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Bounding signed series-parallel graphs and
cores of signed K4-subdivisions

Reza Naserasr, Zhouningxin Wang *

Abstract

We study homomorphism properties of signed K4-minor-free graphs. On
the one hand we give a necessary and sufficient condition for a signed graph
B to admit a homomorphism from any signed K4-minor-free graph and we
determine the smallest of all such signed graphs. On the other hand, we
characterize the minimal cores that do not belong to the class of signed K4-
minor-free graphs. This, in particular, gives a classification of odd-K4’s that
are cores. Furthermore, we show some applications of our work.

Keywords: graph homomorphisms, signed graphs, minor of graphs, series-

parallel graphs

1 Introduction

The class of K4-minor-free graphs, also known as series-parallel graphs, is of

special importance in the study of the homomorphism properties of graphs. On

the one hand, restriction to closely related subclasses such as outerplanar graphs

reduces the homomorphism relation to the study of finding odd-girth of graphs;

indeed Gerards proved in [7] that the core of any outerplanar graph is its shortest

odd cycle. On the other hand, Hubička and Nešetřil proved, in [8], that the ho-

momorphism order on the class of K4-minor-free graphs is a universal countable

order, i.e., it contains an isomorphic copy of any countable order.

*Université de Paris, IRIF, CNRS, F-75013 Paris, France. E-mails:{reza,wangzhou4}@irif.fr.
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The study of homomorphism properties of K4-minor-free graphs becomes

even more appealing by the observation that this is precisely the class of graphs

of tree-width at most 2.

Recall that the property of no K4-minor for a graph is equivalent to the prop-

erty of no K4-subdivision [5]. This leads to a study of the homomorphism prop-

erties of minimal graphs that do not belong to the class of graphs of tree-width at

most 2.

A development of homomorphisms of signed graphs has begun recently in

[11] (see also [12]). This is of high interest because it provides a framework for

stronger relation between minor theory and homomorphisms of graphs. Thus in

this paper we are interested in the study of homomorphism properties for K4-

minor-free signed graphs or the minimal graphs not belonging to this family.

On the one hand, we provide a necessary and sufficient condition for a signed

(simple) graph to admit a homomorphism from any K4-minor-free signed graph

and we determine the smallest of such graphs. On the other hand, we determine

which signed subdivisions of K4 are cores. The latter could be used as a tool in

the study of some conjectures such as Jaeger-Zhang [14] conjecture or its bipartite

analogue [11] (see in Section 5). Characterizing subdivisions of K4 which are

cores as graphs (without a signature) is a special case of our result. Because of an

independent interest of this case, it is considered in Section 4.2.1 without using

the notion of sign or signature.

The paper is organized as follows. In the next section, we settle our choice

of terminology and mention basic tools in the study of homomorphisms of signed

graphs. We note that there are competing terminologies as the theory of signed

graphs is being developed from different areas. In Section 3, we prove a neces-

sary and sufficient condition for a signed graph to bound the class of signed K4-

minor-free graphs and we find the smallest of such bounds. This is a notion of

chromatic number of signed graphs, noting that there are other interesting notions
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of chromatic number of signed graphs. In Section 4, we classify all the signed

subdivisions ofK4 that are cores. In Section 5, we explain how this could be used

as a tool in other homomorphism problems. Finally in Section 6, we address the

future direction of study and mention a few open problems.

2 Preliminary

We consider simple graphs. Given a graph G, a walk in G is an alternating

sequence of vertices and edges which starts and ends at vertices, where an edge e

of the sequence lies in between its two endpoints. A closed walk is a walk where

the start and end vertices are the same. Closed walks are rather viewed in a cyclic

order, thus losing the importance of the start point. A path in G is a walk of G

where all vertices are distinct (thus all edges are distinct as well). A thread in G

is a path where all the vertices are of degree 2 except possibly the starting and

ending points of the path. For a graph G on at least 3 vertices, a cycle in G is

a closed walk with distinct edges and vertices in the sequence except the staring

and ending points.

Given an edge uv ∈ E(G), to subdivide an edge uv of a graph G is to replace

it with a u-v thread P . The length of the subdivision of an edge uv is the length

of P . A subdivision of a graph G is a graph G′ which is obtained from G by

subdividing some or all edges of G. A subdivision of G sometimes is referred to

as a G-subdivision.

Given an edge uv ∈ E(G), to contract an edge uv of a graph G is to remove

it and merge its two endpoints. A minor of G is a graph H obtained from G by a

sequence of operations: deleting vertices, deleting edges and contracting edges in

any order. We say that G has an H-minor if it admits H as its minor, otherwise G

is said to be H-minor free.

It is easily observed that if G is a subdivision of H , then H is a minor of G.
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The converse is not always true, but in the following special case it is.

Lemma 2.1. [5] Let H be a graph with ∆(H) ≤ 3. A graph G has an H-minor

if and only if G has an H-subdivision as a subgraph.

2.1 signed graph

A signed graph (G, σ) is a pair consisting of a graph G and an assignment σ :

E(G) → {+,−}. In our figures, we use a dashed line to present a negative edge

and a solid line to present a positive edge. A signed graph (H,π) is a subgraph

of signed graph (G, σ) if H is a subgraph of G and π = σ|E(H). A signed graph

where all edges are negative is denoted by (G,−) and a signed graph where all

edges are positive is denoted by (G,+). The sign of a closed walk is the product

of signs of its edges (allowing repetition).

Given a signed graph (G, σ) and a vertex v, a switch at vertex v is to switch

the signs of edges which are incident to v. A signed graph (G, σ) is a switch

of (G, σ′) if it is obtained from (G, σ′) by a sequence of switchs at vertices, in

which case we may also say σ′ is a switch of σ and (G, σ) is switching equivalent

to (G, σ′).

Observe that the sign of a closed walk, and in particular the sign of a cycle

is invariant under switch. Zaslavski proved that the inverse is also true in the

following sense:

Proposition 2.2. [13] Two signed graphs (G, σ1) and (G, σ2) are switching equiv-

alent if and only if they have the same set of negative cycles.

