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ON THE SPECTRUM OF A NEUTRAL MULTI-ALLELIC MORAN MODEL

JOSUÉ CORUJO

Abstract. The purpose of this paper is to provide a complete description of the eigenvalues of the

generator of a neutral multi-type Moran model, which is non-reversible in general, continuous-time
Markov chain with unknown stationary distribution. Specifically, we consider N individuals, where each

one of them is of one type among K possible allelic types. The individuals interact in two ways: by
an independent irreducible mutation process and by a reproduction process, where a pair of individuals

is randomly chosen, one of them dies and the other reproduces. Our main result provides explicit

expressions for the eigenvalues of the infinitesimal generator matrix of the Moran process, in terms
of the eigenvalues of the jump rate matrix. We also study in detail the spectral decomposition of

the neutral multi-allelic Moran model with parent independent mutation scheme, which turns to be the

unique mutation scheme that makes the neutral Moran process reversible. Under the parent independent
mutation assumption we provide a complete description of the left and right eigenfunctions of the

infinitesimal generator of the Markov process. We use spectral techniques to provide non-asymptotic

bounds for the rate of convergence of the neutral multi-allelic Moran process with parent independent
mutation to stationarity in the total variation and chi-square distances. Moreover, we prove the existence

of a strongly optimal cutoff phenomenon in the chi-square distance when initially all the individuals are

of the same type and the number of individuals tends to infinity. Additionally, in the absence of
reproduction, we prove that the the mutation process presents a strongly optimal total variation cutoff

with Gaussian profile when initially all the individuals are of the same type.
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1. Introduction and main results

This paper is devoted to the study of a continuous-time Markov model of N particles on K sites with
interaction, which is known as the neutral multi-allelic Moran model in population genetics literature
[EG09]: the K sites correspond to K allelic types in a population of N individuals. The state space of
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2 JOSUÉ CORUJO

the process is the K-dimensional N -discrete simplex:

EK,N := {η ∈ [N ]
K
0 : |η| = N}, (1.1)

where [N ]0 := {0, 1, . . . , N} and | · | stands for the sum of elements in a vector. EK,N is a finite set with

cardinality Card(EK,N ) =
(
K−1+N

N

)
. The process is in state η ∈ EK,N if there are η(k) ∈ [N ]0 individuals

with allelic type k ∈ [K] := {1, 2, . . . ,K}. Consider Q = (µi,j)
K
i,j=1 the infinitesimal rate matrix of

an irreducible Markov chain on [K], which is called the mutation matrix of the Moran process. The
infinitesimal generator of the neutral multi-allelic Moran process, denoted QN,p, acts on a real function
f on EK,N as follows:

(QN,pf)(η) :=
∑

i,j∈[K]

η(i) [f(η − ei + ej)− f(η)]

(
µi,j + p

η(j)

N

)
, (1.2)

for all η ∈ EK,N , where ek is the k-th canonical vector of RK (cf. [EG09]). In words, QN,p drives a process
of N individuals, where each individual has one of K possible types of alleles and where the type of the
individual changes following two processes: a mutation process where individuals mutate independently
of each other and a Moran type reproduction process, where the individuals interact. The N individuals
mutate independently from type i ∈ [K] to type j ∈ [K] \ {i} with rate µi,j . In addition, with uniform
rate p ≥ 0, one of the N individuals is uniformly chosen to be removed from the population and another
one, also randomly chosen, is duplicated. Note that the transitions of an individual due to a reproduction
is not independent of the position of the other individuals.

As in the original model, introduced by Moran [Mor58], the same individual removed from the popu-
lation can be duplicated, in this case the state of the system does not change. In the instance where the
removed individual cannot be duplicated, the factor p

N in (1.2) must be replaced by p
N−1 .

Note that QN,p can be decomposed as follows:

QN,p = QN +
p

N
AN ,

where QN and AN are also infinitesimal generators of Markov chains acting on every f ∈ REK,N as follows

(QNf)(η) :=
∑

i,j∈[K]

η(i)µi,j [f(η − ei + ej)− f(η)] , (1.3)

(ANf)(η) :=
∑

i,j∈[K]

η(i)η(j) [f(η − ei + ej)− f(η)] , (1.4)

for every η ∈ EK,N . The processes driven by QN and AN are called mutation process and reproduction
process, respectively. In words, QN models the dynamic of N indistinguishable particles, where each one
moves among K sites according to the process generated by the mutation rate matrix Q. This process is
usually called compound chain (cf. [ZL09]). On the other hand, AN models the dynamic where at uniform
rate two individuals are randomly chosen and one of them changes its type for the type of the other one.
This paper is devoted to the study of the spectrum of QN , AN and QN,p, and of the convergence to
stationarity of the generated Markov processes. Before stating our main results in this direction, let us
establish some notation.

We recall that if Vn ∈ RK , 1 ≤ n ≤ N are N vectors in RK , their tensor product is the vector
V1 ⊗ V2 ⊗ · · · ⊗ VN defined by (V1 ⊗ V2 ⊗ · · · ⊗ VN )(k1, k2, . . . , kN ) := V1(k1)V2(k2) . . . VN (kN ), for all
1 ≤ kn ≤ K and 1 ≤ n ≤ N . See e.g. [Lan02] and [Pea65, Chapter XIV] for an introduction to the concept
of tensor product and the related concept of Kronecker product, respectively. The tensor V1⊗V2⊗· · ·⊗VN
can be considered as a function on [K]

N
. Actually, throughout this paper we completely identify a real

function f on [K]
N

and the tensor vector Vf such that Vf (k1, k2, . . . , kN ) = f(k1, k2, . . . , kN ), for all

(k1, k2, . . . , kN ) ∈ [K]
N

.
Let us denote by σ a permutation on [N ], i.e. an element of the symmetric group SN . Then, the

permutation of f ∈ R[K]N by σ, denoted by σf , is defined by

σf : (k1, k2, . . . , kN ) 7→ f(kσ(1), kσ(2), . . . kσ(N)),

for all (k1, k2, . . . , kN ) ∈ [K]
N

. In particular, for V1, V2, . . . , VN ∈ RN we have

σ(V1 ⊗ V2 ⊗ · · · ⊗ VN ) = Vσ−1(1) ⊗ Vσ−1(2) ⊗ · · · ⊗ Vσ−1(N).
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A real function f on [K]
N

is symmetric if f = σf , for all σ in SN . Moreover, every function f on [K]
N

can be symmetrised by the projector Sym, defined as follows:

Sym : f 7→ f =
1

N !

∑
σ∈SN

σf. (1.5)

Symmetric functions on [K]
N

are highly important in the sequel because they are very related to the
functions on EK,N . Symmetric functions help us to clarify the relationship between the eigenstructures

of Q and QN . Consider the application ψK,N : EK,N → [K]
N

defined by

ψK,N : η 7→ (1, 1, . . . , 1︸ ︷︷ ︸
η(1)

, 2, 2, . . . , 2︸ ︷︷ ︸
η(2)

, . . . ,K,K, . . . ,K︸ ︷︷ ︸
η(K)

), (1.6)

when the number of k in

η(k)︷ ︸︸ ︷
k, k, . . . , k is 0 if η(k) = 0. Note that for every symmetric function f on

[K]
N

, the function f̃ := f ◦ ψK,N on EK,N is well defined. Let U0 be the all-one vector in RK and
U1, U2, . . . , UK−1 ∈ RK such that U := {U0, U1, . . . , UK−1} is a basis of RK . Note that this is the type
of basis given by the eigenvectors of the diagonalisable rate matrix of dimension K of a Markov chain

on [K]. For every η ∈ EK−1,L, 1 ≤ L ≤ N , let us also denote by Uη ∈ R[K]N , Vη ∈ Sym
(
R[K]N

)
and

Ṽη ∈ REK,N the vectors defined by

Uη := Uk1 ⊗ Uk2 ⊗ · · · ⊗ UkL ⊗ U0 ⊗ · · · ⊗ U0︸ ︷︷ ︸
N−L times

, (1.7)

Vη := Sym(Uη), (1.8)

Ṽη := Vη ◦ ψK,N , (1.9)

where (k1, k2, . . . , kL) = ψK−1,L(η), η ∈ EK−1,L and L ∈ [N ]. In Section 2 we analyse the link between

the spaces Sym
(

R[K]N
)

and REK,N , and we clarify the nature of the definitions previously introduced.

Next theorem below uses the results in Section 2 to detail the connection between the eigenstructures of
Q and QN
Theorem 1.1 (Eigenstructure of QN ). Let U = {U0, U1, . . . , Ur−1} be a set of r independent right
eigenvectors of Q such that U0 is the all-one vector. Let λ0 = 0, λ1, . . . , λK−1 be the K complex roots
of the characteristic polynomial of Q, counting algebraic multiplicities, such that QUk = λkUk, for k ∈
{0, 1, . . . , r − 1}. Consider λη defined as follows

λη :=

K−1∑
k=1

η(k)λk. (1.10)

Then,

(a) The eigenvalues of QN are given by λη, for all η ∈
N⋃
L=1

EK−1,L.

(b) Every function Ṽη, as defined in (1.9), for η ∈
N⋃
L=1

EK−1,L satisfying η(r) = · · · = η(K − 1) = 0

is a right eigenfunction of QN such that QN Ṽη = ληṼη.
(c) In particular, if Q is diagonalisable, then QN is diagonalisable.

The proof of Theorem 1.1 can be found in Section 3.1. Theorem 1.1 can be seen as a continuous-time
generalisation of the results provided by Zhou and Lange [ZL09] for the discrete-time analogous of the
mutation process driven by QN . We emphasize that our hypotheses do not require the mutation rate
matrix Q to be diagonalisable.

Next result deals with the spectrum of AN .

Theorem 1.2 (Spectrum of AN ). Let K ≥ 3 and N ≥ 2. The eigenvalues of AN are

0 with multiplicity K and

−L(L− 1) with multiplicity
(
K+L−2

L

)
, for 2 ≤ L ≤ N.

Additionally, the infinitesimal rate matrix AN is diagonalisable.

The proof of Theorem 1.2 is deferred to Section 3.2. Theorem 1.2 can be seen as a generalisation, for
K ≥ 3, of the results in Section 4.2.2 of [Zho08] for the discrete analogous of the reproduction process
driven by AN , for K = 2.
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Unlike in the independent mutation process, the dynamics of the neutral multi-allelic Moran process
driven by QN,p, for p > 0, is that of an interacting particle system, which makes harder the study of its
spectrum. Our main result is precisely a complete description of the eigenvalues of the generator QN,p,
which is expressed in the following theorem.

Theorem 1.3 (Spectrum of QN,p). Assume K ≥ 2, N ≥ 3 and p ∈ [0,∞). Let us denote by λk,
k ∈ [K − 1], the non-zero K − 1 roots, counting algebraic multiplicities, of the characteristic polynomial

of Q. For any η ∈
N⋃
L=1

EK−1,L, let us define

λη,p :=

K−1∑
k=1

η(k)λk −
p

N
|η|(|η| − 1).

Then, the eigenvalues of QN,p, counting algebraic multiplicities, are 0 and λη,p, for η ∈
N⋃
L=1

EK−1,L.

The proof of Theorem 1.3 is given in Section 3.3.

Remark 1.1 (Monotony in N of the spectrum of QN,p). Theorem 1.3 implies that the spectrum of QN,p,
for fixed values of K and p ≥ 0, is an increasing function of N in the sense of the inclusion of sets.

As a consequence of Theorem 1.3, the second largest eigenvalue in modulus (SLEM) of QN,p is equal
to that of Q. The SLEM of the generator of the process is useful to study the asymptotic convergence
of the process in total variation. Hence, in Section 3.4 we study the ergodicity of the process driven by
QN,p in total variation using the spectral properties of Q. We also analyse several examples of neutral
multi-allelic Moran processes with diagonalisable and non-diagonalisable mutation rate matrices.

Applications to the neutral multi-allelic Moran model with parent independent mutation.
Consider the following mutation rate matrix:

Qµµµ :=


−|µµµ|+ µ1 µ2 µ3 . . . µK

µ1 −|µµµ|+ µ2 µ3 . . . µK
µ1 µ2 −|µµµ|+ µ3 . . . µK
...

...
...

. . .
...

µ1 µ2 µ3 . . . −|µµµ|+ µK

 , (1.11)

where µµµ = (µ1, µ2, . . . , µK) ∈ (0,∞)K and |µµµ| stands for the sum of the entries of µµµ. Let us define

(LN,p f)(η) :=

K∑
i,j=1

η(i) [f(η − ei + ej)− f(η)]

(
µj + p

η(j)

N

)
,

for every f on EK,N and all η ∈ EK,N , the infinitesimal generator of the neutral multi-allelic Moran process
with mutation rate matrix Qµµµ. The process driven by LN,p is a special case of the neutral multi-allelic
Moran process considered before, but with the difference that the mutation rate only depends on the type
of the new individual, i.e. mutation changes each type i individual to type j at rate µj , for all i, j ∈ [K].
This is the neutral multi-allelic Moran process with parent independent mutation (cf. [Eth11]). Note
that LN,p = LN + p

NAN , where LN := LN,0, satisfies

(LNf)(η) :=

K∑
i,j=1

η(i)µj [f(η − ei + ej)− f(η)] ,

for every f on EK,N and all η ∈ EK,N .
The next result explicitly describes the spectrum of LN,p and it is a consequence of Theorem 1.3.

Corollary 1.4 (Spectrum of LN,p). For K ≥ 2, N ≥ 2 and p ≥ 0, the infinitesimal generator LN,p is

diagonalisable with eigenvalues λL with multiplicity
(
K+L−2

L

)
, where

λL,p := −|µµµ|L− p

N
L(L− 1), (1.12)

for L ∈ [N ]0. In particular, the spectral gap of LN,p is ρ = |µµµ|.

Corollary 1.4 is proved in Section 4.2.
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Remark 1.2 (Complete graph model). The complete graph model studied by Cloez and Thai [CT16a]
is a particular case of the reversible process driven by Qµµµ above when µj = 1

K , for all j ∈ [K]. In this
case, the eigenvalues of the mutation rate are β0 = 0 and β1 = −1, this last one with multiplicity K − 1.
In particular, Corollary 1.4 improves the Lemma 2.14 in [CT16a].

Remark 1.3 (Spectral gap and the exponential ergodicity coefficient in [CT16b]). Cloez and Thai
[CT16b] considere a Fleming – Viot (or Moran type) particle system and coupling arguments to prove
a contraction result for a suitable Wasserstein distance. They thus obtain the exponential ergodicity of
the process when the time goes to infinity. The exponential ergodicity rate in [CT16b, Theorem 1.1] for
the process driven by (1.2) and adapted to our notation is

ρ? := inf
i,i′∈[K]

µi,i′ + µi′,i +
∑
j 6=i,i′

µi,j ∧ µi′,j

 ,

where Q = (µi,j)i,j∈[K] is the mutation rate matrix of the process driven by QN,p, defined in (1.2). This
constant ρ? is a lower bound for the spectral gap of the process, i.e. ρ? ≥ ρ, see e.g. Theorem 13.1 in
[LP17]. For the neutral multi-allelic Moran model driven by LN,p, the ergodicity constant of Cloez and
Thai is optimal in the sense that it is equal to the spectral gap of the process: ρ? = |µµµ|. This does not
happen in general: consider for example the neutral multi-allelic Moran model where the mutation process
is a simple asymmetric random walk on [K]. In this case, the coefficient ρ? vanishes but, as we prove in
Example 3, the SLEM of the Moran process with mutation rate matrix Qθ is equal to 2(1 + θ) sin2

(
π
K

)
.

For a real x and n ∈ N0, we denote by x(n), x[n] and
(
N
η

)
the increasing factorial coefficient, the

decreasing factorial coefficient and the multinomial coefficient, defined by

x(n) :=

n−1∏
k=0

(x+ k), x[n] :=

n−1∏
k=0

(x− k) and

(
N

η

)
:=

N !
K∏
j=1

η(j)!

,

for all n > 0 and η ∈ EK,N , respectively. We set by convention x(0) := 1 and x[0] := 1, even for x = 0.

The multinomial distribution distribution on EK,N with parameters N and q = (q1, . . . , qK) ∈ (0, 1)K

such that |q| = 1, denoted M(· | N,q), satisfies

M(η | N,q) =

(
N

η

) K∏
i=1

q
η(i)
i ,

for all η ∈ EK,N . Furthermore, the Dirichlet multinomial distribution on EK,N with parameters N and
ααα = (α1, α2, . . . , αK) ∈ (0,∞)K , denoted DM(· | N,ααα), satisfies

DM(η | N,ααα) =
1

|ααα|(N)

(
N

η

) K∏
k=1

(αk)(η(k)),

for all η ∈ EK,N . DM(· | N,ααα) is a mixture, using a Dirichlet distribution, ofM(· | N,q). See Mosimann
[Mos62] for the original reference to the Dirichlet multinomial distribution and Johnson et al. [JKK05,
Section 13.1], a classical reference on multivariate discrete distributions, for more details.

It is known in population genetics literature that the process driven by LN,p, for p > 0, is reversible
with stationary distribution DM(· | N,Nµµµ/p), see e.g. [EG09]. Moreover, the stationary distribution of
the process driven by LN isM(· | N,µµµ/|µµµ|), see e.g. [ZL09]. Let us define the distribution νN,p on EK,N ,
for all p ≥ 0, as follows

νN,p(η) :=

{
DM(η | N,Nµµµ/p) if p > 0
M(η | µµµ/|µµµ|) if p = 0,

(1.13)

for all η ∈ EK,N . Then, νN,p is the stationary distribution of LN,p, for all p ≥ 0. Besides, the stationary
distribution is continuous when p→ 0, in the sense that

lim
p→0

νN,p(η) = νN,0(η) =: νN (η),

for every η ∈ EK,N .
In their study of the spectral properties of the discrete-time analogous of QN , Zhou and Lange [ZL09]

mainly focus on the case where the process driven by Q is reversible, which is proved to be a necessary
and sufficient condition for the reversibility of QN . However, the reversibility of Q is not sufficient to
ensure the reversibility of the neutral multi-allelic Moran model driven by QN,p, for p > 0, as we discuss
in Section 4.2. Going further, the next result characterises the reversible neutral multi-allelic Moran
processes as those with parent independent mutation.
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Theorem 1.5 (Reversible neutral Moran process and parent independent mutation). Assume K ≥ 2,
N ≥ 2 and p > 0. The process driven by QN,p is reversible if and only if the mutation rate matrix has the
form Qµµµ as in (1.11), for some vector µµµ, and consequently QN,p can be written as LN,p. Furthermore,
the stationary distribution of the process driven by LN,p is νN,p as defined by (1.13).

