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Abstract

A signed graph is a pair (G, σ), where G is a graph and σ : E(G)→ {+,−} is a signature which
assigns to each edge of G a sign. Various notions of coloring of signed graphs have been studied.
In this paper, we extend circular coloring of graphs to signed graphs. Given a signed graph (G, σ)
a circular r-coloring of (G, σ) is an assignment ψ of points of a circle of circumference r to the
vertices of G such that for every edge e = uv of G, if σ(e) = +, then ψ(u) and ψ(v) have distance
at least 1, and if σ(e) = −, then ψ(v) and the antipodal of ψ(u) have distance at least 1. The
circular chromatic number χc(G, σ) of a signed graph (G, σ) is the infimum of those r for which
(G, σ) admits a circular r-coloring. For a graph G, we define the signed circular chromatic number
of G to be max{χc(G, σ) : σ is a signature of G}.

We study basic properties of circular coloring of signed graphs and develop tools for calculating
χc(G, σ). We explore the relation between the circular chromatic number and the signed circular
chromatic number of graphs, and present bounds for the signed circular chromatic number of some
families of graphs. In particular, we determine the supremum of the signed circular chromatic
number of k-chromatic graphs of large girth, of simple bipartite planar graphs, d-degenerate graphs,
simple outerplanar graphs and series-parallel graphs. We construct a signed planar simple graph
whose circular chromatic number is 4 + 2

3 . This is based and improves on a signed graph built by
Kardos and Narboni as a counterexample to a conjecture of Máčajová, Raspaud, and Škoviera.

1 Introduction

Assume r ≥ 1 is a real number. We denote by Cr the circle of circumference r, obtained from the interval
[0, r] by identifying 0 and r. Points in Cr are real numbers from [0, r). For two points x, y on Cr, the
distance between x and y on Cr, denoted by d(mod r)(x, y), is the length of the shorter arc of Cr connecting
x and y. Given two real numbers a and b, the interval [a, b] on Cr is a closed interval of Cr in clockwise
orientation of the circle whose first point is a(mod r) and whose end point is b(mod r). For example if
r > 4, then [4, 1] = {t : 4 ≤ t < r, or 0 ≤ t ≤ 1}. Intervals [a, b), (a, b] and (a, b) are defined similarly.
The length of the interval [a, b] is denoted by `([a, b]). Thus d(mod r)(x, y) = min{`([x, y]), `([y, x])}.
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Given a graph G, a circular r-coloring of G is a mapping f : V (G) → Cr such that for any edge
uv ∈ E(G), d(mod r)(f(u), f(v)) ≥ 1. The circular chromatic number of G is defined as

χc(G) = inf{r : G admits a circular r-coloring}.

The concept of circular coloring of graphs was introduced by Vince in 1988 in [21], where a different
definition was given and the parameter was called the “star chromatic number”. The term “circular
chromatic number” was coined in [28] and the above definition was given in [25]. One important
feature of the circular chromatic number is that for any graph G, χ(G) − 1 < χc(G) ≤ χ(G) and
hence χ(G) = dχc(G)e. In this sense, the invariant χc(G) is a refinement of χ(G) and it contains
more information about the structure of G. The circular chromatic number of graphs has been studied
extensively in the literature, and the reader is referred to [28, 29] for surveys on this subject.

A signed graph is a graph G = (V,E) (allowing loops and multi-edges) together with an assignment
σ : E → {+,−}, denoted (G, σ). An edge with sign − is a negative edge and an edge with sign + is
a positive edge. If (G, σ) is a signed graph in which all the edges are positive (respectively, negative),
then (G, σ) is denoted as (G,+) (respectively, (G,−)). When the signature is clear from the context,
we may omit the signature and denote the signed graph by G̃.

In this paper, we extend the concept of circular coloring of graphs to signed graphs. We remark that
an extension of circular coloring to signed graphs was also introduced in [8]. However, the extension
defined in this paper is different. The difference between these two extensions is further discussed in
Section 8.

For each point x on Cr, the unique point of distance r
2
from x is called the antipodal of x and is

denoted by x̄. Given a set A of points on Cr, the antipodal of A, denotes by Ā, is the set of antipodals
of points in A.

Definition 1.1. Given a signed graph (G, σ) with no positive loop and a real number r, a circular
r-coloring of (G, σ) is a mapping f : V (G)→ Cr such that for each positive edge e = uv of (G, σ),

d(mod r)(f(u), f(v)) ≥ 1,

and for each negative edge e = uv of (G, σ),

d(mod r)(f(u), f(v)) ≥ 1.

The circular chromatic number of (G, σ) is defined as

χc(G, σ) = inf{r ≥ 1 : G admits a circular r-coloring}.

Note that if e = uv is a negative edge, the condition d(mod r)(f(u), f(v)) ≥ 1 is equivalent to
d(mod r)(f(u), f(v)) ≤ r

2
− 1. This definition can be equivalently viewed as an assignment ϕ of in-

tervals of length 1 (whose center is determined by f) to the vertices such that for a positive edge uv,
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the intervals ϕ(u) and ϕ(v) do not intersect and for a negative edge uv, the intervals ϕ(u) and ϕ(v) do
not intersect.

Observe that if (G, σ) has no edge, then χc(G, σ) = 1, and if (G, σ) has an edge, either positive or
negative, then (G, σ) is not circular r-colorable for r < 2. As graphs with no edge are not interesting,
in the remainder of the paper, we always assume that r ≥ 2.

It follows from the definition that for any graph G, χc(G,+) = χc(G). So the circular chromatic
number of a signed graph is indeed a generalization of the circular chromatic number of a graph.

Definition 1.2. For a simple graph G, the signed circular chromatic number χsc(G) of G is defined as

χsc(G) = max{χc(G, σ) : σ is a signature of G}.

The circular chromatic number of a graph is a refinement of its chromatic number: for any positive
integer k, a graph G is circular k-colorable if and only if G is k-colorable. The same is also true for the
chromatic number of signed graphs defined based on the notion of 0-free coloring define by Zaslavsky
[22].

Definition 1.3. Given a signed graph (G, σ) and a positive integer k. A 0-free 2k-coloring of (G, σ) is
a mapping f : V (G)→ {±1,±2, . . . ,±k} such that for any edge e = uv of (G, σ), f(u) 6= σ(e)f(v).

Proposition 1.4. Assume (G, σ) is a signed graph and k is a positive integer. Then (G, σ) is 0-free
2k-colorable if and only if (G, σ) is circular 2k-colorable.

Proof. Assume f : V (G)→ {±1,±2, . . . ,±k} is any mapping. Let

g(v) =

{
f(v)− 1, if f(v) ∈ {1, 2, . . . , k}
f(v) + k − 1, if f(v) ∈ {−1,−2, . . . ,−k}.

It is straightforward to verify that g is a circular 2k-coloring of (G, σ) if and only if f is a 0-free
2k-coloring of (G, σ).

The number of colors used in the 0-free coloring is always even. There have been several attempts
to introduce an analogue coloring which uses an odd number of colors. The term 0-free indeed identifies
this coloring from a similar coloring where 0 is added to the set of colors and the set of vertices colored
with 0 induces an independent set. To be precise, a (2k + 1)-coloring of a signed graph uses colors
{0,±1, . . . ,±k}, and the constraint is still the same: for any edge e = uv of G, f(u) 6= σ(e)f(v). In
a (2k + 1)-coloring of a signed graph, the color 0 is different from the other colors. The antipodal of
0 is 0 itself. The set of vertices of color 0 is an independent set of G, and for every other color i,
vertices colored by color i may be joined by negative edges. In some sense, circular coloring of signed
graph provides a more natural generalization of 0-free coloring to colorings of signed graphs with an odd
number of colors, where the colors are symmetric.
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In this paper, we shall study basic properties of circular coloring of signed graphs. We shall explore
the relation between the circular chromatic number and the signed circular chromatic number of graphs,
and prove that for any graph G, χc(G) ≤ χsc(G) ≤ 2χc(G). We prove that the upper bound is tight
even when restricted to graphs of arbitrary large girth or bipartite planar graphs. Furthermore, we
construct a signed planar simple graph whose circular chromatic number is 4 + 2

3
. Máčajová, Raspaud,

and Škoviera [13] conjectured that every signed planar simple graph is 4-colorable. By Proposition 2.10,
this is equivalent to say that χsc(G) ≤ 4 for every planar graph. Kardos and Narboni [9] refuted this
conjecture by constructing a non-4-colorable signed planar graph. Our construction improves on the
example of Kardos and Narboni. Thus we show that the supremum of the signed chromatic number of
planar graphs is between 4 + 2

3
and 6. The exact value remains an open problem.

2 Equivalent definitions

There are several equivalent definitions of the circular chromatic number of graphs. Some of these
definitions are also extended naturally to signed graphs.

Note that for s, t ∈ [0, r), d(mod r)(s, t) = min{|s− t|, r − |s− t|}. So a circular r-coloring of a graph
can be defined as follows, which is sometimes more convenient.

Definition 2.1. A circular r-coloring of a signed graph (G, σ) is a mapping f : V (G)→ [0, r) such that
for each positive edge uv,

1 ≤ |f(u)− f(v)| ≤ r − 1

and for each negative edge uv,

either |f(u)− f(v)| ≤ r

2
− 1 or |f(u)− f(v)| ≥ r

2
+ 1.

If r is a rational number, then in a circular r-coloring of a signed graph (G, σ), it suffices to use a
finite set of colors from the interval [0, r). We may assume that r = p

q
, where p is even and subject to this

condition p
q
is in its simplest form. For i ∈ {0, 1, . . . , p− 1}, let Ii be the half open, half closed interval

[ i
q
, i+1

q
) of [0, r). Then ∪p−1

i=0 Ii is a partition of [0, r). Assume f : V (G) → [0, r) is a circular r-coloring
of a signed graph (G, σ). Then for each vertex v of G, let g(v) = i

q
if and only if f(v) ∈ Ii. If e = uv is

a positive edge, then 1 ≤ |f(u) − f(v)| ≤ p
q
− 1. This implies that 1 − 1

q
< |g(u) − g(v)| < p

q
− 1 + 1

q
.

Since q|g(u) − g(v)| is an integer, we conclude that 1 ≤ |g(u) − g(v)| ≤ p
q
− 1. If e = uv is a negative

edge, then either |g(u)− g(v)| < p
2
− 1 + 1

q
or |g(u)− g(v)| > p

2
+ 1− 1

q
. Since p is even, p

2
is an integer.

As q|g(u) − g(v)| is an integer, we conclude that either |g(u) − g(v)| ≤ p
2
− 1 or |g(u) − g(v)| ≥ p

2
+ 1.

It is crucial that p be an even integer. For otherwise p
2
is not an integer, and we cannot conclude that

|g(u) − g(v)| ≤ p
2
− 1 or |g(u) − g(v)| ≥ p

2
+ 1. Indeed, if p is odd, then the set {0, 1

q
, . . . , p−1

q
} is not

closed under taking antipodal points.
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The above observation leads to the following equivalent definition of the circular chromatic number
of signed graphs. For i, j ∈ {0, 1, . . . , p− 1}, the modulo-p distance between i and j is

d(mod p)(i, j) = min{|i− j|, p− |i− j|}.

Given an even integer p, the antipodal color of x ∈ {0, 1, . . . , p− 1} is x̄ = x+ p
2
(mod p).

Definition 2.2. Assume p is an even integer and q ≤ p/2 is a positive integer. A (p, q)-coloring of a
signed graph (G, σ) is a mapping f : V (G)→ {0, 1, . . . , p− 1} such that for any positive edge uv,

d(mod p)(f(u), f(v)) ≥ q,

and for any negative edge uv,
d(mod p)(f(u), f(v)) ≥ q.

The circular chromatic number of (G, σ) is

χc(G, σ) = inf{p
q

: p is an even integer and (G, σ) has a (p, q)-coloring}.

Note that d(mod p)(i, j) ≥ q is equivalent to

q ≤ |i− j| ≤ p− q.

A homomorphism of a graph G to a graph H is a mapping f : V (G) → V (H) such that for every
edge uv of G, f(u)f(v) is an edge of H. It is well-known and easy to see that a graph G is k-colorable
if and only if G admits a homomorphism to Kk, the complete graph on k vertices. Similarly, circular
chromatic number of graphs are also defined through graph homomorphism. For integers p ≥ 2q > 0,
the circular clique Kp;q has vertex set [p] = {0, 1, . . . , p−1} and edge set {ij : q ≤ |i− j| ≤ p− q}. Then
a circular p

q
-coloring of a graph G is equivalent to a homomorphism of G to Kp;q. Circular chromatic

number of signed graphs can also be defined through homomorphisms.

Definition 2.3. An edge-sign preserving homomorphism of a signed graph (G, σ) to a signed graph
(H, π) is a mapping f : V (G) → V (H) such that for every positive (respectively, negative) edge uv of
(G, σ), f(u)f(v) is a positive (respectively, negative) edge of (H, π).

