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Introduction

The class of K 4 -minor-free graphs, also known as series-parallel graphs, is of special importance in the study of the homomorphism properties of graphs. On the one hand, restriction to closely related subclasses such as outerplanar graphs reduces the homomorphism relation to the study of finding odd-girth of graphs; indeed Gerards proved in [START_REF] Gerards | Homomorphisms of graphs into odd cycles[END_REF] that the core of any outerplanar graph is its shortest odd cycle. On the other hand, Hubička and Nešetřil proved, in [START_REF] Hubi Čka | Universal partial order represented by means of oriented trees and other simple graphs[END_REF], that the homomorphism order on the class of K 4 -minor-free graphs is a universal countable order, i.e., it contains an isomorphic copy of any countable order.

The study of homomorphism properties of K 4 -minor-free graphs becomes even more appealing by the observation that this is precisely the class of graphs of tree-width at most 2.

Recall that the property of no K 4 -minor for a graph is equivalent to the property of no K 4 -subdivision [START_REF] Diestel | Graph theory[END_REF]. This leads to a study of the homomorphism properties of minimal graphs that do not belong to the class of graphs of tree-width at most 2.

A development of homomorphisms of signed graphs has begun recently in [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] (see also [START_REF] Naserasr | Homomorphisms of signed graphs: an update[END_REF]). This is of high interest because it provides a framework for stronger relation between minor theory and homomorphisms of graphs. Thus in this paper we are interested in the study of homomorphism properties for K 4minor-free signed graphs or the minimal graphs not belonging to this family.

On the one hand, we provide a necessary and sufficient condition for a signed (simple) graph to admit a homomorphism from any K 4 -minor-free signed graph and we determine the smallest of such graphs. On the other hand, we determine which signed subdivisions of K 4 are cores. The latter could be used as a tool in the study of some conjectures such as Jaeger-Zhang [START_REF] Zhang | Circular flows of nearly Eulerian graphs and vertex-splitting[END_REF] conjecture or its bipartite analogue [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] (see in Section 5). Characterizing subdivisions of K 4 which are cores as graphs (without a signature) is a special case of our result. Because of an independent interest of this case, it is considered in Section 4.2.1 without using the notion of sign or signature.

The paper is organized as follows. In the next section, we settle our choice of terminology and mention basic tools in the study of homomorphisms of signed graphs. We note that there are competing terminologies as the theory of signed graphs is being developed from different areas. In Section 3, we prove a necessary and sufficient condition for a signed graph to bound the class of signed K 4minor-free graphs and we find the smallest of such bounds. This is a notion of chromatic number of signed graphs, noting that there are other interesting notions of chromatic number of signed graphs. In Section 4, we classify all the signed subdivisions of K 4 that are cores. In Section 5, we explain how this could be used as a tool in other homomorphism problems. Finally in Section 6, we address the future direction of study and mention a few open problems.

Preliminary

We consider simple graphs. Given a graph G, a walk in G is an alternating sequence of vertices and edges which starts and ends at vertices, where an edge e of the sequence lies in between its two endpoints. A closed walk is a walk where the start and end vertices are the same. Closed walks are rather viewed in a cyclic order, thus losing the importance of the start point. A path in G is a walk of G where all vertices are distinct (thus all edges are distinct as well). A thread in G is a path where all the vertices are of degree 2 except possibly the starting and ending points of the path. For a graph G on at least 3 vertices, a cycle in G is a closed walk with distinct edges and vertices in the sequence except the staring and ending points.

Given an edge uv ∈ E(G), to subdivide an edge uv of a graph G is to replace it with a u-v thread P . The length of the subdivision of an edge uv is the length of P . A subdivision of a graph G is a graph G which is obtained from G by subdividing some or all edges of G. A subdivision of G sometimes is referred to as a G-subdivision.

Given an edge uv ∈ E(G), to contract an edge uv of a graph G is to remove it and merge its two endpoints. A minor of G is a graph H obtained from G by a sequence of operations: deleting vertices, deleting edges and contracting edges in any order. We say that G has an H-minor if it admits H as its minor, otherwise G is said to be H-minor free.

It is easily observed that if G is a subdivision of H, then H is a minor of G.
The converse is not always true, but in the following special case it is. Lemma 2.1. [START_REF] Diestel | Graph theory[END_REF] Let H be a graph with ∆(H) ≤ 3. A graph G has an H-minor if and only if G has an H-subdivision as a subgraph.

signed graph

A signed graph (G, σ) is a pair consisting of a graph G and an assignment σ : E(G) → {+, -}. In our figures, we use a dashed line to present a negative edge and a solid line to present a positive edge. A signed graph (H, π) is a subgraph

of signed graph (G, σ) if H is a subgraph of G and π = σ| E(H) . A signed graph
where all edges are negative is denoted by (G, -) and a signed graph where all edges are positive is denoted by (G, +). The sign of a closed walk is the product of signs of its edges (allowing repetition).

Given a signed graph (G, σ) and a vertex v, a switch at vertex v is to switch the signs of edges which are incident to v. A signed graph (G, σ) is a switch of (G, σ ) if it is obtained from (G, σ ) by a sequence of switchs at vertices, in which case we may also say σ is a switch of σ and (G, σ) is switching equivalent to (G, σ ).

Observe that the sign of a closed walk, and in particular the sign of a cycle is invariant under switch. Zaslavski proved that the inverse is also true in the following sense: Proposition 2.2. [START_REF] Zaslavsky | Signed graphs[END_REF] Two signed graphs (G, σ 1 ) and (G, σ 2 ) are switching equivalent if and only if they have the same set of negative cycles.