Closed walks, as the key structures of a signed graph, are of four possible

types based on their sign and the parity of their length. As sign itself is the parity

of the number of negative edges, one may use elements of Z2
2 to denote these

four types. More precisely: a positive odd closed walk in (G, σ) is of type 01, a

negative odd closed walk in (G, σ) is of type 11, a positive even closed walk in
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(G, σ) is of type 00 and a negative even closed walk in (G, σ) is of type 10. Given

a signed graph (G, σ), gij(G, σ) denotes the length of the smallest closed walks

of type ij in (G, σ). When there is no closed walk of type ij we set gij =∞.

Observe that g00(G, σ) = 2 as long as G has at least one edge. It is shown in

[12] that of the other three values, g01(G, σ), g10(G, σ) and g11(G, σ) if one is∞,

then at least two of them are∞. This leads to three special subclasses of signed

graphs: the G01 consisting of signed graphs (G, σ) which can be switched to

(G,+) (thus g10 = g11 =∞ for every member of this family), the G11 consisting

of signed graphs (G, σ) which can be switched to (G,−) (then g10 = g01 = ∞)

and the G10 consisting of signed bipartite graphs (where g01 = g11 =∞). These

subclasses are of special importance in the study of homomorphisms of graphs

and signed graphs, we refer to [12] for more details.

Observe that for any signed graph in Gij , every cycle of it is either of type 00

or of type ij. A positive (negative) cycle of length l will be denoted by C+
l (C−l ).

2.2 Homomorphisms and bounds

A homomorphism of a signed graph (G, σ) to another signed graph (H,π) is

a mapping ϕ from V (G) and E(G) to V (H) and E(H) (respectively) such that

the adjacencies, the incidences and the signs of closed walks are preserved. When

there exists a homomorphism of (G, σ) to (H,π), we write (G, σ) → (H,π). A

homomorphism of (G, σ) to (H,π) is said to be an edge-sign-preserving homo-

morphism if it also preserves the signs of the edges. For more on homomorphisms

of signed graphs we refer to [11] and [12].

The core of a signed graph (G, σ) is the smallest subgraph (H,π) of (G, σ)

such that (G, σ) → (H,π). A signed graph (G, σ) is a core if its core is itself.

Cycles which are not of type 00 are examples of signed graphs that are cores.

The following no-homomorphism lemma is an immediate consequence of the

definition:
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Lemma 2.3. If (G, σ)→ (H,π), then gij(G, σ) ≥ gij(H,π) for ij ∈ Z2
2.

For most other applications of homomorphism of signed graphs, we use the

condition from the following theorem.

Theorem 2.4. [12] A signed graph (G, σ) admits a homomorphism to a signed

graph (H,π) if and only if there exists a switch σ′ of σ such that (G, σ′) admits

an edge-sign-preserving homomorphism to (H,π).

Using this reformulation, one observes that restriction of homomorphisms of

signed graphs to the class G01 (or G11) is the classic notion of homomorphisms of

graphs. Furthermore, it is shown, in [11], that restriction on the class G10 already

captures the notion of graph homomorphism via a simple graph operation.

Given a signed graph B and a class C of signed graphs, we say B bounds

the class C if every member of C admits a homomorphism to B. The most well-

known example of a bound is a reformulation of the four color theorem which says

(K4,+) (resp. (K4,−)) bounds the class of planar graphs in G01 (resp. G11).

A main question of importance then is the following. Given a class C of

signed graphs and a signed graph B, are the necessary conditions of Lemma 2.3

also sufficient? In other words, does every signed graph (G, σ) ∈ C satisfying

gij(G, σ) ≥ gij(B) admits a homomorphism to B? If so, then we say B is C-

easy. It is not hard to check that the four color theorem is equivalent to claiming

that:

Theorem 2.5 (4CT, restated). The signed graph (K4,+) is planar-easy, and so

is (K4,−).

Some other conjectures and results can also be nicely presented in this lan-

guage.

For SSPG being the class of signed series-parallel graphs and for a signed

graph B which is in one of the three special classes Gij , ij ∈ {01, 10, 11}, a

necessary and sufficient condition for B to be SSPG-easy is given in [2] and [3].
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Our work in the next section is a first step towards a generalization of this

work where B can be chosen among all signed graphs. More precisely, we give a

necessary and sufficient condition for a simple signed graph B to bound the class

of signed K4-minor-free graphs. On the other hand it is shown in [6] that if B is

in one of Gij and B is SSPG-easy, then so is the extended double cover EDC(B)

(see Section 6 or [12] for a definition of EDC(B)). We will show that this is not

true in general.

In Section 4, we characterize the minimal signed graphs that are not in the

class of signed K4-minor-free graphs. Those are the signed subdivisions of K4

which are cores. In Section 5 then we mention possible applications of this char-

acterization.

3 Coloring of signed K4-minor-free graphs

In this section, we study the homomorphism of signed K4-minor-free graphs.

We recall a characterization of edge-maximal K4-minor-free graphs:

Proposition 3.1. [5] A graph with at least three vertices is edge-maximal K4-

minor-free if and only if it can be constructed recursively from triangles by pasting

along K2s.

Here, similar to the results of [2] and [3], we give a characterization of simple

signed graphs to which every signed K4-minor-free graph admits a homomor-

phism.

Theorem 3.2. A signed graph (H,π) bounds the class of signed K4-minor-free

graphs if and only if there exists a nontrivial subgraph (H ′, π′) ⊂ (H,π) such

that each edge of (H ′, π′) belongs to at least one positive triangle and at least

one negative triangle in (H ′, π′).

Proof. Suppose that (H,π) contains a subgraph (H ′, π′) such that every edge of

(H ′, π′) belongs to at least one positive triangle and at least one negative triangle.
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Given a signed K4-minor-free graph (G, σ), let (G∗, σ∗) be an edge-maximal

signed K4-minor-free graph containing (G, σ) where σ∗(e) is chosen arbitrarily

for each edge e not in (G, σ). We will show that (G∗, σ∗) maps to (H ′, π′).