We write (G, σ)
s.p.−→ (H, π) if there exists an edge-sign preserving homomorphism of (G, σ) to (H, π).

For integers p ≥ 2q > 0 such that p is even, the signed circular clique Ks
p;q has vertex set [p] =

{0, 1, . . . , p− 1}, in which ij is a positive edge if and only if q ≤ |i− j| ≤ p− q and ij is a negative edge
if and only if either |i− j| ≤ p

2
− q or |i− j| ≥ p

2
+ q. If q = 1, then Ks

p;1 is also written as Ks
p .

Note that in Ks
p;q, each vertex i is incident to a negative loop. When p

q
≥ 4, there are parallel edges

of different signs. Furthermore, the subgraph induced by all the positive edges of Ks
p;q is the circular

clique Kp;q, which is known to be of circular chromatic number p
q
, thus we have χc(Ks

p;q) = p
q
.

The following lemma gives another equivalent definition of the circular chromatic number of a signed
graph.
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Lemma 2.4. Assume (G, σ) is a signed graph, p is a positive even integer, q is a positive integer and
p ≥ 2q. Then (G, σ) has a (p, q)-coloring if and only if (G, σ)

s.p.−→ Ks
p;q. Hence the circular chromatic

number of (G, σ) is
χc(G, σ) = inf{p

q
: (G, σ)

s.p.−→ Ks
p;q}.

As homomorphism relation is transitive, we have the following lemma.

Lemma 2.5. If (G, σ)
s.p.−→ (H, π), then we have χc(G, σ) ≤ χc(H, π).

For a real number r ≥ 2, we can also define Ks
r be the infinite graph with vertex set [0, r), in which

xy is a positive edge if 1 ≤ |x − y| ≤ r − 1 and xy is a negative edge if either |x − y| ≤ r
2
− 1 or

|x− y| ≥ r
2

+ 1. Then it follows from the definition that a signed graph (G, σ) is circular r-colorable if
and only if (G, σ) admits an edge-sign preserving homomorphism to Ks

r . If r = p
q
is a rational and p is

an even integer, then it follows from the definition that Ks
p;q is a subgraph of Ks

r . On the other hand,
it follows from Lemma 2.4 that Ks

r admits an edge-sign preserving homomorphism to Ks
p;q. Note that if

r′ ≥ r then f : [0, r)→ [0, r′) defined as f(x) = r′x
r

is an edge-sign preserving homomorphism of Ks
r to

Ks
r′ .

Lemma 2.6. Given even positive integers p, p′, if p
q
≤ p′

q′
, then Ks

p;q

s.p.−→ Ks
p′;q′.

Proof. Let r = p
q
, r′ = p′

q′
. Then Ks

p;q

s.p.−→ Ks
r

s.p.−→ Ks
r′

s.p.−→ Ks
p′;q′ .

Assume (G, σ) is a signed graph. A switching at vertex v is to switch the signs of edges which are
incident to v. A switching at a set A ⊂ V (G) is to switch at each vertex in A. That is equivalent to
switching the signs of all edges in the edge-cut E(A, V (G) \A). A signed graph (G, σ) is a switching of
(G, σ′) if it is obtained from (G, σ′) by a sequence of switchings. We say (G, σ) is switching equivalent
to (G, σ′) if (G, σ) is a switching of (G, σ′). It is easily observed that given a graph G, the relation
“switching equivalent” is an equivalence class on the set of all signatures on G.

It was observed in [23] that if (G, σ) admits a 0-free 2k-coloring then every switching equivalent
signed graph (G, σ′) admits such a coloring: If c is a 0-free 2k-coloring of (G, σ), then after a switching
at a vertex v one may change the color of v from c(v) to −c(v) to preserve the property of being a 0-free
2k-coloring. The same argument applies to circular r-coloring.

Proposition 2.7. Assume (G, σ) and (G, σ′) are switching equivalent, say (G, σ′) is obtained from (G, σ)

by switching at a set A. Then every circular r-coloring of (G, σ) corresponds to a circular r-coloring of
(G, σ′). In particular, χc(G, σ′) = χc(G, σ).

Proof. Assume f is a (p, q)-coloring of (G, σ) and (G, σ′) is obtained from (G, σ) by switching at a set
A. Let g : V (G)→ {0, 1, . . . , p− 1} be defined as

g(v) =

{
f(v), if v ∈ V (G)− A,
f(v) + p

2
, if v ∈ A.

6



Here the addition f(v) + p/2 is carried out modulo p, so that f(v) + p/2 ∈ {0, 1, . . . , p− 1}. It is easy
to verify that g is a (p, q)-coloring of (G, σ′).

Assume (G, σ) is a signed graph and c is a (p, q)-coloring of (G, σ) (where p is even and subject to
this condition p

q
is in its simplest form). Let A = {v : c(v) ≥ p

2
} and let (G, σ′) be obtained from (G, σ)

by switching at A. It follows from the proof of Proposition 2.7 that there is a (p, q)-coloring c′ of (G, σ′)

such that c′(v) ≤ p
2
− 1 for each vertex v. Let K̂s

p;q be the signed subgraph of Ks
p;q induced by vertices

{0, 1, . . . , p
2
− 1}.

Definition 2.8. Assume (G, σ) and (H, π) are signed graphs. If there is a signed graph (G, σ′) which
is switching equivalent to (G, σ) and admits an edge-sign preserving homomorphism to (H, π), then we
say (G, σ) admits a switching homomorphism to (H, π). We write (G, σ)

switch−→ (H, π) if (G, σ) admits a
switching homomorphism to (H, π).

Then we have the following lemma, which can be viewed as another definition of circular chromatic
number of signed graphs.

Lemma 2.9. Assume (G, σ) is a signed graph. Then

χc(G, σ) = inf{p
q

: p is even and (G, σ)
switch−→ K̂s

p;q }.

Thus, in particular, Lemma 2.5 and Lemma 2.6 can be restated with a switching homomorphism in
place of edge-sign preserving homomorphism.

Note that in the graph K̂s
p , every pair of distinct vertices are joined by a positive edge and a negative

edge, and moreover, each vertex i is incident to a negative loop. Thus we have the following result.

Proposition 2.10. A signed graph (G, σ) is (2k, 1)-colorable (equivalently 0-free 2k-colorable) if and
only if there is a set A of vertices such that after switching at A, the result is a signed graph whose
positive edges induce a k-colorable graph.

In the study of circular coloring of signed graphs, switching-equivalent signed graphs are viewed
as the same signed graph. The problem as which signed graphs are equivalent was first studied by
Zaslavsky [23]. We define the sign of a cycle (respectively, a closed walk) in (G, σ) to be the product
of the signs of the edges of the cycle (respectively, the closed walk). One may observe that a switching
does not change the sign of a cycle of (G, σ). A result of Zaslavsky, fundamental in the study of signed
graphs, shows that a switching equivalent class to which (G, σ) belongs to is determined by signs of all
cycles of (G, σ).

Theorem 2.11. [23] Two signed graphs (G, σ1) and (G, σ2) are switching equivalent if and only if they
have the same set of negative cycles.

Thus we have the following proposition (see [18] for more details).
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Proposition 2.12. A signed graph (G, σ) admits a switching homomorphism to a signed graph (H, π)

if and only if there is a homomorphism f from G to H such that for every closed walk W of (G, σ), W
and f(W ) have the same sign.

The following lemma follows from Theorem 2.11.

Lemma 2.13. A signed graph (G, σ) admits a switching homomorphism to (H, π) if and only if there is
a mapping of vertices and edges of (G, σ) to the vertices and edges of (H, π) which preserves adjacencies,
incidences, and signs of closed walks.

For a non-zero integer `, we denote by C` the cycle of length |`| whose sign agrees with the sign of `.
So for example C−4 is a negative cycle of length 4. Observe that the signed graph K̂4k;2k−1 is obtained
from C−2k by adding a negative loop at each vertex. Note that adding negative loops to a signed graph
or deleting them does not affect its circular chromatic number. So we may ignore negative loops in
(G, σ). However, as a target of switching homomorphism, negative loops are important, because we can
map two vertices connected by a negative edge to a same vertex v, provided v is incident to a negative
loop.

3 Some basic properties

Assume (G, σ) is a signed graph and φ : V (G) → [0, r) is a circular r-coloring of (G, σ). The partial
orientation D = Dφ(G, σ) of G with respect to a circular r-coloring φ is defined as follows: (u, v) is an
arc of D if and only if one of the following holds:

• uv is a positive edge and (φ(v)− φ(u))(mod r) = 1.

• uv is a negative edge and (φ(v)− φ(u))(mod r) = 1.

Definition 3.1. Assume (G, σ) is a signed graph and φ is a circular r-coloring of (G, σ). Arcs in
Dφ(G, σ) are called tight arcs of (G, σ) with respect to φ. A directed path (respectively, a directed cycle)
in Dφ(G, σ) is called a tight path (respectively, a tight cycle) with respect to φ.

Lemma 3.2. Let (G, σ) be a signed graph and let φ be a circular r-coloring of (G, σ). If Dφ(G, σ) is
acyclic, then there exists an r0 � r such that (G, σ) admits an r0-circular coloring.

Proof. For a given signed graph (G, σ) and a circular r-coloring φ of (G, σ), suppose that Dφ(G, σ) is
acyclic. Moreover, we assume among all such φ, Dφ(G, σ) has minimum number of arcs. First we show
that Dφ(G, σ) has no arc. Otherwise, since Dφ(G, σ) is acyclic, Dφ(G, σ) has an arc (v, u) such that u
is a sink. Thus for every positive edge uw, (φ(w) − φ(u))(mod r) > 1 and for every negative edge uw,
(φ(w)− φ(u))(mod r) > 1. As G is finite, there exists an ε > 0 such that for every positive edge uw of
(G, σ), (φ(w)− φ(u))(mod r) > 1 + ε and for every negative edge uw, (φ(w)− φ(u))(mod r) > 1 + ε.
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Let ψ(x) = φ(x) for x 6= u and ψ(u) = φ(u) + ε. Then ψ is a circular r-coloring of (G, σ) and
Dψ(G, σ) is a sub digraph of Dφ(G, σ), in which (v, u) is not an arc. So Dψ(G, σ) is acyclic and has
fewer arcs than Dφ(G, σ), contrary to our choice of φ.

As Dφ(G, σ) has no arc, it follows from the definition that there exists ε > 0 such that for any
positive edge uv,

1 + ε ≤ |φ(u)− φ(v)| ≤ r − (1 + ε)

and for any negative edge uv,

1 + ε ≤ |φ(u)− φ(v)| ≤ r − (1 + ε).

Let r0 = r
1+ε

and let ψ : V (G) → [0, r′) be defined as ψ(v) = φ(v)
1+ε

. Then ψ is an r0-circular coloring of
(G, σ).

Corollary 3.3. If χc(G, σ) = r, then every circular r-coloring φ of (G, σ) has a tight cycle.

The converse of Corollary 3.3 is also true.

Lemma 3.4. Given a signed graph (G, σ), χc(G, σ) = r if and only if (G, σ) is circular r-colorable and
every circular r-coloring φ of (G, σ), has a tight cycle.

Proof. One direction is proved in Corollary 3.3. It remains to show that if χc(G, σ) < r, then there is a
circular r-coloring φ of (G, σ) such that Dφ(G, σ) is acyclic.

Assume χc(G, σ) = r′ < r. Let ψ : V (G) → [0, r) be a circular r′-coloring of (G, σ). Let φ(v) =
r
r′
ψ(v). Then it is easy to verify that φ is a circular r-coloring of (G, σ) and Dφ(G, σ) contains no arc

(and hence is acyclic).

Proposition 3.5. Any signed graph (G, σ) which is not a forest has a cycle with s positive edges and t
negative edges such that χc(G, σ) = 2(s+t)

2a+t
for some non-negative integer a.

Proof. Assume χc(G, σ) = r and ψ : V (G) → [0, r) is a circular r-coloring of (G, σ). By Lemma 3.4,
Dψ(G, σ) contains a directed cycle B. Assume B consists of s positive edges and t negative edges. We
view the colors as the points of a circle Cr of circumference r, which is obtained from the interval [0, r]

by identifying 0 and r. Assume B = (v1, v2, . . . , vs+t). If vivi+1 is a positive edge, then traversing from
the colors of vi, one unit along the clockwise direction of Cr, we arrive at the color of vi+1. If vivi+1 is a
negative edge, then from the color of vi, by first traversing r

2
unit along the anti-clockwise direction of Cr

then traversing along the clockwise direction a unit distance, we arrive at the color of vi+1. Therefore,
directed cycle B represents a total traverse along the circle Cr distance s− ( r

2
− 1) · t, at end of which

one must come back to the starting color. So

s− (
r

2
− 1)× t = r × a

9



for some integer a. Hence

r =
2(s+ t)

2a+ t

Since s + t ≤ |V (G)|, and r ≥ 2, given the number of vertices of G, there is a finite number of
candidates for the circular chromatic number of (G, σ). Thus we have the following corollary.