Closed walks, as the key structures of a signed graph, are of four possible types based on their sign and the parity of their length. As sign itself is the parity of the number of negative edges, one may use elements of Z 2 2 to denote these four types. More precisely: a positive odd closed walk in (G, σ) is of type 01, a negative odd closed walk in (G, σ) is of type 11, a positive even closed walk in (G, σ) is of type 00 and a negative even closed walk in (G, σ) is of type 10. Given a signed graph (G, σ), g ij (G, σ) denotes the length of the smallest closed walks of type ij in (G, σ). When there is no closed walk of type ij we set g ij = ∞.

Observe that g 00 (G, σ) = 2 as long as G has at least one edge. It is shown in [START_REF] Naserasr | Homomorphisms of signed graphs: an update[END_REF] that of the other three values, g 01 (G, σ), g 10 (G, σ) and g 11 (G, σ) if one is ∞, then at least two of them are ∞. This leads to three special subclasses of signed graphs: the G 01 consisting of signed graphs (G, σ) which can be switched to (G, +) (thus g 10 = g 11 = ∞ for every member of this family), the G 11 consisting of signed graphs (G, σ) which can be switched to (G, -) (then g 10 = g 01 = ∞) and the G 10 consisting of signed bipartite graphs (where g 01 = g 11 = ∞). These subclasses are of special importance in the study of homomorphisms of graphs and signed graphs, we refer to [START_REF] Naserasr | Homomorphisms of signed graphs: an update[END_REF] for more details.

Observe that for any signed graph in G ij , every cycle of it is either of type 00 or of type ij. A positive (negative) cycle of length l will be denoted by C + l (C - l ).

Homomorphisms and bounds

A homomorphism of a signed graph (G, σ) to another signed graph (H, π) is a mapping ϕ from V (G) and E(G) to V (H) and E(H) (respectively) such that the adjacencies, the incidences and the signs of closed walks are preserved. When there exists a homomorphism of (G, σ) to (H, π), we write (G, σ) → (H, π). A homomorphism of (G, σ) to (H, π) is said to be an edge-sign-preserving homomorphism if it also preserves the signs of the edges. For more on homomorphisms of signed graphs we refer to [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] and [START_REF] Naserasr | Homomorphisms of signed graphs: an update[END_REF].

The core of a signed graph (G, σ) is the smallest subgraph (H, π) of (G, σ)

such that (G, σ) → (H, π). A signed graph (G, σ) is a core if its core is itself.
Cycles which are not of type 00 are examples of signed graphs that are cores.

The following no-homomorphism lemma is an immediate consequence of the definition:

Lemma 2.3. If (G, σ) → (H, π), then g ij (G, σ) ≥ g ij (H, π) for ij ∈ Z 2 2 .
For most other applications of homomorphism of signed graphs, we use the condition from the following theorem. Some other conjectures and results can also be nicely presented in this language.

For SSPG being the class of signed series-parallel graphs and for a signed graph B which is in one of the three special classes G ij , ij ∈ {01, 10, 11}, a necessary and sufficient condition for B to be SSPG-easy is given in [START_REF] Beaudou | Homomorphism bounds and edge-colourings of K 4 -minor-free graphs[END_REF] and [START_REF] Beaudou | Homomorphism bounds of signed bipartite K 4 -minor-free graphs and edge-colorings of 2kregular K 4 -minor-free multigraphs[END_REF].

Our work in the next section is a first step towards a generalization of this work where B can be chosen among all signed graphs. More precisely, we give a necessary and sufficient condition for a simple signed graph B to bound the class of signed K 4 -minor-free graphs. On the other hand it is shown in [START_REF] Foucaud | Homomorphism bounds of signed K 4 -minor-free graphs[END_REF] that if B is in one of G ij and B is SSPG-easy, then so is the extended double cover EDC(B)

(see Section 6 or [START_REF] Naserasr | Homomorphisms of signed graphs: an update[END_REF] for a definition of EDC(B)). We will show that this is not true in general.

In Section 4, we characterize the minimal signed graphs that are not in the class of signed K 4 -minor-free graphs. Those are the signed subdivisions of K 4 which are cores. In Section 5 then we mention possible applications of this characterization.

3 Coloring of signed K 4 -minor-free graphs

In this section, we study the homomorphism of signed K 4 -minor-free graphs.

We recall a characterization of edge-maximal K 4 -minor-free graphs:

Proposition 3.1. [START_REF] Diestel | Graph theory[END_REF] A graph with at least three vertices is edge-maximal K 4minor-free if and only if it can be constructed recursively from triangles by pasting along K 2 s.

Here, similar to the results of [START_REF] Beaudou | Homomorphism bounds and edge-colourings of K 4 -minor-free graphs[END_REF] and [START_REF] Beaudou | Homomorphism bounds of signed bipartite K 4 -minor-free graphs and edge-colorings of 2kregular K 4 -minor-free multigraphs[END_REF], we give a characterization of simple signed graphs to which every signed K 4 -minor-free graph admits a homomorphism.

Theorem 3.2. A signed graph (H, π) bounds the class of signed K 4 -minor-free graphs if and only if there exists a nontrivial subgraph (H , π ) ⊂ (H, π) such that each edge of (H , π ) belongs to at least one positive triangle and at least one negative triangle in (H , π ).

Proof. Suppose that (H, π) contains a subgraph (H , π ) such that every edge of (H , π ) belongs to at least one positive triangle and at least one negative triangle.

Given a signed K 4 -minor-free graph (G, σ), let (G * , σ * ) be an edge-maximal signed K 4 -minor-free graph containing (G, σ) where σ * (e) is chosen arbitrarily for each edge e not in (G, σ). We will show that (G * , σ * ) maps to (H , π ). 