Let v1, v2, . . . , vn be an ordering of vertices of G∗ obtained by following

Proposition 3.1. Thus v1, v2, v3 induces a triangle in G∗. As H ′ is nontrivial,

it has at least one edge and thus by the assumption on the edges it has at least one

positive triangle on this edge and one negative triangle. Taking a triangle T in

(H ′, π′), of the same sign of the triangle v1v2v3 in (G∗, σ∗), and after a suitable

switch if needed we may map v1, v2, v3 to the vertices of T . To complete this

mapping to a mapping of (G∗, σ∗) to (H ′, π′) we use induction: having φ which

maps vertices v1, v2, . . . , vi to (H ′, π′), from the structure of G∗ we know vi+1

forms a triangle with two vertices, say vj1 , vj2 , in v1, v2, . . . , vi and is connected

to no other. Consider that the sign of the triangle vi+1vj1vj2 . As φ(vj1)φ(vj2)

is an edge of (H ′, π′), and according to the main property of (H ′, π′), there ex-

ists a triangle φ(vj1)φ(vj2)u which is of the same sign as the sign of the triangle

vi+1vj1vj2 . Extend φ by mapping vi+1 to u (after a switch at vi+1 if necessary).

This proves one direction of the theorem.

It remains to show that if (H,π) bounds the class of signed K4-minor-free

graphs, then there exists such a subgraph satisfying the property. Suppose that

(H,π) bounds the class of signed K4-minor-free graphs. Let (H∗, π∗) be a min-

imal subgraph of (H,π) which bounds the class of signed K4-minor-free graphs.

Here minimality is with respect to taking subgraphs. Thus, in particular, for each

edge ei ∈ E(H∗), i ∈ {1, . . . , |E(H∗)|}, there exists one K4-minor-free graph

Gi such that (Gi, σi) 6→ (H∗ − e, π∗|E(H∗−e)).

Given an edge ei = xy, to prove the property for this edge, we denote all

the homomorphisms of (Gi, σi) to (H∗, π∗) by ϕ1, ϕ2, . . . , ϕr. For each ϕs, s ∈

{1, . . . , r}, there exists an edge xsys ∈ E(Gi) such that ϕs(xs)ϕs(ys) = xy. We

now construct a signed K4-minor-free graph (Gi∗, σ
i
∗) based on (Gi, σi) in order
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to show the edge property of (H∗, π∗) for the edge ei. For any edge xsys with

s ∈ {1, . . . , r}, we add vertices ws and zs to (Gi, σi), and then add a negative

edge wsys and three positive edges wsxs, zsxs, zsys. By Proposition 3.1, we

know that Gi∗ is still a K4-minor-free graph, so there exists Φ : (Gi∗, σ
i
∗) →

(H∗, π∗). Furthermore, we know that Φ|(G∗,σ∗) = φs0 for an s0 ∈ {1, . . . , r}.

Thus Φ(xs)Φ(ys) = xy, and Φ(ws),Φ(zs) are vertices of (H∗, π∗). By the

definition of homomorphism, we conclude that one of Φ(ws)xy and Φ(zs)xy is a

positive triangle while the other is a negative triangle. This prove the property for

the edge ei.

x
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x
2

x
5

x
3

x
4

Figure 1: SPal5
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x
4
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5

x6

Figure 2: A 6-vertices bound for
the class SSPG

An example of a signed graph on 5 vertices satisfying Theorem 3.2 is a graph

of Figure 1 known as Signed Paley graph on 5 vertices, denoted by SPal5. This

was used to prove the chromatic number of signed K4-minor-free graph (in the

sense of [11]) is at most 5. We show that 5 is the best and moreover SPal5 is the

only bound on 5 vertices. This graph has 10 edges which is also the minimum

number of edges among signed graphs bounding signed K4-minor-free graphs.

However, in terms of the number of triangles this graph is not the optimal one as

the graph of Figure 2 is also a bound having only eight triangles. Furthermore,
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note that the bound of Figure 2 is a planar one.

Theorem 3.3. Up to a switch, the signed graph SPal5 is the smallest signed

graph (in terms of both number of vertices and number of edges) which bounds

the class of signed K4-minor-free graphs.

Proof. First we show that no signed graph on 4 vertices satisfies the property

in Theorem 3.2. Toward a contradiction, assume a signed graph on four vertices

x1, x2, x3 and x4 satisfies the condition of the theorem. Assume x1x2 is a positive

edge, then for x1x2 to satisfy the condition, and by the symmetry of the labels,

x1x2x3 is a negative triangle and x1x2x4 is a positive triangle. By switching, if

needed, we may then assume x1x3 is a negative edge and x1x2, x1x4, x2x4 and

x2x3 are positive edges. At this point only the edge x1x2 satisfies the property.

We are allowed to add one more edge (x3x4) with a sign of our choice. But

with each of the two choices for the sign of x3x4, either the two disjoint edges

x1x3, x2x4 or the two disjoint edges x1x4, x2x3 will not have the property. This

proves that we need at least five vertices.

Next we want to show that SPal5 is the only signed graph on five vertices

(up to a switching) that satisfies the property. Start from a signed graph on

{x1, . . . , x4} with the triangle x1x2x3 being positive and the triangle x1x2x4

being negative, so that the edge x1x2 satisfies the property. Following the pre-

vious part of the proof, and without loss of generality, we assume that x2x3 and

x1x4 does not satisfy the property before adding a fifth vertex. By a switch at

some of vertices x1, x2, x3, if needed, we may assume that x1x2, x1x3, x2x3,

x2x4 are positive edges and that x1x4 is a negative edge. This means after the

above mentioned switch the pair x3x4 is either not an edges or a positive edge.

Currently x2x3 is in a positive triangle and x1x4 is in a negative triangle. Thus

after adding the vertex x5 we must form a negative triangle x2x3x5 and a positive

one triangle x1x4x5. Using a switch at x5, if needed, we may assume that x4x5 is
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a positive edge and that x1x5 is a negative edges. Then we have two possibilities:

(i) x3x5 is a positive edge and x2x5 is a negative edge, or (ii) x2x5 is a positive

edge and x3x5 is a negative edge. In the case (i) the edge x2x4 has yet to satisfy

the condition, as it is already in two negative triangles, the pair x3x4 must form

a positive edge. In the case (ii) the edge x1x3 has yet to satisfy the condition, as

it is already in two positive triangles, the pair x3x4 must form a positive edge. In

the case (i) after switches at x2 and x4 and in the case (ii) after switches at x3

and x4 we get an isomorphic copy of SPal5.

Thus, so far, we have shown that any bound for the class of signed K4-minor-

free graphs is of order at least 5 and that up to a switch, SPal5 is the only such

a bound on five vertices. It remains to show that any such bound has also at least

10 edges. To this end we observe that in a minimal bound, as each edge is in at

least 2 triangles, the degree of each vertex should be at least 3 but furthermore if

all vertices are of degree 3, the graph must be K4 which we have already seen

not to be possible. As the only bound on five vertices has indeed 10 edges, we

may consider a (minimal) bound on at least six vertices. Such a graph where all

vertices are of degree 3 or higher and at least one vertex is of degree 4 or higher

must then have at least 10 edges.

