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The homomorphism order

of signed graphs

Reza Naserasr ∗ Sagnik Sen † Éric Sopena ‡

July 15, 2020

Abstract

A signed graph (G, σ) is a graph G together with a mapping σ
which assigns to each edge of G a sign, either positive or negative.
The sign of a closed walk in (G, σ) is the product of the signs of its
edges (considering multiplicity). Considering signs of closed walks
as one of the key structures of signed graphs, a homomorphism of a
signed graph (G, σ) to a signed graph (H,π) is defined to be a map-
ping that maps vertices to vertices, edges to edges, and that preserves
incidences, adjacencies and signs of closed walks. This is a recently
defined notion, closely related to sign-preserving homomorphisms of
signed graphs (or, equivalently, to homomorphisms of 2-edge-colored
graphs), that helps, in particular, to establish a stronger connection
between the theories of coloring and homomorphisms of graphs and
the minor theory of graphs.

When there exists a homomorphism of (G, σ) to (H,π), one may
write (G, σ) → (H,π), thus extending the graph homomorphism
order to a partial order on the classes of homomorphically equivalent
signed graphs. In this work, studying this order, we prove that this
order forms a lattice. That is to say, for each pair (G1, σ1) and
(G2, σ2) of signed graphs, representing their respective classes, both
their join and meet exist. While proving this result, we also show
the existence of categorical products for signed graphs.

1 Introduction

A signed graph (G, σ) is a graph G together with a mapping σ which assigns
to each edge either a positive or a negative sign. The mapping σ can be
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given by the set E− of negative edges, in which case we may write (G,E−)
instead. Given a signed graph (G, σ), the signature of G normally denotes
the set of its negative edges, but it may also refer to the function σ in an
equivalent way.

For the purpose of this work, graphs are finite and are allowed to have
loops and multi-edges. However, multi-edges of a same sign will be irrele-
vant to our work and will thus not be considered. A pair of parallel edges
of different signs (together with its endpoints) is referred to as a digon.

Two key notions in the study of signed graphs are the sign of a sub-
structure, which is defined to be the product of the signs of the edges in the
substructure, and switching, which is to change the sign of each edge in a
given subset of edges. In most studies, including this one, these two notions
are restricted to two types of substructures which are closely related: sign
will be defined for cycles, or more generally for closed walks, and switching
can be done on an edge cut, noting that these two structures are rather
dual. They are formally defined as follows.

Definition 1 (Sign of cycles and closed walks, switching, switching equiv-
alence). Given a signed graph (G, σ) and a closed walk W of G, the sign of
W , denoted as σ(W ), is the product of the signs of the edges of W , consid-
ering multiplicities. To switch an edge cut [X,Y ] of G in (G, σ) is to change
the signs of all edges in [X,Y ] and to switch a vertex subset X ⊆ V (G) is
to switch the edge cut [X,V (G) \ X]. Furthermore, (G, σ′) is said to be
switching equivalent to (G, σ), if (G, σ′) is a switching of (G, σ). In that
case, we may also say that σ and σ′ are switching equivalent.

The following observations directly follow from these definitions.

Observation 2. Given a signed graph (G, σ), the sign of every closed walk
of G is invariant under the switching operation.

Observation 3. Given two switching equivalent signed graphs (G, σ) and
(G, σ′), the symmetric difference of the two signatures σ and σ′ is an edge
cut of G.

Switching equivalence partitions the set of all signatures on a graph G
into equivalence classes, called switch-equivalence classes. Each member of
such a class partitions the set of cycles (or closed walks) into two parts, the
negative ones and the positive ones. The following theorem of Zaslavsky
shows that this partition uniquely determines the switch-equivalence class
to which a signature belongs.

Theorem 4 (Zaslavsky [7]). Two signed graphs (G, σ1) and (G, σ2) are
switching equivalent if and only if they have the same set of negative cycles.
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It should be noted here that not every partition of cycles or closed
walks of a graph G into two parts would correspond to a set of positive
and negative cycles of a signature on G. A classification of such partitions,
using the notion of exclusive 3-walk property, can be found in [5] and [6].

