Open Issues[END_REF][START_REF] Kowalski-Glikman | Introduction to doubly special relativity[END_REF]. In [START_REF] Girelli | Free particle in deformed special relativity[END_REF][START_REF] Heyman | Reaction thresholds in doubly special relativity[END_REF][START_REF] Ghosh | Deformed special relativity and deformed symmetries in a canonical framework[END_REF], the origin of DSR and the interpretation of its different bases are studied. Another topic of research inside the DSR is the construction of the position space. In [START_REF] Deriglazov | Position space versions of the Magueijo-Smolin doubly special relativity proposal and the problem of total momentum[END_REF] this is deeply studied for a particular case of Magueijo-Smolin DSR. It is important to note that this deformation of special relativity leads to an altered notion of spacetime. In [START_REF] Carmona | Spacetime and Deformations of Special Relativistic Kinematics[END_REF] the propagation of a particle over the distances that emerge from this new spacetime is discussed. Overall, deformed kinematics can either be compatible with a relativity principle, or represent a LIV. But if the relativity principle is maintained, the deformation of the Lorentz transformations is required [START_REF] Carmona | Relativistic kinematics beyond Special Relativity[END_REF][START_REF] Carmona | Beyond Special Relativity at second order[END_REF].

There are several other authors that have studied alternative modifications to the SR. One example of that is the enrichment of SR by incorporating Lorentz transformation groups, [START_REF] Ungar | A Spacetime Symmetry Approach to Relativistic Quantum Multi-Particle Entanglement[END_REF]. In [START_REF] Shields | Time dilation in relativistic two-particle interactions[END_REF] the orbits of two interacting particles are described by a fully relativistic classical mechanical Hamiltonian. Where it is also shown numerically a failing case of the kinematic Lorentz space-time transformations. Coumbe, [START_REF] Coumbe | Hypothesis on the nature of time[END_REF], provides a numerical evidence that time also dilates according to the relative scale. Even the ability of an observer to localize events defined in a different observer's reference frame is questioned ( [START_REF] Lizzi | Localization and reference frames in κ-Minkowski spacetime[END_REF]). The consequences of event description for different observers is also studied in [START_REF] Carmona | Observers and Their Notion of Spacetime beyond Special Relativity[END_REF].

The symmetry has a transcendental importance in the context of SR. Friedman and Scarr study this in [START_REF] Friedman | Symmetry and Special Relativity[END_REF]. Similarly, Chao ([40]) discusses the relevance of frame-exchange time-inversion symmetry in the Lorentz transformation. As we will see in section 2, the present paper leverages the inherent symmetry of relative motion to yield a simple but self-contained theory. We will first develop a rigorous mathematical formulation for the inertial case in section 2, but then generalize the results for a non-inertial scenario in section 5. The kinematics of accelerated observers in relativistic physics are illustrated in [START_REF] Mashhoon | Conformal Symmetry, Accelerated Observers, and Nonlocality[END_REF]. The equivalence principle, which postulates that accelerated observers are always pointwise inertial, is a viable alternative for several problems. However, it presents some inconvenience when dealing with the wave-particle duality, but Mashhoon shows a procedure in [START_REF] Mashhoon | Nonlocal Special Relativity[END_REF] that solves this conflict. In regard to this, in the present paper an experimental methodology will be explored for the generalization of the findings to the non-inertial system.

Additionally, experimental methods that confirm SR in certain fields of application have improved substantially during the last decade ( [START_REF] Müller | Modern Michelson-Morley Experiment using Cryogenic Optical Resonators[END_REF][START_REF] Saathoff | Improved Test of Time Dilation in Special Relativity[END_REF][START_REF] Delva | Test of Special Relativity Using a Fiber Network of Optical Clocks[END_REF][START_REF] Saathoff | Improved test of time dilation in special relativity[END_REF]), making clear the validity of SR in those cases. Even more, some of these methods have marked an era in certain areas. As for example in communication satellites [START_REF] Wolf | Satellite test of special relativity using the global positioning system[END_REF][START_REF] Angélil | Spacecraft clocks and relativity: Prospects for future satellite missions[END_REF][START_REF] Ciufolini | Dragging of inertial frames[END_REF]. In section 4 we delve into a real-world problem by considering an application case for a system consisting of a Low Earth Orbit satellite and a ground segment.

There is a vast area of research dealing with one and two way light velocity measurements between distant observers in uniform translation motion relative to one another [START_REF] Reichenbach | The Philosophy of Space & Time[END_REF][START_REF] Winnie | Special Relativity Without One Way Velocity Assumptions: Part I[END_REF][START_REF] Norton | The Quest for the One Way Velocity of Light[END_REF]. But this article considers an alternative visualization of the information transferring that accounts for all the possibilities in a dual particle system. These geometric visualizations and the formulation that follows enables the calculation of a motion-dependent factor that relates the sending and receiving time intervals in the transmission of the electromagnetic wave.