4 Signed K4-subdivisions

As mentioned before, each cycle of a signed graph, based on its parity and its

sign, is of one of the four possible types: 00, 01, 10 and 11. Considering a planar

embedding of a signed K4-subdivision based on the types of the faces we have

total of 11 possibilities. To see that is the full list of possibilities, we first observe

that for each signed subdivision (G, σ) ofK4 if we take σ′ to be a signature which

is a switch of σ and has the least possible number of negative edges, then σ′ will

have at most two negative edges, and that if there are two negative edges, then
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they must be on the subdivisions of disjoint edges of K4. We may then consider

possible parities and signs of the facial cycles to get the list of 11 possibilities.

These possibilities are presented in Figure 3 where they are classified into three

groups, each group is presented in a row. In this figure, for each subdivision, the

type of each bounded face is indicated inside the face, then the type of the outer

face is determined as the binary sum of the types of the three bounded faces. In the

following figures, a zigzag line represents a subdivision of an edge inside which

each edge is of the positive sign and a dashed line represents a single edge of the

negative sign.

0000

00

(1)

0000

01

(2)

0000

10

(3)

0000

11

(4)

0101

01

(5)

1111

11

(6)

1010

10

(7)

0101

11

(8)

0101

10

(9)

1010

11

(10)

0001

10

(11)

Figure 3: Classification of signed K4-subdivisions

In the first row of Figure 3 we have subdivisions with (at least) two facial

cycles of type 00, i.e., two positive even facial cycles. We will see that in these
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cases the signed subdivision can never be a core. The three kinds of subdivisions

presented in the second row are the signed subdivisions (G, σ) when (G, σ) ∈

Gij , ij ∈ {01, 11, 10}. As the first (from left) can be switched to all positive

and the second can be switched to all negative, these two cases are about graphs

(signature being of no importance), thus to deal with these two cases we will

consider subdivisions of K4 which are cores as a graph. The third case of this

row represents subdivisions that are signed bipartite graphs. For this family of

signed subdivisions of K4, while the core of the underlying graph is K2, as a

signed graph the core of the subdivision is either the graph itself, or the core of it

is the shortest negative cycle of it. We will then classify, based on the lengths of

subdivisions, when the subdivision is a core. The three cases of the second row

are of special importance in the study of a number of important conjectures.

The remaining cases are when all four types of closed walks exist in (G, σ).

We will show for a member of this class to be a core, the triangular inequality

must hold on the unique cycle of type 00 of (G, σ).

D

B

C A

ca

b

b′

c′ a′

Figure 4: Labeling a K4-subdivision

To continue we adapt the labeling of Figure 4 for all cases. Thus the four main

vertices of a K4-subdivision are labeled A, B, C and D where a, b, c, a′, b′, c′

denotes lengths of the subdivisions of the corresponding edges. We may call such
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a subdivision an (a, b, c, a′, b′, c′)-K4.

4.1 Signed (a, b, c, a′, b′, c′)-K4 with at least two positive even
cycles

It is an analogue of the handshake lemma that: in every planar graph the

number of facial cycles of odd length is even. A similar argument for signed

planar graphs implies that: in every planar signed graph the number of negative

facial cycles is even. The combination of these two facts implies that if two of

the faces of a signed K4-subdivision are positive and even (i.e., of type 00), then

the other two are of a same type. As there are four possible types of cycles, we

have the four possibilities of the first row of Figure 3. In the first of these four

all faces are even and positive thus all cycles (including non-facial cycles) are of

type 00. Thus after a switch, if needed, all edges are positive, and we have a

bipartite graph whose core is K2, or (K2,+) as a signed graph. In each of the

other three cases of the first row we have a closed walk (or more precisely a cycle)

of type ij, ij ∈ {01, 11, 10} and do not have any closed walk of the other two

types. We show that, in each case, a shortest closed walk of type ij, ij 6= 00,

which is necessarily a cycle of the graph, is the core of it. This in fact is obtained

by repeating applications of the folding Lemma of [9] for the cases of ij = 01

and ij = 11 and of the folding lemma of [11] for the case of ij = 10. We

state a combined version of these two lemmas in the following and we leave the

remaining details to the reader.

Lemma 4.1 ([9], [11]). Let (G, σ) be a plane signed graph in Gij with gij(G, σ) =

g, for ij ∈ {01, 10, 11}. If C = v0 · · · vr−1v0 is a facial cycle of (G, σ) which

is either of type ij with r > g or a cycle which is not of type ij (thus of the

type 00), then there is an integer i ∈ {0, . . . , r − 1} such that the signed graph

(G′, σ′) obtained from (G, σ) by identifying vi−1 and vi+1 (subscripts are taken

modulo r) after a possible switch is a homomorphic image of (G, σ) satisfying
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gij(G, σ) = g.

We have thus proved the following theorem.

Theorem 4.2. Suppose that (G, σ) is a signed (a, b, c, a′, b′, c′)-K4 with at least

two facial cycles of type 00, then either all the four facial cycles are of type 00

in which case the core of (G, σ) is (K2,+) or (G, σ) has a cycle which is not of

type 00 and the shortest of all such cycles is the core of (G, σ).

4.2 Signed (a, b, c, a′, b′, c′)-K4 in Gij

Here we consider the three cases of the second row of Figure 3. In this row,

case (5) is an element of G01 where after a switch, if needed, all edges are positive.

The case (6) is an element of G11 where after a switch, if needed, all edges are

negative. Thus in these two cases, (i.e., (5) and (6)) the problem of the subdivision

being a core is reduced to whether the underlying graph is a core. Therefore we

will address this case without using signature so that a reader interested only in

the case of a graph can read it independently. Then we will consider case (7)

which is about signed bipartite graphs. It is shown in [11] that restriction of

homomorphism to this class is already richer than homomorphisms of graphs.

4.2.1 odd-K4

Let G be a subdivision of K4. As mentioned in the previous section, if G has

an even face, then it has at least two even faces and then core of G is either a

K2 or its shortest odd cycle. Thus in the rest of this subsection we assume G is a

subdivision ofK4 together with a plane embedding where all faces are odd cycles.