One should also note that a signed graph (G, σ) could be simply viewed
as a 2-edge-colored graph, usually associating positive edges with color
blue (or with solid lines) and negative edges with color red (or with dashed
lines). With such a view, all results on 2-edge-colored graphs indeed hold
for signed graphs. However, the notion of switching, which is based on the
basic mathematical relation between + and − (as opposed to colors red and
blue which are not related), adds an intriguing level of complexity which
gives birth to a number of beautiful theories.

A particular example is the notion of homomorphisms of signed graphs.
While it remains strongly related to homomorphisms of 2-edge-colored
graphs, it becomes of higher interest in the study of a number of con-
jectures, specially those in relation with the theory of graph minors, such
as the four-color theorem and its possible extensions (see [4] or [5] for more
details on this connection).

In this paper, we study the homomorphism order of signed graphs. Be-
cause of the strong relation with homomorphisms of 2-edge-colored graphs,
we will also speak about the homomorphism order of 2-edge-colored graphs,
but, to emphasize the connection, and towards a uniform presentation, we
will consider homomorphisms of 2-edge-colored graphs under the umbrella
of edge-sign-preserving homomorphisms of signed graphs.

We continue with proper definitions of the two homomorphism relations
and their connections in the next section.

2 Homomorphisms of signed graphs

Considering signs of cycles and closed walks as one of the key structures of
a signed graph, the following is the natural definition of homomorphisms
of signed graphs.

Definition 5 (Homomorphism of signed graphs [5]). Given two signed
graphs (G, σ) and (H,π), a homomorphism of (G, σ) to (H,π) is a mapping
under which a vertex maps to a vertex, an edge maps to an edge and
adjacencies, incidences and signs of closed walks are preserved. When such
a homomorphism exists, we write (G, σ)→ (H,π).

To present a homomorphism of (G, σ) to (H,π) as a function which
not only verifies that adjacencies and incidences are preserved but also
verifies that signs of closed walks are preserved, we use Theorem 4. More
precisely, let φ be such a mapping. Let σ′ be the signature on G which
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is induced from (H,π) by φ, i.e., σ′(e) = π(φ(e)). The condition that
signs of closed walks are preserved by φ together with Theorem 4 implies
that σ′ is switching equivalent to σ, and thus σ′ is obtained by switching
a set X (or V − X) of vertices of G. Therefore, the mapping φ can be
viewed as a function composed of three components, φ = (φ1, φ2, φ3), where
φ1 : V (G)→ {+,−}, φ2 : V (G)→ V (H), and φ3 : E(G)→ E(H) in such a
way that it preserves adjacencies, incidences and for any edge uv of (G, σ),
we have σ(uv) = φ1(u)φ1(v)π(φ3(uv)). We note that, since switching a
subset X of vertices of G is the same as switching V −X, we have φ1 = −φ1.

This view of homomorphisms of signed graphs leads to a strong con-
nection with the notion of edge-sign-preserving homomorphisms of signed
graphs, formally defined as follows.

Definition 6 (Edge-sign-preserving homomorphism of signed graphs). Gi-
ven two signed graphs (G, σ) and (H,π), an edge-sign-preserving homo-
morphism of (G, σ) to (H,π) is a mapping φ which maps V (G) to V (H)
and E(G) to E(H), in such a way that adjacencies, incidences and signs
of edges are preserved. When such a homomorphism exists, we write

(G, σ)
sp−→ (H,π).

As in this work we only consider signs for edges, we may simply write
sign-preserving homomorphism, or in short sp-homomorphism, in place of
edge-sign-preserving homomorphism.

Observe that, in a mapping of (G, σ) to (H,π), when vertices x and y
of an edge e = xy of G are mapped to the two ends of a digon in (H,π),
or to the same vertex which has both a negative and a positive loop, then
one must indicate to which of the two possible edges e is mapped to. In
all other cases, specially when H has no multi-edge, the edge mapping is
induced by the vertex mapping and one may simply refer to the vertex
mapping.

A key difference between the definitions of homomorphisms of signed
graphs and of sp-homomorphisms of signed graphs is that in the former
an edge might map to an edge of a different sign, as shown in Figure 2.
However, there are also strong connections between them, that will be
discussed later. For more on that point, we refer to [5].