Methodology

Let the masses 𝑚 1 and 𝑚 2 be in a relative motion in a two-dimensional space. We consider a given point 𝐴 of mass 𝑚 1 , and a point 𝐵 of mass 𝑚 2 . A reference frame is attached to point 𝐵. For an observer located in this reference frame the point 𝐴 is moving with a vector velocity 𝒗 𝐴 𝑟 𝐵 (Figure 1 (a)). Symbol 𝑣 denotes the module of 𝒗 𝐴 𝑟 𝐵 . Its direction is defined by the unit vector 𝒖 ̂𝐴𝑟 𝐵 , such that

𝒗 𝐴 𝑟 𝐵 = 𝑣 𝒖 ̂𝐴𝑟 𝐵 . (1) 
In this section, all the reference frames considered are inertial. Thus, the velocities described will be constant in module and direction. Let , the point 𝐵 be a light source constantly emitting photons in all directions. For simplicity, there is no substance between the two masses. Thus, the information containing the position of 𝐵 travels in the form of light at a speed of 𝑐. The transmission of information requires an interval of time 𝛥𝑡 𝐵→𝐴 to get from 𝐵 to 𝐴. But in that period of time point moves from 𝐴 0 to 𝐴 𝑓 (Figure 1 (b)). The photon leaving 𝐵 travels a distance of 𝑐 𝛥𝑡 𝐵→𝐴 , while point 𝐴 travels a distance of 𝑣 𝛥𝑡 𝐵→𝐴 (Figure 1 (c)) . Similarly, we assume that point 𝐴 is also emitting photons, some of which are travelling towards 𝐵. The information that is sent when 𝐴 is at 𝐴 0 reaches 𝐵 after a time interval 𝛥𝑡 𝐵←𝐴 (different from 𝛥𝑡 𝐵→𝐴 ). The length of path travelled by this photon is 𝑐 𝛥𝑡 𝐵←𝐴 . Combining these three distances, the triangle shown in Figure 2 (a) is obtained. It can be inferred by observation that the time intervals 𝛥𝑡 𝐵→𝐴 and 𝛥𝑡 𝐵←𝐴 are different in a generic case. The first (𝛥𝑡 𝐵→𝐴 ) represents the time, according to 𝐵, in which a signal travels from 𝐵 to 𝐴. The second (𝛥𝑡 𝐵←𝐴 ) represents the time, also according to 𝐵, in which a signal travels from 𝐴 to 𝐵. It is important to note that 𝐵 is the observer in both cases, and therefore even if the photon is transmitted by or received from 𝐵, is the time interval perception of the observer. The triangle of distances has been parameterized in Figure 2 ). The angular variables have a subscript 𝐵 to indicate that they are referenced at observer 𝐵. The angles 𝜉 𝐵 , 𝜌 𝐵 , 𝜂 𝐵 , 𝛿 𝐵 and 𝜇 𝐵 will be used for the geometric relationships between the three distances. The angle 𝜗 𝐵 is an independent variable of the problem. The angles of the triangle formed by 𝐴 𝑓 , 𝐵 and 𝐵 𝑃𝑟 are related by

𝜇 𝐵 + 𝛿 𝐵 = 𝜋 2 ⁄ . (2) 
Therefore,

𝜂 𝐵 = 𝜋 -𝜇 𝐵 = 𝜋 -( 𝜋 2 ⁄ -𝛿 𝐵 ) = 𝛿 𝐵 + 𝜋 2 ⁄ . (3) 
Additionally,

𝜉 𝐵 = 𝜗 𝐵 -𝛿 𝐵 , ( 4 
)
𝜌 𝐵 = 𝜋 2 ⁄ -𝜗 𝐵 . (5) 
From the triangle formed by 𝐴 0 , 𝐴 𝑓 and 𝐵,

𝑐 𝛥𝑡 𝐵←𝐴 sin(𝜂 𝐵 ) = 𝑐 𝛥𝑡 𝐵→𝐴 sin(𝜌 𝐵 ) , (6) 
𝑣 𝛥𝑡 𝐵→𝐴 sin(𝜉 𝐵 ) = 𝑐 𝛥𝑡 𝐵→𝐴 sin(𝜌 𝐵 ) .

Simplifying,

𝛥𝑡 𝐵←𝐴 sin(𝜂 𝐵 ) = 𝛥𝑡 𝐵→𝐴 sin(𝜌 𝐵 ) , (8) 
𝑣 sin(𝜉 𝐵 ) = 𝑐 sin(𝜌 𝐵 ) . (9) 
Using ( 3), ( 4) y ( 5), the following trigonometric relationships are obtained,

sin(𝜂 𝐵 ) = sin(𝛿 𝐵 + 𝜋 2 ⁄ ) = cos(𝛿 𝐵 ) , (10) 
sin(𝜉 𝐵 ) = sin(𝜗 𝐵 -𝛿 𝐵 ) , (11) 
sin(𝜌 𝐵 ) = sin( 𝜋 2 ⁄ -𝜗 𝐵 ) = cos(𝜗 𝐵 ) , (12) 
Substituting in ( 8) and ( 9),