Such a subdivision of K4 is normally referred to as an odd-K4. Furthermore,

and similar to the general case, an odd-(a, b, c, a′, b′, c′)-K4 refers to an odd-

K4 where lengths of the paths resulted from subdivided edges are a, b, c, a′, b′, c′

where the pair i, i′ refers to subdivisions of disjoint edges. This implies that

a = a′ (mod 2), b = b′ (mod 2), c = c′ (mod 2) and a+ b+ c = 1 (mod 2).
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It is easily observed that after removing an edge of G, the resulting subgraph

maps to its shortest odd cycle. Thus we have the following claim.

Proposition 4.3. The core of an odd-K4 is either itself or its shortest odd cycle.

Towards a characterization of odd-K4’s that are cores, we need the following

lemma which is based on a subdivision of the graph presented in Figure 5. In this

figure the planar embedding is of importance and, with respect to this embedding,

the facial cycle bounded by the two TZ threads is the only even one. We may

allow r′ or l′ to be 0 in which case vertex T is identical to Y or to Z. When for

example l′ = 0, then AT path of length l is a cycle.

Lemma 4.4. Given a graph G of Figure 5 and assuming that the outer face is

a shortest odd cycle of length 2k + 1, we have G → C2k+1 if and only if the

following three conditions hold:

• l ≥ l′,

• r ≥ s1 + s3 + l′,

• s2 ≥ s1 + r′

Proof. First observe that any pair u and v of vertices of an odd cycle C2k+1

partitions it into two paths, one of even length and another of odd length. If G is

a graph obtained from C2k+1 by adding a u-v path P where all internal vertices

of P are distinct, then G maps to C2k+1 if and only if the length of P is at least

as the length of the u-v part of C2k+1 which is of the same parity as length of

P . The three conditions of lemma then are applications of this with the outer face

being C2k+1 for three different choices of P .

Theorem 4.5. Let G be an odd-(a, b, c, a′, b′, c′)-K4 whose shortest odd cycle is

of length a+ b+ c. Then G is a core if and only if the following three conditions

are satisfied:
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Figure 5: Subdivision of a C2k+1-cycle with 3 chords

(i) b′ + c′ − a < a+ b+ c;

(ii) a′ + b′ − c < a+ b+ c;

(iii) a′ + c′ − b < a+ b+ c.

Proof. We will use the notation of Figure 4 and, furthermore, we assume, without

loss of generality, that the outer face is a shortest odd cycle of G and that it is of

length 2k + 1. We will rather work with counter opposite statement: G is not a

core if and only if (at least) one of the three conditions are not satisfied.

By Proposition 4.3, if G is not a core, then G must map to the outer cycle

which is a (2k + 1)-cycle. We use CABC to denote this cycle.

We first prove the “if” part of the statement. Assume G is not a core, then

G → CABC and let f be one such mapping. Depending on which of the three

parts ofCABC the vertexD is mapped to, we will have a contradiction with one of

the conditions (i), (ii) or (iii). By the symmetry, we may assume that f(D) is on

AB part of CABC , furthermore, we may assume that f(D) is at distance c1 from

A on the AB path and distance c2 = c − c1 from B on the AB path, allowing

c1 or c2 to be 0. We then choose the unique vertex D′ on the AB path of G

which is at distance c1 from A and distance c2 from B on the path AB. Let G′ be
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the graph obtained by identifying vertices D and D′. Observe that G′ is a graph

of Figure 5. As the mapping f also identifies D and D′, the graph G′, using

remaining identification of f , maps to its outer cycle, thus the three conditions

of Lemma 4.4 must be satisfied. By adding the second and third inequality of

Lemma 4.4 we will have b′ + c′ ≥ 2a+ b+ c1 + c2 which contradicts condition

(i) of the theorem.

For the “only if” part, we assume that condition (i) is not satisfied, and the

other two cases are analogous. Thus we are assuming that b′+ c′− a ≥ a+ b+ c

and we need to show that G is not a core. We first observe that if one of a′, b′

or c′ is at least as a + b + c = 2k + 1, then G is not a core. That is because,

assuming a′ ≥ a + b + c, after deleting the AD-path the remaining graph maps

to its shortest odd cycle which is C2k+1, and then no matter where A and D are

mapped to, we can extend the mapping. Thus in the rest of the proof we may

assume a′, b′, c′ < a+ b+ c.

As we have assumed b′ + c′ − a ≥ a + b + c and by the fact that b and c are

positive integers, we have b′ + c′ > 2a which implies either b′ > a or c′ > a.

By the symmetry we assume that b′ > a. In what follows, characterizing three

possibilities based on how large b′ is, in each case we will find a vertex of the outer

cycle to which we may map the vertexD, after which, applying the Lemma 4.4 to

the image, we will conclude that G is not a core. The three cases we consider are

as follows: (1) a < b′ ≤ a+ b, (2) a+ b < b′ ≤ a+ b+ a′, (3) a+ b+ a′ < b′.

Case (1) In this case we choose a vertex u on the path AC such that u is at

distance a+ b− b′ from A and at distance b′−a from C where both distances are

considered on the path AC. As we are in the case (1), both numbers a + b − b′

and b′ − a are nonnegative integers, thus such a choice of u is possible. We now

consider a homomorphic image G′ of G obtained from identifying D with u.

Observe that a′ and a + b − b′ are of a same parity because a + b + a′ + b′ is

the length of an even cycle BCAD in G. We may then observe that G′ is a graph
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of Figure 5 where A represents vertex Z, B represents X , C represents Y and

D represents T and s1 = a, s2 = b′, s3 = c, l = a′, l′ = a + b − b′, r = c′

and r′ = b′ − a. To complete the proof we will show that G′ satisfies the three

conditions of Lemma 4.4.

First claim is l ≥ l′: that is to say a′ ≥ a+b−b′ or equivalently a′+b′ ≥ a+b.

This is the result of assumption that a + b + c is the length of the shortest odd

cycle of G, in this graph ABD is an odd cycle of length a′ + b′ + c, thus proving

that a′ + b′ ≥ a+ b.

Second claims is r ≥ s1 + s3 + l′: that is to say c′ ≥ a+ c+ (a+ b− b′) or

equivalently c′ + b′ − a ≥ a+ b+ c and that is the case because we assume that

condition (i) of the theorem does not hold.