It is easily observed that both relations → and
sp−→ are reflexive and

associative. However, considered on the class of all signed graphs, none of
them is antisymmetric. The natural way to form a partial order from either
of them is to put all homomorphically equivalent signed graphs into a same
class, represented by any of its members (two signed graphs (G, σ) and
(H,π) are homomorphically equivalent if and only if (G, σ) → (H,π) and
(H,π)→ (G, σ)). Such a class will be called a hom-equivalence class. This
natural partial order obtained from homomorphisms or sp-homomorphisms
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Figure 1: An example of a homomorphism of signed graphs

of signed graphs is called the homomorphism order or sp-homomorphism
order of signed graphs, respectively. The main focus of this paper is to
study the homomorphism order of signed graphs.

It is a well known fact that the homomorphism order of graphs is a
lattice, that is to say that any pair of graphs admits a join and a meet.
The join of two given graphs is simply their disjoint union, and their meet
is given by the graph product defined below. This product is known under
various names such as categorical product, direct product, tensor product,
Hedetniemi product, etc. We refer to [2] for more details.

Definition 7 (Direct product of graphs). Given two graphs G and H, the
direct product of G and H, denoted by G×H, is the graph with vertex set
V (G)×V (H) where a vertex (x, u) is adjacent to a vertex (y, v) if and only
if x is adjacent to y in G and u is adjacent to v in H.

This product has been naturally extended to edge-colored graphs and
to directed graphs, implying the fact that the sp-homomorphism order is a
lattice.

Definition 8 (Sp-direct product of signed graphs). Given two signed
graphs (G, σ) and (H,π), the sp-direct product of (G, σ) and (H,π), de-

noted by (G, σ)
sp
× (H,π), is the signed graph with vertex set V (G)×V (H),

where a vertex (x, u) is adjacent to a vertex (y, v) with a positive edge (re-
spectively, with a negative edge) if and only if x is adjacent to y in (G, σ)
with a positive edge (respectively, with a negative edge), and u is adjacent
to v in (H,π) with a positive edge (respectively, with a negative edge).

We will show in the next section that the homomorphism order of signed
graphs is also a lattice. The direct product of two signed graphs will be
defined in two equivalent ways. One is constructive and easy to visualize
while the other provides more intuition on why such a construction works.
The later has a strong connection with sign-preserving homomorphisms,
which is described below. We refer to [5] and references therein for more
on this connection.
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One such important connection we would like to mention is based on
the notion of double switching graph, which was introduced in [1] within a
larger context, defined as follows.

Definition 9 (Double switching graph of a signed graph). Given a signed
graph (G, σ), the double switching graph of (G, σ), denoted by DSG(G, σ),
is the signed graph whose set of vertices is made of two disjoint copies V +

and V − of the vertices of G, where each copy induces a copy of (G, σ) and,
furthermore, where two vertices x+ ∈ V + and y− ∈ V − are adjacent with a
positive edge (respectively, with a negative edge) if and only if the vertices
x and y are adjacent in (G, σ) with a negative edge (respectively, with a
positive edge).

Observe that if (G, σ′) is obtained from (G, σ) by switching a set X
of vertices, then the corresponding sets X− ⊂ V − and (V \ X)+ ⊂ V +

induce a copy of (G, σ′), with their complement inducing another copy of
the same signed graph. This explains why this construction is called the
double switching graph.

The following result is a special case of a general theorem given in [1].

Theorem 10. Given two signed graphs (G, σ) and (H,π), (G, σ)→ (H,π)

if and only if (G, σ)
sp−→ DSG(H,π).

One more important notion that we will use in the next section is the
notion of the category of signed graphs. This is the category where objects
are switch-equivalence classes of signed graphs and where homomorphisms
play the role of morphisms from one object to another. But instead of
dealing with switch-equivalence classes of signed graphs, we will consider
any of its elements, taken as a representative of the whole class.

3 The homomorphism order of signed graphs

Our goal in this section is to prove that the homomorphism order of signed
graphs is a lattice. Observe that it is enough to show that for any pair
of signed graphs (G, σ) and (H,π) (representing their respective hom-
equivalence classes), both their join and meet exists. The join and meet
are also given by two signed graphs, which are representative of their re-
spective hom-equivalence classes. We will now define the direct sum and
direct product for signed graphs and later on justify their names.