𝛥𝑡 𝐵←𝐴 cos(𝛿 𝐵 ) = 𝛥𝑡 𝐵→𝐴 cos(𝜗 𝐵 ) , (13) 
𝑣 sin(𝜗 𝐵 -𝛿 𝐵 ) = 𝑐 cos(𝜗 𝐵 ) . ( 14 
)
Solving in [START_REF] Alsing | Observer-dependent entanglement[END_REF],

𝛿 𝐵 = 𝜗 𝐵 -arcsin ( 𝑣 𝑐 cos(𝜗 𝐵 )) . (15) 
Substituting in [START_REF] Bojowald | Anomaly freedom in perturbative loop quantum gravity[END_REF],

𝛥𝑡 𝐵→𝐴 𝛥𝑡 𝐵←𝐴 = cos(𝜗 𝐵 ) cos (𝜗 𝐵 -arcsin ( 𝑣 𝑐 𝑐𝑜𝑠(𝜗 𝐵 ))) . (16) 
Up to now, this development has been considering the point 𝐵 as the observer. The equation ( 16) will be used later. But before that, the reversed problem will be studied. Indeed, a similar expression to the one obtained in ( 16) is expected. To begin with, a reference frame is assigned to point 𝐴. In this case, point 𝐵 has now a speed 𝒗 𝐵 𝑟 𝐴 (Figure 3 (a)). The velocity 𝒗 𝐵 𝑟 𝐴 can be decomposed as before into module and direction. As it is known from the relative kinematic principles,

𝑣 𝐴 𝑟 𝐵 = 𝑣 𝐵 𝑟 𝐴 = 𝑣 (17) 
is applicable for the case of systems of two points. Where 𝑣 𝐴 𝑟 𝐵 and 𝑣 𝐵 𝑟 𝐴 , modules of the velocities of point 𝐴 according to 𝐵 and point 𝐵 according to 𝐴 respectively, are equal. Therefore, in the decomposition

𝒗 𝐵 𝑟 𝐴 = 𝑣 𝒖 ̂𝐵𝑟 𝐴 , (18) 
𝑣 is used as the module of the velocity. Additionally, the direction defined by the unit vector 𝒖 ̂𝐵𝑟 𝐴 is opposite to that defined by 𝒖 ̂𝐴𝑟 𝐵 ,

𝒖 ̂𝐵𝑟 𝐴 = -𝒖 ̂𝐴𝑟 𝐵 . (19) 
In the previous scenario, a photon emitted from 𝐴 0 reached point 𝐵 (Figure 2 (a)). That exact same photon could also be considered in this configuration, where 𝐴 is now the observer. In this case, the point 𝐵 is the one moving from 𝐵 0 to 𝐵 𝑓 (Figure 3 (b)). Thus, the photon emitted from 𝐴, that reaches 𝐵 𝑓 in Figure 3 (b), is the same photon as the one in Figure 2 (a) that is emitted from 𝐴 0 and reaches 𝐵.

To obtain the speed of the photon in Figure 3 (b), the principle of conservation of the speed of light regardless of the inertial reference frame is considered. In this case, the reference frame is inertial. Thus, as it happened when the observer was 𝐵, the information is transmitted at a speed of 𝑐. Similarly, the transmission of the signal that travelled from 𝐵 to 𝐴 is also reappraised. Making the photons coincide, the conservation principle can be used again. Henceforth, the photon of Figure 2 (a) that goes from 𝐵 to 𝐴 𝑓 is the same as the photon of Figure 4 (a) that goes from 𝐵 0 to 𝐴. Certainly, the time elapsed in this case (𝛥𝑡 𝐴←𝐵 ) is different from 𝛥𝑡 𝐴→𝐵 (for a generic problem). Next, the triangle of distances of observer 𝐴 is parametrized Figure 4 (b). This time, the subscript used for the angular variables is 𝐴. The point 𝐴 𝑃𝑟 is obtained from the intersection between the direction of the velocity vector 𝒗 𝐵 𝑟 𝐴 and the line perpendicular to said direction that passes through 𝐴. As a side note, since 𝑣 cannot exceed the speed of light, the distance 𝑣 𝛥𝑡 can never be greater than 𝑐 𝛥𝑡. 

Multiplying ( 16) and ( 20 

Remember that 𝛥𝑡 𝐴→𝐵 refers to the transfer of information from 𝐴 to 𝐵, as observed by 𝐴. In contrast, the interval 𝛥𝑡 𝐵←𝐴 represents the same process (transfer of information from 𝐴 to 𝐵) being the reference point 𝐵. This entire research is focused on the difference between these two time intervals (𝛥𝑡 𝐴→𝐵 and 𝛥𝑡 𝐵←𝐴 ). To evaluate it, the factor 𝐹 is defined as

𝛥𝑡 𝐴→𝐵 = 𝐹 𝛥𝑡 𝐵←𝐴 . (22) 
Along the process, no particular difference has been made between points 𝐴 and 𝐵. Therefore, these points are interchangeable. That is, the problem has symmetry. Then, the factor that relates the variables 𝛥𝑡 𝐵→𝐴 and 𝛥𝑡 𝐴←𝐵 must also be 𝐹,