Corollary 3.6. Assume (G, σ) is a signed graph on n vertices. Then χc(G, σ) = p
q
for some p ≤ 2n. In

particular, the infimum in the definition of χc(G, σ) can be replaced by minimum.

It also follows from Corollary 3.6 that there is an algorithm that determines the circular circular
chromatic number of a finite signed graph. Of course, determining the circular chromatic number of
a signed graph is at least as hard as determining the chromatic number of a graph, and, hence, the
problem is NP-hard and, unless P=NP, there is no feasible algorithm for the problem. Nevertheless, it
is easy to determine whether a signed graph (G, σ) has circular chromatic number 2.

Proposition 3.7. Any signed graph (G, σ) with at least one edge has χc(G, σ) ≥ 2, and χc(G, σ) = 2 if
and only if (G, σ) is switching equivalent to (G,−).

Assume χc(G, σ) = r and f : V (G)→ [0, r) is a circular r-coloring of (G, σ). Let A = {v : f(v) ≥ r
2
}.

Let (G, σ′) be obtained from (G, σ) by switching at A. Then

g(v) =

{
f(v), if f(v) < r

2

f(v)− r
2
, if f(v) ≥ r

2

is a circular r-coloring of (G, σ′). A tight cycle B = (v1, v2, . . . , vl) with respect to f is also a tight cycle
with respect to g. However, for each edge (vi, vi+1), (g(vi), g(vi+1)) is an arc on the circle of length r

2

along the clockwise direction.
Recall that the core of a graph G is a smallest subgraph H of G to which G admits a homomorphism.

If (G, σ) is a signed graph and H is a subgraph of G, then we denote by (H, σ) the signed subgraph
of (G, σ), where σ in (H, σ) is considered to be the restriction of σ to E(H). We define the sp-core
of a signed graph (G, σ) to be a smallest signed subgraph (H, σ) such that (G, σ) admits an edge-sign
preserving homomorphism to (H, σ). The switching core of a signed graph (G, σ) is a smallest signed
subgraph (H, σ) such that (G, σ) admits a switching homomorphism to (H, σ). That the sp-core and
the switching core of a finite signed graph is unique up to isomorphism and thus the well-definiteness is
shown in [17].

It follows from the definition that the switching core of (G, σ) is isomorphic to a signed subgraph of
a sp-core of (G, σ).

Lemma 3.8. Assume r = p
q
is a rational, p is an even integer and with respect to this condition p

q
is in

its simplest form. Then K̂s
p;q is the unique switching core of Ks

r .

10



Proof. Since K̂s
p;q is a subgraph of Ks

r and Ks
r
switch−→ K̂s

p;q, it suffices to show that K̂s
p;q is a switching core,

i.e., it is not switching homomorphic to any of its proper signed subgraphs.
Assume to the contrary that there is a switching homomorphism of K̂s

p;q to a proper signed subgraph,
say (H, σ). As (H, σ)

switch−→ K̂s
p;q and K̂s

p;q
switch−→ (H, σ), we have χc(H, σ) = χc(K̂

s
p;q) = p

q
.

Let φ be a circular p
q
-coloring of (H, σ). By Corollary 3.3, there is a tight cycle C with respect to φ.

Assume the length of C is l. Since p
q
is in its simplest form, beside a possible factor of 2, we consider two

cases: q is odd, then p | 2l, which implies that l ≥ p
2
; or q is even then p

2
must be an odd number, thus

p
2
| l, hence, l ≥ p

2
. But C is a cycle in (H, σ), which is a proper subgraph of K̂s

p;q, a contradiction.

Lemma 3.9. Assume r = p
q
is a rational, p is an even integer and with respect to this condition p

q
is in

its simplest form. Then Ks
p;q is the unique sp-core of Ks

r .

Proof. As Ks
r

s.p.−→ Ks
p;q, it is enough to prove that Ks

p;q is a sp-core. Let (H, σ) be the sp-core of Ks
p;q

which is a proper subgraph and let ϕ be an edge-sign preserving homomorphism of Ks
p;q to (H, σ). Since

any edge-sign preserving homomorphism is, in particular, a switching homomorphism and by Lemma 3.8,
K̂s
p;q is a subgraph of (H, σ). Observe that for each vertex u of K̂s

p;q there are two corresponding vertices
u1 and u2 of Ks

p;q such that a switching at u1 gives u2. Furthermore, there exists a positive edge u1u2

in Ks
p;q. So ϕ(u1) 6= ϕ(u2). Moreover ϕ(vi) 6= ϕ(uj), for any i, j ∈ {1, 2} and for any other vertex v

of K̂s
p;q, as otherwise we have an edge-sign preserving homomorphism of K̂s

p;q to its proper subgraph by
mapping u to v. It is a contradiction.

4 Circular chromatic number vs. signed circular chromatic num-
ber

The following lemma follows from the definitions.

Lemma 4.1. For any integers p, q, satisfying p ≥ 2q ≥ 2, for any i, j ∈ [p], ij is an edge of Kp;q if and
only if ij is both a positive edge and a negative edge of K̂s

2p;q.

Corollary 4.2. For any simple graph G, let (G′, τ) be obtained from G by replacing each edge of G by
a positive edge and a negative edge. Then χc(G′, τ) = 2χc(G).

For a graph G and an arbitrary signature σ, with the definition of (G′, τ) given in the previous
corollary, we have (G, σ) ⊂ (G′, τ), thus

Corollary 4.3. For every graph G, χsc(G) ≤ 2χc(G).

As adding or deleting negative loops does not affect the circular chromatic number, the signed graph
(G, σ) obtained from Kp;q by replacing each edge with a pair of positive and negative edges has circular
chromatic number 2p

q
. So Corollary 4.3 is tight. However, this signed graph has girth 2, i.e., has parallel

edges. The following result shows that the bound in Corollary 4.3 is also tight for graphs of large girth.
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Theorem 4.4. For any integers k, g ≥ 2, for any ε > 0, there is a graph G of girth at least g satisfying
that χ(G) = k and χsc(G) > 2k − ε.

The proof of Theorem 4.4 uses the concept of augmented tree introduced in [1]. A complete k-ary
tree is a rooted tree in which each non-leaf vertex has k children and all the leaves are of the same
level (the level of a vertex v is the distance from v to the root). For a leaf v of T , let Pv be the unique
path in T from the root to v. Vertices in Pv − {v} are ancestors of v. An q-augmented k-ary tree is
obtained from a complete k-ary tree by adding, for each leaf v, q edges connecting v to q of its ancestors.
These q edges are called the augmenting edges from v. For positive integers k, q, g, a (k, q, g)-graph is a
q-augmented k-ary tree which is bipartite and has girth at least g. The following result was proved in
[1].

Lemma 4.5. For any positive integers k, q, g ≥ 2, there exists a (k, q, g)-graph.

Assume T is a complete k-ary tree. A standard labeling of the edges of T is a labeling φ of the edges
of T such that for each non-leaf vertex v, for each i ∈ {1, 2, . . . , k}, there is one edge from v to one of
its child labeled by i. Given a k-coloring f : V (T ) → [k] of the vertices of T (which does not need to
be proper), the f -path Pf = (v1, v2, . . . , vm) of T is the path from the root vertex v1 to a leaf vm of T
so that for each i = 1, 2, . . . ,m− 1, f(vi) = φ(vivi+1).

Proof of Theorem 4.4
Assume k, g ≥ 2 are integers. We shall prove that for any integer p, there is a graph G for which the

followings hold:

1. G has girth at least g and chromatic number at most k.

2. There is a signature σ of G such that (G, σ) is not (2kp, (p+ 1))-colorable.

Let H be a (2kp, k, 2kg)-graph with underline tree T . Let φ be a standard 2kp-labeling of the edges
of T . For v ∈ V (T ), denote by `(v) the level of v, i.e., the distance from v to the root vertex in T . Let
θ(v) = `(v)(mod k).

For each leaf v of T , let uv,1, uv,2, . . . , uv,k be the vertices on Pv that are connected to v by augmenting
edges. Let u′v,i ∈ Pv be the closest descendant of uv,i with θ(u′v,i) = i and let ev,i be the edge connecting
u′v,i to its child on Pv.

Let sv,i = φ(ev,i) and let

Av,i = {sv,i, sv,i + 1, . . . , sv,i + p}, Bv,i = {a+ kp : a ∈ Av,i}, Cv,i = Av,i ∪Bv,i.

The addition above are carried out modulo 2kp.
As |Cv,i| = 2(p+ 1) and ∪ki=1Cv,i ⊆ [2kp], there exist distinct indices i, j such that Cv,i ∩ Cv,j 6= ∅.
Note that Bv,i is a kp-shift of Av,i. So if Av,i ∩ Av,j 6= ∅, then Bv,i ∩Bv,j 6= ∅. In this case,

d(mod 2kp)(φ(ev,i), φ(ev,j)) ≤ p.

12



Otherwise Av,i ∩Bv,j 6= ∅ (and hence Bv,i ∩ Av,j 6= ∅) and

d(mod 2kp)(φ(ev,i), φ(ev,j)) ≤ p.

Let L be the set of leaves of T . For each v ∈ L, we define one edge ev on V (T ) as follows:

• If d(mod 2kp)(φ(ev,i), φ(ev,j)) ≤ p, then let ev be a positive edge connecting u′v,i and u′v,j.

• If d(mod 2kp)(φ(ev,i), φ(ev,j)) ≤ p, then let ev be a negative edge connecting u′v,i and u′v,j.

Let (G, σ) be the signed graph with vertex set V (T ) and with edge set {ev : v ∈ L}, where the signs of
the edges are defined as above. We shall show that (G, σ) has the desired properties.

First observe that θ is a proper k-coloring of G. So G has chromatic number at most k.
Next we show that G has girth at least g. For each edge ev = u′v,iu

′
v,j of G, let Bv be the path which

is the union of the subpath of Pv from u′v,i to uv,i and the path uv,ivuv,j and the subpath of Pv from uv,j

to u′v,j. Then Bv has length at most 2k. If C is a cycle in G, then replace each edge ev of C by the path
Bv, we obtain a cycle in H. As H has girth at least 2kg, we conclude that C has length at least g and
hence G has girth at least g.

Finally, we show that (G, σ) is not circular (2kp, p+1)-colorable. Assume f is a (2kp, p+1)-colorable
of (G, σ). As f is a 2kp-coloring of the vertices of T , there is a unique f -path Pv. Assume ev = u′v,iu

′
v,j.

It follows from the definition of f -path that f(u′v,i) = φ(ev,i) and f(u′v,j) = φ(ev,j). It follows from
the definition of ev that if ev is a positive edge, then d(mod 2kp)(φ(ev,i), φ(ev,j)) ≤ p. If ev is a negative
edge, then d(mod 2kp)(φ(ev,i), φ(ev,j)) ≤ p. This is in contrary to the assumption that f is a circular
(2kp, p+ 1)-coloring of (G, σ).

Remark: The graph constructed above is shown to have chromatic number at most k. However,
since 2kp

p+1
< χc(G, σ) ≤ 2χ(G), we conclude that χ(G) = k when p + 1 ≥ 2k. It is not known whether

there is a finite k-chromatic graph of girth at least g and with χsc(G) = 2k. Also it is unknown whether
for every rational p

q
and integer g and any ε > 0, there is a graph G with χc(G) ≤ p

q
and χsc(G) > 2p

q
− ε.

A graph G is called k-critical if χ(G) = k and for any proper subgraph H of G, χ(H) = k − 1. The
following result about circular chromatic number of critical graphs of large girth was proved in [28].

Theorem 4.6. For any integer k ≥ 3 and ε > 0, there is an integer g such that any k-crtical graph of
girth at least g has circular chromatic number at most k − 1 + ε.

As a consequence of Theorem 4.6 and Corollary 4.3, we know that for any integer k ≥ 3 and ε > 0,
there is an integer g such that any k-critical graph G of girth at least g has signed circular chromatic
number at most 2k − 2 + ε. However, this bound is not tight. The following proposition follows from
Proposition 2.10.

Proposition 4.7. If G is a k-critical graph, then χsc(G) ≤ 2k − 2.

13



Proof. Let σ be a signature on G. If (G, σ) = (G,+), then χc(G, σ) ≤ χ(G, σ) = χ(G) = k. If σ(e) = −
for some edge e, then the subgraph of G induced by positive edges has chromatic number at most k− 1.
Hence χc(G, σ) ≤ 2(k − 1).