Definition 11 (Direct sum of two signed graphs). Given two signed graphs
(G, σ) and (H,π), the direct sum of (G, σ) and (H,π), denoted by (G, σ) +
(H,π), is the disjoint union of (G, σ) and (H,π).

6



x

y

u v

+
−

+
−

−
+

−
+

x

y

u v

+
−

+
−

−
+

−
+

x

y

u v

+
−

+
−

−
+

−
+

x

y

u v

+
−

+
−

−
+

−
+

Figure 2: Possible products of two edges

Definition 12 (Direct product of two signed graphs). Given two signed
graphs (G, σ) and (H,π), the direct product of (G, σ) and (H,π), denoted
by (G, σ)× (H,π), is the signed graph (F, ς) defined as follows.

1. V (F ) = {+,−} × V (G)× V (H).

2. To have an edge between (i, x, u) and (j, y, v), first of all we must
have an edge xy in G and an edge uv in H. In such a case, the
corresponding eight vertices (respectively, four vertices if either x = y
and u = v, or two vertices if both x = y and u = v) will induce a
matching of order four (respectively, two, one), all of its edges having
the same sign as σ(xy). The choice of these edges then depends on
whether uv has the same sign as xy or not, and is described as follows
(see Figure 2).

(a) If σ(xy) = π(uv), then (i, x, u) is adjacent to (i, y, v) and (i, x, v)
is adjacent to (i, y, u) for every i ∈ {+,−} (left side of Figure 2).
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(b) If σ(xy) = −π(uv), then (i, x, u) is adjacent to (−i, y, v) and
(i, x, v) is adjacent to (−i, y, u) for every i ∈ {+,−} (right side
of Figure 2).

We will now show that (G, σ) + (H,π) and (G, σ)× (H,π) are the join
and meet, respectively, of (G, σ) and (H,π) in the homomorphism order.
Before going to that, let us review the definition of join and meet for the
homomorphism order.

Definition 13 (Join and meet of two signed graphs). Let (G, σ) and (H,π)
be two signed graphs.

The join of (G, σ) and (H,π) is a signed graph (J, µ) satisfying (G, σ)→
(J, µ) and (H,π)→ (J, µ) such that (G, σ), (H,π)→ (C, η) implies (J, µ)→
(C, η).

The meet of (G, σ) and (H,π) is a signed graph (F, ς) satisfying (F, ς)→
(G, σ) and (F, ς) → (H,π) such that (C, η) → (G, σ) and (C, η) → (H,π)
implies (C, η)→ (F, ς).

Usually, for (undirected, directed) graphs, the standard way of showing
that join and meet exist is to prove that the direct sum and the direct prod-
uct are the categorical co-products and products, respectively. For signed
graphs, we will do something similar. Let us first provide the definitions of
co-product and product in the category of signed graphs.

Definition 14 (Categorical co-product of two signed graphs). Given two
signed graphs (G, σ) and (H,π), their categorical co-product is a signed
graph (J, µ) together with two (inclusion) homomorphisms iG : (G, σ) →
(J, µ) and iH : (H,π) → (J, µ) such that, for any signed graph (C, η), if
there exist homomorphisms fG : (G, σ)→ (C, η) and fH : (H,π)→ (C, η),
then there exists a unique homomorphism f : (J, µ) → (C, η) satisfying
fG = ig ◦ f and fH = iH ◦ f .

Definition 15 (Categorical product of two signed graphs). Given two
signed graphs (G, σ) and (H,π), their categorical product is a signed graph
(F, η) together with two (projection) homomorphisms pG : (F, ς)→ (G, σ)
and iH : (F, ς)→ (H,π) such that, for any signed graph (C, η), if there exist
homomorphisms fG : (C, η)→ (G, σ) and fH : (C, η)→ (H,π), then there
exists a unique homomorphism f : (C, η) → (F, ς) satisfying pG = f ◦ fG
and pH = f ◦ fH .

Thus from the definitions of join and categorical co-product it is clear
that, if the categorical co-product of two signed graphs exists, then the join
of their corresponding hom-equivalence classes also exists and is the same
as the hom-equivalence class of their categorical co-product. Similarly, if
the categorical product of two signed graph exists, then the meet of their
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corresponding hom-equivalence classes also exists and is the same as the
hom-equivalence class of their categorical product.