𝛥𝑡 𝐵→𝐴 = 𝐹 𝛥𝑡 𝐴←𝐵 . (23) 
Incorporating this information in [START_REF] Carmona | Bounds on Relativistic Deformed Kinematics from the Physics of the Universe Transparency[END_REF], it is possible to solve for the value of 𝐹, 

𝐹 2 = cos(𝜗 𝐵 ) cos (𝜗 𝐵 -arcsin ( 𝑣 𝑐 cos(𝜗 𝐵 ))) cos(𝜗 𝐴 ) cos (𝜗 𝐴 -arcsin ( 𝑣 𝑐 cos(𝜗 𝐴 ))) , (24) 
The perspectives of the observers refer to the same system, therefore, as it happened with the velocity, the values of 

𝐹 = 1 cos (arcsin ( 𝑣 𝑐 cos(𝜗))) + 𝑣 𝑐 sin(𝜗) , (27) 
𝐹 = 1 √ 1 - 𝑣 2 𝑐 2 cos 2 (𝜗) + 𝑣 𝑐 sin(𝜗) . ( (28) 
) 29 
The 𝐹 factor represents the difference in the elapsed time between two basic actions, sending and receiving, whenever the points of the system have a relative movement. Considering any pair of moving points i and j, for each second it takes to send a signal from i to j (as seen by i), it takes 1 𝐹 ⁄ seconds to receive it by j (as seen by j). Indeed, this does not only apply to the transfer of light, but also to any electromagnetic radiation in vacuum (that shares the speed of 𝑐), and is a direct consequence of the principle of conservation of 𝑐 regardless the inertial reference frame.

To better visualize 𝐹 as a function of both 𝑣 and 𝜗, the term 𝑣 𝑐 ⁄ will be replaced by 𝛽, 𝐹 = 1 √1 -𝛽 2 cos 2 (𝜗) + 𝛽 sin(𝜗) .

Figure 5 shows two perspectives of the evolution of 𝐹 in terms of its two independent variables. To avoid infinitely big values of 𝐹 in the visualizations of Figure 5, the variable 𝛽 ranges only from 0 to 0.99. Next, the necessary relationship between 𝛽 and 𝜗 is studied so that there is no difference between the sending and receiving time intervals. This is true when 𝐹 has the value of 1. Substituting in ( 29 

) 33 
Thus there are two possible solutions for 𝛽. The first is the trivial solution, obviously feasible since that is the case of no relative motion between the objects of the system. The second is 2 sin(𝜗). Figure 6 is a top view of the surface of 𝐹, where these two solutions have been incorporated to the surface. The second solution is constrained for values of 𝛽 between 0 and 1. In terms of 𝜗, those limits are 0 and 0.1667 π. Within these values, the sine function can be approximated to a straight line, resulting into a value of 𝛽 very close to 2 𝜗. The cases where this second solution is satisfied are those with an isosceles triangle of distances (as the example shown in Figure 7). 

Discussion

The problem statement considered in the previous section is highly similar to the one covered in the SR. Thus, in this section, the key differences with the SR will be discussed, as well as an interpretation of the prior formulation.

Before that, there are two essential concepts that need to be distinguished: First, the time intervals required for the transfer (in both directions) of an electromagnetic wave according to each observer (𝛥𝑡 𝐴→𝐵 , 𝛥𝑡 𝐵→𝐴 , 𝛥𝑡 𝐵←𝐴 and 𝛥𝑡 𝐴←𝐵 ). Second, the time elapsed in the temporal dimension of the particles for any event (note that before we were only focusing on the transfer of an electromagnetic wave), which will be identified in this paper as 𝛥ϯ. Such that, 𝛥ϯ 𝐴 refers to a time interval that elapsed for particle 𝐴, and 𝛥ϯ 𝐵 refers to a time interval that elapsed for particle 𝐵.

The Lorentz transformations are obtained by making use of the two postulates of relativity and the assumption of homogeneity of space and time. To do so, it is often common to consider the propagation of a spherical wavefront of light from the perspectives of two observers. Figure 8 is a well-known diagram to show the problem that the constancy of the speed of light poses when the system involves relative motion. From a fixed outer perspective, the photon travelling from 𝐴 to 𝐵 appears to trace a diagonal trajectory, while from the moving reference frame (attached to 𝐴) the photon moves vertically. As it is known, 𝛥ϯ 𝐴 and 𝛥ϯ 𝐵 can be related by the Lorentz factor,