The proof of Theorem 1.5 is deferred to Appendix C.

Remark 1.4 (Case K = 2: beta-binomial distribution). For the special case where K = 2 and p > 0,
the stationary distribution of the N -particle process is DM (· | N,µ1N/p, µ2N/p). This distribution
can be seen as a univariate distribution, in the sense that νN,p(n,N − n) only depends on n for n ∈
[N ]0. This univariate distribution is known as beta-binomial distribution, see e.g. Chapter 6 of [JKK05].
Analogously, the stationary distribution of LN is binomial with parameters N and µ1/(µ1 + µ2).

Section 4 is devoted to the study of the spectral properties of LN,p, for p ≥ 0, and its applications to
the study of the convergence to stationarity. Our results in this section include a complete description
of the set of eigenvalues and eigenfunctions of LN,p and an explicit expression for its transition function.
The eigenfunctions of LN,p, p > 0, are explicitly given in terms of multivariate Hahn polynomials, which
are orthogonal with respect to the compound Dirichlet multinomial distribution (cf. [KM75, KZ09]).
The eigenfunctions of LN , i.e. for p = 0, are explicitly given in terms of multivariate Krawtchouk
polynomials, which are orthogonal with respect to the multinomial distribution (cf. [KM65, ZL09, DG14]).
In addition, we study the speed of convergence of the N -particle process to stationarity when t tends
towards infinity, providing explicit non-asymptotic bounds for the distance to stationarity, for an arbitrary
initial configuration.

For two probability measures µ1 and µ2 defined on the same discrete space Ω, we define the total
variation distance as follows:

dTV(µ1, µ2) := sup
A⊂Ω
|µ1(A)− µ2(A)| = sup

f :Ω→[−1,1]

∣∣∣∣∫ fdµ1 −
∫
fdµ2

∣∣∣∣ =
1

2
‖µ1 − µ2‖1, (1.14)

where ‖ · ‖1 denotes the 1-norm in RΩ. Moreover, the chi-square divergence of µ2 with respect to the
target distribution µ1 is defined by

χ2(µ2 | µ1) :=
∑
ω∈Ω

[µ2(ω)− µ1(ω)]2

µ1(ω)
= ‖µ2 − µ1‖21

µ1

,

where ‖ · ‖ 1
µ1

stands for the norm in l2(RΩ, 1
µ1

), and 1
µ1

is the measure ω 7→ 1/µ1(ω).

The chi-square divergence is not a metric, but a measure of the difference between two probability
distributions. Note that the chi-square divergence, as well as the total variation distance, are special
cases of the so called f−divergence functions which measure the “difference” between two probability
distributions [NN14]. In this context, the chi-square divergence is also known as Pearson chi-square
divergence.

The functions dTV
η and χ2

η, defined by

dTV
η (t) := dTV(δηetLN,p , νN,p) =

1

2

∑
ξ∈EK,N

∣∣(etLN,pδξ) (η)− νN,p(ξ)
∣∣ ,

χ2
η(t) := χ2(δηetLN,p | νN,p) =

∑
ξ∈EK,N

[(
etLN,pδξ

)
(η)− νN,p(ξ)

]2
νN,p(ξ)

, (1.15)

are thus measures of the convergence to stationary of the process driven by LN,p at time t and with initial

configuration η ∈ EK,N . In agreement with [Zho08, KZ09] we call dTV
η and χ2

η the total variation and the
chi-square distances to stationarity, respectively.

For any function f in R[K], let us denote by ξ̃(f) the linear function on EK,N defined as

ξ̃(f) : η 7→ f(1)η(1) + f(2)η(2) + · · ·+ f(K)η(K).

Denote 〈µµµ, f〉 :=
∑K
k=1 f(k)µk. The next theorem provides non-asymptotic bounds for the exponential

speed of convergence of the process driven by LN,p to stationarity.

Theorem 1.6 (Exponential ergodicity in total variation and chi-square distances). For K ≥ 2, N ≥ 2
and p ≥ 0, we obtain the following non-asymptotic bounds for the speed of convergence to the stationary
of the process driven by LN,p:(

max
f :〈µµµ,f〉=0

|ξ̃(f)(η)|
2N‖f‖∞

)
e−|µµµ|t ≤ dTV

η (t) ≤ 1

2

√
χ2
η(t) ≤ 1

2

√
1− νN,p(η)

νN,p(η)
e−|µµµ|t, (1.16)
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where the maximum is taken over all the functions f on RK which are orthogonal to µµµ and ‖f‖∞ =
max
k∈[K]

|f(k)|. In particular, for η = Nek we get

κk
2

e−|µµµ|t ≤ dTV
Nek

(t) ≤ 1

2

√
χ2
Nek

(t) ≤ 1

2

√
Ck,p e−|µµµ|t, (1.17)

where

κk = max
r 6=k

µk ∧ µr
µk

,

Ck,p =


(N |µµµ|/p)(N) − (Nµk/p)(N)

(Nµk/p)(N)
if p > 0

|µµµ|N − µNk
µNk

if p = 0.

Proof of Theorem 1.6 can be found in Section 4.2.

Cutoff phenomenon. The cutoff phenomenon has been a rich topic of research on Markov chains since
its introduction by the works of Aldous, Diaconis and Shahshahani in the 1980s (cf. [DS81, Ald83, AD86]).
A Markov chain presents a cutoff if it exhibits a sharp transition in its convergence to stationarity. Some
of the most used notions of convergence are, as we consider here, the total variation and the chi-square
distances. A good introduction to this subject can be found in the classic book of Levin and Peres [LP17,
Chapter 18] and in the exhaustive work of Chen, Saloff-Coste et al. [SC97, Che06, CSC08, CSC10, CHS17].

A typical scenario for the existence of a cutoff is a Markov chain with a high degree of symmetry.
Hence, the cutoff phenomenon has been deeply studied for the movement on N independent particles
on K sites, model which is usually known as product chain. Ycart [Yca99] studied the cutoff in total
variation for N independent particles driven by a diagonalisable rate matrix. Later, Barrera et al. [BLY06]
and Connor [Con10] studied the cutoff on this model according to other notions of distance. See also
[Lac15] [LP17, Chapter 20], [CHS17] and [CK18] for more recent studies about the cutoff on product
chains. The Moran model we consider here preserves the high level of symmetry of the product chain,
but the movements of the particles are not independent. Indeed, the particles interact according to a
reproduction process that favours the jumps to the sites with greater proportions of individuals.

As the number of individuals varies we obtain an infinite family of continuous-time finite Markov chains
{(EK,N ,LN,p, νN,p), N ≥ 2}. For each N ≥ 2 let us denote by χ2

Nek
(t) (resp. dTV

Nek
(t)) the chi-square

distance (resp. total variation distance) to stationarity of the process driven by LN,p at time t, when the

initial distribution is concentrated at Nek ∈ EK,N . Note that χ2
Nek

(0) → ∞ and dTV
Nek

(0) → 1, when
N →∞.

We say that {χ2
Nek

(t), N ≥ 2} exhibits a (tN , bN ) chi-square cutoff if tN ≥ 0, bN ≥ 0, bN = o(tN ) and

lim
c→∞

lim sup
N→∞

χ2
Nek

(tN + c bN ) = 0, lim
c→−∞

lim inf
N→∞

χ2
Nek

(tN + c bN ) =∞.

Analogously, we say that {dTV
Nek

(t), N ≥ 2} exhibits a (tN , bN ) total variation cutoff if tN ≥ 0, bN ≥ 0,
bN = o(tN ) and

lim
c→∞

lim sup
N→∞

dTV
Nek

(tN + c bN ) = 0, lim
c→−∞

lim inf
N→∞

dTV
Nek

(tN + c bN ) = 1.

See Definition 2.1 and Remark 2.1 in [CSC08].
The sequences (tN )N≥2 and (bN )N≥2 are called cutoff and window sequences, respectively. The cutoff

phenomenon describes a sharp transition in the convergence to stationarity: over a negligible period given
by the window sequence (bN )N>2, the distance from equilibrium drops from near its initial value to near
zero at a time given by the cutoff sequence (tN )N≥2.

A stronger condition for the existence of a (tN , bN ) chi-square cutoff (resp. total variation cutoff) is
the existence of the limit

Gk(c) := lim
N→∞

χ2
Nek

(tN + c bN ) (resp. Hk(c) := lim
N→∞

dTV
Nek

(tN + c bN )

for a function Gk (resp. Hk), for k ∈ [K], satisfying:

lim
c→−∞

Gk(c) =∞ and lim
c→∞

Gk(c) = 0,

(
resp. lim

c→−∞
Hk(c) = 1 and lim

c→∞
Hk(c) = 0)

)
.

Actually, in this case the (tN , bN ) cutoff is said to be strongly optimal, see e.g. Definition 2.2 and Propo-
sition 2.2 in [CSC08]. See Sections 2.1 and 2.2 of [CSC08] and Chapter 2 in [Che06] for more details
about the definition of (tN , bN ) cutoff and window optimality.



8 JOSUÉ CORUJO

The next result establishes a strongly optimal cutoff in the chi-square distance for the multi-allelic
Moran process driven by LN,p, for p ≥ 0, when the initial distribution is concentrated at Nek, for
k ∈ [K]. Moreover, we prove the Gaussian profile, when N → ∞, of the total variation distance to
stationarity of the mutation process driven by LN , i.e. for p = 0, when all the individuals are initially of
the same type.

Theorem 1.7 (Strongly optimal cutoffs when N → ∞). For k ∈ [K], with K ≥ 2, p ≥ 0 and every
c ∈ R, we have

lim
N→∞

χ2
Nek

(tN,c) = exp{Kk,pe
−c} − 1, (1.18)

where tN,c =
lnN + c

2|µµµ|
and Kk,p =

|µµµ|(|µµµ| − µk)

µk(|µµµ|+ p)
. Consequently, the Markov process driven by LN,p has a

strongly optimal
(

ln(N)
2|µµµ| , 1

)
chi-square cutoff when N →∞.

Moreover, when p = 0 we get the following result for the total variation distance to stationarity

lim
N→∞

dTV
Nek

(tN,c) = 2Φ

(
1

2

√
Kk,0e−c

)
− 1,

where Φ is the cumulative distribution function of the standard normal distribution. Thus, there exists a

strongly optimal
(

ln(N)
2|µµµ| , 1

)
total variation cutoff for the process driven by LN when N →∞.

Proof of Theorem 1.7 will be given in Section 4.2.

Figures 1 and 2 illustrate the convergence of χ2
Nek

(tN,c) and dTV
Nek

(tN,c), for tN,c = ln(N)+c
2|µµµ| , to Gk(c) =

exp{Kk,pe
−c} − 1 and Hk(c) = 2Φ

(
1
2

√
Kk,0e−c

)
− 1, respectively, when N →∞.
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Figure 1. For parameters K = 4, k ∈ [K], µ = (0.7, 0.8, 1.0, 1.3), p = 1.7: left panel
shows χ2

Nek
(tN,c) as a function of N, 2 ≤ N ≤ 128 for c = 0.4, and right panel shows

Gk(c) and χ2
Nek

(tN,c) as functions of c, with −1 ≤ c ≤ 1, for N = 150.
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Figure 2. For parameters K = 4, k ∈ [K], µ = (0.7, 0.8, 1.0, 1.3), p = 0: left panel

shows dTV
Nek

(tN,c) as a function of N, 2 ≤ N ≤ 256 for c = 0.17 and right panel shows

Hk(c) and dTV
Nek

(tN,c) as functions of c, with −6 ≤ c ≤ 8, for N = 100.

During the proof of Theorem 1.7, we prove the following result which is of independent interest.
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Corollary 1.8 (Law of the process driven LN ). The law of the process driven by LN at time t when

initially all the individuals are of type k ∈ [K] is multinomial M
(
· | N, µµµ|µµµ| (1− e−|µµµ|t) + e−|µµµ|tek

)
.

Some authors have studied the existence of a cutoff in Moran type models. For instance, Donelly
and Rodrigues [DR00] proved the existence of a cutoff for the two-allelic neutral Moran model in the
separation distance. In order to do that, they used a duality property of the Moran process and found
an asymptotic expression for the convergence in separation distance for a suitable scaled time, when
the number of individuals tends to infinity. Khare and Zhou [KZ09] proved bounds for the chi-square
distance in a discrete-time multi-allelic Moran process that implies the existence of a cutoff. Diaconis
and Griffiths [DG19] studied the existence of a chi-square and total variation cutoffs for a discrete-time
analogous of the mutation process generated by LN . Our methods for proving Theorem 1.7 could be
used to improve the results related to the existence of cutoffs in [KZ09] and [DG19], in order to obtain
the explicit profiles for the limits of the chi-square distance, for p ≥ 0, and the total variation distance,
for p = 0, when N →∞.

Links with other models. Moran type models are fundamental in population genetics and other
branches of applied mathematics [Dur08], [Eth11]. Simpler than the Wright – Fisher model, the Moran
model is more tractable mathematically and several quantities of interest can be explicitly computed.
There is a rich literature on Moran models in population genetics and other fields, since the seminal work
of Moran [Mor58]. In particular, the study of spectral properties of the generator of a Markov process
is an interesting and active topic of research in population genetics. See e.g. [KZ09], [ZL09], [MP14],
[Möh18], [Möh19] and the references therein.

We want to remark that the utility of Moran processes is behind population genetics. For instance,
the mutation process driven by QN is a particular case of the zero range process, where the kinetics, i.e.
the rate at which the particles are expelled from one state, is proportional to the number of particles
occupying that state. Moreover, the mutation process driven by LN corresponds to the mean-field version
of the zero range process. The very recent paper of Hermon and Salez [HS19] shows that the Dirichlet
form of a zero range process can be controlled in terms of the Dirichlet form of a single particle. We
believe that the methods in [HS19] could be very useful for the further study of the ergodicity of the
Moran process driven by QN,p, for p ≥ 0, by controlling its Dirichlet form.

Consider a Markov process in EK,N with generator F acting on a real function f on EK,N as follows

(Ff)(η) =
∑

i,j∈[K]

η(i) [f(η − ei + ej)− f(η)]

(
µi,j +

pi
N − 1

η(j)

)
, (1.19)

for every η ∈ EK,N , where pi ≥ 0, for all i ∈ [K]. The process driven by F is a particular case of
the countable state space continuous-time Markov processes introduced by Ferrari and Marić [FM07]
to approximate the quasi stationary distribution (QSD) of an absorbing Markov chain on a countable
space. Ferrari and Marić called these Markov chains Fleming – Viot particle processes. The random
empirical distribution associated to the process driven by F has been proved to approximate the QSD
of an absorbing Markov process driven by an irreducible rate matrix Q on [K] which jumps, with rate
pi, from i to a fictitious absorbing state [AFG11]. This kind of N particle interacting process was
originally introduced independently and simultaneously by Burdzy et. al. [BHM00] and Del Moral and
Miclo [DMM00] 1 in the continuous state space settings. The study of the evolution of the proportion
of particles in each state for a Moran-type particle system driven by F is an active topic of research.
In particular, many papers have been focused on the convergence and the speed of convergence of the
proportion of particles in each state when the time and the number of particles tend toward infinity. See
e.g. [FM07], [AFG11], [CT16a], [CT16b], [Vil20] and the references therein.

The generator F is also interesting in population genetics. From this point of view, it models the
evolution of a population with an irreducible mutation process driven by Q = (µi,j)

K
i,j=1 and selection

at death (cf. [MW09]). Unlike the other type of selection that has been mostly considered in population
genetics, which is the selection at reproduction (cf. [Dur08], [MW09] and [Eth11]), which assumes that
the rates pi in the definition (1.19) do not depend on i but on j, i.e. on the type of the individual that is
going to reproduce.

1Actually, Del Moral and Miclo called this process Moran-type particle system, which is maybe a more accurate name
in the discrete state space setting, in order to avoid confusion with the existence of a measure-valued process related to

the Moran process in population genetics introduced by Fleming and Viot [FV79] and named Fleming – Viot process. See
[FV79, Appendix B] for a discussion on the relationship between Fleming –Viot process (in the sense of population genetics)
and the multi-allelic Moran model, see also [Fen10, Section 6.2].
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Note that when pi = p, for all i ∈ [K], the generator F reduces to QN,p. Theorem 1.3 thus provides
an explicit description for the eigenvalues of the Fleming – Viot (or Moran type) particle process with
irreducible mutation rate matrix Q and the transition rate to the absorbing state is uniform on [K], which
is known in the theory of QSD as uniform killing [MV12, Section 2.3]. This is, for example, the case of
the complete graph process studied by Cloez and Thai [CT16a] and the neutral Moran model process
with circulant mutation rate matrix considered in [Cor20].