The third claim is s2 ≥ s1 + r′: that is to say b′ ≥ a + (b′ − a) which is

trivially true.

Thus, by Lemma 4.4, G′ maps to its outer face, which is the (2k + 1)-cycle

ABC, thus G also maps to its shortest odd cycle.

Case (2) In this case we choose a vertex u on the path AB such that u is at

distance b′−(a+b) fromA and at distance a+b+c−b′ fromB with both distances

being on the AB path. Since we are in case (2) we have a+ b < b′ implying that

b′ − (a+ b) is nonnegative, and a+ b+ c− b′ is positive as we saw at the start of

only if part. Thus we indeed have a choice of such a vertex u. As in the previous

case we consider the graph G′ obtained from G by mapping D to u. Once again

we will show that G′ satisfies the conditions of Lemma 4.4 which will complete

the proof of this case as before. To apply this lemma, vertices A,B,C,D will be

Z, Y , X and T respectively, and lengths are given by s1 = a, s2 = c′, s3 = b,

l = a′, l′ = b′ − (a + b), r = b′ and r′ = a + b + c − b′. It remains to show

that the three conditions of Lemma 4.4 are satisfied. The condition l ≥ l′ follows

from assumption of the case (2). The second condition (that r ≥ s1 + s3 + l′)

holds as an identity. The third condition (s2 ≥ s1 + r′) is the consequence of our
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assumption that condition (i) of the theorem does not hold.

Case (3) In this case first we delete internal vertices of the path BD. The

result must map to its shortest odd cycle which is CABC . Then observing that b′

is of a same parity as a+ b+ a′ (because the cycle corresponding to a, b, a′, b′ is

an even cycle), we may map the path BD to path BCAD.

4.2.2 Signed bipartite subdivisions

In this subsection we consider the case (7) of Figure 3. Thus in this subsection

(G, σ) is a signed bipartite subdivision of K4 together with a planar embedding

where all facial cycles are negative. Observe that in this case an equivalent signa-

ture with minimum number of negative edges has two negative edges, one on each

of two paths corresponding to two disjoint edges of K4. As before we will use

the labeling of Figure 4 and we may refer to (G, σ) as the (a, b, c, a′, b′, c′)-K4.

Furthermore, without loss of generality, we will always assume that the outer face

is a shortest negative cycle of (G, σ), in other word g10(G, σ) = a+ b+ c.

It is easy to observe that if we delete an edge of (G, σ), then the resulting

signed graph maps to its shortest negative cycle. This implies that:

Proposition 4.6. The core of a signed bipartite subdivision of K4 whose faces

are all negative cycles, is either itself or its shortest negative cycle.

In this case we have the following analogue of Lemma 4.4.

Lemma 4.7. Given a signed graph (G, σ) of Figure 6 if the outer face is a shortest

negative cycle and is of length 2k, then (G, σ)→ C−2k if and only if the following

three conditions hold:

• l ≥ l′,

• r ≥ s1 + s3 + l′,

• s2 ≥ s1 + r′
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Figure 6: Bipartite subdivision of a negative even cycle with 3 chords

Proof. Given a negative even cycle C−2k, any pair u and v of vertices of the cycle

partitions it into two paths P1 and P2 one of which has an even number of negative

edges, and the other has an odd number of negative edges. Thus if we add a new

signed u − v path P ′, then the parity of the number of negative edges of P ′ is

the same as either P1 or P2, say P1 without loss of generality. If, furthermore, P ′

is such that after adding this signed path the underlying graph remains bipartite

and if in the resulting signed graph there is no negative cycle shorter than 2k, then

P ′ must be of length at least as P1 and it should have a same parity as P1. Then

after a suitable switch, if needed, one may map P ′ onto P1. To prove the lemma,

considering the outer cycle of (G, σ) and applying this general observation to the

paths ZT , Y T and XT , each would correspond to one of the three conditions of

the Lemma.

We now proceed with a proof similar to that of Theorem 3.2 to give an analo-

gous necessary and sufficient condition for a signed bipartite subdivision ofK4 to

be a core (see Theorem 4.9). However, we rather partially simplify proof by con-

necting this case to the case of odd-K4 which we have considered in the previous

subsection. To this end, we first have the following definition.

Let (G, σ) be an (a, b, c, a′, b′, c′)-K4 subdivision of type (7). Moreover, as-

21



sume that σ has the smallest number of negative edges. Thus there are two neg-

ative edges which are on subdivisions of two disjoint edges of K4. Assuming

that the negative edges are on BC and AD, the graph obtained from G by sub-

dividing these two negative edges each once is defined to be Ga. Observing that

the signed graph with two negative edges on AC and BD is switch equivalent

to (G, σ) we may define Gb and Gc similarly. We observe that each of Ga, Gb

and Gc is an odd-K4 where Ga is an (a + 1, b, c, a′ + 1, b′, c′)-K4, Gb is an

(a, b+ 1, c, a′, b′ + 1, c′)-K4 and Gc is an (a, b, c+ 1, a′, b′, c′ + 1)-K4.

The following lemma provides connections between (G, σ) and Ga, Gb, Gc.

Lemma 4.8. Let (G, σ) be a signed (a, b, c, a′, b′, c′)-K4 of type (7) of Figure 3

and assume g10(G, σ) = a + b + c = 2k. Then (G, σ) → C−2k if and only if one

of Ga or Gb or Gc maps to C2k+1.

Proof. We first consider the “if” part and by symmetry of a, b, cwe assumeGa →

C2k+1. We need to show that (G, σ)→ C−2k.

As the outer cycle of Ga is a (2k + 1)-cycle, the mapping of Ga to C2k+1

identifies D with a vertex u of the outer cycle. We consider G′a as the image of

Ga obtained by identifying (only) D with u. Observing that u being on AB is

symmetric with u being on AC, depending on the position of u and the parity of

the new faces that are created by this identification, we have four possible cases

to consider.

Case 1. u is on AB and the length of uA is of the same parity as a′ + 1.

Case 2. u is on AB and the length of uB is of the same parity as b′.

Case 3. u is on BC and the length of uB is of the same parity as b′.

Case 4. u is on BC and the length of uC is of the same parity as c′.