𝛥ϯ 𝐵 = 𝛥ϯ 𝐴 1 √ 1 -𝛽 2 , ( 34 
)
where the temporal dimension is dilated in order to account for the difference in the trajectories of the same photon (which moves at the same velocity regardless of the reference). The representation of Figure 8 is however misleading, because the perspectives of both observers are superposed in the same diagram. We are actually seeing the transfer of the signal twice, from 𝐴 to 𝐵 as seen by 𝐵 (represented in Figure 8 as 𝐴 0 to 𝐵), and from 𝐴 to 𝐵 as seen by 𝐴 (represented in Figure 8 as 𝐴 𝑓 to 𝐵). For a better understanding, the movement described in Figure 8 is divided into its two perspectives, 𝐴 (Figure 9 Figure 9 is the appropriate representation of the problem to apply the formulation developed in the prior section. The first step is to obtain the value of 𝜗. To do so,

cos(𝜗) = 𝛥𝑡 𝐵→𝐴 𝛥𝑡 𝐵←𝐴 = 𝐹 𝛥𝑡 𝐴←𝐵 𝛥𝑡 𝐵←𝐴 . ( 35 
)
Due to the symmetry of the problem, 𝛥𝑡 𝐴←𝐵 and 𝛥𝑡 𝐵←𝐴 have actually the same value, thus

cos(𝜗) = 𝐹, (36) 
cos(𝜗) = 1 √1 -𝛽 2 cos 2 (𝜗) + 𝛽 sin(𝜗) , ( 37 
)
cos(𝜗) = 1 √1 -𝛽 2 cos 2 (𝜗) + 𝛽 √1 -cos 2 (𝜗) . ( 38 
)
Let 𝑥 be cos (𝜗),

𝑥 = 1 √1 -𝛽 2 𝑥 2 + 𝛽 √1 -𝑥 2 , ( 39 
)
1 -𝛽 2 𝑥 2 + 𝛽 2 (1 -𝑥 2 ) + 2 𝛽 √1 -𝛽 2 𝑥 2 √1 -𝑥 2 = 1 𝑥 2 , ( 40 
)
2 𝛽 √1 -𝛽 2 𝑥 2 √1 -𝑥 2 = 1 𝑥 2 -(1 + 𝛽 2 ) + 2 𝛽 2 𝑥 2 , ( 41 
)
4 𝛽 2 (1 -𝛽 2 𝑥 2 ) (1 -𝑥 2 ) = [ 1 𝑥 2 -(1 + 𝛽 2 ) + 2 𝛽 2 𝑥 2 ] 2 , ( 42 
)
4 𝛽 2 (1 -𝑥 2 -𝛽 2 𝑥 2 + 𝛽 2 𝑥 4 ) = 1 𝑥 4 + (1 + 𝛽 2 ) 2 + 4 𝛽 4 𝑥 4 - 2(1 + 𝛽 2 ) 𝑥 2 + 4 𝛽 2 𝑥 2 𝑥 2 -4 𝛽 2 𝑥 2 (1 + 𝛽 2 ), (43) 
0 = 1 𝑥 4 + (1 + 𝛽 2 ) 2 - 2(1 + 𝛽 2 ) 𝑥 2 , ( 44 
) 0 = 𝑥 4 - 2 1 + 𝛽 2 𝑥 2 + 1 (1 + 𝛽 2 ) 2 , ( 45 
)
𝑥 2 = 2 1 + 𝛽 2 ± √ 4 (1 + 𝛽 2 ) 2 - 4 (1 + 𝛽 2 ) 2 2 , ( 46 
) 𝑥 = 1 √1 + 𝛽 2 , ( 47 
) 𝑥 = √1 -𝛽 2 √1 -𝛽 4 . ( 48 
)
For a case where 𝑣 ≪ 𝑐, (49)

√1 -𝛽 4 ≈ 1. (50) 
Then, 𝑥 = √1 -𝛽 2 = 𝐹.

From ( 35), then,

ϑ = arcos (√1 -𝛽 2 ) . ( 52 
)
Incorporating ( 51) in [START_REF] Shields | Time dilation in relativistic two-particle interactions[END_REF],

𝛥𝑡 𝐵←𝐴 = 𝛥𝑡 𝐴→𝐵 1 √ 1 -𝛽 2 . ( 53 
)
Based on Figures 8, and9, we can see the parallelism between 𝛥ϯ 𝐵 and 𝛥𝑡 𝐵←𝐴 , as well as for 𝛥ϯ 𝐴 and 𝛥𝑡 𝐴→𝐵 . If equation ( 53) is compared to [START_REF] Ungar | A Spacetime Symmetry Approach to Relativistic Quantum Multi-Particle Entanglement[END_REF], it can be seen that they are actually representing the same transfer of information. But their meanings are very different. Equation (53) associates the difference in the time intervals to the transfer of the signal, but [START_REF] Ungar | A Spacetime Symmetry Approach to Relativistic Quantum Multi-Particle Entanglement[END_REF] associates such difference to the time dimension itself.

In the previous section, we started assuming proportionality of the sending and receiving time intervals [START_REF] Albalate | Twin Peaks: A Possible Signal in the Production of Resonances beyond Special Relativity[END_REF][START_REF] Bruno | Deformed boost transformations that saturate at the Planck scale[END_REF]. Then, we were also able to obtain the mathematical definition of such factor [START_REF] Ghosh | Deformed special relativity and deformed symmetries in a canonical framework[END_REF], thus proving that the proportionality holds. Now that we decomposed the problem of Figure 8 in two perspectives, we have seen that this is in fact a particular case of our information transfer problem, precisely when 𝜗 takes the value of arcos(√1 -𝛽 2 ).