Let v 1 , v 2 , . . . ,
v i+1 v j1 v j2 . As φ(v j1 )φ(v j2 )
is an edge of (H , π ), and according to the main property of (H , π ), there exists a triangle φ(v j1 )φ(v j2 )u which is of the same sign as the sign of the triangle

v i+1 v j1 v j2 . Extend φ by mapping v i+1 to u (after a switch at v i+1 if necessary).
This proves one direction of the theorem.

It remains to show that if (H, π) bounds the class of signed K 4 -minor-free graphs, then there exists such a subgraph satisfying the property. Suppose that (H, π) bounds the class of signed K 4 -minor-free graphs. Let (H * , π * ) be a minimal subgraph of (H, π) which bounds the class of signed K 4 -minor-free graphs.

Here minimality is with respect to taking subgraphs. Thus, in particular, for each edge e i ∈ E(H * ), i ∈ {1, . . . , |E(H * )|}, there exists one K 4 -minor-free graph

G i such that (G i , σ i ) → (H * -e, π * | E(H * -e) ).
Given an edge e i = xy, to prove the property for this edge, we denote all the homomorphisms of (G i , σ i ) to (H * , π * ) by ϕ 1 , ϕ 2 , . . . , ϕ r . For each ϕ s , s ∈ {1, . . . , r}, there exists an edge

x s y s ∈ E(G i ) such that ϕ s (x s )ϕ s (y s ) = xy. We now construct a signed K 4 -minor-free graph (G i * , σ i * ) based on (G i , σ i ) in order
to show the edge property of (H * , π * ) for the edge e i . For any edge x s y s with s ∈ {1, . . . , r}, we add vertices w s and z s to (G i , σ i ), and then add a negative edge w s y s and three positive edges w s x s , z s x s , z s y s . By Proposition 3.1, we know that G i * is still a K 4 -minor-free graph, so there exists Φ : (G i * , σ i * ) → (H * , π * ). Furthermore, we know that Φ| (G * ,σ * ) = φ s0 for an s 0 ∈ {1, . . . , r}.

Thus Φ(x s )Φ(y s ) = xy, and Φ(w s ), Φ(z s ) are vertices of (H * , π * ). By the definition of homomorphism, we conclude that one of Φ(w s )xy and Φ(z s )xy is a positive triangle while the other is a negative triangle. This prove the property for the edge e i .

x 1

x 2

x 5

x 3 x 4 was used to prove the chromatic number of signed K 4 -minor-free graph (in the sense of [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF]) is at most 5. We show that 5 is the best and moreover SP al 5 is the only bound on 5 vertices. This graph has 10 edges which is also the minimum number of edges among signed graphs bounding signed K 4 -minor-free graphs.

However, in terms of the number of triangles this graph is not the optimal one as the graph of Figure 2 is also a bound having only eight triangles. Furthermore, note that the bound of Figure 2 is a planar one.

Theorem 3.3. Up to a switch, the signed graph SP al 5 is the smallest signed graph (in terms of both number of vertices and number of edges) which bounds the class of signed K 4 -minor-free graphs.

Proof. First we show that no signed graph on 4 vertices satisfies the property in Theorem 3.2. Toward a contradiction, assume a signed graph on four vertices

x 1 , x 2 , x 3 and x 4 satisfies the condition of the theorem. Assume x 1 x 2 is a positive edge, then for x 1 x 2 to satisfy the condition, and by the symmetry of the labels,

x 1 x 2 x 3 is a negative triangle and x 1 x 2 x 4 is a positive triangle. By switching, if needed, we may then assume x 1 x 3 is a negative edge and x 1 x 2 , x 1 x 4 , x 2 x 4 and

x 2 x 3 are positive edges. At this point only the edge x 1 x 2 satisfies the property.

We are allowed to add one more edge (x 3 x 4 ) with a sign of our choice. But with each of the two choices for the sign of x 3 x 4 , either the two disjoint edges

x 1 x 3 , x 2 x 4 or the two disjoint edges x 1 x 4 , x 2 x 3 will not have the property. This proves that we need at least five vertices.

Next we want to show that SP al 5 is the only signed graph on five vertices (up to a switching) that satisfies the property. Start from a signed graph on {x 1 , . . . , x 4 } with the triangle x 1 x 2 x 3 being positive and the triangle x 1 x 2 x 4 being negative, so that the edge x 1 x 2 satisfies the property. Following the previous part of the proof, and without loss of generality, we assume that x 2 x 3 and

x 1 x 4 does not satisfy the property before adding a fifth vertex. By a switch at some of vertices x 1 , x 2 , x 3 , if needed, we may assume that x 1 x 2 , x 1 x 3 , x 2 x 3 ,

x 2 x 4 are positive edges and that x 1 x 4 is a negative edge. This means after the above mentioned switch the pair x 3 x 4 is either not an edges or a positive edge.

Currently x 2 x 3 is in a positive triangle and x 1 x 4 is in a negative triangle. Thus after adding the vertex x 5 we must form a negative triangle x 2 x 3 x 5 and a positive one triangle x 1 x 4 x 5 . Using a switch at x 5 , if needed, we may assume that x 4 x 5 is a positive edge and that x 1 x 5 is a negative edges. Then we have two possibilities:

(i) x 3 x 5 is a positive edge and x 2 x 5 is a negative edge, or (ii) x 2 x 5 is a positive edge and x 3 x 5 is a negative edge. In the case (i) the edge x 2 x 4 has yet to satisfy the condition, as it is already in two negative triangles, the pair x 3 x 4 must form a positive edge. In the case (ii) the edge x 1 x 3 has yet to satisfy the condition, as it is already in two positive triangles, the pair x 3 x 4 must form a positive edge. In the case (i) after switches at x 2 and x 4 and in the case (ii) after switches at x 3 and x 4 we get an isomorphic copy of SP al 5 .