5 Signed indicator

In the study of coloring and homomorphism of graphs, using gadgets to construct new graphs from old
ones is a fruitful tool. In this section, we explore the same idea for signed graph coloring.

Definition 5.1. A signed indicator I is a triple I = (Γ, u, v) such that Γ is a signed graph and u, v are
two distinct vertices of Γ.

Definition 5.2. Assume Ω is a signed graph, I = (Γ, u, v) is a signed indicator and e = xy is an (either
positive or negative) edge of Ω. By replacing e with a copy of I, we mean the following operation: Take
the disjoint union of Ω and I, delete the edge e from Ω, identify x with u and identify y with v.

There is a subtle issue in the above definition. An edge e = xy is an unordered pair. So we can
write it as e = yx as well. However, by identifying y with u and identifying x with v, the resulting
signed graph is different from the one as defined above. To avoid such confusion, it is safer to first orient
the edges of Ω and then replace the directed edge e with I. However, for our usage in this paper, the
difference does not affect our discussion, so we just say replace the edge e with I.

Definition 5.3. For a graph G and a signed indicator I, we denote by G(I) the signed graph obtained
from G by replacing each edge with a copy of I. Assume Ω is a signed graph, and I+ and I− are two
signed indicators. We denote by Ω(I+, I−) the signed graph obtained from Ω by replacing each positive
edge with a copy I+ and replacing each negative edge with a copy of I−.

Definition 5.4. Assume I = (Γ, u, v) is a signed indicator and r ≥ 2 is a real number. For a, b ∈ [0, r),
we say the color pair (a, b) is feasible for I (with respect to r) if there is a circular r-coloring φ of Γ

such that φ(u) = a and φ(v) = b.

Note that if (a, b) is feasible for I, then for any t ∈ [0, r), (a+ t, b+ t) and (−a,−b) are also feasible
for I. Here the calculation is modulo r. Thus if we know feasible pairs of the form (0, b) for b ∈ [0, r

2
],

then we know all the feasible pairs.

Definition 5.5. Assume I = (Γ, u, v) is a signed indicator and r ≥ 2 is a real number. Let

Z(I, r) = {b ∈ [0,
r

2
] : (0, b) is feasible for I with respect to r }.

Observe that for I = (Γ, u, v), Z(I, r) 6= ∅ if and only if χc(Γ) ≤ r. One useful interpretation of
Z(I, r) is that this is the set of possible distances (in Cr) between the two colors assigned to u and v in
a circular r-coloring of Γ.

Let the sign of a path P in (G, σ) be the product of the signs of the edges of P .
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Example 5.6. If Γ is a positive 2-path connecting u and v, and I = (Γ, u, v), then for any ε, 0 < ε < 1,
and r = 4− 2ε,

Z(I, r) = [0, 2− 2ε] = [0,
r

2
− ε].

If Γ′ is a negative 2-path connecting u and v, and I ′ = (Γ′, u, v), then for any ε, 0 < ε < 1, and
r = 4− 2ε,

Z(I ′, r) = [ε,
r

2
].

If Γ′′ consists of a negative 2-path and a positive 2-path connecting u and v, and I ′′ = (Γ′′, u, v), then
for any ε, 0 < ε < 1, and r = 4− 2ε,

Z(I ′′, r) = [ε,
r

2
− ε].

Lemma 5.7. Assume I = (Γ, u, v) is a signed indicator, r ≥ 2 is a real number and

Z(I, r) = [t,
r

2
− t]

for some 0 < t < r
4
. Then for any graph G,

χc(G) =
χc(G(I))

2t
.

Proof. Let r′ = r
2t
. If χc(G) ≤ r′ and f is a circular r′-coloring of G, then g : V (G) → [0, r) defined as

g(x) = tf(x) satisfies the condition that for any edge e = xy of G,

t ≤ d(mod r)(g(x), g(y)) ≤ r

2
− t.

So d(mod r)(g(x), g(y)) ∈ Z(I, r), and the mapping g can be extended to a circular r-coloring of the copy
of Γ that was used to replace e. So g can be extended to a circular r-coloring of G(I).

Conversely, assume χc(G(I)) ≤ r. Let g be a circular r-coloring of G(I). By vertex switching,
we may assume that g(x) ∈ [0, r

2
) for every vertex x of G(I). Then for any edge e = xy of G,

d(mod r)(g(x), g(y)) ∈ Z(Γ, r), i.e., t ≤ d(mod r)(g(x), g(y)) ≤ r
2
− t. Let f : V (G) → [0, r′) be defined

as f(x) = 1
t
g(x). Then for any edge e = xy of G, 1 ≤ |f(x) − f(y)| ≤ r′ − 1. Hence f is a circular

r′-coloring of G.

A similar proof implies the following:

Lemma 5.8. Assume I+ and I− are indicators, r ≥ 2 is a real number and

Z(I+, r) = [t,
r

2
], Z(I−, r) = [0,

r

2
− t]

for some 0 < t < r
2
. Then for any signed graph Ω,

χc(Ω) =
χc(Ω(I+, I−))

t
.
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Corollary 5.9. Let I = (Γ, u, v) be the indicator, where Γ consists of a positive 2-path and a negative
2-path connecting u and v. Then for any graph G,

χc(G(I)) = 4− 4

χc(G) + 1
.

Proof. Let ε = 2
r′+1

and r = 4 − 2ε. By Example 5.6, Z(I, r) = [ε, r
2
− ε]. Note that r′ = r

2ε
. The

conclusion follows from Lemma 5.7.

We note that G(I) here is the same as S(G) defined in [17]. In [17], it is shown that by using
S(G) construction and the graph homomorphism, the chromatic number of graphs are captured by
switching homomorphisms of signed bipartite graphs. This corollary shows that furthermore χc(S(G))

also determines χc(G).

Definition 5.10. Let Γ1 be a positive 2-path connecting u1 and v1. For i ≥ 2,

• if i is even, then let Γi be obtained from Γi−1 by

– adding two vertices ui, vi,

– connecting ui to ui−1 by a positive edge, ui to vi−1 by a negative edge,

– connecting vi to ui−1 by a negative edge, vi to vi−1 by a positive edge;

• if i is odd, then let Γi be obtained from Γi−1 by

– adding two vertices ui, vi,

– connecting each of ui and vi to each of ui−1 and vi−1 by a positive edge.

For example, Γ3,Γ4 and Γ5 are illustrated in Figure 1 2 3 respectively.

u1 v1

u2

v2

u3 v3

Figure 1: Γ3

u1 v1

u2

v2

u3 v3

u4

v4

Figure 2: Γ4

u1 v1

u2

v2

u3 v3

u4

v4

u5 v5

Figure 3: Γ5

Lemma 5.11. Assume i ≥ 1, 0 < ε < 1
i
and r = 4− 2ε. The followings hold:

• If i is odd, then
Z(Ii, r) = [0,

r

2
− iε].
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• If i is even, then
Z(Ii, r) = [iε,

r

2
].

Proof. We prove the lemma by induction on i. For i = 1, this is trivial and observed in Example 5.6.
Assume i ≥ 2 and the lemma holds for i′ < i.

Case 1 i is even.
Assume φ is a circular r-coloring of Γi with φ(ui−1) = 0. As Z(Ii−1, r) = [0, r

2
− (i − 1)ε], we may

assume that φ(vi−1) ∈ [0, r
2
− (i− 1)ε].

The possible colors for ui are [1, r
2

+ 1 − iε], and the possible colors for vi are [3 − ε, r) ∪ [0, 1 − iε].
So the possible distances between φ(ui) and φ(vi) are [iε, r

2
], i.e.,

Z(Ii, r) = [iε,
r

2
].

Case 2 i is odd.
Assume φ is a circular r-coloring of Γi with φ(ui−1) = 0. As Z(Ii−1, r) = [(i−1)ε, r

2
], we may assume

that φ(vi−1) ∈ [(i− 1)ε, r
2
].

The possible colors for ui and vi are [1 + (i − 1)ε, 3 − 2ε]. So the possible distances between φ(ui)

and φ(vi) are [0, 2− (i+ 1)ε] = [0, r
2
− iε], i.e.,

Z(Ii, r) = [0,
r

2
− iε].

Corollary 5.12. For any ε > 0, there is a signed bipartite planar simple graph Γ with χc(Γ) > 4− 2ε.

Proof. Let 1
2ε
< i < 1

ε
. Let Γ′i be obtained from the disjoint union of Γ2i−1 and Γ2i by identifying u2i−1

in Γ2i−1 and u2i in Γ2i into a single vertex u′i, and identifying v2i−1 in Γ2i−1 and v2i in Γ2i into a single
vertex v′i. It follows from the construction that Γ′i is a signed bipartite planar simple graph.

Let I ′i = (Γ′i, u
′
i, v
′
i). Then for r = 4− 2ε, r

2
− (2i− 1)ε = 2− 2iε < 2iε. Hence

Z(I ′i, r) = Z(I2i−1, r) ∩ Z(I2i, r) = [0,
r

2
− (2i− 1)ε] ∩ [2iε,

r

2
] = ∅.

So Γ′i is not circular r-colorable.

Corollary 5.13. If i = 2k, then for any graph G,

χc(G(Ii)) =
4kχc(G)

kχc(G) + 1
= 4− 4

kχc(G) + 1
.

Proof. By Lemma 5.11, Z(Ii) = [iε, r
2
], where iε = k(4−r). The conclusion follows from Lemma 5.7.
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6 Circular chromatic number of signed graph classes

We have shown that χsc(G) ≤ 2χc(G) and this bound is tight even for graphs G of large girth. However,
when restricted to some natural families of graphs, the upper bound can be improved.

Given a class C of signed graphs we define χc(C) = sup{χc(G, σ) : (G, σ) ∈ C}. In light of Corol-
lary 4.2 and the fact that negative loops do not affect the circular chromatic number, we shall restrict
to signed graphs with no negative digons and no loops, i.e., the underlying graphs are simple graphs.

We denote by

• SDd the class of signed d-degenerate simple graphs,

• SSP the class of signed series parallel simple graphs,

• O the class of signed outer planar simple graphs,

• SBP the class of signed bipartite planar simple graphs,

• SP the class of signed planar simple graphs.

Proposition 6.1. For any positive integer d, χc(SDd) = 2bd
2
c+ 2.

Proof. First we show that every (G, σ) ∈ SDd admits a circular (2bd
2
c+2)-coloring. Equivalently, (G, σ)

admits an edge-sign preserving homomorphism to Ks
2b d

2
c+2

whose vertices are labelled 0, 1, . . . , 2bd
2
c+ 1

in a cyclic order. Recall that in Ks
2b d

2
c+2

between any pair of vertices xi, xj there are both positive and
negative edges, unless i = j or i = j+bd

2
c+1. When i = j, there is a negative loop but no positive loop;

when i = j + bd
2
c+ 1, xixj is a positive edge but not a negative edge. Thus, given a vertex u of (G, σ)

and a partial mapping φ of (G, σ) to Ks
2b d

2
c+2

, if at most d neighbors of u are already colored, then φ
can be extended to u. This now can be applied on the ordering of vertices of G which is a witness of G
being d-degenerate.

To prove that the upper bound is tight, we consider three cases. For d = 2, the signed graphs built
in Corollary 5.12 are all 2-degenerate and the claim of this corollary is that the limit of their circular
chromatic number is 4. For odd integer d, this bound is tight by considering the signed complete graphs
(Kd+1,+). For even integer d ≥ 4, we now construct a d-degenerate graph G together with a signature
σ such that χc(G, σ) = d+ 2.

Define a signed graph Ωd as follows. Take (Kd,+) whose vertices are labelled x1, x2, . . . , xd. For each
pair i, j ∈ [d] (i 6= j), we add a vertex yi,j and join it to xi, xj with negative edges, and to all the other
xk’s with positive edges. Since each yi,j is of degree d and after removing all of them we are left with a
Kd, we have Ωd ∈ SDd. We claim that χc(Ωd) = d+ 2.

Assume this is not true and ϕ is a circular r-coloring of Ωd and r < d + 2. Without loss of gener-
ality, we may assume that ϕ(x1), ϕ(x2), . . . , ϕ(xd) are cyclicly ordered on Cr in a clockwise orientation.
Furthermore, we may also assume that ϕ(x1), ϕ(x2) has the maximum distance among all the pairs
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ϕ(xi), ϕ(xi+1) where the addition of the index is taken (mod 2d). As the distance between each con-
secutive pair ϕ(xi), ϕ(xi+1) is at least 1, it follows that, except for x1, x2, d(mod r)(ϕ(xi), ϕ(xi+1)) < 2.
We will now show that there is no possible choice for y1,1+ d

2
. A point between ϕ(xi) and ϕ(xi+1) for

i ∈ {2, 3, . . . , d
2
− 1} ∪ {d

2
+ 2, . . . , d − 1} is at distance less than 1 from one of the two and cannot be

the color of y1,1+ d
2
because xiy1,1+ d

2
, xi+1y1,1+ d

2
are both positive edges. If ϕ(y1,1+ d

2
) ∈ [ϕ(x1), ϕ(x2)],

then we show that d(mod r)(ϕ(y1,1+ d
2
), ϕ(x1+ d

2
) ≥ d

2
, which is a contradiction because y1,1+ d

2
x1+ d

2
is a

negative edge. To see this, we consider clockwise and anti-clockwise distances of ϕ(y1,1+ d
2
) and ϕ(x1+ d

2
).