The SR considers that the temporal dimension of both particles should be different (thus the time intervals measured from these two particles, 𝛥ϯ 𝐴 and 𝛥ϯ 𝐵 , also differs, according to [START_REF] Ungar | A Spacetime Symmetry Approach to Relativistic Quantum Multi-Particle Entanglement[END_REF]). But that statement was introduced in order to solve the problem that the constant speed of light posed when dealing with two perspectives in relative motion.

In this research we solved the problem of the perspective by accounting for the time difference in the time intervals required for the transfer of information, not in the time dimension of the particles. Thus, now that the problem is solved, there is no need to believe that temporal dimension of both particles is different due to the velocity. In other words, regardless of the relative velocity, what this theory suggests is that

𝛥ϯ 𝐵 = 𝛥ϯ 𝐴 . (54) 
Years of experience and uncountable number of experiments have ratified the SR but it might have been the case where the transfer of information made the results to actually match the predictions. Although the development shown has been mathematically rigorous, it requires experimentation to be proven. But if there are the minimal evidences that the prior formulas apply, then we could actually be facing a non-trivial reformulation of time. Thus, it is worth testing it.

Example of Application

Up to this point, the development revolved around the two-dimensional space, but in a threedimensional case, it will be no different. As long as the reference frames are inertial, constant relative velocity vector (direction and module), there will always be a planar surface that encloses the two points and the paths described by them. Thus, all the prior development will be still applicable.

Consider the International Space Station (ISS), which is orbiting the Earth in LEO (Low Earth Orbit), approximately 408 [km] away from the surface. A signal is sent to the ISS from a fixed Ground Segment located in San Francisco, CA. The speed of the ISS relative to the Ground Segment at that moment, 𝑣, is roughly 7.66 [km/s]. Suppose the angle 𝜗 that defines the relative position of the ISS at the beginning of the transmission has a value of -0.25 [rad] or -14.3239 [°]. The satellite is tracing a curved path; thus, it has normal acceleration. Which makes it a non-inertial reference frame. But the separation between San Francisco and the ISS at that point is not big at all compared to the speed 𝑐 (at which the signal is sent to the ISS). Hence, it can be assumed that the trajectory of the ISS is quasirectilinear and its speed 𝑣 is constant while the information is being transmitted. Which is the necessary and sufficient condition to use [START_REF] Ghosh | Deformed special relativity and deformed symmetries in a canonical framework[END_REF]. In Figure 10, an approximation of this problem is illustrated. Several considerations are neglected in this problem for the shake of simplicity and clarity. In a general problem, the value of 𝜗 is between 𝜋 2 ⁄ and -𝜋 2 ⁄ radians. The sign convention used in this development is such that the value of 𝜗 is positive for the cases shown in Figures 2 and4. In this example, since the ISS is not getting closer to San Francisco, 𝜗 is negative. On the other hand, the direction of the relative velocity vector is already present in the sign of 𝜗, in other words, the value of 𝑣 is always positive. The term GS represents the Ground Segment, the distance between 𝐺𝑆 𝑃𝑟 and 𝐺𝑆 is assumed to be 408 [km] (although it could be calculated more accurately using the radius of the Earth and the real arc travelled by the ISS between the perpendicular line that joins 𝐺𝑆 𝑃𝑟 and 𝐺𝑆, and the start point 𝐼𝑆𝑆 0 ). The variable 𝑇 refers to 𝛥𝑡 𝐺𝑆→𝐼𝑆𝑆 , which is the time needed for the information to be sent from the GS to the ISS as seen by the GS. This value is first calculated using basic trigonometry, (note that the distances 𝑐 𝑇 and 𝑣 𝑇 have been extremely exaggerated in the drawing),

408 2 + (104.2 + 𝑣 𝑇) 2 = (𝑐 𝑇) 2 . ( 55 
)
Considering 𝑐 as 299792.458 [km/s], then

𝑇 = 𝑇 𝑆𝑒𝑛𝑑 = 0.00140463 [ s ]. (56) 
The variables 𝑣 and 𝜗 are substituted in [START_REF] Ghosh | Deformed special relativity and deformed symmetries in a canonical framework[END_REF], obtaining a value of 𝐹 equal to 1.00000632 [ -]. 𝑇 𝑆𝑒𝑛𝑑 is the time interval required to send the signal as observed by the GS. While from the satellite's perspective, the signal travels for 𝑇 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 seconds, where

𝑇 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 = 0.00140463 1.00000632 = 0.00140462[ 𝑠 ]. (57) 
That is a very small difference of 10 -8 [ 𝑠 ], 10 nanoseconds. But in the vastness of the universe, the velocities of the different masses are much bigger, and the distances too, hence the impact of 𝐹 in the calculations is much more significant. 