Thus, so far, we have shown that any bound for the class of signed K 4 -minorfree graphs is of order at least 5 and that up to a switch, SP al 5 is the only such a bound on five vertices. It remains to show that any such bound has also at least 10 edges. To this end we observe that in a minimal bound, as each edge is in at least 2 triangles, the degree of each vertex should be at least 3 but furthermore if all vertices are of degree 3, the graph must be K 4 which we have already seen not to be possible. As the only bound on five vertices has indeed 10 edges, we may consider a (minimal) bound on at least six vertices. Such a graph where all vertices are of degree 3 or higher and at least one vertex is of degree 4 or higher must then have at least 10 edges.

Signed K -subdivisions

As mentioned before, each cycle of a signed graph, based on its parity and its sign, is of one of the four possible types: 00, 01, 10 and 11. Considering a planar embedding of a signed K 4 -subdivision based on the types of the faces we have total of 11 possibilities. To see that is the full list of possibilities, we first observe that for each signed subdivision (G, σ) of K 4 if we take σ to be a signature which is a switch of σ and has the least possible number of negative edges, then σ will have at most two negative edges, and that if there are two negative edges, then they must be on the subdivisions of disjoint edges of K 4 . We may then consider possible parities and signs of the facial cycles to get the list of 11 possibilities.

These possibilities are presented in Figure 3 where they are classified into three groups, each group is presented in a row. In this figure, for each subdivision, the type of each bounded face is indicated inside the face, then the type of the outer face is determined as the binary sum of the types of the three bounded faces. In the following figures, a zigzag line represents a subdivision of an edge inside which each edge is of the positive sign and a dashed line represents a single edge of the negative sign. 00 00 00

(1) 00 00 01

(2) 00 00 10

(3) In the first row of Figure 3 we have subdivisions with (at least) two facial cycles of type 00, i.e., two positive even facial cycles. We will see that in these cases the signed subdivision can never be a core. The three kinds of subdivisions presented in the second row are the signed subdivisions (G, σ) when (G, σ) ∈ G ij , ij ∈ {01, 11, 10}. As the first (from left) can be switched to all positive and the second can be switched to all negative, these two cases are about graphs (signature being of no importance), thus to deal with these two cases we will consider subdivisions of K 4 which are cores as a graph. The third case of this row represents subdivisions that are signed bipartite graphs. For this family of signed subdivisions of K 4 , while the core of the underlying graph is K 2 , as a signed graph the core of the subdivision is either the graph itself, or the core of it is the shortest negative cycle of it. We will then classify, based on the lengths of subdivisions, when the subdivision is a core. The three cases of the second row are of special importance in the study of a number of important conjectures.

00 00 11 (4 
The remaining cases are when all four types of closed walks exist in (G, σ).

We will show for a member of this class to be a core, the triangular inequality must hold on the unique cycle of type 00 of (G, σ). types. We show that, in each case, a shortest closed walk of type ij, ij = 00, which is necessarily a cycle of the graph, is the core of it. This in fact is obtained by repeating applications of the folding Lemma of [START_REF] Klostermeyer | 2 + )-coloring of planar graphs with large odd-girth[END_REF] for the cases of ij = 01 and ij = 11 and of the folding lemma of [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] for the case of ij = 10. We state a combined version of these two lemmas in the following and we leave the remaining details to the reader.

Lemma 4.1 ([9], [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF]). Let (G, σ) be a plane signed graph in

G ij with g ij (G, σ) = g, for ij ∈ {01, 10, 11}. If C = v 0 • • • v r-1 v 0 is a facial cycle of (G, σ) which
is either of type ij with r > g or a cycle which is not of type ij (thus of the type 00), then there is an integer i ∈ {0, . . . , r -1} such that the signed graph (G , σ ) obtained from (G, σ) by identifying v i-1 and v i+1 (subscripts are taken modulo r) after a possible switch is a homomorphic image of (G, σ) satisfying

g ij (G, σ) = g.
We have thus proved the following theorem.

Theorem 4.2. Suppose that (G, σ) is a signed (a, b, c, a , b , c )-K 4 with at least two facial cycles of type 00, then either all the four facial cycles are of type 00 in which case the core of (G, σ) is (K 2 , +) or (G, σ) has a cycle which is not of type 00 and the shortest of all such cycles is the core of (G, σ).

Signed

(a, b, c, a , b , c )-K 4 in G ij
Here we consider the three cases of the second row of Figure 3. In this row, case (5) is an element of G 01 where after a switch, if needed, all edges are positive.

The case ( 6) is an element of G 11 where after a switch, if needed, all edges are negative. Thus in these two cases, (i.e., (5) and ( 6)) the problem of the subdivision being a core is reduced to whether the underlying graph is a core. Therefore we will address this case without using signature so that a reader interested only in the case of a graph can read it independently. Then we will consider case [START_REF] Gerards | Homomorphisms of graphs into odd cycles[END_REF] which is about signed bipartite graphs. It is shown in [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] that restriction of homomorphism to this class is already richer than homomorphisms of graphs.

odd-K 4

Let G be a subdivision of K 4 . As mentioned in the previous section, if G has an even face, then it has at least two even faces and then core of G is either a K 2 or its shortest odd cycle. Thus in the rest of this subsection we assume G is a subdivision of K 4 together with a plane embedding where all faces are odd cycles. It is easily observed that after removing an edge of G, the resulting subgraph maps to its shortest odd cycle. Thus we have the following claim.