On the anti-clockwise direction, (ϕ(y1,1+ d
2
), ϕ(x1+ d

2
)) contains d

2
intervals of the form (xi, xi+1), each of

which is of length at least 1. On the clockwise direction, first of all, y1,1+ d
2
x2 is a positive edge which

means d(mod r)(ϕ(y1,1+ d
2
), ϕ(x2)) ≥ 1, and, furthermore, (ϕ(y1,1+ d

2
), ϕ(x1+ d

2
)) contains d

2
− 1 intervals of

form (xi, xi+1) (for i ∈ {2, 3, . . . , d
2
}). If ϕ(y1,1+ d

2
) ∈ [ϕ(xd), ϕ(x1)], then the same argument shows that

d(mod r)(ϕ(y1,1+ d
2
), ϕ(x1+ d

2
)) ≥ d

2
. If ϕ(y1,1+ d

2
) ∈ [ϕ(x d

2
), ϕ(x d

2
+1)] or ϕ(y1,1+ d

2
) ∈ [ϕ(x d

2
+1), ϕ(x d

2
+2)], then

d(mod r)(ϕ(y1,1+ d
2
), ϕ(x1)) ≥ d

2
, which is a contradiction as y1,1+ d

2
x1 is a negative edge.

It follows from Proposition 6.1 that χc(G, σ) ≤ 2b∆(G)

2
c+ 2.

It was proved in [17] that every simple signed K4-minor-free graph (G, σ) admits a switching homo-
morphism to the signed Paley graph SPal5, depicted in Figure 4. It is easy to check that SPal5 is a
signed subgraph of Ks

10:3. Hence we have

χc(SO) ≤ χc(SSP) ≤ 10

3
.

1

3

57

9

Figure 4: The signed Paley graph

y

x z

b

a

c

Figure 5: (F, σ)

We shall prove the following result.

Theorem 6.2. χc(SSP) = χc(SO) =
10

3
.

Proof. It suffices to show that χc(F, σ) = 10
3
for the signed outer planar simple graph (F, σ) of Figure 5.

Since (F, σ) contains a positive triangle as a subgraph, its circular chromatic number is at least 3. By
the formula of the tight cycle the only possible values are 3 and 10

3
. It remains to show that this graph

does not admit a circular 3-coloring, that is to say, (F, σ) does not admit a switching homomorphism to
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K̂s
6;2. Note that K̂s

6;2 is equivalent to a positive triangle, with each vertex incident to a negative loop. If
φ is a switching homomorphism of (F, σ) to K̂s

6;2, then at least one negative edge of the negative triangle
xyz is mapped to a negative loop, because in K̂s

6;2 every negative closed walk contains a negative loop.
Whichever edge of xyz is mapped to a negative loop, its two end vertices are identified and the resulting
signed graph has a negative cycle of length 2. But K̂s

6;2 contains no negative even closed walk of length
2, a contradiction. Hence χc(F, σ) = 10

3
.

In Section 5, we have seen that χc(SBP) = 4. However, we do not know if there is a signed bipartite
planar simple graph reaching the bound 4. Further improvement based on the length of the shortest
negative cycle is given in the forthcoming work [16].

Next we consider the circular chromatic number of signed planar simple graphs. Since planar simple
graphs are 5-degenerate, by Proposition 6.1, we have χc(SP) ≤ 6. It was conjectured in [13] that every
planar simple graph admits a 0-free 4-coloring. If the conjecture was true, it would have implied the
best possible bound of 4 for the circular chromatic number of signed planar simple graphs. However,
this conjecture was disproved in [9] using a dual notion. A direct proof of a counterexample is given
in [15]. Extending this construction, we build a signed planar simple graph whose circular chromatic
number is 4 + 2

3
.

Theorem 6.3. χc(SP) ≥ 4 +
2

3
.

We shall construct a signed planar simple graph Ω with χc(Ω) = 4 + 2
3
. The construction is broken

down into construction of certain gadgets. Similar to the gadget of [9], we start with a mini-gadget
depicted in Figure 6 and state its circular coloring property in Lemma 6.5.

a

b

c

x y

z

Figure 6: Mini-gadget (T, π)

w

x1

x2

x3 x4

x5

z t

u

v

−

−

−

−

Figure 7: A signed Wenger Graph
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Definition 6.4. Let r be a positive real number. Let φ be a mapping of a set {v1, v2, . . . , vk} of points
(or vertices of a graph) to Cr. We denote by Iφ;v1,v2,...,vq ,vq+1,...,vk an interval of minimum length which
contains {φ(vi) : i = 1, 2, . . . , q} ∪ {φ(vi) : i = q + 1, . . . , k} and by `φ;v1,v2,...,vq ,vq+1,...,vk the length of this
interval.

Note that the minimality of the length implies that the two end points of the interval Iφ;v1,v2,...,vq ,vq+1,...,vk

are in {φ(vi) : i = 1, 2, . . . , q} ∪ {φ(vi) : i = q + 1, . . . , k}

Lemma 6.5. Assume φ is a circular (4+α)-coloring of the signed graph (T, π) of Figure 6 with 0 ≤ α <

2. Then `φ;x,y,z ∈ [1 − α
2
, 1 + α

2
]. Moreover, for any t1, t2, t3 with max{d(mod r)(ti, tj) : i, j ∈ {1, 2, 3}} ∈

[1− α
2
, 1 + α

2
], there exists a circular r-coloring φ of (T, π) such that φ(x) = t1, φ(y) = t2, φ(z) = t3.

Proof. Let r = 4 + α and let φ be a circular r-coloring of (T, π). Without loss of generality we may
assume that φ(x), φ(y) and φ(z) are on Cr in the clockwise order, and assume the interval [φ(z), φ(x)] is
a longest interval among [φ(x), φ(y)], [φ(y), φ(z)] and [φ(z), φ(x)]. Thus Iφ;x,y,z = [φ(x), φ(z)]. We first
claim that [φ(z), φ(x)] contains φ(y). Otherwise, either [φ(y), φ(y)] or [φ(y), φ(y)] which is of length r

2
,

is included in either (φ(x), φ(y)] or [φ(y), φ(z)). This is a contradiction as [φ(z), φ(x)] is longest among
the three. As φ(y) is contained in [φ(z), φ(x)], and as y is adjacent to both z and x with a negative edge,
we conclude that [φ(z), φ(x)] is of length at least 2. On the other hand, since z and x are adjacent with
a negative edge, one of the two intervals, [φ(z), φ(x)] or [φ(x), φ(z)] is of length at most r

2
− 1 = 1 + α

2
.

As α < 2, the only option is that [φ(x), φ(z)] is of length at most 1 + α
2
.

For the other direction, assume `φ;x,y,z < 1− α
2
, say Iφ;x,y,z = [0, β] for some β < 1− α

2
. Each of a, b, c

is joined by a positive edge and a negative edge to vertices in x, y, z. This implies that φ(a), φ(b), φ(c) ∈
[1, 1 + β + α

2
]∪ [3 + α

2
, 3 +α+ β]. As each of the intervals [1, 1 + β + α

2
] and [3 + α

2
, 3 +α+ β] has length

strictly smaller than 1, two of the vertices a, b, c are colored by colors of distance less than 1 in Cr. But
abc is a triangle with three positive edges, a contradiction.

For the “moreover" part, without loss of generality, we assume that t3 = 0, t1 ∈ [1 − α
2
, 1 + α

2
], t2 ∈

[0, t1]. If t1 ∈ [1 − α
2
, 1], then let φ(a) = 3 + α

2
, φ(b) = 2 and φ(c) = 1; if t1 ∈ [1, 1 + α

2
], then let

φ(a) = 3 + α
2
, φ(b) = 2 + α

2
and φ(c) = 1. It is straightforward to verify that φ is a circular r-coloring

of (T, π).

By taking α = 2
3
− ε and a switching at the vertex z, we have the following formulation of the lemma

which we will use frequently.

Corollary 6.6. Let (T, π′) be a signed graph obtained from (T, π) by a switching at the vertex z, and
let φ be a circular (14

3
− ε)-coloring of (T, π′) where 0 < ε < 2

3
. Then `φ;x,y,z̄ ∈ [2

3
+ ε

2
, 4

3
− ε

2
].

We define W̃ to be the signed graph obtained from signed Wenger graph of Figure 7 by completing
each of the four negative facial triangles to a switching of the mini-gadget of Figure 6. Next we show
that W̃ has a property similar to signed indicators, more precisely:
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Lemma 6.7. Let r =
14

3
− ε with 0 < ε ≤ 2

3
. For any circular r-coloring φ of W̃ , `φ;u,v ≥

4

9
.

The proof of Lemma 6.7 is long, and we leave it to the next section. Let Γ be obtained from W̃ by
adding a negative edge uv. Let I = (Γ, u, v). It follows from Lemma 6.7 that for 4 ≤ r < 14

3
,

(I, r) ⊆ [
4

9
,
r

2
− 1].

Theorem 6.8. Let Ω = K4(I). Then Ω is a signed planar simple graph with χc(Ω) = 14
3
.

Proof. First we show that Ω admits a circular 14
3
-coloring.

For r = 14
3
, there is a circular r-coloring φ of Γ with φ(u) = φ(v), defined as φ(u) = φ(v) = 0,

φ(w) = 3, φ(x1) = 2, φ(x2) = 1, φ(x3) = 2, φ(x4) = 1
3
, φ(x5) = 4 and φ(z) = φ(t) = 1.

We observe that each of the four negative triangles satisfies the conditions of Lemma 6.5, and that
the coloring of its vertices can be extended to the inner part of the mini-gadget.

Let v1, v2, v3, v4 be the 4 vertices of K4. Then there is a circular 14
3
-coloring φ of K4(I) with φ(vi) = 0

for i = 1, 2, 3, 4. So χc(Ω) ≤ 14
3
.

It remains to show that χc(Ω) ≥ 14
3
. Assume to the contrary that χc(Ω) < 14

3
, let φ be a circular

r-coloring of Ω for some 4 ≤ r < 14
3
(for the purpose of applying Lemma 6.7, we assume r ≥ 4). Without

loss of generality, assume φ(v1), φ(v2), φ(v3) and φ(v4) are on Cr in this cyclic order.
As (I, r) ⊆ [4

9
, r

2
− 1], we know that for any 1 ≤ i < j ≤ 4,

4

9
≤ d(mod r)(φ(vi), φ(vj)) ≤

r

2
− 1.

By symmetry, we may assume d(mod r)(φ(v1), φ(v3)) = `([φ(v1), φ(v3)]) and d(mod r)(φ(v2), φ(v4)) =

`([φ(v2), φ(v4)]).
Hence

`([φ(v1), φ(v4)]) = `([φ(v1), φ(v2)]) + `([φ(v2), φ(v3)]) + `([φ(v3), φ(v4)]) ≥ 3× 4

9
=

4

3
>
r

2
− 1,

and
`([φ(v4), φ(v1)]) ≥ r − (`([φ(v1), φ(v3)]) + `([φ(v2), φ(v4)])) ≥ 2 >

r

2
− 1.

This implies that d(mod r)(φ(v1), φ(v4)) > r
2
− 1, a contradiction.

7 Proof of Lemma 6.7

Assume to the contrary that φ is a circular r-coloring of W̃ with `φ;u,v = η < 4
9
. Without loss of

generality, we assume that φ(u) = 0 and φ(v) = η. Since each of φ(z) and φ(t) is of distance at least 1

from both φ(u) and φ(v), we have:

φ(z), φ(t) ∈


[1 + η,

4

3
− ε

2
] ∪ [

10

3
− ε

2
,
11

3
+ η − ε], if η ≤ 1

3
− ε

2
,

[
10

3
− ε

2
,
11

3
+ η − ε], otherwise.

(1)
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Lemma 7.1. φ(w) 6∈ (
5

3
− ε, 3 + η) ∪ (4− 3ε

2
,
2

3
+ η +

ε

2
).

Proof. Let φ(w) = δ. First we show that δ 6∈ (5
3
− ε, 3 + η). Assume to the contrary that

δ ∈ (
5

3
− ε, 3 + η).

As x2 is joined to u and w by positive edges,

φ(x2) ∈


[1, δ − 1], if δ >

8

3
− ε,

[δ + 1,
11

3
− ε] if δ < 2,

[1, δ − 1] ∪ [δ + 1,
11

3
− ε], if 2 ≤ δ ≤ 8

3
− ε.