Non-Inertial Case

The previous development is valid for inertial reference frames. But in several problems, the relative velocity tends to change in direction and module during the information transmission period. Although in some of the movements that take place in the universe, the relative velocity vector can be assumed as a constant vector without making big errors in the calculation (as shown in the example of the ISS). A method is proposed below that allows the application of formula [START_REF] Ghosh | Deformed special relativity and deformed symmetries in a canonical framework[END_REF] in the event that the velocity vector varies in direction and/or module. First, a point 𝐴 with a random trajectory is considered (Figure 11 (a)). The symbol (𝑡) reflects the temporal dependence of both variables 𝒗 (velocity vector) and 𝐴 (position). As before, it is necessary to specify the observer (𝐵) with respect to which point 𝐴 has that velocity. This trajectory could be studied as the sum of small segments of infinitesimal length (𝑣(𝑡) 𝑑𝑡). Therefore, in each of these small sections of the path, the variables 𝑣 and 𝜗 can be considered constant. However, it is possible that in such a minuscule time interval (𝑑𝑡) the information is not able to travel between 𝐴 and 𝐵. It would be necessary to define a new observer located between 𝐴 and 𝐵, as shown in Figure 11 (b). This new observer has been defined as 𝐼 (letter i refers to the fact that is an imaginary observer). It is located on the line that joins points 𝐴 and 𝐵, therefore its position depends on the instant of time (𝐼(𝑡)). As it can be appreciated, the point 𝐴 is able to reach point 𝐴 𝑓 (𝐼) but not point 𝐴 𝑓 (𝐵) . Thus, the formula (29) can only be applied for observer 𝐼. Which resuls in

𝑑𝑡 𝐴→𝐼 = 1 √ 1 - 𝑣 2 𝑐 2 cos 2 (𝜗) + 𝑣 𝑐 sin(𝜗) 𝑑𝑡 𝐼←𝐴 . (58) 
This method requires taking into account the contribution of each differential advance from point 𝐴 in the travel of the information until it finally reaches point B. Furthermore, it involves complex integration. Thus, the problem will be solved in a different way.

First, the end point of the trajectory of 𝐴 is located. That is, point 𝐴 𝑓 , at which the information emitted by 𝐵 reaches 𝐴 (according to observer 𝐵). To do so, the propagation of the information is represented as a spherical fringe that gradually increase in radius (because it occurs in all directions of the space) (Figure 12 (a)). Obviously, the information propagates at a velocity of 𝑐. We consider small time stepsdenoted by ∆𝑡 𝑖 . At each time 𝑡 𝑖 , the location of the point, 𝐴(𝑡 𝑖 ), is recorded (point 𝐴 moves with a varying velocity 𝒗(𝑡 𝑖 )) . When the current location of 𝐴 touches or crosses the limit defined by the current sphere of light, the end point 𝐴 𝑓 is obtained (the final real geometry is shown in Figure 12 (b)). The separation between two successive pairs of locations of point 𝐴 are not necessarily the same. That is, the length of the path between 𝐴(𝑡 𝑖 ) and 𝐴(𝑡 𝑖+1 ), and 𝐴(𝑡 𝑗 ) and 𝐴(𝑡 𝑗+1 ) can be different. Oppositely, the spherical fringes always have the same separation, because 𝑐 is constant. Once the above method has been applied, the length of each side of the geometry displayed in Figure 12 (b) is known (Figure 13 (a)). Likewise, the time it took for point 𝐴 to travel from 𝐴 0 to 𝐴 𝑓 is also known (𝛥𝑡 𝐵→𝐴 ). Therefore, its equivalent average velocity is defined as

𝑣 𝑒𝑞 = 𝑟 𝐴 0 , 𝐴 𝑓 𝛥𝑡 𝐵→𝐴 . (59) 
Additionally, 𝛥𝑡 𝐵←𝐴 can be easily retrieved,

𝛥𝑡 𝐵←𝐴 = 𝑟 𝐵, 𝐴 0 𝑐 . ( 60 
)
If the curved path is stretched conserving its length, the equivalent triangle of distances of Figure 13 (b) is obtained. The value of 𝜗 𝐵 𝑒𝑞 is fully defined from 𝑟 𝐵, 𝐴 𝑓 2 = 𝑟 𝐵, 𝐴 0 2 + 𝑟 𝐴 0 , 𝐴 𝑓 2 -2 𝑟 𝐵, 𝐴 0 𝑟 𝐴 0 , 𝐴 𝑓 sin (𝜗 𝐵 𝑒𝑞 ) ,

𝜗 𝐵 𝑒𝑞 = arcsin ( 𝑟 𝐵, 𝐴 0 2 + 𝑟 𝐴 0 , 𝐴 𝑓 2 -𝑟 𝐵, 𝐴 𝑓 2 2 𝑟 𝐵, 𝐴 0 𝑟 𝐴 0 , 𝐴 𝑓 ) .

With these known values of 𝑣 𝑒𝑞 and 𝜗 𝐵 𝑒𝑞 the factor 𝐹 can be calculated simply substituting in equation ( 29).