Structure of the article. The rest of the paper is organised as follows. In Section 2 we study the state
spaces of the neutral multi-allelic Moran models, when the individuals are assumed distinguishable or
indistinguishable, respectively. We particularly focus on the study of the vector spaces of real functions
defined on the state spaces of these two models. The notations and results in Section 2 are used to
prove our main theorems in Section 3. Sections 3.1, 3.2 and 3.3 are devoted to the proofs of Theorems
1.1, 1.2 and 1.3, respectively. In Section 3.4 we focus on the applications of our main results to the
asymptotic exponential ergodicity in total variation distance of the process driven byQN,p to its stationary
distribution, using the eigenstructure of Q. We also consider several examples of neutral multi-allelic
Moran processes with diagonalisable and non-diagonalisable mutation rate matrices, throughout the
paper. In Section 4 we consider the neutral multi-allelic Moran process with parent independent mutation
and provide a complete description of its eigenvalues and eigenfunctions. Using spectral techniques, we
prove Theorem 1.6 which provides detailed estimates of the rate of convergence of the process to its
stationary distribution. We also prove Theorem 1.7 about the existence of a strongly optimal cutoff
phenomenon in the chi-square distance for p ≥ 0, and in the total variation distance, for p = 0, when
initially all the individuals are of the same type.

2. State spaces for distinguishable and indistinguishable particle processes

The Moran model can be seen as a system of N interacting particles on K sites moving according to a
continuous-time Markov chain. For the same model, we study two different situations. Although the sites
themselves are supposed to be distinguishable, the N particles can be considered either distinguishable
or indistinguishable. According to both interpretations we describe two state spaces for the two Markov
chains modelling theN independent particle systems. We study how the vector spaces of the real functions
defined on those state spaces are related.

For N distinguishable particles on K sites, the state space of the model describes the location of each

particle, i.e. it is the set [K]
N

. This is the state space considered in [FM07] and [Eth11]. The set of real
functions on [K], denoted R[K], may be endowed with a vector space structure. Thus, the set of real

functions on [K]
N

may be considered as a tensor product of N vectors in RK as we commented in the
introduction.

When the N particles are considered indistinguishable, what matters is the number of particles present
at each of the K sites. The state space for this second model, as in [CT16b] and [EG09], is the set EK,N
defined by (1.1) with cardinality equal to Card (EK,N ) =

(
K−1+N

N

)
.

For any k, 1 ≤ k ≤ K, let us denote by xk the k-th coordinate function defined by

xk : η = (η(1), η(2), . . . , η(K)) ∈ EK,N 7→ η(k) ∈ R.

Let us also denote by xα the monomial on EK,N defined by

xα := xα1
1 xα2

2 . . . xαKK , (2.1)

where α ∈ EK,L, for L ∈ [N ].
For 0 ≤ L ≤ N , let us denote by HK,L the vector space of homogeneous polynomial functions of degree

L in variables xk, 1 ≤ k ≤ K on EK,N and the null function. From the definition of EK,N , it follows

that the function
∑K
k=1 xk is equal to the constant function equal to N . HK,L may be considered as a

subspace of HK,L′ when 0 ≤ L < L′ ≤ N by identifying P (x1, x2, . . . , xK) ∈ HK,L with

1

NL′−L

(
K∑
k=1

xk

)L′−L
P (x1, x2, . . . , xK) ∈ HK,L′ .

We will say that the degree of homogeneity of an homogeneous polynomial P is L, if P is the sum
of monomials xα = xα1

1 xα2
2 . . . xαKK with the same value of |α| = L, and the value L is the smallest as

possible. This corresponds to the fact that there is no factor equal to x1+x2+· · ·+xK in the factorisation
of P . The total degree of a polynomial P is the minimum value of L such that P = PL +R where PL is
homogeneous of degree L and all the monomials in R have a maximum degree strictly less than L. Such
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an expression for P , which is not unique, may be obtained by replacing xK by N −
∑K−1
k=1 xk in P and

adding the monomials in P (x1, . . . , xK−1, N −
∑K−1
k=1 xk) of maximum total degree to define PL.

The following interpolation result shows that REK,N is actually equal to HK,N , the space of homoge-
neous polynomials of degree N .

Lemma 2.1 (Interpolation on EK,N ). Let K ≥ 2 and N ≥ 1. Then

(a) For any real function f on EK,N there exists a unique homogeneous polynomial P ∈ HK,N of
degree N such that f(η) = P (η), for all η ∈ EK,N .

(b) The set of monomials of degree N

BHK,N := {xα, α ∈ EK,N}

where xα is defined by (2.1), is a basis of REK,N .

The proof of Lemma 2.1 is mostly technical and is deferred to Appendix A.

Remark 2.1 (Dimension of HK,N ). As a consequence of Lemma 2.1-(b) we get dim(HK,N ) =
(
K+N−1

N

)
.

Example 1 (Interpolation polynomials on E3,4). For K = 3, N = 4, one may check that

P[4,0,0] : (x1, x2, x3) 7→ 1

768
x1(3x1 − x2 − x3)(x1 − x2 − x3)(x1 − 3x2 − 3x3),

P[3,1,0] : (x1, x2, x3) 7→ 1

48
x1x2(x1 − x2 − x3)(3x1 − x2 − x3),

P[2,2,0] : (x1, x2, x3) 7→ − 1

64
x1x2(3x1 − x2 − x3)(x1 − 3x2 + x3),

P[2,1,1] : (x1, x2, x3) 7→ 1

8
x1x2x3(3x1 − x2 − x3).

All the other Pη, for η ∈ E3,4, can be deduced using the permutations of {1, 2, 3}.

A natural link between the two state spaces is φK,N : [K]
N → EK,N , defined by

φK,N : (k1, k2, . . . , kN ) 7→ (η(1), η(2), . . . , η(K)), (2.2)

where η(k) = Card({n, 1 ≤ n ≤ N, kn = k}), for all k ∈ [K]. The function φK,N is obtained by
forgetting the identity of the N particles. Note that ψK,N , defined in (1.6), is a right inverse of φK,N , i.e.
φK,N ◦ ψK,N = IdEK,N , where IdEK,N stands for the identity function on EK,N .

Let us denote by Sym the symmetrisation endomorphism, acting on function f ∈ R[K]N as defined

by (1.5). In fact, Sym is the projector onto the subspace of symmetric functions, denoted Sym
(
R[K]N

)
.

Indeed, note that the space of symmetric function is a linear subspace of REK,N . In addition, for every

function h symmetric we have Sym h = h, thus Sym (Sym f) = Sym f , for each f ∈ R[K]N , i.e. Sym2 =
Sym. See [Pea65, Chapter XI] for more details about projectors.

Note that φK,N is a symmetric function on [K]
N

. Furthermore, the equality φK,N (x) = φK,N (y) holds
if and only if y is obtained from x by a permutation of its components. Hence, if f is symmetric and x

and y are elements in [K]
N

such that φK,N (x) = φK,N (y), then f(x) = f(y).

In general, for every function f on [K]
N

it is not always possible to define a function f̃ on EK,N such

that f = f̃ ◦ φK,N holds. We claim that such a function f̃ exists if and only if f is symmetric.

Lemma 2.2 (Link between REK,N and Sym(R[K]N )). The linear operator

ΦK,N : f ∈ Sym
(

R[K]N
)
7→ f ◦ ψK,N ∈ REK,N , (2.3)

where ψK,N is defined by (1.6), is an isomorphism. In particular, the dimension of the space of symmetric

functions on [K]
N

is

dim
(

Sym
(

R[K]N
))

=

(
K +N − 1

N

)
.

Proof. Note that ΦK,N is linear and well defined. Moreover, for any function h on EK,N , the function

h◦φK,N is symmetric on [K]
N

and satisfies ΦK,N (h◦φK,N ) = h, proving that ΦK,N is an isomorphism. �
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Lemma 2.2 justifies the well definiteness of Ṽη, defined by (1.9), for η ∈
⋃N
L=1 EK−1,L. The relationship

between f and f̃ is shown in the following diagram:

[K]
N

φK,N
��

f

!!
EK,N

f̃
// R.

We denote by U0 the K-dimensional all-one vector. This vector is always a right eigenvector associated
to zero of every K-dimensional rate matrix of a continuous-time Markov chain. Let K ≥ 2, N ≥ 2 and
1 ≤ L ≤ N and let us consider L vectors V1, V2, . . . , VL in RK , non proportional to U0, and f the function
equal to the following symmetrised tensor product

f := Sym(V1 ⊗ V2 ⊗ · · · ⊗ VL ⊗ U0 ⊗ · · · ⊗ U0︸ ︷︷ ︸
N−L

) ∈ Sym
(

R[K]N
)
.

Note that,

f(k1, k2, . . . , kN ) =
1

N !

∑
σ∈SN

V1(kσ(1))V2(kσ(2))× · · · × VL(kσ(L)). (2.4)

We denote by IL,N , for 1 ≤ L ≤ N , the set of all injective applications from [L] to [N ]. For every
σ ∈ SN , the map sσ : n ∈ [L] 7→ σ(n) ∈ {σ(1), . . . , σ(L)} is an injective map in IL,N and σ is completely
determined by this function sσ and a bijective application β : (L + 1, . . . , N) → [N ] \ sσ([L]). For each
sσ, there are (N − L)! such applications β. Thus, using (2.4) we obtain

f(k1, k2, . . . , kN ) =
(N − L)!

N !

∑
s∈IL,N

V1(ks(1))V2(ks(2))× · · · × VL(ks(L)).

In order to simplify the calculations we denote by ξ(V1, V2, . . . , VL) the function on [K]
N

defined by

ξ(V1, V2, . . . , VL) : (k1, k2, . . . , kN ) 7→
∑

s∈IL,N

V1(ks(1))V2(ks(2)) . . . VL(ks(L)). (2.5)

Note that ξ(V1, V2, . . . , VL) = N !
(N−L)!f . Since ξ(V1, V2, . . . , VL) is symmetric, using Lemma 2.2, there

exists a unique function ξ̃(V1, V2, . . . , VL) on EK,N given by

ξ̃(V1, V2, . . . , VL) = ΦK,N ξ(V1, V2, . . . , VL). (2.6)

The following two equalities are thus satisfied:

ξ(V1, V2, . . . , VL) = ξ̃(V1, V2, . . . , VL) ◦ φK,N , ξ̃(V1, V2, . . . , VL) = ξ(V1, V2, . . . , VL) ◦ ψK,N , (2.7)

where φK,N and ψK,N are defined by (2.2) and (1.6), respectively.

The next result provides recursive expressions for the functions ξ(V1, . . . , VL) and ξ̃(V1, . . . , VL), for

L ∈ [N ]. Furthermore, we prove that Ṽη, as defined by (1.9), is a polynomial of total degree |η|, for

η ∈
⋃N
L=1 EK−1,L.

Lemma 2.3. The following properties are verified:

(a) For L = 1: if V1 = [a1, a2, . . . , aK ]T is non proportional to U0, then ξ(V1) and ξ̃(V1), defined by
(2.5) and (2.6), satisfy

ξ(V1) : (k1, k2, . . . , kN ) 7→
N∑
i=1

V1(ki),

ξ̃(V1) : (η(1), η(2), . . . , η(K)) 7→
K∑
j=1

ajη(j).

(b) For any L, 2 ≤ L ≤ N − 1: if the L vectors Vi = [ai,1, ai,2, . . . , ai,K ]T , 1 ≤ i ≤ L, are non

proportional to U0, then ξ(V1, . . . , VL) and ξ̃(V1, . . . , VL) satisfy

ξ(V1, . . . , VL) = ξ(V1, . . . , VL−1)ξ(VL)

−
L−1∑
i=1

ξ(V1, . . . , Vi−1, Vi,L, Vi+1, . . . , VL−1),
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ξ̃(V1, . . . , VL) = ξ̃(V1, . . . , VL−1)ξ̃(VL)

−
L−1∑
i=1

ξ̃(V1, . . . , Vi−1, Vi,L, Vi+1, . . . , VL−1),

where Vi,L is the vector defined by Vi,L(k) = Vi(k)VL(k), for all 1 ≤ k ≤ K.
In particular, when L = 2 and the two vectors V1 = [a1, a2, . . . , aK ]T and V2 = [b1, b2, . . . , bK ]T

are non proportional to U0, then ξ̃(V1, V2) is the quadratic polynomial given by

ξ̃(V1, V2) : (η(1), η(2), . . . , η(K)) 7→ (a1η(1) + · · ·+ aKη(K))(b1η(1) + · · ·+ bKη(K))

−(a1b1η(1) + · · ·+ aKbKη(K)).

(c) For any L, 1 ≤ L ≤ N : if the L vectors Vi = [ai,1, ai,2, . . . , ai,K ]T , 1 ≤ i ≤ L, are non

proportional to U0, then ξ̃(V1, V2, . . . , VL) is a polynomial of total degree L satisfying

ξ̃(V1, V2, . . . , VL)(η) =

L∏
i=1

(ai,1η(1) + ai,2η(2) + · · ·+ ai,Kη(K)) + q(η), (2.8)

where q is a polynomial of total degree strictly less than L. In particular, Ṽη, as defined by (1.9),

is a polynomial of total degree |η|, for η ∈
⋃N
L=0 EK−1,L.

The proof of Lemma 2.3 can be found in Appendix A.

The following result helps us to construct from a basis of RK , three bases for the vector spaces R[K]N ,

Sym(R[K]N ) and REK,N , respectively.

Proposition 2.4. Let U0 be the all-one vector in RK and U1, U2, . . . , UK−1 ∈ RK such that

U = {U0, U1, . . . , UK−1}

is a basis of RK . The following statements hold:

a) UN , defined as UN := {W1 ⊗W2 ⊗ · · · ⊗WN , where Wi ∈ U , for i ∈ [N ]} is a basis of R[K]N .
b) SN , defined as

SN := {U0 ⊗ · · · ⊗ U0︸ ︷︷ ︸
N times

} ∪
N⋃
L=1

{Vη, η ∈ EK−1,L, }

where Vη is defined by (1.8), is a basis of Sym
(

R[K]N
)

.

c) S̃N , defined as

S̃N := {U0 ⊗ · · · ⊗ U0︸ ︷︷ ︸
K times

} ∪
N⋃
L=1

{Ṽη, η ∈ EK−1,L}, (2.9)

where Ṽη is defined by (1.9), is a basis of REK,N .

The proof of Proposition 2.4 is deferred to Appendix A.

3. Spectrum of the neutral multi-allelic Moran process

The main goal of this section is to prove Theorem 1.3 and study some of its consequences. In Section
3.1 we prove Theorem 1.1 describing the set of eigenvalues of the composition chain QN in terms of the
eigenvalues of Q. Moreover, we construct right eigenvectors of QN using the symmetrised tensor product
of right eigenvectors of Q. Later, in Section 3.2 we prove Theorem 1.2. Using the results in these two
sections we prove Theorem 1.3 in Section 3.3. Section 3.4 is devoted to some applications of Theorem 1.3
to the study of the exponential ergodicity of the process driven by QN,p in total variation, using spectral
properties of Q.

3.1. Proof of Theorem 1.1. As we commented in Section 2, the N particles in the neutral multi-allelic
Moran type process can be considered distinguishable or indistinguishable. Throughout the paper we
suppose that Q is irreducible. Thus, 0 is a simple eigenvalue of Q with eigenvector U0. The generator

for the distinguishable case, denoted by DN , acts on a real function f on [K]
N

as follows

(DNf)(k1, k2, . . . , kN ) :=

N∑
i=1

K∑
k=1

µki,k[f(k1, . . . ki−1, k, ki+1, . . . , kN )− f(k1, . . . , kN )],
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for all (k1, k2, . . . , kN ) ∈ [K]
N

. If the function is given in a tensor product form, we get

DN (V1 ⊗ V2 ⊗ · · · ⊗ VN ) =

N∑
n=1

V1 ⊗ V2 ⊗ · · · ⊗QVn ⊗ · · · ⊗ VN , (3.1)

where QVn(k) :=
K∑
r=1

µk,rVn(r) =
K∑
r=1

µk,r(Vn(r)− Vn(k)), for all k ∈ [K].

Remark 3.1 (DN as a Kronecker sum). In fact, the infinitesimal generator satisfies DN = Q⊕Q⊕· · ·⊕Q,
where ⊕ denotes the Kronecker sum. The well-known relationship between the exponential of a Kronecker
sum and the Kronecker product of exponential matrices, namely:

exp{Q⊕Q⊕ · · · ⊕Q} = exp{Q} ⊗ exp{Q} ⊗ · · · ⊗ exp{Q},
makes clearer the idea that DN is the infinitesimal generator of the system of N particles moving inde-
pendently according to the infinitesimal generator Q. See [Pea65, Chapter XIV] and [Dav79, Section 2.2]
for further details on the Kronecker sum.

The Markov chain generated by DN is usually called product chain. The infinitesimal generator DN
inherits its spectral properties from those of Q. Namely, if π is the stationary distribution of Q, then
π ⊗ π ⊗ · · · ⊗ π is the stationary distribution of DN . Moreover, if V1, V2, . . . , VN are N (not necessarily
distinct) eigenvectors of Q, then V1 ⊗ V2 ⊗ · · · ⊗ VN is an eigenvector of DN . Consequently, if Q is
diagonalisable, then DN is also diagonalisable and the tensors products of vectors in an eigenbasis of Q
form an eigenbasis of DN , as in Proposition 2.4-(a). In particular, if λ0 = 0, λ1, . . . , λK−1 are the K
complex eigenvalues of Q, then the eigenvalues of DN are given by the sums of eigenvalues of Q, i.e. the
spectrum of DN is

{z0 + z1 + · · ·+ zK−1 : zi ∈ {λ0, λ1, . . . , λK−1}}.
See Sections 12.4 and 20.4 in [LP17] for the proofs of these results and more details on product chains.

When the N particles are considered indistinguishable, the infinitesimal generator of the Markov chain,
denoted by QN , is that defined by (1.3), i.e.

(QNf)(η) =
∑

i,j∈[K]

η(i)µi,j [f(η − ei + ej)− f(η)] ,

for all η ∈ EK,N and for every function f on EK,N . Zhou and Lange [ZL09] noticed that QN is a lumped
chain of DN and used this fact to study the relationship between the spectral properties of both chains.
They studied the eigenvalues and the left eigenfunctions of QN . In particular, they proved that the
stationary distribution of QN is multinomial with probability vector π, denoted M(· | N, π), where π is
the unique stationary probability of Q. Our approach differs from that on [ZL09]: we study the right
eigenfunctions of QN using the connections between the real functions on EK,N and the symmetric real

functions on [K]
N

studied in Section 2. In addition, our methods allow us to explicitly describe the
spectrum of QN , for every mutation matrix Q generating an irreducible process, even when Q is non-
diagonalisable. We first study the relationship between the generators DN and QN through the operator
ΦK,N .