(2)

φ(x3) ∈


[1 + η, δ − 1] if δ >

8

3
+ η − ε,

[δ + 1,
11

3
+ η − ε] if δ < 2 + η,

[1 + η, δ − 1] ∪ [δ + 1,
11

3
+ η − ε] if 2 + η ≤ δ ≤ 8

3
+ η − ε.

(3)

For a depiction of these cases, see Figure 8.

0
φ(z)

φ(z)

φ(x3)

φ(x3)

φ(x2)

φ(x2)

Figure 8: A sketch of locating φ(z), φ(x2) and φ(x3) on Cr

Claim 7.2. The following restrictions on the value of φ(z) hold:

I. If δ < 3 and φ(x2) ∈ [1, δ − 1], then η ≤ 1
3
− ε

2
and φ(z) ∈ [1 + η, 4

3
− ε

2
].

II. If φ(x2) ∈ [δ + 1, 11
3
− ε], then φ(z) ∈ [10

3
− ε

2
, 11

3
+ η − ε].

III. If φ(x3) ∈ [1 + η, δ − 1], then φ(z) ∈ [10
3
− ε

2
, 11

3
+ η − ε].

IV. If δ > 5
3

+ η − ε and φ(x3) ∈ [δ + 1, 11
3

+ η − ε], then η ≤ 1
3
− ε

2
and φ(z) ∈ [1 + η, 4

3
− ε

2
].

Proof of the claim: [I] Assume to the contrary (by 1) that φ(z) ∈ [10
3
− ε

2
, 11

3
+ η − ε] and φ(x2) ∈

[1, δ − 1]. Then

d(mod r)(φ(x2), φ(z)) ≥ min{10

3
− ε

2
− (δ − 1),

14

3
− ε+ 1− (

11

3
+ η − ε)} > 4

3
− ε

2
,
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contradicting the fact that x2z is a negative edge.

[II] Assume to the contrary (by 1) that φ(z) ∈ [1 + η, 4
3
− ε

2
] and η ≤ 1

3
− ε

2
. Then

d(mod r)(φ(x2), φ(z)) ≥ min{2 + η, δ − 1

3
+
ε

2
} > 4

3
− ε

2
,

contradicting the fact that x2z is a negative edge.

[III] Assume to the contrary (by 1) that φ(z) ∈ [1+η, 4
3
− ε

2
], φ(x3) ∈ [1+η, δ−1] and hence δ ≥ 2+η.

As δ ∈ (5
3
− ε, 3 + η),

d(mod r)(φ(x3), φ(z)) ≤ δ − 1− (1 + η) < 1,

contradicting the fact that x3z is a positive edge.

[IV] Assume to the contrary (by 1) that φ(z) ∈ [10
3
− ε

2
, 11

3
+ η − ε]. As δ > 5

3
+ η − ε,

d(mod r)(φ(x3), φ(z)) ≤ 11

3
+ η − ε− (δ + 1) < 1,

contradicting the fact that x3z is a positive edge.
This completes the proof of Claim 7.2. 3

To complete the proof of Lemma 7.1, we partition the interval (5
3
− ε, 3 + η) into three parts and

consider three cases depending on to which part δ belongs.

Case (i) δ ∈ (
5

3
− ε, 2 + η).

As δ < 2 + η, by 3, φ(x3) ∈ [δ + 1, 11
3

+ η − ε]. Thus φ(x3) ∈ [δ − 4
3

+ ε
2
, 4

3
+ η − ε

2
].

By 2, φ(x2) ∈ [1, δ − 1] ∪ [δ + 1, 11
3
− ε].

Subcase (i-1) φ(x2) ∈ [1, δ − 1] and hence (by 2) δ ≥ 2.

0

φ(z)

φ(x3)

φ(x2)

Figure 9: Subcase (i-1): Restrictions on the negative triangle x3x2z.

As δ < 2 + η < 3, by [I], φ(z) ∈ [1 + η, 4
3
− ε

2
] and η ≤ 1

3
− ε

2
. Hence δ < 2 + η ≤ 7

3
− ε

2
.

Consider the interval Iφ;x̄3,x2,z, see Figure 9. If φ(x3) is the starting point of this interval, then since
δ − 1 < 4

3
− ε

2
, we have

[φ(x3), φ(z)] ⊆ [δ − 4

3
+
ε

2
,
4

3
− ε

2
].
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If the starting of Iφ;x̄3,x2,z is φ(x2) or φ(z), then since δ − 1 < 4
3
− ε

2
, we have

[φ(x2), φ(x3)] ⊆ [1,
4

3
+ η − ε

2
].

In either case, Iφ;x̄3,x2,z has length at most 2
3
− ε, contrary to Corollary 6.6.

Subcase (i-2) φ(x2) ∈ [δ + 1, 11
3
− ε].

By [II], φ(z) ∈ [10
3
− ε

2
, 11

3
+ η − ε]. Note that `([10

3
− ε

2
, 11

3
+ η − ε]) = 1

3
+ η − ε

2
< 1. Since

d(mod r)(φ(x3), φ(z)) ≥ 1 (as x3z is a positive edge) and φ(x3) ∈ [δ + 1, 11
3

+ η − ε], we conclude that
δ ≤ 5

3
+ η − ε and

φ(x3) ∈ [δ + 1,
8

3
+ η − ε].

This implies that Iφ;x3,x2 ⊆ [δ + 1, 11
3
− ε]. As δ > 5

3
− ε, `([δ + 1, 11

3
− ε]) < 1, contrary to the fact that

x2x3 is a positive edge.

Case (ii) δ ∈ [2 + η,
8

3
+ η − ε].

Depending on the ranges of φ(x2) and φ(x3), we consider four cases.

Subcase (ii-1) φ(x2) ∈ [1, δ − 1] and φ(x3) ∈ [1 + η, δ − 1].
By [III], φ(z) ∈ [10

3
− ε

2
, 11

3
+ η − ε].

As φ(x2), φ(x3) ∈ [1, δ − 1], `([1 + η, δ − 1]) < 1 and x2x3 is a positive edge, we have δ ≥ 3 and
φ(x2) ∈ [1, δ − 2]. However, the distance of points in [10

3
− ε

2
, 11

3
+ η − ε] and [1, δ − 2] is at least 2 − η

which is strictly larger than 4
3
− ε

2
, contradicting that x2z is a negative edge.

Subcase (ii-2) φ(x2) ∈ [1, δ − 1] and φ(x3) ∈ [δ + 1, 11
3

+ η − ε]. (φ(x3) ∈ [δ − 4
3

+ ε
2
, 4

3
+ η − ε

2
])

By [IV], φ(z) ∈ [1 + η, 4
3
− ε

2
] and by 1, η ≤ 1

3
− ε

2
.

Note that the interval Iφ;x̄3,x2,z is one of the following intervals:

[φ(x3), φ(z)] ⊆ [δ − 4

3
+
ε

2
,
4

3
− ε

2
], [φ(x3), φ(x2)] ⊆ [δ − 4

3
+
ε

2
, δ − 1], [φ(z), φ(x2)] ⊆ [1 + η, δ − 1],

[φ(z), φ(x3)] ⊆ [1 + η,
4

3
+ η − ε

2
], [φ(x2), φ(x3)], [φ(x2), φ(z)] ⊆ [1,

4

3
+ η − ε

2
].

All the above intervals have lengths at most 2
3
− ε, implying that `φ;x̄3,x2,z <

2
3

+ ε
2
, this contradicts

Corollary 6.6.

Subcase (ii-3) φ(x2) ∈ [δ + 1, 11
3
− ε] and φ(x3) ∈ [1 + η, δ − 1].

By 2, δ ≤ 8
3
− ε, and by [III], φ(z) ∈ [10

3
− ε

2
, 11

3
+ η− ε]. Observe that φ(x3) ∈ [10

3
+ η− ε

2
, 4

3
+ δ− ε

2
].

So Iφ;x̄3,x2,z is one of the following intervals:

[φ(x3), φ(z)], [φ(x3), φ(x2)] ⊆ [
10

3
+ η − ε

2
,
11

3
+ η − ε], [φ(x2), φ(x3)] ⊆ [δ + 1,

4

3
+ δ − ε

2
],

[φ(x2), φ(z)] ⊆ [δ+ 1,
11

3
+η− ε], [φ(z), φ(x2)] ⊆ [

10

3
− ε

2
,
11

3
− ε] and [φ(z), φ(x3)] ⊆ [

10

3
− ε

2
,
4

3
+ δ− ε

2
].
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Thus the `φ;x̄3,x2,z <
2
3
− ε, contradicting Corollary 6.6.

Subcase (ii-4) φ(x2) ∈ [δ + 1, 11
3
− ε] and φ(x3) ∈ [δ + 1, 11

3
+ η − ε].

The interval [δ + 1, 11
3

+ η− ε] has length at most 2
3
− ε < 1. This contradicts the fact that x2x3 is a

positive edge.

Case (iii) δ ∈ (
8

3
+ η − ε, 3 + η).

As δ > 8
3

+ η − ε ≥ 8
3
− ε, by 2 and 3, φ(x2) ∈ [1, δ − 1] and φ(x3) ∈ [1 + η, δ − 1].

As `([1 + η, δ − 1]) < 1 and d(mod r)(φ(x2), φ(x3)) ≥ 1, we conclude that δ ≥ 3 and φ(x2) ∈ [1, δ − 2].
As x2z is a negative edge, and the distance between the intervals [10

3
− ε

2
, 11

3
+η−ε] and [1, δ−2] is strictly

larger than 4
3
− ε

2
, we know that φ(z) /∈ [10

3
− ε

2
, 11

3
+ η − ε]. By 1, φ(z) ∈ [1 + η, 4

3
− ε

2
] and η ≤ 1

3
− ε

2
.

This implies that φ(z) and φ(x3) are both in [1 + η, δ − 1]. However, δ < 3 + η, so `([1 + η, δ − 1]) < 1,
contradicting the fact that x3z is a positive edge.

This completes the proof that φ(w) /∈ (5
3
− ε, 3 + η).

We observe that in this proof, vertex x1 played no role. In other words, the conclusion holds for the
signed subgraph induced on G \ x1. In this subgraph a switching at U = {w, x2, x3, x4, x5} results in
an isomorphic copy where x4 and x5 play the role of x2 and x3. Thus for the mapping φ′ defined as
φ′(v) = φ(v) for v ∈ V (W̃ ) − U and φ′(v) = φ(v) for v ∈ U , we have φ′(w) /∈ (5

3
− ε, 3 + η). Hence

φ(w) 6∈ (4− 3ε
2
, 2

3
+ η + ε

2
).

If η > 1 − 3ε
2
, then by the Lemma 7.1, we have no choice for φ(w). Thus we assume in the rest of

the proof that η ≤ 1− 3ε
2
and

φ(w) ∈ [3 + η, 4− 3ε

2
] ∪ [

2

3
+ η +

ε

2
,
5

3
− ε].

The two cases will be consider separately.

Case A. φ(w) ∈ [3 + η, 4− 3ε
2

].
As ux5 is a negative edge and φ(u) = 0, we have φ(x5) ∈ [10

3
− ε

2
, 4

3
− ε

2
]. As `([3 + η, 4 − 3ε

2
]) < 1,

and x5w is a positive edge, we conclude that 3 + η, φ(w), φ(x5), 4
3
− ε

2
occur in this cyclic order. This

implies that
φ(x5) ∈ [4 + η,

4

3
− ε

2
].

For i = 1, 2, 3, 4, by considering the edges between xi and u, v, w, similar arguments as above lead to
the following restrictions on the value of φ(xi):

φ(x1) ∈ [1, 3− 3ε

2
], φ(x2) ∈ [1, 3− 3ε

2
], φ(x3) ∈ [1 + η, 3− 3ε

2
], φ(x4) ∈ [4 + η,

4

3
+ η − ε

2
].

By 1, based on the choices of φ(z) and φ(t), we consider four cases.

Case A-1 η ≤ 1

3
− ε

2
and φ(z), φ(t) ∈ [1 + η,

4

3
− ε

2
].

We will update the ranges of φ(xi)’s as depicted in Figure 10. In this figure the range of each φ(xi)

is shown as an interval partitioned to two parts. The full interval represents the restriction we have
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0

φ(t), φ(z)

φ(x5)

φ(x4)

φ(x3)

φ(x2)

φ(x1)

Figure 10: Case A-1: Updating ranges of φ(xi)’s

0
φ(w)

φ(x5)

φ(x1)

Figure 11: Case A-1: Restrictions on x1x5u

started with. We then show that the dotted part of the interval is not available for φ(xi), thus updating
the range to the solid part of the interval.