In each case we would like to give a homomorphic image of (G, σ) by iden-

tifying D with a vertex v on AB or AC in the Case 1, Case 2 and on BC in the

Case 3, Case 4 for which we may apply Lemma 4.7.
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In Case 1, if u is a vertex of Ga which is distinct from A, then we choose

v to be a vertex on path AB in (G, σ) whose distance to A is one less than the

distance of u to A in Ga. If u = A, then we choose v to be the neighbour of A

on the AC path of (G, σ). Assuming (G, σ) has two negative edges which are on

AC and BD, let (G′, σ′) be the signed graph obtained by identifying D with v.

As we have assumed that G′a maps to C2k+1, the conditions of Lemma 4.4 must

apply on G′a. It can then readily be verified that conditions of Lemma 4.7 apply

on (G′, σ′) which means (G′, σ′) and, therefore, (G, σ) maps to C−2k.

For the other Case 2 and Case 3, we choose v such that its distance from B on

AB and BC correspondingly is the same as the distance of u from B. For Case

4, we choose v such that its distance from C on BC is the same as the distance

of u from C. In these cases, we leave the verification of the details to the reader.

This completes the proof of “if” direction of the theorem.

For the “only if” part of the theorem we assume (G, σ) → CABC and let φ

be such a mapping. We need to show that one of Ga or Gb or Gc maps to C2k+1.

Let us assume, without loss of generality, that φ(D) is on the AB part of CABC .

Then either the path AD has the same parity of number of negative edges with

the path Aφ(D) or BD has the same parity of number of negative edges with

the path Bφ(D), without loss of generality, we assume the former. Let (G′, σ′)

be a signed graph obtained from (G, σ) by identifying (only) D with φ(D). It

should be reminded that, since the final image, C−2k, has a bipartite underlying

graph, G′ is also a bipartite graph. We may now applying Lemma 4.7 to (G′, σ′).

Since it maps to its shortest negative cycle, the three inequalities of this lemma

must be satisfied. Now in the graph Gb if we identify D with a vertex of AB

whose distance onAB fromA is the same as that of φ(D) fromA (in (G, σ)), the

resulting graphG′b satisfies conditions of Lemma 4.4, implying thatGb → C2k+1.

Similar conclusion can be made for Gc as well. This completes the only if part of

the proof.
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We are now ready to state and prove the conditions for a signedK4-subdivision

of type (7) of Figure 3 to be a core.

Theorem 4.9. Let (G, σ) be a signed bipartite (a, b, c, a′, b′, c′)-K4 where all

facial cycles are negative. Furthermore, assume g10(G, σ) = a + b + c. Then

(G, σ) is a core if and only if the following conditions are satisfied.

• b′ + c′ − a < a+ b+ c;

• a′ + b′ − c < a+ b+ c;

• a′ + c′ − b < a+ b+ c.

Proof. Suppose that (G, σ) is not a core and the shortest negative even cycle is

ABC. By Lemma 4.8, one of Ga, Gb or Gc is not a core. Without loss of

generality, we assume that Ga which is an odd (a+ 1, b, c, a′+ 1, b′, c′)-K4 is not

a core. By Theorem 4.5, one of the following three inequality does not hold: (1)

b′ + c′ − (a+ 1) < (a+ 1) + b+ c or (2) (a′ + 1) + b′ − c < (a+ 1) + b+ c or

(3) (a′ + 1) + c′ − b < (a+ 1) + b+ c.

If (1) does not hold, i.e., b′ + c′ − (a + 1) ≥ (a + 1) + b + c, then we have

b′ + c′ − a ≥ a + b + c, which means the first inequality of the theorem does

not hold. Similarly, the case (2) implies that the second inequality of the theorem

does not hold. And the case (3) implies the third one is not satisfied.

Conversely, suppose that one of the three conditions, say the first, is not sat-

isfied. Thus, b′ + c′ − a ≥ a + b + c. We consider Gb which is an odd-

(a, b + 1, c, a′, b′ + 1, c′) − K4. As (b′ + 1) + c′ − a ≥ a + (b + 1) + c and

by Theorem 4.5, Gb is not a core. By Lemma 4.8 then (G, σ) is not a core either.

This completes the proof.

4.3 Signed K4-subdivisions of the third group

These four cases have the common property that each of the signed K4-

subdivisions of type (8), (9), (10) and (11) has a bounded gij(G, σ) for all values
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of ij ∈ Z2
2. As a K4 has four 3-cycles and three 4-cycles, a common property

of these four types of subdivisions is that: in each case there is a unique cycle of

type 00. Given (G, σ) of one of these types, we denote the unique positive even

cycle of (G, σ) by C00(G, σ).

The core of the signed graph in each of these cases must also have the same

value of gij for any given ij ∈ Z2
2. We will use this property and the cycle

C00(G, σ) to characterize the cases that are cores. We will give a proof in the

case that (G, σ) is of type (8), and due to the similarities of the proofs, we will

leave the verification of the other three cases to the readers.

Theorem 4.10. Let (G, σ) be a signed (a, b, c, a′, b′, c′)-K4 of type either (8) or

(9) or (10). Then (G, σ) is a core if and only if the lengths of subdivisions cor-

responding to the edges of C00(G, σ) satisfy triangular inequality with respect to

this 4-cycle. That is to say, if lengths of subdivided paths ofC00(G, σ) correspond

to a, c, a′, c′, then we must have

• c < c′ + a+ a′;

• c′ < c+ a′ + a;

• a < a′ + c+ c′;

• a′ < a+ c+ c′.

Proof. We consider the case when (G, σ) is of type (8) with the other two cases

being similar. Furthermore, we label vertices as in Figure 4. Observe that deleting

a vertex on BD or AC will eliminate two types of closed walks, thus all these

vertices must be present in the core. If a vertex of another path, say AB is not

in the core, then no vertex of AB is in the core. But then all other vertices must

be present. For this to happen the path AB must have mapped to a path of same

parity with a same parity of the number of negative edges, meaning it forms a

positive even cycle with its image. As there is a unique cycle of this type (that
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is CABCD), the path AB must map onto the path PADCB , thus we must have

c ≥ c′ + a + a′. In general, mapping of a part P of the cycle CABCD to the

CABCD − P corresponds to one of the inequalities of the theorem.

The classification of cores for subdivisions corresponding to the case (11)

of Figure 3, given below, is similar to that of the previous theorem, with a sole

difference being that C00(G, σ) in this case corresponds to a 3-cycle rather than a

4-cycle.