Lemma 3.1 (Link between the generators of the distinguishable and indistinguishable cases). For any

symmetric function ξ on [K]
N

, the function DN ξ is also symmetric. In addition,

QN (ΦK,N ξ) = ΦK,N (DN ξ),
where ΦK,N is defined by (2.3).

Proof. The symmetry of DN ξ is a consequence of the symmetry of ξ and the linearity of DN .
For η ∈ EK,N let us define (k1, k2, . . . , kN ) = ψK,N (η), i.e. ki is the position on [K] of the i-th particle

according to the definition of ψK,N . We have

(DN ξ ◦ ψK,N )(η) =

N∑
i=1

K∑
k=1

µki,k[ξ(k1, . . . , ki−1, k, ki+1, . . . , kN )− ξ(ψK,N (η))]

=

K∑
k=1

K∑
r=1

∑
i: ki=r

µki,k[ξ(k1, . . . , ki−1, k, ki+1, . . . , kN )− ξ(ψK,N (η))].

Using the symmetry of ξ, for all η such that ψK,N (η)(i) = r we obtain

ξ(k1, . . . , ki−1, k, ki+1, . . . , kN )− ξ(ψK,N (η)) = ξ(ψK,N (η − er + ek))− ξ(ψK,N (η)).
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Thus,

(DN ξ ◦ ψK,N )(η) =

K∑
k=1

K∑
r=1

∑
i: ki=r

µki,k[ξ(ψK,N (η − er + ek))− ξ(ψK,N (η))]

=

K∑
k=1

K∑
r=1

η(r)µr,k[ξ(ψK,N (η − er + ek))− ξ(ψK,N (η))]

= (QN ξ ◦ ψK,N )(η),

for every η ∈ EK,N . �

The following lemma describes all the eigenvalues of QN , defined by (1.3), in the case where the
mutation matrix is diagonalisable.

Lemma 3.2 (Eigenvalues of QN for diagonalisable Q). Assume Q is diagonalisable and

U = {U0, U1, . . . , UK−1}

is the basis of RK formed by right eigenvectors of Q, such that U0 is the all-one vector. Consider Ṽη and
λη defined as in (1.9) and (1.10), respectively. Then

(a) λη is an eigenvalue of QN with right eigenvector Ṽη.

(b) The spectrum of QN is formed by 0 and all λη for η ∈
N⋃
L=1

EK−1,L.

(c) QN is diagonalisable.

Proof. (a) For η ∈ EK−1,L let us denote Uη as in (1.7). Because QU0 = 0 and QUk = λk Uk, 1 ≤ k ≤
K − 1, from (3.1), we get DN (Uη) = ληUη. More generally, for every permutation σ ∈ SN , DN (σUη) =
λη(σUη), and thus, using the linearity of DN we get

DN Vη = ληVη, (3.2)

where Vη is defined as in (1.8).
Applying ψK,N to both members of (3.2) we obtain

(DNVη) ◦ ψK,N = ληVη ◦ ψK,N .

Using Lemma (3.1), and the expressions (1.8) and (1.9), definitions of Vη and Ṽη, respectively, we obtain

QN Ṽη = ληṼη,

which proves (a).

(b)-(c) Because U is a basis of RK , the set S̃N as defined in (2.9) is a basis of REK,N , due to Proposition
2.4-(c). Therefore, all the eigenvalues of QN are those described in part (b) and QN is diagonalisable. �

Remark 3.2. Note that the results in Lemma 3.2 remains valid for all operator QN defined using a
diagonalisable matrix Q, not necessarily a rate matrix, with complex entries and such that QU0 = 0 and
λ0 = 0 has algebraic multiplicity equal to one.

Lemma 3.2 provides all the eigenvalues and right eigenvectors of QN when Q is diagonalisable. How-
ever, there exist ergodic non-diagonalisable rate matrices as the following example shows.

Example 2 (Non-diagonalisable rate matrix of an ergodic Markov chain). Consider the infinitesimal
rate matrix Q given by

Q =

 −9 7 2
1 −7 6
5 7 −12

 .

The eigenvalues of Q are 0 and −14 as a double eigenvalue. However, the right eigenspace associated
to −14 is the set of columns vectors proportional to [1,−1, 1]T , which has dimension 1. Therefore, Q is
not diagonalisable. However, there exists an invertible matrix W such that Q = WJW−1, where J is the
Jordan form of Q. Indeed, if we define

W =

 3/14 2 11/14
3/14 −2 −3/14
3/14 2 −3/14

 , W−1 =

 1 7/3 4/3
0 −1/4 1/4
1 0 −1

 ,



16 JOSUÉ CORUJO

then Q = WJW−1 holds, where

J = W−1QW =

 0 0 0
0 −14 1
0 0 −14

 .

Note that the unique stationary distribution of the process driven by Q is proportional to the first row of
W−1, and is thus equal to (3/14, 1/2, 2/7).

Now our purpose is to extend the Lemma 3.2 to the case where the matrix Q is non-diagonalisable,
as stated in Theorem 1.1. Let us first recall two known facts in the theory of real matrices. We denote
by Mn(R) and Mn(C) the vector space of n-dimensional real and complex matrices, respectively. For a
matrix M ∈Mn(C) we denote by Spec(M) ∈ Cn its spectrum counting the algebraic multiplicities of the
eigenvalues. It is known that the set of diagonalisable complex matrices is dense in Mn(C). Serre [Ser10,
Corollary 5.1], for instance, proves this result as a consequence of the Schur’s Theorem. Using the same
reasoning we can prove the following:

Fact 1: The set of diagonalisable complex matrices with each row summing to zero is dense in the
set of the irreducible rate matrices: for every rate matrix Q ∈ Mn(R) and ε > 0 there exists
a diagonalisable matrix Q̄ ∈ Mn(C) such that ‖Q − Q̄‖ < ε. Moreover, Q̄ can be chosen such
that 0 ∈ Spec(Q̄), with 0 having geometric multiplicity 1 and Q̄ U0 = 0, where 0 denotes the K
dimensional null column vector, i.e. each row of Q̄ sums to zero.

The idea of the proof of Fact 1 is to modify diagonal elements in the upper-triangular matrix obtained
by the Schur’s Theorem [Ser10, Theorem 5.1] to get a matrix with n different eigenvalues, and thus
diagonalisable. Indeed, since Q is an irreducible rate matrix, the eigenspace associated to the eigenvalue
λ0 = 0 has dimension one and it is generated by U0. Moreover, the other n− 1 complex eigenvalues have
strictly negative real parts. Thus, it is possible to modify the diagonal of the upper triangular matrix
obtained by the Schur’s Theorem in such a way that the eigenvalues of the modified matrix, denoted Q̄,
are zero and n−1 complex numbers with different and strictly negative real parts. Furthermore, because
of the Schur’s factorisation, U0 is also an eigenvector of Q̄ associated to the null eigenvalue, i.e. Q̄U0 = 0.

Note that, since Mn(C) is a finite dimensional vector space, the result in Fact 1 holds for every norm
defined on Mn(C). In the sequel we will use the uniform norm, denoted ‖ · ‖Unif, and defined as follows

‖A‖Unif := max
i,j
|ai,j |,

for every matrix A = (ai,j)i,j ∈Mn(C).
The second fact is related to the continuity of the eigenvalues of a matrix with respect to its entries.

Consider the following distance between two sets of n elements in C:

D ({zi}ni=1, {ωi}ni=1) := inf
σ∈Sn

max
j
|zj − ωσ(j)|,

where Sn denotes de symmetric group on [n], for every n ∈ N.

Fact 2: The eigenvalues are continuous with respect to the entries of the matrix in the following
sense: consider M ∈ Mn(C), then for all ε > 0 there exists a δ > 0 such that for every matrix
N ∈Mn(C) such that ‖M −N‖ < δ, then D (Spec(M),Spec(N)) < ε.

See e.g. [HM87] and [Ser10, Theorem 5.2] for a proof of Fact 2.

Proof of Theorem 1.1. From Lemma 3.2 we know that the statement of Theorem 1.1 holds for a diag-
onalisable rate matrix Q. Let us prove it in the general case using the Facts 1 and 2 we previously
discussed.

For a mutation rate matrix Q ∈MK(R) with spectrum Spec(Q) = {0, λ1, . . . , λK−1}, let us define by

σN (Q) the set formed by 0 and λη, for η ∈
⋃K−1
L=1 EK−1,L, where the values λk in the definition (1.10)

of λη are those in Spec(Q). Then, proving Theorem 1.1-(a) is equivalent to prove that σN (Q) is the
spectrum of QN , i.e. D (Spec(QN ), σN (Q)) = 0.

For a matrix Q̄ ∈ MK(C) whose rows sum to zero (not necessarily a rate matrix), let us define Q̄N
similarly to the definition of QN (1.3), but with Q̄ as mutation matrix instead of Q. As we commented
in Remark 3.2, Lemma 3.2 remains valid and it ensures us that Spec(Q̄N ) = σN (Q̄). Thus, using the
triangular inequality we get

D (Spec(QN ), σN (Q)) ≤ D
(
Spec(QN ),Spec(Q̄N )

)
+ D

(
Spec(Q̄N ), σN (Q)

)
.

Moreover,

‖QN − Q̄N‖Unif ≤ N‖Q− Q̄‖Unif,
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D
(
Spec(Q̄N ), σN (Q)

)
≤ N D

(
Spec(Q̄),Spec(Q)

)
.

Fix ε > 0. Using Fact 2, we know there exist δ1, δ2 > 0 such that

D
(
Spec(QN ),Spec(Q̄N )

)
≤ ε

2
if ‖QN − Q̄N‖Unif < δ1,

D
(
Spec(Q̄),Spec(Q)

)
≤ ε

2N
if ‖Q− Q̄‖Unif < δ2.

Thus,

D (Spec(QN ), σN (Q)) ≤ ε

2
+N D(Spec(Q̄),Spec(Q)) < ε,

whenever ‖Q− Q̄‖Unif < min{δ1/N, δ2}. Since ε can be taken arbitrary small, by Fact 1, the proof of (a)
is finished.

The proof of (b) is exactly the same as the proof of (a) in Lemma 3.2. Note that, since η(r) = · · · =
η(K− 1) = 0, the definition of Ṽη only depends on the r linearly independent vectors forming U . Finally,
the result in (c) trivially comes from Lemma 3.2. �

Remark 3.3 (Alternative proof for Theorem 1.1). The Jordan-Chevalley decomposition is an elegant tool
to find the eigenvalues of QN and prove Theorem 1.1. The Jordan-Chevalley decomposition ensures the
existence of two matrices QDiag and QNil such that Q = QDiag +QNil. Moreover, QDiag is diagonalisable,
QNil is nilpotent, they commute and such a decomposition is unique. See [Ser10, Proposition 3.20] and
[CEZ11] for more details about the Jordan-Chevalley decomposition. Then, it can be proved that the
Jordan-Chevalley decomposition of QN is QN = (QDiag)N + (QNil)N , where (QDiag)N and (QNil)N are
defined similarly to QN in (1.3), substituting Q by QDiag and QNil, respectively. Now, since the spectrum
of QN is that of (QDiag)N , the proof of Theorem 1.1 follows from Lemma 3.2.

3.2. Proof of Theorem 1.2. In this section, given K ≥ 2 and N ≥ 2, we consider the continuous-time
Markov chain of N indistinguishable particles on K sites, with state space EK,N , where, with rate 1,
any particle jumps to one of the positions of another particle chosen at random. We denote by AN the
infinitesimal generator of this reproduction process, which is defined in (1.4) as

(ANf)(η) =
∑

i,j∈[K]

η(i)η(j) [f(η − ei + ej)− f(η)]

for every real function f and all η ∈ EK,N .

Remark 3.4 (First degree eigenfunctions of AN ). Note that the states {N ek}Kk=1 ⊂ EK,N are the only
absorbing states for the interaction process generated by AN . Thus, the distribution concentrated at N ek,
denoted δ{Nek}, is stationary for AN , for k ∈ [K]. It is not difficult to check that the real functions on

EK,N , x0 ≡ 1 and xk : η 7→ ηk, for k ∈ [K − 1], are linearly independent vectors of REK,N and they
satisfy ANxk = 0, for all k = 0, 1, . . . ,K − 1. Thus, the right eigenspace associated to 0 is the space of
homogeneous polynomials of degree 1, which has dimension K.

Actually, it can be proved that the generator AN preserves the total degree of a polynomial, in the
sense that the image of a polynomial is another polynomial of the same total degree. To prove Theorem
1.2 we first formally describe the preserving degree polynomial property satisfied by AN .

Lemma 3.3 (AN preserves polynomial total degree). Assume K ≥ 2 and N ≥ 2. Let P be a polynomial
on EK,N of total degree L with 1 ≤ L ≤ N . Then,

ANVP = −L(L− 1)VP + VR,

where R is a polynomial with a total degree strictly less than L.

The proof of Lemma 3.3 is technical and it is deferred to Appendix B. We proceed to prove Theorem
1.2.

Proof of Theorem 1.2. (a) For K ≥ 2 and N ≥ 2, let us define the sets BL of monomials in EK,N as
follows

B0 := {1}, B1 := {x1, x2, . . . , xK−1}, BL := {xα, α ∈ EK−1,L}, 2 ≤ L ≤ N,
where xα = xα1

1 xα2
2 . . . x

αK−1

K−1 for α := (α1, α2, . . . , αK−1). Then, consider the ordered set

B = B0 ∪ B1 ∪ · · · ∪ BN .
The set B is a basis of the space of real functions on EK,N , due to Lemma 2.1-(b). The matrix similar
to AN with respect to this basis is ĀN = W−1ANW , where W is the matrix with P , with P ∈ B,
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as column vectors. Thanks to the result in Lemma 3.3-(a), ĀN is a block upper triangular matrix,
where the first diagonal block has size K and is a null matrix. The other diagonal blocks have size
Card(EK−1,L) =

(
K−2+L

L

)
and are diagonal matrices with constant diagonal elements equal to −L(L−1),

with 2 ≤ L ≤ N . This analysis gives us the eigenvalues of AN are 0 with algebraic multiplicity K and
−L(L− 1) with algebraic multiplicity

(
K−2+L

L

)
for 2 ≤ L ≤ N .

Now, using the block multiplication of matrices, it is not difficult to see that (ĀN )n is also a block

diagonal matrix, where the L-th block is a diagonal matrix of dimension
(
K−2+L

L

)
with all the entries

on the diagonal equal to (−L(L − 1))n, for 2 ≤ L ≤ N . Thus, for every real polynomial Υ the matrix
Υ(ĀN ) = W−1Υ(AN )W is a block diagonal matrix with diagonal elements Υ(−L(L− 1)). Taking

Υ : s 7→ s

N∏
L=2

[s+ L(L− 1)],

we get Υ(ĀN ) = 0K,N , where 0K,N is the
(
K−1+N

N

)
dimensional null matrix. Thus, Υ(AN ) = 0K,N

and Υ is necessarily the minimal polynomial of AN , which factors into distinct linear factors. We thus
conclude that AN is diagonalisable. �

Remark 3.5 (On the right eigenfunctions of AN ). Theorem 1.2 does not provide a characterisation of
the eigenspace associated to the eigenvalue −L(L− 1), for L ∈ [N ]. For the special case K = 2, Watter-
son [Wat61] does provide such a decomposition for the discrete analogue of AN in terms of cumulative
sums of discrete Chebyshev polynomials. In addition, Zhou [Zho08, Section 2.4.4] provides an equivalent
but simpler expression for the eigenvectors of the equivalent analogous of AN , for K = 2, in terms of
univariate Hahn polynomials.

In the general case, it is possible to describe the eigenspaces associated to the first three eigenvalues of
AN . As we commented in Remark 3.4, the right eigenspace associated to 0 is the space of homogeneous
polynomials of first degree. Moreover, the right eigenspace associated to −2 has dimension K(K − 1)/2
and it is generated by the set of monomials {xkxr, 1 ≤ k < r ≤ K}. Additionally, for L = 3, it is possible
to prove that a simple basis of the right eigenspace associated to −6 has dimension K(K + 1)(K − 1)/6
and is given by eigenvectors {x2

kxr − xkx2
r, 1 ≤ k < r ≤ K} ∪ {xkxrxs, 1 ≤ k < r < s ≤ K}. The

complete characterisation of the eigenvectors of AN , for K ≥ 3, is a topic of further research.

3.3. Proof of Theorem 1.3. This section is devoted to the proof of Theorem 1.3 providing a description
of the spectrum of the neutral multi-allelic Moran process with generator QN,p, defined by (1.2) as

(QN,pf)(η) =
∑

i,j∈[K]

η(i)
(
µi,j +

p

N
η(j)

)
[f(η − ei + ej)− f(η)] ,

for every real function f in EK,N and every η ∈ EK,N .
Assume K ≥ 2, N ≥ 2 and p ∈ [0,∞) and suppose that Q is diagonalisable with eigenvalues 0 and λk,

for k ∈ [K − 1]. For any η ∈ EK−1,L, with L ∈ [N ], let us recall the definition of λη,p:

λη,p = −L(L− 1)
p

N
+

K−1∑
k=1

η(k)λk. (3.3)

Then, we will prove that the eigenvalues of QN,p are 0 and all λη,p for η ∈
N⋃
L=1

EK−1,L.

Proof of Theorem 1.3. It is straightforward to remark that

QN,p = QN +
p

N
AN ,

where QN and AN are the generators of the mutation and the reproduction processes defined by (1.3)
and (1.4), respectively.