Such a subdivision of

Proposition 4.3. The core of an odd-K 4 is either itself or its shortest odd cycle.

Towards a characterization of odd-K 4 's that are cores, we need the following lemma which is based on a subdivision of the graph presented in Figure 5. In this figure the planar embedding is of importance and, with respect to this embedding, the facial cycle bounded by the two T Z threads is the only even one. We may allow r or l to be 0 in which case vertex T is identical to Y or to Z. When for example l = 0, then AT path of length l is a cycle.

Lemma 4.4. Given a graph G of Figure 5 and assuming that the outer face is a shortest odd cycle of length 2k + 1, we have G → C 2k+1 if and only if the following three conditions hold: 

• l ≥ l , • r ≥ s 1 + s 3 + l , • s 2 ≥ s 1 + r Proof.
(i) b + c -a < a + b + c; (ii) a + b -c < a + b + c; (iii) a + c -b < a + b + c.
Proof. We will use the notation of Figure 4 and, furthermore, we assume, without loss of generality, that the outer face is a shortest odd cycle of G and that it is of length 2k + 1. We will rather work with counter opposite statement: G is not a core if and only if (at least) one of the three conditions are not satisfied.

By Proposition 4.3, if G is not a core, then G must map to the outer cycle which is a (2k + 1)-cycle. We use C ABC to denote this cycle.

We first prove the "if" part of the statement. Assume G is not a core, then G → C ABC and let f be one such mapping. Depending on which of the three parts of C ABC the vertex D is mapped to, we will have a contradiction with one of the conditions (i), (ii) or (iii). By the symmetry, we may assume that f (D) is on Proof. Given a negative even cycle C - 2k , any pair u and v of vertices of the cycle partitions it into two paths P 1 and P 2 one of which has an even number of negative edges, and the other has an odd number of negative edges. Thus if we add a new signed u -v path P , then the parity of the number of negative edges of P is the same as either P 1 or P 2 , say P 1 without loss of generality. If, furthermore, P is such that after adding this signed path the underlying graph remains bipartite and if in the resulting signed graph there is no negative cycle shorter than 2k, then P must be of length at least as P 1 and it should have a same parity as P 1 . Then after a suitable switch, if needed, one may map P onto P 1 . To prove the lemma, considering the outer cycle of (G, σ) and applying this general observation to the paths ZT , Y T and XT , each would correspond to one of the three conditions of the Lemma.

AB part of C ABC ,
We now proceed with a proof similar to that of Theorem 3.2 to give an analogous necessary and sufficient condition for a signed bipartite subdivision of K 4 to be a core (see Theorem 4.9). However, we rather partially simplify proof by connecting this case to the case of odd-K 4 which we have considered in the previous subsection. To this end, we first have the following definition.

Let (G, σ) be an (a, b, c, a , b , c )-K 4 subdivision of type [START_REF] Gerards | Homomorphisms of graphs into odd cycles[END_REF]. Moreover, as-sume that σ has the smallest number of negative edges. Thus there are two negative edges which are on subdivisions of two disjoint edges of K 4 . Assuming that the negative edges are on BC and AD, the graph obtained from G by subdividing these two negative edges each once is defined to be G a . Observing that the signed graph with two negative edges on AC and BD is switch equivalent to (G, σ) we may define G b and G c similarly. We observe that each of G a , G b and G c is an odd-K 4 where G a is an

(a + 1, b, c, a + 1, b , c )-K 4 G b is an (a, b + 1, c, a , b + 1, c )-K 4 and G c is an (a, b, c + 1, a , b , c + 1)-K 4 .
The following lemma provides connections between (G, σ) and G a , G b , G c . Proof. We first consider the "if" part and by symmetry of a, b, c we assume G a → C 2k+1 . We need to show that (G, σ) → C - 2k . As the outer cycle of G a is a (2k + 1)-cycle, the mapping of G a to C 2k+1 identifies D with a vertex u of the outer cycle. We consider G a as the image of G a obtained by identifying (only) D with u. Observing that u being on AB is symmetric with u being on AC, depending on the position of u and the parity of the new faces that are created by this identification, we have four possible cases to consider.

Case 1. u is on AB and the length of uA is of the same parity as a + 1.

Case 2. u is on AB and the length of uB is of the same parity as b .

Case 3. u is on BC and the length of uB is of the same parity as b .

Case 4. u is on BC and the length of uC is of the same parity as c .

In each case we would like to give a homomorphic image of (G, σ) by identifying D with a vertex v on AB or AC in the Case 1, Case 2 and on BC in the Case 3, Case 4 for which we may apply Lemma 4.7.

In Case 1, if u is a vertex of G a which is distinct from A, then we choose v to be a vertex on path AB in (G, σ) whose distance to A is one less than the distance of u to A in G a . If u = A, then we choose v to be the neighbour of A on the AC path of (G, σ). Assuming (G, σ) has two negative edges which are on AC and BD, let (G , σ ) be the signed graph obtained by identifying D with v.