As `([1+η, 4
3
− ε

2
]) < 1, φ(x3) ∈ [1+η, 3− 3ε

2
] and zx3 is a positive edge, the points 1+η, φ(z), φ(x3), 3−

3ε
2
occur in Cr in this cyclic order. This implies that

φ(x3) ∈ [2 + η, 3− 3ε

2
].

As `([2+η, 3− 3ε
2

]) < 1, φ(x2) ∈ [1, 3− 3ε
2

] and x2x3 is a positive edge, the points 1, φ(x2), φ(x3), 3− 3ε
2

occurs in Cr in this cyclic order. This implies that

φ(x2) ∈ [1, 2− 3ε

2
].

By considering the positive edges x5t and then x4x5, similar arguments show that

φ(x5) ∈ [4 + η,
1

3
− ε

2
] and φ(x4) ∈ [

1

3
+ η + ε,

4

3
+ η − ε

2
].

Considering the positive edge x1x2 and the range of φ(x2) given above, a similar argument shows
that

φ(x1) ∈ [2, 3− 3ε

2
] and hence φ(x1) ∈ [

13

3
− ε

2
,
2

3
− ε].

Now consider the negative triangle x1x5u. If Iφ;x̄1,x5,u = [φ(x1), φ(x5)], then Iφ;x̄1,x5,u ⊆ [13
3
− ε

2
, 1

3
− ε

2
]

but `([13
3
− ε

2
, 1

3
− ε

2
]) = 2

3
− ε < 2

3
+ ε

2
, contrary to Corollary 6.6.

Also φ(u) = 0 cannot be an end point of the interval Iφ;x̄1,x5,u, as 0 is at distance less than 2
3

+ ε
2

from each of the four end points of the intervals that are the ranges of φ(x1) and φ(x5).
Thus Iφ;x̄1,x5,u = [φ(x5), φ(x1)]. By Corollary 6.6, `([φ(x5), φ(x1)]) ≥ 2

3
+ ε

2
. Thus

`([φ(x1), φ(x5)]) =
r

2
− `([φ(x5), φ(x1)]) ≤ 5

3
− ε.

As φ(x1) ∈ [2, 3− 3ε
2

], φ(w) ∈ [3+η, 4− 3ε
2

] and φ(x5) ∈ [4+η, 1
3
− ε

2
], we conclude that φ(w) ∈ [φ(x1), φ(x5)]

(see Figure 11). Since wx1 and wx5 are positive edges, we have

2 ≤ `([φ(x1), φ(w)]) + `([φ(w), φ(x5)]) = `([φ(x1), φ(x5)]) ≤ 5

3
− ε,
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a contradiction.

Case A-2 η ≤ 1

3
− ε

2
, φ(z) ∈ [1 + η,

4

3
− ε

2
] and φ(t) ∈ [

10

3
− ε

2
,
11

3
+ η − ε].

The proof is similar to the previous case. The positive edge zx3 and the negative edge tx4 further
restrict the ranges of φ(x3), φ(x4). Then, the new ranges of φ(x3) and φ(x5), together with the positive
edges x3x2 and x4x5 further restrict the range of φ(x2), φ(x5). As the computations are very similar to
the previous case, we just list the conclusion of this argument:

φ(x3) ∈ [2 + η, 3− 3ε

2
], φ(x2) ∈ [1, 2− 3ε

2
], φ(x5) ∈ [

1

3
+ η + ε,

4

3
− ε

2
] and φ(x4) ∈ [4 + η,

1

3
− ε

2
].

Next we consider the negative triangle vx3x4. As

φ(x3) ∈ [
13

3
+ η − ε

2
,
2

3
− ε], φ(x4) ∈ [4 + η,

1

3
− ε

2
] and φ(v) = η.

Similar analysis as in the previous case shows that Iφ;x̄3,x4,v = [φ(x4), φ(x3)] and `(φ(x4), φ(x3)) ≥ 2
3

+ ε
2
.

This means that `([φ(x3), φ(x4)]) < 2. A similar argument shows that φ(w) ∈ [φ(x3), φ(x4)]. As x3w, x4w

are positive edges, we have

2 ≤ `([φ(x3), φ(w)]) + `([φ(w), φ(x4)]) = `([φ(x3), φ(x4)]) < 2,

a contradiction.

Case A-3 η ≤ 1

3
− ε

2
, φ(z) ∈ [

10

3
− ε

2
,
11

3
+ η − ε] and φ(t) ∈ [1 + η,

4

3
− ε

2
].

0

φ(z)

φ(t)

φ(x5)

φ(x4)

φ(x3)

φ(x2)

Figure 12: Case A-3: Updating ranges of φ(xi)’s

0

Iw

I5

I4

I3

I2

Figure 13: Case A-3: Restrictions on wx5x4x3x2

We will update the ranges of φ(x2), . . . , φ(x5) as depicted in Figure 12.
Recall that φ(x2) ∈ [1, 3− 3ε

2
] and φ(x5) ∈ [4 +η, 4

3
− ε

2
]. If φ(x2) ∈ [1, 2), then d(mod r)(φ(x2), φ(z)) >

4
3
− ε

2
, contrary to the fact that x2z is a negative edge. Thus

φ(x2) ∈ [2, 3− 3ε

2
] := I2.

If φ(x5) ∈ (1
3
− ε

2
, 4

3
− ε

2
], then d(mod r)(φ(x5), φ(t)) < 1, contrary to the fact that x5t is a positive edge.

Therefore
φ(x5) ∈ [4 + η,

1

3
− ε

2
] := I5.
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Note that `(I5) < 1. As φ(x4) ∈ [4 + η, 4
3

+ η − ε
2
] and d(mod r)(φ(x5), φ(x4)) ≥ 1 (x4x5 is a positive

edge), we conclude that the points 4 + η, φ(x5), φ(x4), 4
3

+ η − ε
2
occurs in Cr in this cyclic order and

φ(x4) ∈ [
1

3
+ η + ε,

4

3
+ η − ε

2
] := I4.

Similarly, `(I2) < 1, and x2x3 is a positive edge. Recall that φ(x3) ∈ [1 + η, 3 − 3ε
2

]. Thus the points
2, φ(x2), φ(x3) occurs in Cr in this cyclic order. Hence

φ(x3) ∈ [1 + η, 2− 3ε

2
] := I3.

Finally recall that
φ(w) ∈ [3 + η, 4− 3ε

2
] := Iw.

The intervals Iw, I5, I4, I3, I2 are each of length less than 1, and except for I3 and I4 there is no
intersection among them (see Figure 13). Since `(I3) < 1, we have φ(x4) /∈ I3 (because x3x4 is a positive
edge). Thus the points φ(w), φ(x5), φ(x4), φ(x3), φ(x2) occur in this cyclic order. As Cr is of length
14
3
− ε, the colors of some two consecutive vertices of the 5-cycle wx5x4x3x2 is less than 1, but all the

edges of this cycle are positive. This is a contradiction.

Case A-4 φ(z), φ(t) ∈ [
10

3
− ε

2
,
11

3
+ η − ε].

Similarly, we obtain that

φ(x2) ∈ [2, 3− 3ε

2
] := I2, φ(x4) ∈ [4 + η,

1

3
+ η − ε

2
] := I4,

φ(x5) ∈ [
1

3
+ η + ε,

4

3
− ε

2
] := I5, φ(x1) ∈ [

4

3
+ η + ε, 2− 3ε

2
] := I1.

The points φ(w), φ(x4), φ(x5), φ(x1) and φ(x2) occur in Cr in this cyclic order. As all the edges of the
5-cycle wx4x5x1x2 are positive, this is a contradiction.

Case B. φ(w) ∈ [
2

3
+ η +

ε

2
,
5

3
− ε].

Similarly, by considering the edges between each of xi’s and vertices u, v, w, we have that

φ(x1), φ(x2) ∈ [
5

3
+ η +

ε

2
,
11

3
− ε], φ(x3) ∈ [

5

3
+ η +

ε

2
,
11

3
+ η − ε],

φ(x4) ∈ [
10

3
+ η − ε

2
,
2

3
− ε] and φ(x5) ∈ [

10

3
− ε

2
,
2

3
− ε].

Based on the choices of φ(z) and φ(t), we have four sub-cases to discuss.

Case B-1 φ(z), φ(t) ∈ [
10

3
− ε

2
,
11

3
+ η − ε].

We will update the ranges of φ(xi)’s as depicted in Figure 14.
The positive edges zx3 and tx5 further restrict the ranges of φ(x3) and φ(x5). Then the new ranges

of φ(x3) and φ(x5), through the positive edges x3x2 and x5x4, further restrict the ranges of φ(x2) and
φ(x4). By similar computation as previous cases, we have

φ(x3) ∈ [
5

3
+η+

ε

2
,
8

3
−ε], φ(x2) ∈ [

8

3
+η+

ε

2
,
11

3
−ε], φ(x5) ∈ [

13

3
+η− ε

2
,
2

3
−ε] and φ(x4) ∈ [

10

3
+η− ε

2
,
13

3
−2ε].
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0

φ(t), φ(z)

φ(x5)

φ(x4)

φ(x3)

φ(x2)

φ(x1)

Figure 14: Case B-1: Updating ranges of φ(xi)’s

0

φ(w)

φ(x5)

φ(x1)

Figure 15: Case B-1: Restrictions on x1x5u

Considering the positive edge x1x2 and the range of φ(x2) given above, we obtain that

φ(x1) ∈ [
5

3
+ η +

ε

2
,
8

3
− ε].

Next we consider the negative triangle x1x5u. As φ(x1) ∈ [4 + η, 1
3
− ε

2
], φ(x5) ∈ [13

3
+ η − ε

2
, 2

3
− ε] and

φ(u) = 0, similar analysis shows that Iφ;x̄1,x5,u = [φ(x1), φ(x5)] and `([φ(x1), φ(x5)]) ≥ 2
3

+ ε
2
. It implies

that `([φ(x5), φ(x1)]) = 5
3
− ε

2
< 2. We observe that φ(w) ∈ [φ(x5), φ(x1)] (see Figure 15) and since

x5w, x1w are both positive edges, we have that

2 ≤ `([φ(x5, w)]) + `(φ(w), φ(x1)) = `([φ(x5), φ(x1)]) < 2,

a contradiction.

Case B-2 η ≤ 1

3
− ε

2
, φ(z) ∈ [

10

3
− ε

2
,
11

3
+ η − ε] and φ(t) ∈ [1 + η,

4

3
− ε

2
].

The positive edge zx3 and the negative edge tx4 further restrict the ranges of φ(x3) and φ(x4)

respectively. Then the new ranges of φ(x3) and φ(x4), through the positive edges x3x2 and x4x5, further
restrict the ranges of φ(x2) and φ(x5). By similar computation as previous cases, we have

φ(x3) ∈ [
5

3
+η+

ε

2
,
8

3
−ε], φ(x2) ∈ [

8

3
+η+

ε

2
,
11

3
−ε], φ(x4) ∈ [

13

3
+η− ε

2
,
2

3
−ε] and φ(x5) ∈ [

10

3
− ε

2
,
13

3
−2ε].

Next we consider the negative triangle x3x4v. As φ(x3) ∈ [4 + η, 1
3
− ε

2
], φ(x4) ∈ [13

3
+ η − ε

2
, 2

3
− ε] and

φ(v) = η, similar analysis shows that Iφ;x̄3,x4,v = [φ(x3), φ(x4)] and `([φ(x3), φ(x4)]) ≥ 2
3

+ ε
2
. This means

that `([φ(x4), φ(x3)]) < 2. We observe that φ(w) ∈ [φ(x4), φ(x3)] and as x4w, x3w are both positive
edges, we have that

2 ≤ `([φ(x4, w)]) + `(φ(w), φ(x3)) = `([φ(x4), φ(x3)]) < 2,

a contradiction.

Case B-3 η ≤ 1

3
− ε

2
and φ(z), φ(t) ∈ [1 + η,

4

3
− ε

2
].
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0

φ(t), φ(z)
φ(x5)

φ(x4)

φ(x3) φ(x2)

φ(x1)

Figure 16: Case B-3: Updating ranges of φ(xi)’s

0

Iw

I2

I1

I5

I4

Figure 17: Case B-3: Restrictions on wx5x4x3x2

We will update the ranges of φ(xi)’s as depicted in Figure 16.
Recall that φ(x2) ∈ [5

3
+ η + ε

2
, 11

3
− ε] and φ(x4) ∈ [10

3
+ η − ε

2
, 2

3
− ε].

If φ(x2) ∈ (8
3
− ε, 11

3
− ε], then d(mod r)(φ(x2), φ(z)) > 4

3
− ε

2
, contrary to the fact that x2z is a negative

edge. Thus
φ(x2) ∈ [

5

3
+ η +

ε

2
,
8

3
− ε] := I2.