Let us first prove the result when the mutation rate matrix Q is diagonalisable. As proved in Lemma

3.2, the vector Ṽη is an eigenvector of QN with eigenvalue λη, for η ∈
⋃N
L=1 EK−1,L. Let us denote by

Ṽ0 the all-one vector in REK,N . Then, the set B = {V0} ∪ {Ṽη, η ∈
⋃N
L=1 EK−1,L} is a basis of REK,N ,

thanks to Proposition 2.4-(c). Let us denote by W the matrix with the elements of B as columns such

that W−1QNW is a diagonal matrix with diagonal entries equal to 0 and λη, for η ∈
⋃N
L=1 EK−1,L.

For 1 ≤ L ≤ N and η ∈ EK−1,L, the expression (1.9) and Lemma 2.3-(c) ensure that Ṽη is a polynomial
of total degree equal to L. Using now Theorem 1.2-(b), we get

AN Ṽη = −L(L− 1)Ṽη +R,
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where R is a polynomial of total degree strictly less than L. This fact means that, like in Theorem 1.2-(c),

W−1ANW is a block upper triangular matrix, where the diagonal blocks of size Card(EK−1,L) =
(
K+L−2

L

)
are diagonal matrices with constant diagonal elements equal to −L(L − 1), for 2 ≤ L ≤ N . The first
diagonal block of size K is a null matrix. It follows that the matrix

W−1QN,pW = W−1QNW +
p

N
W−1ANW

is a block upper triangular matrix, where the first diagonal block has dimension one and is null, i.e. the
first column is null. Moreover, the L-th diagonal block has dimension

(
K+L−2

L

)
and its diagonal elements

are the eigenvalues λη,p with η ∈ EK−1,L, for L ∈ [N ]. Thus, these are the eigenvalues of QN,p.
Now, consider a general mutation matrix Q ∈ MK(R), not necessarily diagonalisable, with spec-

trum Spec(Q) = {0, λ1, . . . , λK−1}. Let us define by σN,p(Q) the set formed by 0 and λη,p, for η ∈⋃K−1
L=1 EK−1,L, where the values λk in the definition (3.3) of λη,p, are those in Spec(Q). Define Q̄N,p sim-

ilarly to (1.2) but with a diagonalisable matrix Q̄ ∈ MK(C), whose rows have null sum (not necessarily
a rate matrix), instead of Q. Then,

‖QN,p − Q̄N,p‖Unif = ‖QN − Q̄N‖Unif,

D
(
Spec(Q̄N,p), σN,p(Q)

)
= D

(
Spec(Q̄K,N ), σN (Q)

)
.

Hence, σN,p(Q) is proved to be the spectrum of QN,p, analogously to the proof of Theorem 1.1-(a).
�

Remark 3.6 (Alternative proof of Theorem 1.3). Another proof of Theorem 1.3 can be carried out using

the Jordan form of the mutation rate matrix Q. Indeed, the vectors Ṽη ∈ REK,N can be defined using the
basis of RK that transforms Q in its normal Jordan form. Then, defining a suitable order among the

vectors Ṽη, for η ∈
⋃N
L=1 EK−1,L, it is possible to show that QN,p is similar to an upper triangular matrix

with the values λη,p on the diagonal.

3.4. Applications to the exponential ergodicity of neutral multi-allelic Moran processes. We
will now study some consequences of Theorem 1.3. Next result establishes that the Jordan form of Q is a
diagonal block in the Jordan form of QN,p. The book of Axler [Axl15] is a good reference for generalised
eigenvectors and Jordan forms.

Corollary 3.4 (Jordan forms of Q and QN,p). Consider K ≥ 2, N ≥ 2 and p ≥ 0. If J is the Jordan
form of Q, then the Jordan normal form of QN,p is J ⊕ J ′, where J ′ is a Jordan matrix of dimension(
K−1+N

N

)
−K.

In particular, Q and QN,p have that same SLEM.

Proof. The image by QN,p of a first degree polynomial is also a first degree polynomial, i.e. the space of
first degree polynomials is invariant by QN,p. Moreover, as a consequence of Lemma 3.1 we obtain

QN,p ξ̃(V ) = QN ξ̃(V ) = ΦK,N DNξ(V ) = ΦK,N ξ(QV ) = ξ̃(QV ).

Let U = {U0, . . . , UK−1} by a Jordan basis of Q formed by generalised eigenvectors of Q. Since

QN,p ξ̃(Uk) = ξ̃(QUk), for every k ∈ [K − 1]0, we have that {ξ̃(U0), . . . , ξ̃(UK−1)} is a system of lin-
early independent generalised eigenvectors of QN,p. They are precisely the generalised eigenvectors of
QN,p associated to the eigenvalues in Spec(Q) ⊂ Spec(QN,p). We can complete this system to a Jordan
basis of REK,N , adding the generalised eigenvectors of the other eigenvalues on QN,p. With respect to
this Jordan basis QN,p becomes similar to J ⊕ J ′, where J is the Jordan matrix of Q and J ′ is a Jordan

matrix of dimension
(
K−1+N

N

)
−K.

Note that the eigenvalues {λ0, λ1, . . . , λK−1} are those eigenvalues of QN,p of smallest modulus. We
thus get that Q and QN,p have the same SLEM. �

The total variation distance to stationarity at time t of the process driven by Q, with initial distribution
µ, is given by dTV(µ etQ, π), where dTV denotes the total variance distance defined by (1.14), µ is the
initial distribution on [K] and π is the stationary distribution of the process driven by Q. We are
interested in the relationship between the spectrum of an infinitesimal rate matrix and the convergence
to stationarity of the Markov process it drives. Let us define the maximum total variation distance to
stationarity of the process driven by Q, denoted DTV

Q , as follows:

DTV
Q (t) := max

µ
dTV(µ etQ, π),
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where the maximum runs over all possible initial distributions on [K]. Using the convexity of dTV, we

can prove that DTV
Q (t) = 1

2‖e
tQ − Π‖∞, where Π stands for the K-dimensional matrix with every row

equal to π, and ‖ · ‖∞ denotes the infinity norm of matrices (cf. [LP17, Chapter 4]).
Every irreducible finite Markov chain convergences exponentially to stationarity, see e.g. [LP17, The-

orem 4.9]. In addition, the sharpest asymptotic speed of convergence is associated to the SLEM and
the size of the largest Jordan block corresponding to any eigenvalue with this modulus. We recall that
the size of the largest Jordan block associated to an eigenvalue λ is equal to the multiplicity of λ in the
minimal polynomial of the rate matrix of the Markov chain.

For a real positive function f we denote by O(f) another real positive function such that

C1f(t) ≤ O(f)(t) ≤ C2f(t),

for two constants 0 < C1 ≤ C2 <∞ and for all t ≥ T , for T > 0 large enough.
Let ρ be the SLEM of Q and s the largest multiplicity in the minimal polynomial of Q of all the

eigenvalues with modulus ρ, or equivalently, the size of the largest Jordan block associated to eigenvalues
with modulus ρ. Then,

DTV
Q (t) = O(ts−1e−ρt), (3.4)

see e.g. [SRW15, Theorem 3.2]. The following result is a consequence of Corollary 3.4 and (3.4).

Corollary 3.5 (Asymptotic exponential ergodicity in total variation). Let us denote by ρ the SLEM of
Q and by s ∈ N the largest multiplicity in the minimal polynomial of Q of all the eigenvalues with modulus
ρ. Then,

DTV
QN,p(t) = O(ts−1e−ρt).

The following two examples use Corollary 3.5 to provide the rates for the exponential convergence to
stationarity of the neutral multi-allelic Moran (Fleming – Viot particle) process considered in [Cor20] and
for the non-diagonalisable mutation rate matrix previously considered in Example 2.

Example 3 (Circulant mutation rate matrix). Consider the following mutation rate matrix

Qθ =


−(1 + θ) 1 0 . . . 0 θ

θ −(1 + θ) 1 . . . 0 0
0 θ −(1 + θ) . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . θ −(1 + θ)

 ,

where θ ≥ 0. Qθ is the infinitesimal generator of a simple asymmetric random walk on the K-cycle
graph. The neutral multi-allelic Moran type process with mutation rate Qθ was considered in [Cor20].
Since Qθ is circulant, it is possible to explicitly diagonalise it using the Fourier matrix (cf. [Dav79]). The
eigenvalues of Qθ are

λk = −2(1 + θ) sin2

(
πk

K

)
+ i(1− θ) sin

(
2πk

K

)
,

for 0 ≤ k ≤ K − 1 (see e.g. [Cor20]). Thus, the SLEM of Qθ is 2(1 + θ) sin2
(
π
K

)
, which is attained for

two eigenvalues, each one of them with algebraic multiplicity equals to 1, for θ 6= 1. When θ = 1, the
SLEM of Qθ is λ1 = 4 sin2

(
π
K

)
and it is attained for a unique eigenvalue with algebraic and geometric

multiplicities equal to 2. Let Qθ be the infinitesimal generator of the neutral multi-allelic Moran process
with mutation rate Qθ. Then,

DTV
Qθ (t) = O

(
e−2(1+θ) sin2( πK )t

)
.

Example 4 (Convergence rate for a process with non-diagonalisable mutation rate matrix). Consider Q
as in Example 2 and QN,p the infinitesimal generator of the associated neutral multi-allelic Moran process
with mutation rate matrix Q. Then, λ0 = 0 and λ1 = λ2 = −14, because −14 has algebraic multiplicity
2. Then, for N fixed, the eigenvalues of QN,p are

λL,p := η(1)λ1 + η(2)λ2 − L(L− 1)
p

N
= −14L− L(L− 1)

p

N
,

for L ∈ [N ]0. In addition, λL has algebraic multiplicity Card(E2,L) = L+ 1.
Note that the minimal polynomial of Q is mQ : s 7→ s (s + 14)2 and according to the notation in

Corollary 3.5 we get ρ = 14 and s = 2. Then,

DTV
QN,p(t) = O

(
t e−14t

)
.
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Note that for this simple example it is possible to explicitly compute DTV
Q (t). Indeed, denoting J and W

as in Example 2 we get

etJ = exp

t
 0 0 0

0 −14 1
0 0 −14

 =

 1 0 0
0 e−14t t e−14t

0 0 e−14t

 ,

for all t ≥ 0. Then,

DTV
Q (t) =

1

2

∥∥∥∥∥∥W
 0 0 0

0 e−14t t e−14t

0 0 e−14t

W−1

∥∥∥∥∥∥
∞

=

(
2t+

11

14

)
e−14t, t ≥ 0.

4. Spectral decomposition of the neutral multi-allelic Moran type process with
parent independent mutation

In this section we discuss some applications of the Theorem 1.3 and its consequences to the neutral
multi-allelic Moran model with parent independent mutation scheme. We start recalling some well-known
results on finite state reversible Markov chains and their convergence to stationarity (cf. [SC97], [Bré20]
and [LP17]). Later, we will focus on the case where the Moran process has parent independent mutation
[Eth11]. In this case, the Moran process is reversible. In fact, as we claimed in Theorem 1.5, the neutral
Moran process with p > 0 is reversible if and only if its mutation matrix satisfies the parent independent
condition. We explicitly diagonalise the infinitesimal generator of the neutral multi-allelic Moran process
with parent independent mutation rate using the multivariate Hahn and Krawtchouk polynomials, which
allows us to provide an explicit expression for the transition function of this process. Using these results
we prove Theorems 1.6 and 1.7.

4.1. Background on reversible finite continuous-time Markov chains. Let us consider G, the
infinitesimal generator of an irreducible reversible continuous-time Markov chain on a finite space Ω,
such that Card(Ω) = M < ∞. Let us denote by π = (πω)ω∈Ω the stationary distribution on Ω of the
process driven by G. For every measure m on Ω, we consider l2(RΩ,m) the Hilbert space with inner
product

〈· , ·〉m : (f, g) 7→
∑
ω∈Ω

f(ω)g(ω)m(ω),

induced by m, and we denote by ‖ · ‖m its induced norm. In the sequel we are mainly interested in the
Hilbert spaces l2(RΩ, π) and l2(RΩ, 1

π ), where 1/π denotes the measure k 7→ 1/πk. We also denote by

〈· , ·〉 the usual inner product in RΩ and by ‖ · ‖ its associated norm.
Reversibility is equivalent to the fact that G is self-adjoint in l2(RΩ, π), i.e. 〈Gf, g〉π = 〈f,Gg〉π, for

every functions f and g in RΩ. Thus, using the spectral decomposition for self-adjoint operators, we
obtain an orthonormal basis of l2(RΩ, π), denoted {fk}Mk=1 such that Gfk = λkfk, for k ∈ [M ]. We
assume that the M eigenvalues of G are ordered such that 0 = λ1 < λ2 ≤ · · · ≤ λM and f1 ≡ 1.

Remark 4.1 (Left and right eigenfunctions of reversible processes). Let G be the infinitesimal generator
of an irreducible Markov chain which is reversible for π. Let f be a right eigenfunction of G associated
to the eigenvalue λ, then φ = π f is a left eigenfunction of G, also with eigenvalue λ. Indeed, for every
function h we get

φG(h) = 〈φ,Gh〉 = 〈πf,Gh〉 = 〈f,Gh〉π = 〈Gf, h〉π = λ〈f, h〉π = λφ(h).

Thus, φG = λφ. Analogously, if φ is a left eigenvector for G, then f = φ/π is a right eigenvector for G
with the same eigenvalue.

Then, {φk}Mk=1, where φk = πfk, is a set of left eigenfunctions of G forming an orthonormal basis of
l2(RΩ, 1

π ), and the sets {φk}Mk=1 and {fk}Mk=1 are biorthogonal with respect to the usual inner product,
i.e. 〈fk, φn〉 = δk,n, for all k, n ∈ [M ], where δk,n stands for the Kronecker delta function.

For every φ in RΩ we have

φ =

M∑
k=1

〈φ, φk〉 1
π
φk,

and consequently

φGn =

M∑
k=1

〈φ, φk〉 1
π
φk Gn =

M∑
k=1

λnk 〈φ, φk〉 1π φk,



22 JOSUÉ CORUJO

for all n ≥ 1. Thus,

φ etG = |φ|π +

M∑
k=2

etλk〈φ, φk〉 1
π
φk,

where the last inequality comes from λ1 = 0, φ1 = π and |φ| =
M∑
k=1

φ(k). In particular, one can explicitly

obtain the transition function for the process driven by G with initial distribution concentrated at ω ∈ Ω:

δωetQ − π =

M∑
k=2

eλkt〈δω, φk〉 1
π
φk =

M∑
k=2

eλkt
φk(ω)

π(ω)
φk =

M∑
k=2

etλkfk(ω)φk, (4.1)

The chi-square distance, as defined in (1.15), to stationarity can be characterised using the distance
induced by the inner product in l2(RΩ, 1

π ) as χ2
ω(t) := χ2(δω etG | π) = ‖δω etG − π‖21

π

, for every ω ∈ Ω.

Then, using (4.1) and the orthogonality of {φk}Mk=1, we deduce

χ2
ω(t) =

M∑
k=2

e2λkt fk(ω)2. (4.2)

Let ρ = −λ2 > 0 be the SLEM of G. Note that for reversible Markov chain this value is equal to the
spectral gap of G. Using (4.2) we get the following upper bound for the convergence to stationarity of the
Markov process driven by G when t→∞ in the chi-square distance:

χ2
ω(t) ≤ ‖δω − π‖21

π
e−2ρt =

1− π(ω)

π(ω)
e−2ρt, (4.3)

for every ω ∈ Ω.
Hölder’s inequality implies the following identity:

‖µ‖ 1
π

= max
‖f‖ 1

π
≤1
|〈µ, f〉| ,

where 〈µ, f〉 :=
∑
ω∈Ω f(ω)µ(ω), see e.g. Proposition 6.13 in [Fol99] for a proof. Thus, taking the right

eigenfunction f2 associated to λ2 = −ρ as a test function, we get

χ2
ω(t) ≥ |〈δω etQ, f2〉 − 〈π, f2〉|

‖f2‖ 1
π

=
|f2(ω)|
‖f2‖ 1

π

e−ρt. (4.4)

Note that (4.3) and (4.4) imply that the exponential rate of convergence to stationarity in the chi-
square distance is −ρ. The function f2 has norm one in l2(RΩ, π) but in general the value of its norm in
l2(RΩ, 1/π) is unknown. So, it is usually difficult to get an explicit expression for the lower bound (4.4)
even when we know the complete spectral decomposition of the generator G. A rougher lower bound can
be deduced as follows. Note that

‖f‖21
π

=
∑
ω∈Ω

f2(ω)

πω
≤ 1

π2
?

‖f‖2π,

for every real function f on Ω, where π? = min
ω∈Ω

πω. Thus, we get χ2
ω(t) ≥ π? |f2(ω)|e−ρt. On the other

hand, the Cauchy-Schwartz inequality in l2(RΩ, 1
π ) implies

dTV
(
δω etG , π

)2 ≤ 1

4
χ2
ω(t) ≤ 1− π(ω)

4π(ω)
e−2ρt,

for every ω ∈ Ω, where dTV is the total variation distance defined by (1.14). Additionally, the usual
1-norm in RM , denoted ‖ · ‖1, allows the next characterisation:

‖µ‖1 = max
‖f‖∞=1

|〈µ, f〉| .

Thus, using f2 as a test function, we get the following lower bound for the convergence in total variation

dTV
(
δωetG , π

)
≥ |f2(ω)|
‖f2‖∞

e−ρt. (4.5)

Unlike (4.4), it should be not so hard in general to compute an explicit expression for ‖f2‖∞ and thus
the lower bound (4.5). Therefore, we have obtained the following inequalities:

|f2(ω)|
‖f2‖∞

e−ρt ≤ dTV
(
δωetG , π

)
≤
√
χ2
ω(t) ≤

√
1− π(ω)

π(ω)
e−ρt, (4.6)
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for every ω ∈ Ω and any right eigenfunction f2 of G with eigenvalue −ρ. Inequalities in (4.6) control the
exponential decay in total variation and chi-square distances to stationarity of a reversible Markov chain.