As we have assumed that G a maps to C 2k+1 , the conditions of Lemma 4.4 must apply on G a . It can then readily be verified that conditions of Lemma 4.7 apply on (G , σ ) which means (G , σ ) and, therefore, (G, σ) maps to C - 2k . For the other Case 2 and Case 3, we choose v such that its distance from B on AB and BC correspondingly is the same as the distance of u from B. For Case 4, we choose v such that its distance from C on BC is the same as the distance of u from C. In these cases, we leave the verification of the details to the reader. This completes the proof of "if" direction of the theorem. We are now ready to state and prove the conditions for a signed K 4 -subdivision of type [START_REF] Gerards | Homomorphisms of graphs into odd cycles[END_REF] of Figure 3 to be a core. Theorem 4.9. Let (G, σ) be a signed bipartite (a, b, c, a , b , c )-K 4 where all facial cycles are negative. Furthermore, assume g 10 (G, σ) = a + b + c. Then (G, σ) is a core if and only if the following conditions are satisfied.

• b + c -a < a + b + c; • a + b -c < a + b + c; • a + c -b < a + b + c.
Proof. Suppose that (G, σ) is not a core and the shortest negative even cycle is ABC. By Lemma 4.8, one of G a , G b or G c is not a core. Without loss of generality, we assume that G a which is an odd (a + 1, b, c, a + 1, b , c )-K 4 is not a core. By Theorem 4.5, one of the following three inequality does not hold: This completes the proof.

Signed K 4 -subdivisions of the third group

These four cases have the common property that each of the signed K 4subdivisions of type (8), ( 9), ( 10) and (11) has a bounded g ij (G, σ) for all values of ij ∈ Z 2 2 . As a K 4 has four 3-cycles and three 4-cycles, a common property of these four types of subdivisions is that: in each case there is a unique cycle of type 00. Given (G, σ) of one of these types, we denote the unique positive even cycle of (G, σ) by C 00 (G, σ).

The core of the signed graph in each of these cases must also have the same value of g ij for any given ij ∈ Z 2 2 . We will use this property and the cycle C 00 (G, σ) to characterize the cases that are cores. We will give a proof in the case that (G, σ) is of type [START_REF] Hubi Čka | Universal partial order represented by means of oriented trees and other simple graphs[END_REF], and due to the similarities of the proofs, we will leave the verification of the other three cases to the readers. Theorem 4.10. Let (G, σ) be a signed (a, b, c, a , b , c )-K 4 of type either (8) or (9) or [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF]. Then (G, σ) is a core if and only if the lengths of subdivisions corresponding to the edges of C 00 (G, σ) satisfy triangular inequality with respect to this 4-cycle. That is to say, if lengths of subdivided paths of C 00 (G, σ) correspond to a, c, a , c , then we must have

• c < c + a + a ; • c < c + a + a; • a < a + c + c ; • a < a + c + c .
Proof. We consider the case when (G, σ) is of type [START_REF] Hubi Čka | Universal partial order represented by means of oriented trees and other simple graphs[END_REF] with the other two cases being similar. Furthermore, we label vertices as in Figure 4. Observe that deleting a vertex on BD or AC will eliminate two types of closed walks, thus all these vertices must be present in the core. If a vertex of another path, say AB is not in the core, then no vertex of AB is in the core. But then all other vertices must be present. For this to happen the path AB must have mapped to a path of same parity with a same parity of the number of negative edges, meaning it forms a positive even cycle with its image. As there is a unique cycle of this type (that is C ABCD ), the path AB must map onto the path P ADCB , thus we must have c ≥ c + a + a . In general, mapping of a part P of the cycle C ABCD to the C ABCD -P corresponds to one of the inequalities of the theorem.

The classification of cores for subdivisions corresponding to the case [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] of Figure 3, given below, is similar to that of the previous theorem, with a sole difference being that C 00 (G, σ) in this case corresponds to a 3-cycle rather than a 4-cycle. 

Possible applications

Theorem 4.5 and Theorem 4.9 are of special interest in the study of questions that are about mapping a class of graphs to an odd cycle and mapping a class of signed bipartite graphs to a negative even cycle. Two prime examples of such problems are the Jaeger-Zhang conjecture [START_REF] Zhang | Circular flows of nearly Eulerian graphs and vertex-splitting[END_REF] and a bipartite analogue of it introduced in [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] and studied in [START_REF] Charpentier | Homomorphisms of sparse signed graphs[END_REF]. They claimed the following. A classical approach to such conjectures is the discharging technique that is based on the following corollaries of Theorems 4.5 and 4.9. The proof is similar to the previous one and we leave the details to the reader.

Corollary 5.3 is a tool that is used in earliest approaches to Conjecture 5.1, see for example [START_REF] Zhu | Circular chromatic number of planar graphs of large odd girth[END_REF]. It should be noted that the best current result on this conjecture is that of [START_REF] Lovász | Nowhere-zero 3-flows and modulo k-orientations[END_REF] which is based on the theory of module k orientations. However, Conjecture 5.2 is rather new and the best support so far is a result of [START_REF] Charpentier | Homomorphisms of sparse signed graphs[END_REF] that is indeed based on our Corollary 5.4 and is referred to this work.

Other connections to our work can be found in the study of smallest C 2k+1critical graphs, that is a graph that does not map to C 2k+1 , but every proper subgraph maps. We refer to [START_REF] Beaudou | Smallest C 2l+1 -critical graphs of odd-girth 2k + 1. To appear in CALDAM[END_REF] for more on this subject.

to EDC(SP al 5 ).