Thus let us first show that (G, σ)+(H,π), together with the two natural
inclusion homomorphisms, is actually the co-product of (G, σ) and (H,π).

Theorem 16. The signed graph (G, σ)+(H,π), along with the two natural
inclusion homomorphisms, is the co-product of (G, σ) and (H,π).

Proof. First let us explicitly describe the natural inclusion maps. The
homomorphisms iG : (G, σ) → (G, σ) + (H,π) and iH : (H, ς) → (G, σ) +
(H,π) do not switch any vertex and map a vertex or an edge to itself. Let
now (C, µ) be a signed graph admitting homomorphisms fG : (G, σ) →
(C, η) and fH : (H,π) → (C, η). Consider then the homomorphism f :
(G, σ) + (H,π)→ (C, η), given by f(x) = fG(x) for x ∈ V (G) ∪ E(G) and
f(y) = fH(y) for y ∈ V (H)∪E(H). From the definition of f it follows that
fG = ig ◦ f and fH = iH ◦ f . Moreover, the uniqueness of f is obvious.

Next we are going to show that (G, σ) × (H,π), along with the two
natural projections, is the categorical product of (G, σ) and (H,π). We
will explicitly describe the projections inside the proof.

Theorem 17. The signed graph (G, σ)×(H,π), along with the two natural
projections, is the categorical product of (G, σ) and (H,π).

Proof. We must first present the natural projections pG and pH of (G, σ)×
(H,π) onto (G, σ) and onto (H,π), respectively. The projection pG maps
each vertex (i, x, v) to the vertex x of (G, σ) without switching. It is
straightforward to check that pG is a homomorphism of (G, σ) × (H,π)
to (G, σ). The projection pH first switches all vertices of the form (−, x, v),
and then maps each vertex (i, x, v) to the vertex v of (H,π). That means,
due to the switching, that an edge between two vertices of the form (i, x, u)
and (j, y, v) will change sign if and only if i 6= j. Thus, from the definition
of (G, σ)× (H,π), it follows that pH is a homomorphism of (G, σ)× (H,π)
to (H,π).

We may now consider a signed graph (C, η) and assume that fG and fH
are homomorphisms of (C, η) to (G, σ) and of (C, η) to (H,π), respectively.
We would like to define a natural mapping f of (C, η) to the product
(G, σ)× (H,π), using fG and fH . Recall that a homomorphism f of signed
graphs consists of three components, f1, f2 and f3, the first one deciding
for each vertex whether it must be switched or not, the second one being
a vertex mapping and the third one an edge mapping.

To define the mapping f , we choose f1 to be identical to the first com-
ponent of fG, that is to say, f1 switches a vertex z of (C, η) if and only if fG
switches z. For the component f2, if fH switches a vertex z of (C, η), then
f2 maps z to (−, fG(z), fH(z)), otherwise f2 maps z to (+, fG(z), fH(z)).
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Finally, we must determine the component f3, that is the edge mapping.
Let e be an edge of (C, η) with endpoints z and z′. Let i be the sign of
e after applying the possible switches given by fG at vertices z and z′.
Observe that there must be an edge with sign i between f(z) and f(z′).
We then set f3(e) to be this edge. It is then straightforward to check that
f is a homomorphism of (C, η) to (G, σ) × (H,π) and, furthermore, that
pG ◦ f = fG and pH ◦ f = fH .

The uniqueness of f is obvious.

Note that the direct product of two signed graphs (G, σ) and (H,π)
has order 2× |V (G)| × |V (H)|. We will understand the reason behind this
unusual form of the product at the end of this section.

For now, we can say that both the categorical co-product and the prod-
uct of two signed graphs exist. Therefore, the homomorphism order of
signed graphs is a lattice.

Theorem 18. The homomorphism order of signed graphs is a lattice.

Proof. Follows directly from Theorems 16 and 17.

In the following we are going to describe yet another way of presenting
the categorical product. This alternative construction has relation with the
sp-categorical product of graphs. To describe this construction, we must
introduce a few more concepts.