4.2. Proof of Theorems 1.6 and 1.7. Let us recall that the generator of the neutral multi-allelic
Moran process with parent independent mutation defined by (4.2), which acts on a real function f on
EK,N as follows

(LN,pf)(η) :=

K∑
i,j=1

η(i) [f(η − ei + ej)− f(η)]

(
µj + p

η(j)

N

)
,

for all η ∈ EK,N . We next prove Corollary 1.4, which provides the spectrum of LN,p, for all p ≥ 0.

Proof of Corollary 1.4. Since Qµµµ is an infinitesimal matrix, zero is one of its eigenvalues with right
eigenfunction f1, the K-dimensional all-one vector. Note that πππ := µµµ/|µµµ| = (µ1/|µµµ|, . . . , µK/|µµµ|) is the
unique stationary distribution of Qµµµ, which is also reversible. Moreover, note that Qµµµf = −|µµµ|(f+〈f,πππ〉),
for every f ∈ REK,N . Thus, every function f satisfying 〈f,πππ〉 = 0 is a right eigenfunction of Qµµµ, i.e. the
eigenspace associated to −|µµµ| is the space of the orthogonal functions to πππ, which has dimension K − 1.
The expression (1.12) for the eigenvalues comes from Theorem 1.3. Since the process is reversible we
obtain that LN,p is diagonalisable. The spectral gap is obtained for L = 1.

�

Remark 4.2 (First degree eigenvectors of LN,p). Every function f in R[K] satisfying 〈f,πππ〉 = 0 is a right
eigenfunction of Qµµµ. Thus, Remark 3.5 and Lemma 2.3-(a) imply that the linear function:

ξ̃(f) : η 7→ f(1)η(1) + · · ·+ f(K)η(K)

is a right eigenvector of LN,p associated to the eigenvalue −|µµµ|, for every f satisfying 〈f,πππ〉 = 0.

Using the classic results on reversible Markov chains reviewed in Section 4.1, we can ensure that the
convergence to stationarity of the process driven by LN,p is exponential with rate −|µµµ|. Next, we prove
Theorem 1.6 providing explicit non-asymptotic bounds for the convergence for the process driven by LN,p
to stationarity in the chi-square and total variation distances.

Proof of Theorem 1.6. To prove the first inequality in (1.16) just note that, as we commented in Remark

4.2, for any function f in R[K] such that 〈f,µµµ〉 = 0, the linear function ξ̃(f) is a right eigenfunction of

LN,p with eigenvalue −|µµµ|. Moreover, ‖ξ̃(f)‖∞ = N‖f‖∞, where, abusing notation, the infinity norms

are defined on REK,N and R[K], respectively. Then, using ξ̃(f) as a test function in (4.5) we get

dTV
η (t) ≥ |ξ̃(f)(η)|

2N‖f‖∞
e−|µµµ|t.

The optimal bound is obtained taking the maximum over all the functions orthogonal to µµµ. The remaining
inequalities in (1.16) are a straightforward consequence of the classical bounds for chi-square and total
variation distances on finite reversible Markov chains, summarised in (4.6).

To prove the first inequality in (1.17), note that

dTV
Nek

(t) ≥ |φ(Nek)|
2N‖φ‖∞

e−|µµµ|t,

where φ : EK,N → R is any right eigenfunction of LN,p associated to −|µµµ|. Then, from Remark 4.2 the
linear function φ : η 7→ η(k)/µk − η(r)/µr, where r 6= k, is a right eigenfunction of LN,p associated to
−|µµµ|. Then, ‖Q2‖∞ = N/(µk ∧ µr) and

dTV
Nek

(t) ≥ µk ∧ µr
µk

e−|µµµ|t.

It is straightforward to check that the optimal constant is κk, as defined in Theorem 1.6.
To prove the last inequality in (1.17), simply note that the definition (1.13) of νN,p yields

1− νN,p(Nek)

νN,p(Nek)
=


(N |µµµ|/p)(N) − (Nµk/p)(N)

(Nµk/p)(N)
if p > 0

|µµµ|N − µNk
µNk

if p = 0.

�
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Multivariate orthogonal Hahn and Krawtchouk polynomials. The rest of the section is devoted
to the characterisation of the eigenfunctions of LN,p and the proof of Theorem 1.7. Let us establish some
notation that will be useful in the sequel to study the eigenfunctions of LN,p. For a K-dimensional real
vector x we define the following quantities:

|xi| :=
i∑

j=1

xj , |xi| :=
K∑
j=i

xj .

We set by convention |xi| := 0, for all i > K.

The orthogonal polynomials we define below are indexed by the set
⋃N
L=0 EK−1,L, where EK−1,0 = {0}

is the set formed by the K − 1 dimensional null vector. We define the multivariate Hahn polynomials on
EK,N , indexed by η ∈ EK−1,L, for L ∈ [N ]0, and denoted Hη(x;N,ααα), as follows

Hη(x;N,ααα) :=
1

(N)[|η|]

K−1∏
k=1

(−N + |xk−1|+ |ηk+1|)(η(k))Hη(k)(xk;Mk, αk, γk) (4.7)

where Mk = N − |xk−1| − |ηk+1|, γk = |αααk+1| + 2|ηk+1| and Hn(x;N, β, γ) is the univariate Hahn
polynomial defined by

Hn(x;N, β, γ) := 3F2

(
−n, n+ β + γ − 1,−x
β, −N 1

)
(4.8)

=

n∑
j=0

(−n)(j)(n+ β + γ − 1)(j)(−x)(j)

β(j)(−N)(j)

1

j!
.

Note that for 0 ∈ EK−1,0 we obtain H0(· ;N,ααα) ≡ 1. In addition, it is no difficult to check that

Hη(NeK ;N,ααα) ≡ 1, for all η ∈
N⋃
L=0

EK−1,L.

We also define the multivariate Krawtchouk polynomials on EK,N denoted Kη(x;N,q), indexed by

η ∈
N⋃
L=0

EK−1,L, with q ∈ (0, 1)K such that |q| = 1, as the multivariate polynomials satisfying:

Kη(x;N,q) :=
1

(N)[|η|]

K−1∏
k=1

(−N + |xk−1|+ |ηk+1|)(η(k))Kη(k) (xk;Mk, qk) (4.9)

where Mk = N − |xk−1| − |ηk+1|, and Kn(x;N, q) is the univariate Krawtchouk polynomial defined by

Kn(x;N, q) := 2F1

(
−n, −x
−N

1

q

)
(4.10)

=

n∑
j=0

(−n)(j)(−x)(j)

(−N)(j)

1

j!qj
.

In addition, K0(· ;N,q) ≡ 1, for 0 ∈ EK−1,0, and Kη(NeK ;N,q) ≡ 1, for all η ∈
N⋃
L=0

EK−1,L.

See [Ism05, Chapter 6] and [KLS10, Chapter 9] for more details about the univariate Hahn and
Krawtchouk polynomials. We define the univariate Hahn and Krawtchouk polynomials in (4.8) and
(4.10), respectively, using the hypergeometric functions notation which could be very useful for algebraic
manipulations (cf. [KLS10, Chapter 10]). For instance, consider ααα = Nµµµ/p in the definition of Hahn
polynomials, then

lim
p→0+

Hη(k)(xk;Mk, αk,|αααk+1|+ 2|ηk+1|) = lim
p→0+

Hη(k)

(
xk;Mk,

Nµk
p

,
N |µµµk+1|

p
+ 2|ηk+1|

)
= lim
p→0+

3F2

(
−η(k), η(k) +Nµk/p+N |µµµk+1|/p+ 2|ηk+1| − 1,−xk
Nµk/p, −Mk

1

)
= 2F1

(
−η(k),−xk
−Mk

µk + |µµµk+1|
µk

)
= 2F1

(
−η(k),−xk
−Mk

|µµµk|
µk

)
= Kη(k)

(
xk;N,

|µµµk|
µk

)
,

for every k ∈ [K], where the calculation of the limit in the third equation follows from Equation (1.4.5)
in [KLS10] and the last inequality follows from the definition of univariate Krawtchouk polynomials in
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(4.10). Now, using the previous limit and the definitions (4.7) and (4.9) of the multivariate Hahn and
Krawtchouk polynomials we get

lim
p→0+

Hη

(
x;N,N

µµµ

p

)
= Kη

(
x;N,

µµµ

|µµµ|

)
.

Thus, similarly to how we define νN,p in (1.13), we define the multivariate polynomial Qη(·, N,µµµ, p) by

Qη(x;N,µµµ, p) :=

 Hη

(
x;N, Nµµµp

)
if p > 0

Kη

(
x;N, µµµ|µµµ|

)
if p = 0,

(4.11)

for every η ∈
⋃N
L=0 EK−1,L, and for all x ∈ EK,N . Note that the functions Qη(x;N,µµµ, p) are continuous

when p tends towards zero, in the sense that:

lim
p→0+

Qη (x;N,µµµ, p) = Qη (x;N,µµµ, 0) ,

for every x ∈ EK,N . The following result sets some important properties of the multivariate Hahn and
Krawtchouk polynomials.

Proposition 4.1 (Orthogonality of the Hahn and Krawtchouk polynomials). The multivariate polyno-
mials Qη defined by (4.11) satisfy the following properties:

a) Qη(·;N,µµµ, p) is a polynomial on EK,N of total degree |η|, for every η ∈
N⋃
L=0

EK−1,L.

b) The polynomials Qη(·;N,µµµ, p) are orthogonal on EK,N with respect to the probability distribution
νN,p, defined by (1.13), i.e.

EνN,p [Qη(· ;N,µµµ, p)Qη′(· ;N,µµµ, p)] =
∑

ξ∈EK,N

Qη(ξ ;N,µµµ, p)Qη′(ξ ;N,µµµ, p)νN,p(ξ)

= d2
η,p δη,η′ ,

for every η, η′ ∈
N⋃
L=0

EK−1,L, where δη,η′ stands for the Kronecker delta function and

d2
η,p =


(|ααα|+N)(|η|)

(N)[|η|]|ααα|(2|η|)

K−1∏
j=1

(|αααj |+ |ηj |+ |ηj+1| − 1)(η(j))(|αααj+1|+ 2|ηj+1|)(η(j))η(j)!

(αj)(η(j))
, p > 0

1

(N)[|η|]

K−1∏
j=1

(|πππj |)η(j)(|πππj+1|)η(j)

π
η(j)
j

η(j)!, p = 0,

where ααα = Nµµµ/p and πππ = µµµ/|µµµ|.

See Theorem 5.4 in [IX07] and Proposition 2.1, also Remark 2.2, in [KZ09] for the proofs of these
results on multivariate Hahn polynomials. See Theorem 6.2 in [IX07] and Proposition 2.4 in [KZ09]
for the proofs for the multivariate Krawtchouk polynomials. The system of orthogonal polynomials for
a fixed multinomial distribution is not unique. A general construction of the multivariate Krawtchouk
polynomials can be found in [DG14].

Kernel polynomials for Dirichlet multinomial and multinomial distributions. Consider ν a
multivariate distribution on EK,N and {Q0

η} an orthonormal system of polynomials in l2(REK,N , ν). Then,
the kernel polynomial associated to ν is defined by

hn(x,y) :=
∑
|η|=n

Q0
η(x)Q0

η(y),

for all x,y ∈ EK,N and for every n ∈ [N ]0. The kernel polynomials are invariant under the choice of
the orthonormal systems, i.e. they only depend on the distribution ν. Kernel polynomials are used for
manipulating sums of products of orthogonal polynomials. They are especially useful to obtain explicit
expressions for the transition function of a reversible Markov chain with polynomial eigenfunctions, as
we do below in Proposition 4.2.

We next review the expressions for the kernel polynomials of the Dirichlet multinomial and the multi-
nomial distributions. Let us denote by hn(x,y; p) the n-th kernel polynomial of νN,p, for all n ∈ [N ]0.
Then,

hn(x,y; p) = (|ααα|+ 2n− 1)
(|ααα|+N)(n)

N[n]

n∑
m=0

(−1)n−m
(|ααα|+m)(n−1)

m!(n−m)!
ψm(x,y; p), (4.12)
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for all n ∈ [N ]0, where

ψm(x,y; p) =
∑
|z|=m

(
N

z

) |ααα|(m)

K∏
i=1

(αi)(zi)

K∏
i=1

(αi + xi)(zi)(αi + yi)(zi)

(|ααα|+N)m(|ααα|+N)m
,

for all p > 0, where α = Nµµµ/p. This expression becomes much simpler for x = y = Nek:

hn(Nek, Nek; p) =

(
N

L

)
(|ααα|+ 2n− 1)(|ααα|)(n−1)(|ααα| − αk)(n)

(|ααα|+N)(n)(αk)(n)
, (4.13)

for all p > 0. For p = 0, νN,0 follows a M(· | N,µµµ/|µµµ|) distribution and the n-th kernel polynomial can
be written as

hn(x,y; 0) =

n∑
m=0

(
N

n

)(
N −m
n−m

)
(−1)n−mζm(x,y; 0), (4.14)

for all n ∈ [N ]0, where

ζm(x,y; 0) =
∑
|z|=m

(
m

z

) K∏
i=1

(xi)[zi](yi)[zi]

N[m]N[m]

(
µk
|µµµ|

)−zi
.

In particular,

hn(x, Nek; 0) =

n∑
m=0

(
N

m

)(
N −m
n−m

)
(−1)n−m

(xk)[m]

N[m]

(
µk
|µµµ|

)−m
, (4.15)

hn(Nek, Nek; 0) =

(
N

n

)(
|µµµ|
µk
− 1

)n
. (4.16)

For more details on the kernel polynomials for the multinomial distribution see e.g. [KZ09, Propo-
sition 2.8] and [DG14]. Also, for more details on the kernel polynomials for the Dirichlet multinomial
distribution see e.g. [KZ09, Proposition 2.6] and [GS13].

The following proposition proves that the right eigenfunctions of LN,p are given by multivariate or-
thogonal polynomials defined by (4.11).

Proposition 4.2 (Eigenfunctions of LN,p). The right eigenfunctions of LN,p are the multivariate poly-
nomials Qη(· ;N,µµµ, p) with associated eigenvalue λL,p, for η ∈ EK−1,L, for L ∈ [N ]0. Moreover, the set
of right eigenfunctions {

Qη(· ;N,µµµ, p), η ∈
N⋃
L=0

EK−1,L

}
(4.17)

is orthogonal in l2(νN,p), for all p ≥ 0. In addition, the functions φη(· ;N,µµµ, p) defined by

φη(η′;N,µµµ, p) := νN,p(η
′)Qη(η′;N,µµµ, p)

are left eigenfunctions of LN,p and the set of left eigenfunctions is orthogonal in l2(1/νN,p).
Furthermore, the transition kernel of the Markov chain driven by LN,p can be decomposed as follows:

(etLN,pδξ)(η) = νN,p(ξ)

(
1 +

N∑
L=1

eλL,pthL(η, ξ; p)

)
, (4.18)

where hL(η, ξ; p) is defined by (4.12) and (4.14) for p > 0 and p = 0, respectively.

Remark 4.3. Griffiths and Spanò [GS13] give the expression (4.18) for the transition kernel of the
process driven by LN,p, for p > 0, as an example of the usefulness of the kernel polynomials for the
Dirichlet multinomial distribution. However, to the best of our knowledge, we have not found a proof of
this result in the literature. For the sake of completeness we next provide a proof, which is similar to the
proofs of Propositions 4.7 and 4.10 in [KZ09].

Proof of Proposition 4.2. We know from Proposition 4.1-(b) that the multivariate polynomialsQη(·;N,µµµ, p)
defined by (4.11) are orthogonal in l2(REK,N , νN,p), for every p ≥ 0. Let us prove that they are the right
eigenfunctions of LN,p. Indeed, since the generator LN,p is reversible for the stationary distribution νN,p,
we have

〈LN,pPη, Pη′〉νN,p = 〈Pη,LN,pPη′〉νN,p ,
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for every pair of polynomials Pη and Pη′ on EK,N . Consider η ∈ EK−1,L, with L ∈ [N ]0, and Qη(x;N,µµµ, p)
the multivariate polynomial defined by (4.11) indexed by η. From Lemma 3.2, Theorem 1.2 and Propo-
sition 4.1-(a) we know that for every η ∈ EK−1,L, L ∈ [N ]0, we obtain

LN,pQη(· ;N,µµµ, p) = λL,pQη(· ;N,µµµ, p) +

L−1∑
n=0

∑
ξ∈EK−1,n

aξ Qξ(· ;N,µµµ, p),

where λL,p is given by (1.12) and aξ are real constants. Using Proposition 4.1-(b) and the fact that LN,p
is self-adjoint in l2(νN,p) we obtain

aξ = 〈LN,pQη(· ;N,µµµ, p), Qξ(· ;N,µµµ, p)〉νN,p = 〈Qη(· ;N,µµµ, p),LN,pQξ(· ;N,µµµ, p)〉νN,p = 0.

Note that the last equality holds because LN,pQξ(· ;N,µµµ, p) is a polynomial with total degree strictly
less that |ξ| < L, and thus orthogonal to Qη(· ;N,µµµ, p) in l2(νN,p). So, every polynomial Qη(· ;N,µµµ, p)
satisfies LN,pQη(· ;N,µµµ, p) = −λL,pQη(· ;N,µµµ, p), for η ∈ EK−1,L, and L ∈ [N ]0, proving that they are
right eigenfunctions of LN,p. Since the system (4.17) forms an orthogonal basis of REK,N , it forms an
eigenbasis of right eigenfunctions of REK,N .

The expression for the left eigenfunctions of LN,p simply comes from Remark 4.1. Finally, the decom-
position (4.18) for the transition kernel holds due to (4.1). �

The following result provides an explicit expression for the chi-square distance between the distribution
of the Markov process driven by LN,p starting at η and its stationary distribution at a given time t.