Proposition 6.1. There exists a signed K 4 -minor-free graph (G, σ) satisfying g 11 (G, σ) ≥ 5, g 10 (G, σ) ≥ 4 and g 01 (G, σ) ≥ 3 such that (G, σ) → EDC(SPal 5 ).

x

+ 1 x - 1 x + 2 x - 2 x + 3 x - 3 x + 4 x - 4 x + 5
x - σ and an edge-sign-preserving homomorphism of (G, σ ) to EDC(SP al 5 ). As

x 1 x 2 x 3 x 4 x 5 is a negative cycle of (G, σ), at least one of its edges is negative in (G, σ ), by symmetry, assume that σ (x 1 x 2 ) = -. Then the triangle x 1 x 2 y 1 , which is a positive triangle, must have two negative edges. However, there exists no such a triangle in EDC(SP al 5 ) with the given signature.
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 4 Figure 4: Labeling a K 4 -subdivision

K 4

 4 is normally referred to as an odd-K 4 . Furthermore, and similar to the general case, an odd-(a, b, c, a , b , c )-K 4 refers to an odd-K 4 where lengths of the paths resulted from subdivided edges are a, b, c, a , b , c where the pair i, i refers to subdivisions of disjoint edges. This implies that a = a (mod 2), b = b (mod 2), c = c (mod 2) and a + b + c = 1 (mod 2).

Theorem 4 . 5 .Figure 5 :

 455 Figure 5: Subdivision of a C 2k+1 -cycle with 3 chords
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 126 Figure 6: Bipartite subdivision of a negative even cycle with 3 chords

Lemma 4 . 8 .

 48 Let (G, σ) be a signed (a, b, c, a , b , c )-K 4 of type (7) of Figure3and assumeg 10 (G, σ) = a + b + c = 2k. Then (G, σ) → C - 2k if and only if one of G a or G b or G c maps to C 2k+1 .

  For the "only if" part of the theorem we assume (G, σ) → C ABC and let φ be such a mapping. We need to show that one of G a or G b or G c maps to C 2k+1 .Let us assume, without loss of generality, that φ(D) is on the AB part of C ABC .Then either the path AD has the same parity of number of negative edges with the path Aφ(D) or BD has the same parity of number of negative edges with the path Bφ(D), without loss of generality, we assume the former. Let (G , σ ) be a signed graph obtained from (G, σ) by identifying (only) D with φ(D). It should be reminded that, since the final image, C - 2k , has a bipartite underlying graph, G is also a bipartite graph. We may now applying Lemma 4.7 to (G , σ ).Since it maps to its shortest negative cycle, the three inequalities of this lemma must be satisfied. Now in the graph G b if we identify D with a vertex of AB whose distance on AB from A is the same as that of φ(D) from A (in (G, σ)), the resulting graph G b satisfies conditions of Lemma 4.4, implying that G b → C 2k+1 . Similar conclusion can be made for G c as well. This completes the only if part of the proof.

( 1 )

 1 b + c -(a + 1) < (a + 1) + b + c or (2) (a + 1) + b -c < (a + 1) + b + c or (3) (a + 1) + c -b < (a + 1) + b + c. If (1) does not hold, i.e., b + c -(a + 1) ≥ (a + 1) + b + c, then we have b + c -a ≥ a + b + c, which means the first inequality of the theorem does not hold. Similarly, the case (2) implies that the second inequality of the theorem does not hold. And the case (3) implies the third one is not satisfied. Conversely, suppose that one of the three conditions, say the first, is not satisfied. Thus, b + c -a ≥ a + b + c. We consider G b which is an odd-(a, b + 1, c, a , b + 1, c ) -K 4 . As (b + 1) + c -a ≥ a + (b + 1) + c and by Theorem 4.5, G b is not a core. By Lemma 4.8 then (G, σ) is not a core either.

Theorem 4 . 11 .

 411 Let (G, σ) be a signed (a, b, c, a , b , c )-K 4 of type[START_REF] Naserasr | Homomorphisms of signed graphs[END_REF]. Then (G, σ) is a core if and only if the lengths of subdivisions corresponding to the edges of C 00 (G, σ) satisfy triangular inequality with respect to this 3-cycle. That is to say, if lengths of subdivided paths of C 00 (G, σ) correspond to a, b, c, then we must have• a < b + c; • b < a + c; • c < b + a.

Conjecture 5 . 1 . [ 14 ]

 5114 Every planar graph whose shortest odd cycle is of length at least 4k + 1 admits a homomorphism to C 2k+1 . Conjecture 5.2.[START_REF] Naserasr | Homomorphisms of signed graphs[END_REF][START_REF] Charpentier | Homomorphisms of sparse signed graphs[END_REF] Every planar signed bipartite graph (G, σ) satisfying g 10 (G, σ) ≥ 4k -2 admits a homomorphism to C - 2k .

Corollary 5 . 3 .Corollary 5 . 4 .

 5354 Given an odd-(a, b, c, a , b , c )-K 4 , G, if a + b + c = 2k + 1 is the length of its shortest odd cycle and a + b + c > 4k, then G → C 2k+1 . Proof. Let G be such a subdivision. If G is a core, then by Theorem 4.5 we must have, b +c -a ≤ a+b+c-1, a +b -c ≤ a+b+c-1 and a +c -b ≤ a+b+c-1. Adding up the three inequality we have 2(a + b + c ) ≤ 4(a + b + c) -3 but then since all values are integers and considering parity we have 2(a + b + c ) ≤ 4(a + b + c) -4, and finally using the assumption that a + b + c = 2k + 1 we have a + b + c ≤ 4k. Given a signed (a, b, c, a , b , c )-K 4 , (G, σ), if all faces are of type 10, a + b + c = 2k is the length of its shortest negative even cycle and a + b + c ≥ 4k -1, then (G, σ) → C - 2k .

5

 5 
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 738 Figure 7: EDC(SP al 5 )

  , +) (resp. (K 4 , -)) bounds the class of planar graphs in G 01 (resp. G 11 ).