If φ(x4) ∈ [10
3

+ η − ε
2
, 13

3
+ η − ε

2
), then d(mod r)(φ(x4), φ(t)) > 4

3
− ε

2
, contrary to the fact that x4t is a

negative edge. Therefore
φ(x4) ∈ [

13

3
+ η − ε

2
,
2

3
− ε] := I4.

Note that `(I4) < 1. As φ(x5) ∈ [10
3
− ε

2
, 2

3
−ε] and d(mod r)(φ(x5), φ(x4)) ≥ 1 (x4x5 is a positive edge),

we conclude that
φ(x5) ∈ [

10

3
− ε

2
,
13

3
− 2ε] := I5.

Similarly, `(I2) < 1, and x2x3 is a positive edge. Recall that φ(x3) ∈ [5
3

+ η + ε
2
, 11

3
+ η − ε]. Thus

φ(x3) ∈ [
8

3
+ η +

ε

2
,
11

3
+ η − ε] := I3.

By the restriction from the positive edges x1x2 and x1x5 and the new range I2, I5, we have

φ(x1) ∈ [
8

3
+ η +

ε

2
,
10

3
− 2ε] := I1.

Finally recall that
φ(w) ∈ [

2

3
+ η +

ε

2
,
5

3
− ε] := Iw.

The intervals Iw, I2, I1, I5, I4 are each of length less than 1, and there is no intersection among them.
(see Figure 17) As Cr is of length 14

3
− ε, the colors of some two consecutive vertices of the 5-cycle

wx2x1x5x4 is less than 1, but all the edges of this cycle are positive. That is a contradiction.

Case B-4 η ≤ 1

3
− ε

2
, φ(z) ∈ [1 + η,

4

3
− ε

2
] and φ(t) ∈ [

10

3
− ε

2
,
11

3
+ η − ε].

Similarly we obtain that

φ(x2) ∈ [
5

3
+ η +

ε

2
,
8

3
− ε] := I2, φ(x3) ∈ [

8

3
+ η +

ε

2
,
11

3
+ η − ε] := I3,
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φ(x4) ∈ [
10

3
+ η − ε

2
,
13

3
− 2ε] := I4 and φ(x5) ∈ [

13

3
+ η − ε

2
,
2

3
− ε] := I5.

Recall that
φ(w) ∈ [

2

3
+ η +

ε

2
,
5

3
− ε] := Iw.

The intervals Iw, I2, I3, I4, I5 are each of length less than 1, and except for I3 and I4 there is no
intersection among them. As `(I4) < 1, φ(x3) /∈ I4 (since x3x4 is a positive edge). That is again a
contradiction because of the 5-cycle wx2x3x4x5 all whose edges are positive.

This completes the proof of Lemma 6.7.

8 Questions and Remarks

A notion of a circular coloring of signed graphs was introduced in [8]. It is different from the definition in
this paper essentially because the concept of “antipodal" points are defined differently. Both definitions
use points on a circle as colors (the discrete version in [8] uses Zk as colors, and we can view elements
of Zk as points uniformly distributed on a circle). In [8], a fixed diameter of the circle is chosen, and
the antipodal of a point is obtained by flipping the circle along the chosen diameter. Thus for such
a coloring, the colors are not symmetric. In particular, for each of the two end points of the chosen
diameter, its antipodal is itself. In some sense, the definition in [8] more faithfully extends the coloring of
signed graphs that allows 0 (as opposed to 0-free coloring) introduced by Zaslavsky, where 0 is a special
color, whose antipodal is 0 itself. We consider the speciality of a certain color to be an undesirable
feature. A circular object should be invariant under rotation. In this sense, the circular coloring of
signed graphs in this paper more faithfully extends the circular coloring of graphs.

The circular coloring of graphs has been studied extensively in the literature. Many of the results
and problems on circular coloring of graphs would be interesting in the framework of signed graphs. We
list some specific problems below and believe that there are many more interesting problems.

8.1 Jaeger-Zhang conjecture and extensions

For a positive integer k, we have χc(C−2k) = 4k
2k−1

. On the other hand, while for a negative odd cycle
C−(2k+1) we have χc(C−(2k+1)) = 2, for the positive odd cycle C+(2k+1) we have we have χc(C+(2k+1)) =

χc(C2k+1) = 2k+1
k

. These two facts can be stated uniformly by the following definition.
Given ij ∈ Z2, we say a closed walkW of a signed graph (G, σ) is of type ij if the number of negative

edges of W (counting multiplicity) is congruent to i(mod 2), and the total number of edges (counting
multiplicity) is congruent to j(mod 2). For ij ∈ Z2 we define gij(G, σ) to be the length of a shortest
closed walk of type ij in (G, σ), setting it to be ∞ if there is no such a walk (see [18] for corresponding
no-homomorphism lemma and relation to coloring and homomorphism).

Let Co+
l be signed cycle of length l where the number of positive edges is odd. Then χc(Co+

l ) =
2l

l − 1
.

It is a well-known fact that a homomorphism of a graph onto an odd cycle gives an upper on its circular
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chromatic number. The following theorem, whose proof we leave the the reader, is an extension of this
fact.

Theorem 8.1. Given a positive integer l and a signed graph (G, σ) satisfying gij(G, σ) ≥ gij(C
o+
l ) for

ij ∈ Z2
2, we have χc(G, σ) ≤ 2l

l − 1
if and only if (G, σ)

switch−→ Co+
l .

The question of mapping planar graphs of odd girth large enough to C2k+1 was shown by C.Q.
Zhang (see [11] and [24]) to be related to a conjecture of Jaeger in the theory of circular flow. A
bipartite analogue of Jaeger-Zhang conjecture was introduced in [17] and studied in [3], a first case of
which is disproved in [16]. Thus we rather pose the following question:

Problem 8.2. Given a positive integer l, what is the smallest value f(l) (with f(∞) = ∞) such
that for every signed planar graph (G, σ) satisfying gij(G, σ) ≥ f(gij(C

o+
l )) for all ij ∈ Z2

2, we have

χc(G, σ) ≤ 2l

l − 1
.

That f(3) = 5 is a restatement of the Grötzsch theorem. That f(4) = 8 is proved in [16]. For
integers l ≥ 5 it is known that f(l) exists and is finite. Furthermore, 4k + 1 ≤ f(2k + 1) ≤ 6k + 1

[24, 12], f(5) ≤ 11 [4] and 4k − 2 ≤ f(2k) ≤ 8k − 2 [3].

8.2 Hadwiger conjecture and extensions

One of the most intriguing conjectures in graph theory is the Hadwiger conjecture which tries to extend
the four-color theorem. It claims that any graph without a Kk+1-minor is k-colorable. The case k ≤ 3

of this conjecture is rather easy, but the case k = 4 contains the four-color theorem. As the case k + 1

would imply the case k, the difficulty of the conjecture only increases by k. Catlin [2] introduced a
stronger version of the case k = 3 which we restate below using the terminology of signed graphs and
notion of circular coloring that we have introduced here. A signed graph (H, π) is said to be a minor of
(G, σ) if it is obtained from (G, σ) by a series of the following operations: 1. deleting vertices or edges,
2. contracting positive edge, 3. switching.

Theorem 8.3. [2] If (G,−) has no (K4,−)-minor, then χc(G,+) ≤ 3.

A possible strengthen of Catlin’s result was proposed independently by B. Gerard and P. Seymour.
This conjecture, which is stronger than the Hadwiger conjecture, is known as the Odd-Hadwiger con-
jecture and using the development in this work can be restated as follows.

Conjecture 8.4 (Odd-Hadwiger). If a signed graph (G,−) has no (Kk+1,−)-minor, then χc(G,+) ≤ k.

To generalize this, one may ask:

Problem 8.5. Assuming (G, σ) has no (Kk+1,−)-minor, what is the best upper bound on χc(G,−σ)?
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Observe that K̂s
2k is the signed graph whose vertices are 1, 2, . . . k where each pair of distinct vertices

are adjacent by both a negative edge and a positive edge, and each vertex has a negative loop. It follows
from the structure of these signed graphs, in an edge-sign preserving mapping of a signed graph (G, σ)

to K̂s
2k, negative edges introduce no restriction, while vertices connected by a positive edge cannot be

mapped to a same vertex. In other words, any such a mapping is a proper k-coloring of the subgraph
G+
σ induced by the set of positive edges of (G, σ). Recall that a switching homomorphism of (G, σ) to

K̂s
2k is to find a signature σ′ equivalent to σ and an edge-sign preserving homomorphism of (G, σ′) to

K̂s
2k. Therefore, based on the following definition we have the next theorem. We define

χ+(G, σ) = min
σ′≡σ
{χ(G+

σ′)}.

Theorem 8.6. Given a signed graph (G, σ), we have

2χ+(G, σ)− 2 < χc(G, σ) ≤ 2χ+(G, σ).

Let f(k) be the answer to Problem 8.5. By Theorem 8.6 one observes that if Conjecture 8.4 holds,
then f(k) ≤ 2k. Similarly, considering the result of [7] we have f(k) = O(n

√
log n).

8.3 Signed planar graphs

Let D be the signed graph on two vertices u and v which are adjacent by two edges: one positive,
another negative. This graph normally referred to as digon. It is mentioned that χc(D) = 4, moreover,
given r ≥ 4, if φ is a circular r-coloring of D where φ(u) = 0, then simply by the definition we have
φ(v) ∈ (1, r

2
− 1). Thus, by Lemma 5.7, when D is viewed as an indicator, we have χc(G(D)) =

2χc(G) where G is a graph (not signed) (this is a restatement of Corollary 4.2). In particular, we have
χc(K4(D)) = 8. Noting this is a signed planar mulitgraph and that, by the four-color theorem, every
signed planar multigraph without a loop admits an edge-sign preserving homomorphism to it, we obtain
χc(SPM)) = 8 where SPM denotes the class of signed planar multigraphs. Furthermore, we recall
that a signed graph with a positive loop admits no circular coloring and that adding a negative loop to
a vertex of a signed graphs does not affect its circular chromatic number.

For the class of signed planar simple graphs, the upper bound of 6 follows from the fact that these
graphs are 5-degenerate. With our definition of circular chromatic number and development in this
work, one may restate a conjecture of [13] as to “circular chromatic number of the class of signed planar
simple graphs is 4”. However, this conjecture is recently disproved in [9]. The first counterexample
provided in [9] is essentially the subgraph K3(I) of the signed graph of Theorem 6.8 (they become a
same signed graph after a switching). The work of [9] is based on the dual interpretation of the circular
four-coloring of signed planar graphs. The examples build there then are based on non-hamiltonian
cubic bridgeless planar graphs. The underlying graph of the signed graph of Figure 7 is the dual of
Tutte fragment used to build the first example of a non-hamiltonian cubic bridgeless planar graph and
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referred to as Wenger graph in some literature. This graph itself is used as a building block in a number
of coloring results. Noting that a connection to a list coloring problem and circular 4-coloring (of signed
planar simple) graphs was established by the 3rd author, [30], we refer to [10] for recent use of this
gadget in refuting a similar conjecture.

We note, furthermore, that since in Theorem 6.8 we give the exact value of the circular chromatic
number of K4(I), one does not expect to improve the lower bound using this particular gadget.

It remains an open problem to decide the exact value of the circular chromatic number of the class
of signed planar simple graphs or to improve the bounds (of 14

3
and 6) from either direction.

8.4 Girth and planarity

Some of the questions mentioned above can be generalized in the following way:
Given an integer l and a class C of signed graphs, such as signed planar graphs or signed K4-minor-

free graphs, what is the circular chromatic number of signed graphs in C whose underlying graphs have
girth l?

As an example, a result of [3] implies that every signed planar graph of girth at least 10 admits a
switching homomorphism to the signed graph (K4, e) which is the signed graph on K4 with one negative
edge. As this signed graph has circular chromatic number 3, we conclude that

Theorem 8.7. For the class SPg≥10 of signed planar graphs G̃ of girth at least 10, we have χc(SPg≥10) ≤
3.

We do not know if this bound is tight.
In a more refined version of the question one might be given three values of l01, l10 and l11 and be

asked for a best bound on circular chromatic number of signed graphs in C which satisfy gij(G, σ) ≥ lij.

8.5 Spectrum

In the previous question one may also be asked for the full possible range of circular chromatic number
of a given family of signed graphs. For example it is known [6] that a rational number r is the circular
chromatic number of a non-trivial K4-minor-free graph if and only if r ∈ [2, 8

3
] ∪ {3}. As for signed

K4-minor-free simple graphs we extended the upper bound to 10
3
, it remains an open question whether

each rational number between 8
3
and 10

3
is the circular chromatic number of a K4-minor-free signed

simple graph. Spectrum of the circular chromatic number of series-parallel graphs of given girth and
circular chromatic number of planar graphs were studied in [14, 19, 20, 26, 27]. Similar questions are
interesting for signed planar graphs and other families of signed graphs.
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