Corollary 4.3 (Explicit expression for the chi-square distance). For K ≥ 2, N ≥ 2 and p ≥ 0, we obtain
the following explicit expression for the -square distance between the distribution of the reversible process
driven by LN,p at time t and its stationary distribution:

χ2
η(t) =

N∑
L=1

e2λL,pthL(η, η; p), (4.19)

where λL,p is given by (1.12) and hL(η, η; p) is defined by (4.12) and (4.14), for p > 0 and p = 0,
respectively. In particular, when η = Nek, for k ∈ [K], the chi-square distance to stationarity reduces to

χ2
Nek

(t) =

N∑
L=1

e2λL,pt

(
N

L

)
(|ααα|+ 2L− 1)(|ααα|)(L−1)(|ααα| − αk)(L)

(|ααα|+N)(L)(αk)(L)
. (4.20)

Proof. Using Corollary 1.6 and Proposition 4.2 we obtain the following equality for the chi-square distance:

χ2
η(t) =

N∑
L=1

e2λLt
∑

ξ∈EK−1,L

Qξ(η;N,µµµ, p)2

d2
α,p

,

where d2
α,p is given as in Proposition 4.1. Note that

∑
ξ∈EK−1,L

Qξ(η;N,ααα)2/d2
α,p is the kernel polynomial

associated to νN,p. Thus, (4.19) and (4.20) simply comes from the expressions for the kernel polynomials
associated to νN,p in (4.12) and (4.14), respectively. �

We now take advantage of the explicit expression in (4.20) to prove the existence of a strongly optimal
cutoff in the chi-square distance for the multi-allelic Moran process with parent independent mutation
when N →∞. Let us first establish a result that will be very useful during the proof of Theorem 1.7.

Lemma 4.4 (Lemma A.2 in [NT20]). Let ψN ∈ (0, 1), for all N ∈ N, such that NψN → ∞, when
N →∞. Then, for all y ∈ R we have

lim
N→∞

dTV

(
Bin(N,ψN ),Bin

(
N,ψN +

√
ψN (1− ψN )

N
y

))
= 2Φ

(
1

2
|y|
)
− 1,

where where Bin(N,ψ) stands for the binomial distribution with N trials and probability of success ψ,
and Φ is the cumulative distribution function of the standard normal distribution, i.e.

Φ : t 7→
∫ t

−∞

1√
2π

e−s
2/2ds.

This lemma characterises the limit profile of the total variation distance between two random variables
B1 and B2, following binomial distributions, when the difference between their means is of the same order
of the standard deviation of B1/N . The proof can be found in the Appendix A.2 of the very recent work
of Nestoridi and Thomas [NT20].
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Proof of Theorem 1.7. Let us first prove the existence of the chi-square cutoff. When p = 0, we simply
use (4.16) to deduce that

χ2
Nek

(t) =

N∑
L=1

e−2L|µµµ|t
(
N

L

)(
|µµµ|
µk
− 1

)L
=

N∑
L=1

(
N

L

)[
e−2|µµµ|t

(
|µµµ|
µk
− 1

)]L
=

[
1 + e−2|µµµ|t

(
|µµµ|
µk
− 1

)]N
− 1.

Now, for tN,c =
lnN + c

2|µµµ|
we obtain

lim
N→∞

χ2
Nek

(tN,c) = lim
N→∞

[
1 +

e−c

N

(
|µµµ|
µk
− 1

)]N
− 1

= exp

{
−
(
|µµµ|
µk
− 1

)
e−c
}
− 1.

Now, since Kk,0 = |µµµ|/µk − 1, we have proved the existence of the limit (1.18) for p = 0.
Now, for p > 0 let us focus on expression (4.20). For every L ∈ N and k ∈ [K], let us denote

φL,k(N) :=
(|ααα|+ 2L− 1)(|ααα|)(L−1)(|ααα| − αk)(L)

(|ααα|+N)(L)(αk)(L)
.

We thus have

φL,k(N) :=
|ααα|+ 2L− 1

|ααα|+ L− 1

L−1∏
r=0

(|ααα|+ r)(|ααα| − αk + r)

L−1∏
r=0

(|ααα|+N + r)(αk + r)

=
N |µµµ|/p+ 2L− 1

N |µµµ|/p+ L− 1

L−1∏
r=0

(
N |µµµ|
p + r

)(
N(|µµµ|−µk)

p + r
)

L−1∏
r=0

(
N |µµµ|
p +N + r

)(
Nµk
p + r

)

=
N |µµµ|/p+ 2L− 1

N |µµµ|/p+ L− 1

[
|µµµ|(|µµµ| − µk)

µk(|µµµ|+ p)

]L L−1∏
r=0

(
1 + p

N |µµµ|r
)(

1 + p
N(|µµµ|−µk)r

)
L−1∏
r=0

(
1 + p

N(|µµµ|+p)r
)(

1 + p
Nµk

r
) .

Thus, for all L ∈ N we get

lim
N→∞

φL,k(N) =

[
|µµµ|(|µµµ| − µk)

µk(|µµµ|+ p)

]L
= (Kk,p)

L.

Moreover,

(
N

L

)
=

L−1∏
r=0

(N − r)

L!
=
NL

L!

L−1∏
r=0

(
1− r

N

)
∼
N

NL

L!
, and

e2λLtN = exp

{
−2
(
|µµµ|L+

p

N
L(L− 1)

)( ln(N) + c

2|µµµ|

)}
∼
N

exp {−(ln(N) + c)L} =
(e−c)L

NL
,

where for two sequences (fN ) and (gN ) the notation fN ∼
N
gN means fN − gN = o (gN ). According to

(4.13) we have

hL(Nek, Nek; p) =

(
N

L

)
(|ααα|+ 2L− 1)(|ααα|)(L−1)(|ααα| − αk)(L)

(|ααα|+N)(L)(αk)(L)
.

Plugging these asymptotic expressions in the L-th summand of (4.20) yields

lim
N→∞

e2λLtNhL(Nek, Nek; p) =
(Kk,p ec)L

L!
.
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Moreover,

e2λLtNhL(Nek, Nek; p) ≤ e−L(c+ln(N))hL(Nek, Nek; p)

=
e−cL

NL

(
N

L

)
|ααα|+ 2L− 1

ααα|+ L− 1

|ααα|(L)(|ααα| − αk)(L)

(|α|+N)(L)(αk)(L)

=
e−cL

L!

|ααα|+ 2L− 1

ααα|+ L− 1

L−1∏
r=0

[
N − r
N

|ααα|+ r

|ααα|+N + r

|ααα| − αk + r

αk + r

]
≤ 3

(γe−c)L

L!
,

where γ = max{1,Kk,0}.

For an arbitrary small ε > 0 let us consider M ∈ N such that 3

∞∑
L=M+1

(γe−c)L

L!
≤ ε

3
, and let Nε be a

positive integer such that ∣∣∣∣∣
M∑
L=1

e2λLtNhL(Nek, Nek; p)−
M∑
L=1

(Kk,p)
L

L!

∣∣∣∣∣ ≤ ε

3
,

for all N ≥ Nε. Note that
∞∑

L=M+1

(Kk,pe
−c)L

L!
≤ ε

3
.

Then, for all N ≥ Nε, using the triangular inequality we have∣∣∣∣∣
N∑
L=1

e2λLtNhL(Nek)−
(
exp{Kk,pe

−c − 1}
)∣∣∣∣∣ ≤ ε,

which concludes the proof for the chi-square cutoff for the process driven by LN,p, for p ≥ 0.
Let us now prove the existence of a total variation cutoff for the process driven by LN . Using (4.15)

and (4.18) we get

(etLN δξ)(Nek) = νN (ξ)

N∑
L=0

e−|µµµ|Lt
L∑

m=0

(
N

m

)(
N −m
L−m

)
(−1)L−m

(ξk)[m]

N[m]

(
µk
|µµµ|

)−m

= νN (ξ)

N∑
m=0

(
N

m

)
(ξk)[m]

N[m]

(
µk
|µµµ|

)−m N∑
L=m

e−|µµµ|Lt
(
N −m
L−m

)
(−1)L−m

= νN (ξ)
N∑
m=0

(
N

m

)
(ξk)[m]

N[m]

(
µk
|µµµ|

)−m
e−|µµµ|mt

N−m∑
L=0

e−|µµµ|Lt
(
N −m
L

)
(−1)L

= νN (ξ)

N∑
m=0

(
N

m

)
(ξk)[m]

N[m]

(
µk
|µµµ|

)−m
e−|µµµ|mt(1− e−|µµµ|t)N−m

= νN (ξ)(1− e−|µµµ|t)N
ξk∑
m=0

(
ξk
m

)[
µk
|µµµ|

e|µµµ|t(1− e−|µµµ|t)

]−m
= νN (ξ)(1− e−|µµµ|t)N

[
1 +

|µµµ|
µk(e|µµµ|t − 1)

]ξk
= νN (ξ)(1− e−|µµµ|t)N−ξk

[
(1− e−|µµµ|t) +

|µµµ|e−|µµµ|t

µk

]ξk
.

Thus, the process driven by LN starting at Nek at time t follows a M
(
· | N, (1− e−|µµµ|t) µµµ|µµµ| + e−|µµµ|tek

)
distribution, which proves Corollary 1.8. Moreover,

dTV
Nek

(t) =
1

2

∑
ξ∈EK,N

∣∣(etLN δξ)(Nek)− νN (ξ)
∣∣

=
1

2

∑
ξ∈EK,N

νN (ξ)

∣∣∣∣∣(1− e−|µµµ|t)N−ξk
[
1− e−|µµµ|t +

|µµµ|e−|µµµ|t

µk

]ξk
− 1

∣∣∣∣∣
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=
1

2

N∑
L=0

∑
ξ∈EK,N :
ξk=L

νN (ξ)

∣∣∣∣∣(1− e−|µµµ|t)N−ξk
[
1− e−|µµµ|t +

|µµµ|e−|µµµ|t

µk

]ξk
− 1

∣∣∣∣∣
=

1

2

N∑
L=0

(
N

L

)(
µk
|µµµ|

)L(
1− µk
|µµµ|

)N−L ∣∣∣∣∣(1− e−|µµµ|t)N−L
[
1− e−|µµµ|t +

|µµµ|e−|µµµ|t

µk

]L
− 1

∣∣∣∣∣
= dTV

(
Bin

(
N,

µk
|µµµ|

)
,Bin

(
N,

µk
|µµµ|

(1− e−|µµµ|t) + e−|µµµ|t
))

.

Then, we have proved that we can write dTV (t,Nek) as the total variation distance between two binomial
distributions with parameters N both and probabilities of success πk = µk/|µµµ| and π̃k = πk(1− e−|µµµ|t) +
e−|µµµ|t, respectively. For tN,c = lnN+c

2|µ| we get

π̃k = πk +

√
πk(1− πk)√

N

√
1− πk
πk

e−c/2.

Then, using Lemma 4.4 we obtain

lim
N→∞

dTV
Nek

(t) = 2Φ

(
1

2

√
Kk,0e−c

)
− 1,

where Kk,0 = 1−qk
qk

= |µµµ|
µk
− 1.

�

5. Discussion and open problems

In this paper we have studied the spectral properties of the neutral multi-allelic Moran model with
irreducible mutation rate matrix Q. We have explicitly described the spectrum of the neutral multi-allelic
Moran process using the spectrum of Q. The fact that diagonalisable matrices are dense in the space of
real matrices allowed us to extend our results about the spectrum of QN,p, for p ≥ 0, to processes with
irreducible rate matrices non necessarily diagonalisable. Moreover, when Q is diagonalisable we have
proved that the composition chain driven by QN is also diagonalisable and we have described the set of
right eigenvalues using the symmetrised tensor products of the right eigenvalues of Q.

The neutral multi-allelic Moran process was proved to be reversible if and only if the mutation scheme
is parent independent. In this case, we have studied the spectral properties of LN,p, which allowed us to
provide non-asymptotic bounds for the speed of convergence to stationarity and to prove the existence of
a strongly optimal cutoff in chi-square and total variation distances when p ≥ 0 and p = 0, respectively.

There are lots of future directions to explore for the further study in order to better understand Moran
models. Despite the fact that it is non-reversible in general, the neutral multi-allelic Moran model with
reversible mutation process seems an interesting model for both theoretical and practical reasons (cf.
[SH17]). One possible first step to study the eigenfunctions of QN,p when Q is reversible, could be the
study of the eigenfunctions of the generator of the reproduction process AN , for K ≥ 3, extending the
results in [Zho08, Section 4.2.2].

There are several ways to continue the study of the existence of cutoff phenomena for Moran processes.
For example, using the results of Zhou and Lange [ZL09], it could be possible to prove the existence of a
(strongly optimal) chi-square cutoff for the composition chain, when the process driven by the mutation
matrix is reversible. Two possible generalisations of Theorem 1.7 could be to prove the existence of a
total variation cutoff phenomenon for the Moran process with general mutation rate matrix and studying
the existence of cutoff for the Moran process with parent independent mutation, when initially all the
individuals are not of the same type.

A further study of the exponential ergodicity of the Moran process driven by QN,p could be carried
out by studying the Dirichlet form of the Moran process. The results in this direction of the recent paper
of Hermon and Salez [HS19] for the zero range process could be applied to the mutation process driven
by QN , in order to bound its Poincaré’s constant. It would be very interesting to obtain a result in the
spirit of Aldous’ conjecture to control the spectral of QN,p using the spectral gap of Q, i.e. something
similar to Theorem 2 in [HS19], but for the neutral multi-allelic Moran process driven by QK,N,p.

Another interesting problem to address is the study of the spectrum of the multi-allelic Moran process
with selection. Under selection at birth the infinitesimal rate matrix of the process is reversible, but
an explicit expression for its spectral gap is unknown. The multi-allelic Moran process with selection
at death, i.e. with generator given by (1.19), seems more complicated from the spectral point of view
because it is non-reversible. However, this process is very interesting in population genetics and also for
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its interpretation as Fleming – Viot particle system, which approximates the quasi-stationary distribution
of a continuous-time Markov chain. We believe that the exact results on the neutral Moran process will
offer clues on the study of the spectrum of the more complicated Moran processes with selection.

Appendix A. Proofs of Lemmas 2.1 and 2.3, and Proposition 2.4

This section is devoted to the proofs of Lemmas 2.1 and 2.3, and Proposition 2.4.

Proof of Lemma 2.1. (a) Let us first prove that for any α ∈ EK,N , there exists a unique polynomial
Pα ∈ HK,N , product of N linear functions on HK,1, such that Pα(η) = 1 if η = α and 0 otherwise.
Indeed, let us define the polynomial Pα by

Pα : x ∈ EK,N 7→
K∏
k=1

αk−1∏
a=0

xk − a
αk − a

,

where
∏αk−1
a=0 (xk−a) = 1 when αk = 0. Note that Pα = 1α, for every α ∈ EK,N . There are

∑K
k=1 αk = N

linear factors in the numerator. Also, each term xk− a may be replaced by xk− a
N

∑K
k=1 xk when a 6= 0,

so Pα(x) may be considered as a product of N linear functions on HK,1, and because the uniqueness of
such a function Pα is straightforward, (a) is proved.

Now, for every real function f on EK,N , the result is immediately obtained from (a) by setting

P :=
∑

α∈EK,N

f(α)Pα.

(b) From part (b) we have that BHK,N is a generator system of REK,N . Moreover,

Card(BHK,N ) = Card(EK,N ) = dim(REK,N ) =

(
K − 1 +N

N

)
,

thus BHK,N is necessarily a basis of REK,N . �

Proof of Lemma 2.3. (a) For L = 1: An injection s : {1} → {1, 2, . . . , N} is characterised by s(1) = i. It
follows from (2.5) that

ξ(V1)(k1, k2, . . . , kN ) =

N∑
i=1

V1(ki),

which is a symmetric function. For every η = (η(1), η(2), . . . , η(K)) ∈ EK,N , we have

ξ̃(V1)(η) = (ξ(V1) ◦ ψK,N )(η) =

K∑
j=1

V1(j)η(j),

which finishes the proof of part (a).
(b) From (2.5), we get

ξ(V1, V2, . . . , VL) =
∑

s∈IL−1,N

V1(ks(1))V2(ks(2)) . . . VL−1(ks(L−1))
∑

i∈[N ]\s([L−1])

VL(ki)

=
∑

s∈IL−1,N

V1(ks(1))V2(ks(2)) . . . VL−1(ks(L−1))

(
N∑
i=1

VL(ki)−
L−1∑
i=1

VL(ks(i))

)
= ξ(V1, V2, . . . , VL−1)(k1, k2, . . . , kN )ξ(VL)(k1, k2, . . . , kN )

−
L−1∑
i=1

ξ(V1, . . . , Vi,L, . . . , VL−1)(k1, k2, . . . , kN ).