Given a signed graph (G, σ) and a vertex v of G, we denote by N+(v)
(respectively, by N−(v)) the set of vertices of G that are adjacent to v
with a positive edge (respectively, with a negative edge), allowing N+(v)
(respectively, N−(v)) to contain v only if there is a positive loop at v
(respectively, a negative loop at v). Two vertices u and v of a signed graph
are said to be twins if and only ifN+(v) = N+(u) andN−(v) = N−(u). On
the other hand, two vertices u and v are antitwins if N+(v) = N−(u) and
N−(v) = N+(u), or, equivalently, if after having switched (only) u, v and
u are twins in the so-obtained switching equivalent signed graph (G, σ′).
Observe that our definition of twins deals with loops as well. Indeed, if u
is an antitwin of v in (G, σ) and u has, say, a positive loop, then u must be
adjacent to v by a negative edge, and v must also have a positive loop.

Observe also that in DSG(G, σ), the two copies in V + and V − of any
vertex x are antitwins. The converse is also true in the following sense.

Theorem 19. A signed graph (H,π) is a double switching graph if and
only if its set of vertices can be partitioned into pairs of anti-twins.

Proof. One direction directly follows from the definition of a double switch-
ing graph. For the other direction, simply delete one vertex from each pair
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of antitwin vertices in (H,π) and let (G, σ) be the resulting signed graph.
It is clear that (H,π) = DSG(G, σ). Note also that different choices of
vertices will lead to different switching equivalent copies of (G, σ).

Let us now recall Definition 8 and use it along with Theorem 19 to rede-
fine the categorical product of two signed graphs (G, σ) and (H,π) with re-
spect to homomorphisms of signed graphs (see Definition 12), as the signed

graph (F, η) whose double switching graph is the product DSG(G, σ)
sp
×

DSG(H,π). This is well defined since we have the following result.

Theorem 20. Given two signed graphs (G, σ) and (H,π), the set of ver-

tices of the direct product DSG(G, σ)
sp
× DSG(H,π) can be partitioned into

pairs of antitwins.

Proof. Recall that, for each vertex x of G, there are two vertices x+ and
x− in DSG(G, σ). Thus, for each pair of vertices (x, u) with x ∈ V (G) and
u ∈ V (H), we have four vertices (x+, u+), (x+, u−), (x−, u+) and (x−, u−)

in DSG(G, σ)
sp
× DSG(H,π). Furthermore, if any vertex, say (y+, v+), is

adjacent to one of these four vertices, say (x+, u+), with a positive edge,
that would mean that xy is a positive edge of (G, σ) and uv is a positive
edge of (H,π). Thus, x−y+ is a negative edge of DSG(G, σ) and u−v+ is
a negative edge of DSG(H,π), which gives that (x−, u−) is the antitwin

of (x+, u+) in DSG(G, σ)
sp
× DSG(H,π). Similarly, (x−, u+) and (x+, u−)

form a pair of antitwin vertices in DSG(G, σ)
sp
× DSG(H,π). All other

cases are similar.

In other words, the product (F, ς) of (G, σ) and (H,π) satisfies

DSG(F, ς) = DSG(G, σ)
sp
× DSG(H,π),

where (x+, u+) is taken as the vertex (+, x, u) of (F, ς), which represents the

pair ((x+, u+), (x−, u−)) of antitwin vertices in DSG(G, σ)
sp
× DSG(H,π),

and (x+, u−) is taken as the vertex (−, x, u), which represents the pair
((x−, u+), (x+, u−)). Hence, the given signature ς is a function of σ, π,
and their order in the product. However, the class of switching equivalent
signatures to which ς belongs is only a function of σ and π, and is inde-
pendent of the order in which we multiply the two signed graphs. That is,
(G, σ)×(H,π) and (H,π)×(G, σ) are switching equivalent. Furthermore, if
(G, σ′) is switching equivalent to (G, σ) and (H,π′) is switching equivalent
to (H,π), then (G, σ′)× (H,π′) is switching equivalent to (F, ς).
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4 Remarks

In this work, given two signed graphs (G, σ) and (H,π), we have defined
their direct sum (G, σ) + (H,π) and their direct product (G, σ) × (H,π).
We then defined the homomorphism order of signed graphs, whose elements
are the hom-equivalence classes of signed graphs, each class containing all
the signed graphs which are pairwise homomorphically equivalent.