(a) (b) 

Conclusion

This theoretical development suggests an interpretation of the time that elapses in the transmission of electromagnetic signals. It focuses on the case where relative motion exists between the agents of the system. A factor has been obtained that quantifies the difference between sending time interval (from the sender's perspective) and reception time interval (from the receiver's perspective). The development starts from the hypothesis of an inertial system; however, its application has been generalized for the study of the non-inertial case using a geometry equivalence method. The experimental verification of the proposed theory is within the reach of current technology. To do so, the authors suggest carrying out a series of experimental measurements similar to those shown in the application example of the satellite in LEO and contrasting their values with the theoretical ones. The experiment should focus on the differences found between both observers in the time required for the complete transmission of the signal.
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 1 Figure 1. Relative motion between points 𝐴 and 𝐵: (a) Relative velocity of the point 𝐴 with respect to the observer 𝐵; (b) Distance travelled by the information of 𝐵 from 𝐵 to 𝐴 𝑓 ; (c) Distance travelled by the information of 𝐵 from 𝐵 to 𝐴 𝑓 and by point 𝐴 from 𝐴 0 to 𝐴 𝑓 .

  (b).

Figure 2 .

 2 Figure 2. Triangle of distances for the observer 𝐵: (a) Directions of the transfer of information and direction of the movement of 𝐴; (b) Parametrization of the triangle of distances for the observer 𝐵.

Figure 2 (

 2 Figure 2 (b) also shows an auxiliary triangular construction (triangle formed by 𝐴 𝑓 , 𝐵 and 𝐵 𝑃𝑟 ). The point 𝐵 𝑃𝑟 is obtained by the intersection between the direction of velocity 𝒗 𝐴 𝑟 𝐵 and its perpendicular traced by 𝐵. The subscript 𝑃𝑟 is an abbreviation of projected (𝐵 𝑃𝑟 is the actual projection of 𝐵 on the line defined by 𝒗 𝐴 𝑟 𝐵 ). The angular variables have a subscript 𝐵 to indicate that
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 33 Figure 3. Relative motion between points 𝐵 and 𝐴: (a) Relative velocity of the point 𝐵 with respect to the observer 𝐴; (b) Distance travelled by the information of 𝐴 from 𝐴 to 𝐵 𝑓 ; (c) Distance travelled by the information of 𝐴 from 𝐴 to 𝐵 𝑓 and by point 𝐵 from 𝐵 0 to 𝐵 𝑓 .

Figure 4 .

 4 Figure 4. Triangle of distances for the observer 𝐴: (a) Directions of the transfer of information and direction of the movement of 𝐵; (b) Parametrization of the triangle of distances for the observer 𝐴.

Figure 5 .

 5 Figure 5. Evolution of 𝐹 in terms of its two independent variables: (a) Perspective 1; (b) Perspective 2.

  ), √1 -𝛽 2 cos 2 (𝜗) + 𝛽 sin(𝜗) = 1, (31) 1 -𝛽 2 cos 2 (𝜗) = 1 -2 𝛽 sin(𝜗) + 𝛽 2 sin 2 (𝜗) , (32) 0 = -2 𝛽 sin(𝜗) + 𝛽 2 . (

Figure 6 .

 6 Figure 6. Top view of the surface of 𝐹 together with both solutions for the case of 𝐹 equal to 1.
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Figure 7 .

 7 Figure 7. Example of an isosceles triangle of distances: (a) Triangle of distances as seen by observer 𝐵; (b) Triangle of distances as seen by observer 𝐴.

Figure 8 .

 8 Figure 8. Visual representation of the different trajectories of a photon based on the perspective of the observer, which leads to the obtention of the Lorentz factor.

Figure 9 .

 9 Figure 9. Division of the movement for the two perspectives: (a) Perspective of observer 𝐵; (b) Perspective of observer 𝐵.

Figure 10 .

 10 Figure 10. Simplified problem of the signal transmission to a satellite orbiting the Earth.

Figure 11 .

 11 Figure 11. Study of a generic trajectory, non-inertial reference frame case: (a) Complex trajectory traced by point 𝐴; (b) Triangle of distances for observers 𝐼 and 𝐵.

Figure 12 .

 12 Figure 12. Obtention process of the real geometry of distances for observer 𝐵: (a) Method of the progressive propagation of information as spherical fringes to obtain point 𝐴 𝑓 ; (b) Real geometry of distances for observer 𝐵.

Figure 13 .

 13 Figure 13. Transformation to the equivalent triangle of distances: (a) Length of the sides do the real geometry of distances for observer 𝐵; (b) Equivalent triangle of distances for observer 𝐵.

  𝜗 𝐴 and 𝜗 𝐵 are equal. 𝜗 𝐵 and 𝜗 𝐴 are replaced by 𝜗,

		𝐹 =	cos(𝜗) cos (𝜗 -arcsin ( 𝑣 𝑐	cos(𝜗)))	.	(26)
	Developing,						
	𝐹 =	cos(𝜗) cos (arcsin (	𝑣 𝑐	cos(𝜗) cos(𝜗))) + sin(𝜗) sin (arcsin (	𝑐 𝑣	cos(𝜗)))	,
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