Using (2.7) we obtain the result for ξ̃(V1, V2, . . . , VL). The particular case L = 2 comes from part (a).
(c) We can prove equation (2.8) by induction on L. For L = 1 the result easily comes by (a). If we

suppose that (2.8) is satisfied for L, for 2 ≤ L < N − 1, then, using (b) and (a), we can check that (2.8)
holds for L+ 1. �

Proof of Proposition 2.4. Since U is a basis of RK we trivially have that UN is a basis of R[K]N , proving
(a) (cf. Lemma 12.12 in [LP17]). To prove (b) we prove that each element of UN has image in SN by
Sym, defined as in (1.5). First, Sym(U0 ⊗ · · · ⊗U0) = U0 ⊗ · · · ⊗U0, since the constant function equal to
one is symmetric. Furthermore, for every W = W1⊗W2⊗· · ·⊗WN ∈ UN there is a permutation σ ∈ SN
such that σW = Uη, with η ∈ EK−1,L, where L ∈ [N ] is the number of components in the expression
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of W different from U0. Thus, Sym(W ) = Sym(σW ) = Vη, for η ∈ EK−1,L. We have not proved that

Vη 6= Vα, for η 6= α. However, SN is a generator system of Sym(R[K]N ) satisfying

Card
(
SN
)
≤ 1 +

N∑
L=1

Card(EK−1,L)

=

N∑
L=0

(
K − 2 + L

L

)
=

(
K − 1 +N

N

)
,

where the last equality is the well-known Hockey – Stick identity in combinatorics, see e.g. [LPV03]. Now,
since

dim
(

Sym
(

R[K]N
))

=

(
K − 1 +N

N

)
,

we have that SN is a generator system with a minimal number of vectors, therefore it is a basis of

Sym(R[K]N ). To prove (c) simply note that each element in S̃N is the image by the isomorphism ΦK,N
of an element in SN . �

Appendix B. Proof of Lemma 3.3

Proof of Lemma 3.3. Let us first prove that if m is a monomial on EK,N of total degree |α| = L with
0 ≤ L ≤ N . Then,

ANVm = −L(L− 1)Vm + Vq,

where q is a polynomial with a total degree strictly less than L.
As we commented in Remark 3.4, the result is true for L = 1. Let us assume L ≥ 2 and consider the

monomial m : η 7→
∏K
r=1 η(r)αr . Evaluating Vm in AN , defined by (1.4), we obtain

(ANVm)(η) =
∑

k,r:k 6=r

 ∏
s/∈{k,r}

η(s)αs

 [(η(k)− 1)αk(η(r) + 1)αr − η(k)αkη(r)αr ] η(k)η(r), (B.1)

for all η ∈ EK,N . Then, from the Newton’s binomial formula, we get

η(k)(η(k)− 1)αk = η(k)αk+1 − αkη(k)αk +
αk(αk − 1)

2
η(k)αk−1 + a(η(k)),

where a(η(k)) is a polynomial in η(k) with degree strictly less than αk − 1 if αk ≥ 2 and null otherwise.
In the same way, we get

η(r)(η(r) + 1)αr = η(r)αr+1 + αrη(r)αr +
αr(αr − 1)

2
η(r)αr−1 + b(η(r)),

where b(η(r)) is a polynomial in η(r) with degree strictly less than αr − 1 if αr ≥ 2 and null otherwise.
Using this expansion in (B.1) and regrouping terms with total degree in η(k) and η(r) strictly less

than αk + αr give

(ANVm)(η) =
∑

k,r:k 6=r

 ∏
s/∈{k,r}

η(s)αs

 (αrη(k)αk+1η(r)αr − αkη(k)αkη(r)αr+1)

+
∑

k,r:k 6=r

 ∏
s/∈{k,r}

η(s)αs

 αr(αr − 1)

2
η(k)αk+1η(r)αr−1

−
∑

k,r:k 6=r

 ∏
s/∈{k,r}

η(s)αs

αkαrη(k)αkη(r)αr (B.2)

+
∑

k,r:k 6=r

 ∏
s/∈{k,r}

η(k)αk

 αk(αk − 1)

2
η(k)αk−1η(r)αr+1 + w(η),

where w is a polynomial in η of total degree strictly less than
∑
k αk = L. The first sum in the right

member of (B.2) may be written

∑
k,r:k 6=r

 ∏
s/∈{k,r}

η(s)αs

αrη(k)αk+1η(r)αr = p(η)
∑

k,r:k 6=r

(αrη(k)− αkη(r)) = 0,



SPECTRUM OF A NEUTRAL MORAN MODEL 33

by antisymmetry in k, r of the summand. The third term is

−
∑

k,r:k 6=r

 ∏
s/∈{k,r}

η(s)αs

αkαrη(k)αkη(r)αr = −c1p(η),

with

c1 =
∑

k,r:k 6=r

αkαr =

(
K∑
k=1

αk

)2

−
K∑
k=1

α2
k = L2 −

K∑
k=1

α2
k.

By symmetry in k and r, it is obvious that the second and the fourth sums in the right member of
(B.2) are equal. Using

αr(αr − 1)η(r)αr−1 = η(r)
∂2

∂η(r)2
η(r)αr ,

it follows that∑
k 6=r

 ∏
s/∈{k,r}

η(s)αs

αr(αr − 1)η(k)αk+1η(r)αr−1 =
∑

k,r:k 6=r

η(k)η(r)
∂2

∂η(r)2
m(η)

=
∑
k,r

η(k)η(r)
∂2

∂η(r)2
m(η)−

K∑
k=1

η(r)2 ∂2

∂η(r)2
m(η)

= N
K∑
r=1

η(r)
∂2

∂η(r)2
m(η)−

K∑
r=1

η(r)2 ∂2

∂η(r)2
m(η).

The first summand in the last equality is an homogeneous polynomial of degree L−1 and the second one
satisfies

−
K∑
r=1

η(r)2 ∂2

∂η(r)2
m(η) = −c2 m(η),

with

c2 =

K∑
r=1

αr(αr − 1) =

K∑
r=1

α2
r − L.

As a conclusion, it comes from (B.2) that

ANVm = −(c1 + c2)Vm + Vq = −L(L− 1)Vm + Vq,

where q is a polynomial of total degree strictly less than L, which proves (a).
Now, a polynomial P of total degree L may be written, in a unique way as P = PL +R, where PL is

a non-null homogeneous polynomial of degree L and R is a polynomial of total degree strictly less than
L. Note that PL =

∑
i∈I mi, where I is finite and mi is a monomial of degree L, for i ∈ I. Thus, (a)

implies that ANVmi = −L(L− 1)Vmi + Vqi , for all i ∈ I where qi has a total degree strictly less than L.
Also, ANVR = VR′ where R′ is a polynomial with total degree strictly less than L. Therefore,

ANVp =
∑
i∈I
ANVmi +ANVR

= −L(L− 1)
∑
i∈I

Vmi +
∑
i∈I

Vqi + VR′

= −L(L− 1)VP + VR′′ ,

where R′′ has total degree strictly less than L.
�

Appendix C. Proof of Theorem 1.5

First we prove Lemma C.1 showing that the neutral multi-allelic Moran process driven by QN,p is
reversible if and only if its mutation rate matrix can be written in the form of Qµµµ, given by (1.11). We
start by proving that when the neutral multi-allelic Moran process is reversible, then all the entries of
the mutation matrix are positive and it can be written in the form of Qµµµ, i.e. the “only if part”. Later, in
Lemma C.2 we prove that the process driven by LN,p is reversible and we provide the explicit expression
for its stationary distribution, i.e. we prove the “if part”. Actually, the results in Lemma C.2 are proved
for a more general Moral model with selection at reproduction.
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Lemma C.1. If the process driven by the generator (1.2) is reversible, then µi,j = µj > 0, for all i ∈ [K],
and every j ∈ [K], j 6= i.

Proof. We first prove that if the process is reversible, then all the entries of the mutation matrix are
positive. Let us denote by νN,p the stationary probability measure of the process driven by QN,p, which
is assumed to be reversible. We denote QN,p[η, ξ] := (QN,pδξ)(η), for all η, ξ ∈ EK,N . Consider the states

η(1) and η(2) defined as η(1) := Nei and η(2) := η(1) − ei + ej , for i, j ∈ [K] such that i 6= j. Since the
process is reversible, the measure νN satisfies the balance equation

νN,p(η
(1))QN,p[η(1), η(2)] = νN,p(η

(2))QN,p[η(2), η(1)],

see e.g. [Kel79, Theorem 1.3]. We have

QN,p[η(1), η(2)] = Nµi,j , and

QN,p[η(2), η(1)] = µj,i + p(N − 1)/N > 0.

Furthermore, since the process is irreducible we have that νN (η) > 0, for all η ∈ EK,N . Finally, the
balance equation implies that µi,j > 0, for all i 6= j.

Now, we prove that for every j ∈ [K] we have µi,j = µj > 0, for all i ∈ [K]. For K = 2, there is nothing
to prove. For K ≥ 3, N ≥ 2, let us consider a general model with a reversible stationary probability.
Let i, j, k be three different indices on [K] and consider the four states η(1), η(2), η(3) and η(4) in EK,N
defined by

η(1) := Nei, η(2) := η(1) − ei + ej , η(3) := η(1) − 2 ei + ej + ek, η(4) := η(1) − ei + ek.

Note that

QN,p[η(1), η(2)] = Nµi,j , QN,p[η(2), η(1)] = µj,i + (N − 1)p/N,
QN,p[η(2), η(3)] = (N − 1)µi,k, QN,p[η(3), η(2)] = µk,i + (N − 2)p/N,
QN,p[η(3), η(4)] = µj,i + (N − 2)p/N, QN,p[η(4), η(3)] = (N − 1)µi,j ,
QN,p[η(4), η(1)] = µk,i + (N − 1)p/N, QN,p[η(1), η(4)] = Nµi,k.

Then,

QN,p[η(4), η(1)]

N(N − 1)

3∏
r=1

QN,p[η(r), η(r+1)] = µi,jµi,k

(
µj,i + p

N − 2

N

)(
µk,i + p

N − 1

N

)
,

QN,p[η(1), η(4)]

N(N − 1)

3∏
r=1

QN,p[η(r+1), η(r)] = µi,kµi,j

(
µj,i + p

N − 1

N

)(
µk,i + p

N − 2

N

)
.

Therefore, since the stationary probability is reversible, the Kolmogorov cycle reversibility criterion
[Kel79, Theorem 1.8] holds:

QN,p[η(4), η(1)]

3∏
r=1

QN,p[η(r), η(r+1)] = QN,p[η(1), η(4)]

3∏
r=1

QN,p[η(r+1), η(r)],

and we get p(N − 1)µi,jµi,k(µj,i−µk,i) = 0. We know that µi,j > 0 for all i, j ∈ [K], thus µj,i = µk,i, for
all j, k ∈ [K], with j 6= k, and every i ∈ [K], with i /∈ {j, k}. Denoting µj := µi,j for any i ∈ [K], with
i 6= j, we prove that the mutation matrix is of the form of Qµµµ for a suitable vector µµµ.

�

It remains to prove that the stationary distribution of LN,p is compound Dirichlet multinomial with
suitable parameters. Actually, a more general version of Theorem 1.5 can be proved, where the values
of the parameter p in (4.2) also depend on j, i.e. a model with selection at reproduction or fecundity
selection [MW09]. Abusing notation, for two vectors ppp = (p1, p2, . . . , pK) and µµµ = (µ1, µ2, . . . , µK) such
that pj , µj > 0, for all j ∈ [K], let us denote by LN,ppp the infinitesimal generator satisfying

(LN,pppf)(η) :=

K∑
i,j=1

η(i)

(
µj + pj

η(j)

N

)
[f(η − ei + ej)− f(η)] , (C.1)

for every function f on EK,N and all η ∈ EK,N . We define the weighted Dirichlet-compound multinomial
distribution with parameters N , µµµ and ppp, denoted WDM(· | N,µµµ,ppp), as follows

WDM(η | N,µµµ,ppp) := Z−1

(
N

η

) K∏
k=1

p
η(k)
k (αk)(η(k)), (C.2)
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for all η ∈ EK,N , where αk = µk/pk, for all k ∈ [K] and Z is a normalisation constant satisfying

Z = E


 K∑
j=1

pjXj

N
 , (C.3)

where (X1, X2, . . . , XK) follows a MD(· | N,Nµµµ). Note that the measure defined by (C.2) with the
normalisation constant (C.3) is a probability distribution. See [JKB97] and [NRdA06] for more details
about the weighted multinomial distributions.

Lemma C.2 (Reversible probability of LN,ppp). The process driven by (C.1) is reversible and its stationary
distribution is WDM(· | N,ααα,ppp), where αk = Nµk, for all k ∈ [K].

Remark C.1. This result is known for multi-allelic Moran models with parent independent mutation.
See e.g. [EG09, Section 3]. However, we have not found a proof in the literature. So, for the sake of
completeness we provide a proof. When the vector ppp is constant we obtain the stationary distribution of
the neutral case and we thus conclude the proof of Theorem 1.5.

Proof of Lemma C.2. Let us define qk := pk/N , for k ∈ [K] and, abusing notation, LN,ppp[η, ξ] :=
LN,pppδξ(η), for all η, ξ ∈ EK,N . Note that for η, ξ ∈ EK,N with η 6= ξ, we have LN,ppp[η, ξ] 6= 0 if and
only if there exist i, j ∈ [K], such that i 6= j, η(i) > 0 and ξ = η − ei + ej . In this case

LN,ppp[η, ξ] = η(i)[µj + η(j)qj ].

This implies that ξ(j) = η(j) + 1 > 0 and η = ξ − ej + ei. As a consequence

LN,ppp[ξ, η] = ξ(j)[µi + ξ(i)qi] = (η(j) + 1)[µi + (η(i)− 1)qi].

Also η(k) = ξ(k), for all k 6= i, k 6= j.
Therefore we get,

Z WDM(η | N,µµµ,ppp)LN,ppp[η, ξ] =

(
N

η

)[ K∏
k=1

q
η(k)
k

(
µk
qk

)
(η(k))

]
η(i)[µj + η(j)qj ]

=
N !∏

k/∈{i,j}
η(k)!

1

η(i)!η(j)!

 K∏
k=1

η(k)−1∏
l=0

(µk + l qk)

 η(i)[µj + η(j) qj ], (C.4)

where Z is the normalisation constant given by (C.3). Note that

N !∏
k/∈{i,j}

η(k)!

K∏
k/∈{i,j}

η(k)−1∏
l=0

(µk + l qk) =
N !∏

k/∈{i,j}
ξ(k)!

K∏
k/∈{i,j}

ξ(k)−1∏
l=0

(µk + l qk), (C.5)

because η(k) = ξ(k), for k /∈ {i, j}. Moreover,

1

η(i)! η(j)!
η(i) =

1

(η(i)− 1)! η(j)!
=

1

ξ(i)! (ξ(j)− 1)!
=

1

ξ(i)! ξ(j)!
ξ(j), (C.6)

because ξ(i) = η(i)− 1 and ξ(j) = η(j) + 1. In addition,

η(i)−1∏
l=0

(µi + l qi) =

ξ(i)∏
l=0

(µi + l qi) = (µi + ξ(i) qi)

ξ(i)−1∏
l=0

(µi + l qi), (C.7)

and η(j)−1∏
l=0

(µj + l qj)

 [µj + η(j) qj ] =

η(j)∏
l=0

(µj + l qj) =

ξ(j)−1∏
l=0

(µj + l qj). (C.8)

Using (C.5), (C.6), (C.7) and (C.8) in (C.4) gives

WDM(η | N,µµµ,ppp)LN,ppp[η, ξ] = Z−1

(
N

ξ

)[ K∏
k=1

p
ξ(k)
k

(
µk
pk

)
(ξ(k))

]
ξ(j)[µi + ξ(i)pi]

= WDM(ξ | N,µµµ,ppp)LN,ppp[ξ, η],

for all η, ξ ∈ EK,N . The distribution νN satisfies the detailed balance property, thus it is reversible for
LN,ppp, and it is the unique stationary measure, because the process generated by LN,ppp is irreducible.

�
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d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School]. MR 2759587
[Fen10] S. Feng, The Poisson-Dirichlet distribution and related topics, Probability and its Applications (New York),

Springer, Heidelberg, 2010, Models and asymptotic behaviors. MR 2663265
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[GS13] R. C. Griffiths and D. Spanò, Orthogonal polynomial kernels and canonical correlations for Dirichlet measures,

Bernoulli 19 (2013), no. 2, 548–598. MR 3037164



SPECTRUM OF A NEUTRAL MORAN MODEL 37

[HM87] G. Harris and C. Martin, The roots of a polynomial vary continuously as a function of the coefficients, Proc.

Amer. Math. Soc. 100 (1987), no. 2, 390–392. MR 884486
[HS19] J. Hermon and J. Salez, A version of Aldous’ spectral-gap conjecture for the zero range process, Ann. Appl.

Probab. 29 (2019), no. 4, 2217–2229. MR 3984254

[Ism05] M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics
and its Applications, vol. 98, Cambridge University Press, Cambridge, 2005, With two chapters by Walter Van

Assche, With a foreword by Richard A. Askey. MR 2191786

[IX07] P. Iliev and Y. Xu, Discrete orthogonal polynomials and difference equations of several variables, Adv. Math.
212 (2007), no. 1, 1–36. MR 2319761

[JKB97] N. L. Johnson, S. Kotz, and N. Balakrishnan, Discrete multivariate distributions, Wiley Series in Probability and
Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1997, A Wiley-Interscience

Publication. MR 1429617

[JKK05] N. L. Johnson, A. W. Kemp, and S. Kotz, Univariate discrete distributions, third ed., Wiley Series in Probability
and Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2005. MR 2163227

[Kel79] F. P. Kelly, Reversibility and stochastic networks, John Wiley & Sons, Ltd., Chichester, 1979, Wiley Series in

Probability and Mathematical Statistics. MR 554920
[KLS10] R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues,

Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010, With a foreword by Tom H. Koornwinder.

MR 2656096
[KM65] S. Karlin and J. McGregor, Ehrenfest urn models, J. Appl. Probability 2 (1965), 352–376. MR 184284

[KM75] , Linear growth models with many types and multidimensional Hahn polynomials, Theory and application
of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), 1975,

pp. 261–288. Math. Res. Center, Univ. Wisconsin, Publ. No. 35. MR 0406574

[KZ09] K. Khare and H. Zhou, Rates of convergence of some multivariate Markov chains with polynomial eigenfunctions,
Ann. Appl. Probab. 19 (2009), no. 2, 737–777. MR 2521887

[Lac15] H. Lacoin, A product chain without cutoff, Electron. Commun. Probab. 20 (2015), no. 19, 9. MR 3320407

[Lan02] S. Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002.
MR 1878556

[LP17] D. A. Levin and Y. Peres, Markov chains and mixing times, American Mathematical Society, Providence, RI,

2017, Second edition of [ MR2466937], With contributions by E. L. Wilmer, With a chapter on “Coupling from
the past” by J. G. Propp and D. B. Wilson. MR 3726904

[LPV03] L. Lovász, J. Pelikán, and K. Vesztergombi, Discrete mathematics, Undergraduate Texts in Mathematics,

Springer-Verlag, New York, 2003, Elementary and beyond. MR 1952453
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