	Theorem 2.4. [12] A signed graph (G, σ) admits a homomorphism to a signed
	graph (H, π) if and only if there exists a switch σ of σ such that (G, σ ) admits
	an edge-sign-preserving homomorphism to (H, π).
	Using this reformulation, one observes that restriction of homomorphisms of
	signed graphs to the class G 01 (or G 11 ) is the classic notion of homomorphisms of
	graphs. Furthermore, it is shown, in [11], that restriction on the class G 10 already
	captures the notion of graph homomorphism via a simple graph operation.
	Given a signed graph B and a class C of signed graphs, we say B bounds
	the class C if every member of C admits a homomorphism to B. The most well-
	known example of a bound is a reformulation of the four color theorem which says
	(K 4 A main question of importance then is the following. Given a class C of
	signed graphs and a signed graph B, are the necessary conditions of Lemma 2.3
	also sufficient? In other words, does every signed graph (G, σ) ∈ C satisfying
	g ij (G, σ) ≥ g ij (B) admits a homomorphism to B? If so, then we say B is C-
	easy. It is not hard to check that the four color theorem is equivalent to claiming
	that:
	Theorem 2.5 (4CT, restated). The signed graph (K 4 , +) is planar-easy, and so
	is (K 4 , -).

  v n be an ordering of vertices of G * obtained by following Proposition 3.1. Thus v 1 , v 2 , v 3 induces a triangle in G * . As H is nontrivial, it has at least one edge and thus by the assumption on the edges it has at least one positive triangle on this edge and one negative triangle. Taking a triangle T in (H , π ), of the same sign of the triangle v 1 v 2 v 3 in (G

* , σ * ), and after a suitable switch if needed we may map v 1 , v 2 , v 3 to the vertices of T . To complete this mapping to a mapping of (G * , σ * ) to (H , π ) we use induction: having φ which maps vertices v 1 , v 2 , . . . , v i to (H , π ), from the structure of G * we know v i+1 forms a triangle with two vertices, say v j1 , v j2 , in v 1 , v 2 , . . . , v i and is connected to no other. Consider that the sign of the triangle
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assumption that condition (i) of the theorem does not hold.

Case [START_REF] Beaudou | Homomorphism bounds of signed bipartite K 4 -minor-free graphs and edge-colorings of 2kregular K 4 -minor-free multigraphs[END_REF] In this case first we delete internal vertices of the path BD. The result must map to its shortest odd cycle which is C ABC . Then observing that b is of a same parity as a + b + a (because the cycle corresponding to a, b, a , b is an even cycle), we may map the path BD to path BCAD.

Signed bipartite subdivisions

In this subsection we consider the case (7) of Figure 3. Thus in this subsection (G, σ) is a signed bipartite subdivision of K 4 together with a planar embedding where all facial cycles are negative. Observe that in this case an equivalent signature with minimum number of negative edges has two negative edges, one on each of two paths corresponding to two disjoint edges of K 4 . As before we will use the labeling of Figure 4 and we may refer to (G, σ) as the (a, b, c, a , b , c )-K 4 .

Furthermore, without loss of generality, we will always assume that the outer face is a shortest negative cycle of (G, σ), in other word

It is easy to observe that if we delete an edge of (G, σ), then the resulting signed graph maps to its shortest negative cycle. This implies that: Proposition 4.6. The core of a signed bipartite subdivision of K 4 whose faces are all negative cycles, is either itself or its shortest negative cycle.

In this case we have the following analogue of Lemma 4.4. Lemma 4.7. Given a signed graph (G, σ) of Figure 6 if the outer face is a shortest negative cycle and is of length 2k, then (G, σ) → C - 2k if and only if the following three conditions hold:

Further discussion

Combining results from [START_REF] Beaudou | Homomorphism bounds and edge-colourings of K 4 -minor-free graphs[END_REF] and [START_REF] Beaudou | Homomorphism bounds of signed bipartite K 4 -minor-free graphs and edge-colorings of 2kregular K 4 -minor-free multigraphs[END_REF], given a signed graph in one of the three classes G ij , ij ∈ {01, 10, 11}, a necessary and sufficient condition is given to decide whether B has the property that it admits a homomorphism from any signed K 4 -minor-free graph (G, σ) as long as we have g ij (G, σ) ≥ g ij (B). In this work we have had a first look at the general case of the problem where B is not necessarily a member of G ij . We gave a necessary and sufficient condition for the case when B is a simple signed graph, that to say g 10 (B) = 4, g 01 (B) = g 11 (B) = 3.

We therefore ask for a possible generalization to all choices of B.

The notion of Extended Double Cover of a signed graph (G, σ) is presented in [START_REF] Naserasr | Homomorphisms of signed graphs: an update[END_REF]. Given a signed graph (G, σ), EDC(G, σ) is a signed graph on vertex set

Vertices x + and x -are connected by a negative edge; all other edges, that are described next, are positive. If vertices u and v are adjacent in (G, σ) by a positive edge, then v + u + and v -u -are two positive edges of EDC(G, σ), if vertices u and v are adjacent in (G, σ) by a negative edge, then v + u -and v -u + are two positive edges of EDC(G, σ).

It can be checked readily that if B ∈ G 10 then EDC(B)∈ G 11 and vice versa.

Then in [START_REF] Foucaud | Homomorphism bounds of signed K 4 -minor-free graphs[END_REF] it is shown that if B ∈ G 10 or B ∈ G 11 has the property that it admits a homomorphism from any signed K 4 -minor-free graph (G, σ) satisfying

2 , then EDC(B) has the same property. However, this is not true for a general signed graph B, an example for which is SP al 5 . As this is a simple graph we can easily check that g 10 (SP al