Furthermore, we proved that the direct sum and the direct product of
two signed graphs are, respectively, their categorical co-product and prod-
uct. We also provided two ways of constructing the categorical product,
having order 2× |V (G)| × |V (H)|, one of them easier to visualize and the
other intuitively clearer. After that we showed that the homomorphism or-
der of signed graphs is a lattice, by showing that the categorical co-product
and the categorical product of (G, σ) and (H,π) represent the classes of
their join and of their meet, respectively, in the order.

The core of a signed graph (G, σ) is its smallest subgraph which is
also a homomorphic image of (G, σ). The fact that this notion is well
defined follows from the fact that any two such minimal subgraphs are
necessarily switching equivalent, as shown in [4]. For example, the signed
graph on the left side of Figure 2 is switching equivalent to the signed
graph obtained by switching its negative edge to a positive one, and its
core is (K2,+), the graph consisting of a positive edge (right side of the
same figure). This signed graph is also switching equivalent to the signed
graph obtained by switching its positive edge to a negative one, and its
core is (K2,−), the graph consisting of a negative edge. Clearly, (K2,+)
and (K2,−) are switching equivalent signed graphs.

A signed graph (G, σ) whose core is (G, σ) itself is called a core. Note
that, if we restrict ourselves only to cores, then homomorphisms of signed
graphs induce a partial order, equivalent to the homomorphism order. By
what we have proved, given any two cores (G, σ) and (H,π), in the above
mentioned order, the core of their direct sum and direct product will corre-
spond to their join and meet, respectively. Thus, the partial order induced
by homomorphisms of signed graphs on the set of cores is a lattice.

The two examples below will show that (1) the core of the meet of a
given pair of signed graphs could be of smaller order than the order of the
categorical product of the two given signed graphs, and (2) as a general
construction of meet that works for all pairs of signed graphs, 2×|V (G)|×
|V (H)| is the smallest order one may work with.

Given an integer k 6= 0, let Ck be a signed graph on the cycle of length
|k| (i.e., C|k|) with an assignment of signs to the edges in such a way that
the sign of the resulting cycle is the same as the sign of k. That is to say,
Ck is a negative cycle if k < 0 and a positive cycle, otherwise. In particular,
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C−1 is the negative loop and C+1 is the positive loop. The meet of the two
cycles Cp and Cq can then be determined as follows.

1. If p and q have the same parity and the same sign, then, assuming
|p| ≤ |q|, Cp × Cq is homomorphically equivalent to Cq. That is
simply because Cq → Cp, and thus signed graphs admitting a homo-
morphism to both Cp and Cq are those admitting a homomorphism
to Cq.

2. If either the parity or the sign of p and q are not the same, then
the meet of Cp and Cq is simply (K2,+), which is homomorphically
equivalent to (K2,−). To see that, let us denote by gij(G, σ), ij ∈ Z2

2,
the smallest length of a non-trivial closed walk of type ij in (G, σ),
that is to say, a non-trivial closed walk whose sign is positive if i = 0
and negative if i = 1, and whose length is even if j = 0 and odd if
j = 1 (see [5] for more details on this notion). If no such closed walk
exists in (G, σ), we let gij(G, σ) = ∞. Observe now that a signed
graph (G, σ) which maps to Cp has gij(G, σ) = ∞ for at least two
choices of ij ∈ Z2

2, where these two choices depend on the parity and
sign of p. As the same holds for q, and since p and q cannot lead
to the same choices, a signed graph (G, σ) which maps to both of
them must have gij(G, σ) = ∞ for at least three choices of ij ∈ Z2

2.
Therefore, the only possible closed walks in (G, σ) are closed walks
of type 00.

Thus, on the one hand C−1×C+1 has 2×|V (C−1)|× |V (C+1)| vertices,
and on the other hand, for large values of |p| and |q| where either the parity
or the sign of p and q are not the same, the core of the categorical product
Cp × Cq, that is their meet, is of order 2.

Finally, it is worth noting here that similar constructions can be given,
leading to similar results, for oriented graphs with respect to pushable
homomorphisms, as introduced by Klostermeyer and MacGillivray in [3].
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