Theorem 4.11. Let (G, σ) be a signed (a, b, c, a′, b′, c′)-K4 of type (11). Then

(G, σ) is a core if and only if the lengths of subdivisions corresponding to the

edges of C00(G, σ) satisfy triangular inequality with respect to this 3-cycle. That

is to say, if lengths of subdivided paths of C00(G, σ) correspond to a, b, c, then we

must have

• a < b+ c;

• b < a+ c;

• c < b+ a.

5 Possible applications

Theorem 4.5 and Theorem 4.9 are of special interest in the study of ques-

tions that are about mapping a class of graphs to an odd cycle and mapping a

class of signed bipartite graphs to a negative even cycle. Two prime examples of

such problems are the Jaeger-Zhang conjecture [14] and a bipartite analogue of it

introduced in [11] and studied in [4]. They claimed the following.

Conjecture 5.1. [14] Every planar graph whose shortest odd cycle is of length at

least 4k + 1 admits a homomorphism to C2k+1.
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Conjecture 5.2. [11, 4] Every planar signed bipartite graph (G, σ) satisfying

g10(G, σ) ≥ 4k − 2 admits a homomorphism to C−2k.

A classical approach to such conjectures is the discharging technique that is

based on the following corollaries of Theorems 4.5 and 4.9.

Corollary 5.3. Given an odd-(a, b, c, a′, b′, c′)-K4, G, if a + b + c = 2k + 1 is

the length of its shortest odd cycle and a′ + b′ + c′ > 4k, then G→ C2k+1.

Proof. Let G be such a subdivision. If G is a core, then by Theorem 4.5 we must

have, b′+c′−a ≤ a+b+c−1, a′+b′−c ≤ a+b+c−1 and a′+c′−b ≤ a+b+c−1.

Adding up the three inequality we have 2(a′ + b′ + c′) ≤ 4(a + b + c) − 3 but

then since all values are integers and considering parity we have 2(a′+ b′+ c′) ≤

4(a + b + c) − 4, and finally using the assumption that a + b + c = 2k + 1 we

have a′ + b′ + c′ ≤ 4k.

Corollary 5.4. Given a signed (a, b, c, a′, b′, c′)-K4, (G, σ), if all faces are of

type 10, a + b + c = 2k is the length of its shortest negative even cycle and

a′ + b′ + c′ ≥ 4k − 1, then (G, σ)→ C−2k.

The proof is similar to the previous one and we leave the details to the reader.

Corollary 5.3 is a tool that is used in earliest approaches to Conjecture 5.1, see

for example [15]. It should be noted that the best current result on this conjecture

is that of [10] which is based on the theory of module k orientations. However,

Conjecture 5.2 is rather new and the best support so far is a result of [4] that is

indeed based on our Corollary 5.4 and is referred to this work.

Other connections to our work can be found in the study of smallest C2k+1-

critical graphs, that is a graph that does not map to C2k+1, but every proper sub-

graph maps. We refer to [1] for more on this subject.
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6 Further discussion

Combining results from [2] and [3], given a signed graph in one of the three

classes Gij , ij ∈ {01, 10, 11}, a necessary and sufficient condition is given to de-

cide whether B has the property that it admits a homomorphism from any signed

K4-minor-free graph (G, σ) as long as we have gij(G, σ) ≥ gij(B). In this work

we have had a first look at the general case of the problem where B is not neces-

sarily a member of Gij . We gave a necessary and sufficient condition for the case

when B is a simple signed graph, that to say g10(B) = 4, g01(B) = g11(B) = 3.

We therefore ask for a possible generalization to all choices of B.

The notion of Extended Double Cover of a signed graph (G, σ) is presented

in [12]. Given a signed graph (G, σ), EDC(G, σ) is a signed graph on vertex set

V + ∪ V −, where V + := {v+ : v ∈ V (G)} and V − := {v− : v ∈ V (G)}.

Vertices x+ and x− are connected by a negative edge; all other edges, that are

described next, are positive. If vertices u and v are adjacent in (G, σ) by a positive

edge, then v+u+ and v−u− are two positive edges of EDC(G, σ), if vertices u

and v are adjacent in (G, σ) by a negative edge, then v+u− and v−u+ are two

positive edges of EDC(G, σ).

It can be checked readily that if B ∈ G10 then EDC(B)∈ G11 and vice versa.

Then in [6] it is shown that if B ∈ G10 or B ∈ G11 has the property that it

admits a homomorphism from any signed K4-minor-free graph (G, σ) satisfying

gij(G, σ) ≥ gij(B) for all ij ∈ Z2
2, then EDC(B) has the same property.

However, this is not true for a general signed graph B, an example for which

is SPal5. As this is a simple graph we can easily check that g10(SPal5) = 4

and g01(SPal5) = g11(SPal5) = 3, and we saw in Theorem 3.3 that ev-

ery signed K4-minor graph admits a homomorphism to SPal5. However the

following is an example of a signed K4-minor-free graph which while satisfies

gij(G, σ) ≥ gij(EDC(SPal5)) for all ij ∈ Z2
2 does not admit a homomorphism
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to EDC(SPal5).

Proposition 6.1. There exists a signed K4-minor-free graph (G, σ) satisfying

g11(G, σ) ≥ 5, g10(G, σ) ≥ 4 and g01(G, σ) ≥ 3 such that (G, σ) 6→ EDC(SPal5).
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Figure 7: EDC(SPal5)
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Figure 8: A signed K4-minor-
free graph which does not map
to EDC(SPal5)

Proof. Signed graph (G, σ) of Figure 8 is such an example. It is easily observed

that g10(G, σ) ≥ 4, g01(G, σ) ≥ 3 and g11(G, σ) ≥ 5. Assume to the con-

trary that (G, σ) → EDC(SPal5). By Theorem 2.4, there exists a switch σ′ of

σ and an edge-sign-preserving homomorphism of (G, σ′) to EDC(SPal5). As

x1x2x3x4x5 is a negative cycle of (G, σ), at least one of its edges is negative

in (G, σ′), by symmetry, assume that σ′(x1x2) = −. Then the triangle x1x2y1,

which is a positive triangle, must have two negative edges. However, there exists

no such a triangle in EDC(SPal5) with the given signature.
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