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Continuum limit of p-Laplacian evolution problems on graphs:
L7 graphons and sparse graphs

Imad El Bouchairi* Jalal M. Fadili* Abderrahim Elmoataz*

Abstract. In this paper we study continuum limits of the discretized p-Laplacian evolution problem on sparse
graphs with homogeneous Neumann boundary conditions. This extends the results of [24] to a far more general
class of kernels, possibly singular, and graph sequences whose limit are the so-called L9-graphons. More precisely,
we derive a bound on the distance between two continuous-in-time trajectories defined by two different evolution
systems (i.e. with different kernels, second member and initial data). Similarly, we provide a bound in the case
that one of the trajectories is discrete-in-time and the other is continuous. In turn, these results lead us to establish
error estimates of the full discretization of the p-Laplacian problem on sparse random graphs. In particular, we
provide rate of convergence of solutions for the discrete models to the solution of the continuous problem as the
number of vertices grows.
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1 Introduction

1.1 Problem formulation

Our main goal in this paper is to study discretization of the following nonlinear diffusion problem on
graphs, which we call the nonlocal p-Laplacian problem with homogeneous Neumann boundary condi-
tions:

%u(w,t) = [ K(z,y)|u(y,t) — u(w,t)}p_Q(u(y,t) —u(z,t))dy + f(x,t), =e€Q,t>0,
u(x,0) =g(x), =€,

(P)
where p € [1,4+o0[, Q C R? is a bounded domain, d > 1, without loss of generality ) = [0, l]d, and
K : R% x R? — R is the kernel function. In particular, in the setting of graphs, d = 1 and it will be seen
that K is the limit object for some convergent graph sequence {G,, },,n € N, whose meaning and form
will be specified in the sequel. Throughout, we assume that
(H.1) K is a nonnegative measurable function.

(H.2) K is symmetric, i.e., K (x,y) = K(y, x).
(H.3) supgeq [o K(z,y)dy < +00.
By (H.2), it is straightforward to see that

swp [ Ke,ydy =swp [ K(e,y)de,
xzeN JQ yeQ JQ

and thus, (H.3) is equivalent to

sup/ K(xz,y)dx < +oo.
yeQ JQ
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When the kernel is such that K (x,y) = J(x — y), where J : R? — R, then (H.1), (H.2) and (H.3)
read:

(H’.1) J is nonnegative and measurable.

(H’.2) J is symmetric, i.e., J(—x) = J(x).

(H.3) fQ,Q J(x)dx < 00 .
Recall that  — € is the Minkowski sum of 2 and —2. In the case = [0, 1], we obviously have
Q-Q=[-1,1

The motivation behind this work is that partial differential equations (PDEs) involving the nonlo-
cal p-Laplacian operator have become more and more popular both in the setting of Euclidean domains
and on discrete graphs, as the p-Laplacian problem has been possessing many important features shared
by many practical problems in mathematics, physics, engineering, biology, and economy, such as con-
tinuum mechanics, phase transition phenomena, population dynamics, see [1, 4, 5, 15, 21, 34, 22] and
references therein. Some closely related applications can be found in image processing, computer vision
and machine learning [13, 18, 19, 28].

The main goal of this paper is to revisit and extend the work of [24] by removing important limiting
assumptions made there on the kernel K and the initial condition g. In turn, this will allow us to establish
consistency estimates of the fully discretized p-Laplacian problem for singular kernels or on sparse graphs
whose limits are known not to be bounded graphons (see Section 3 for details).

1.2 Contributions

In this work, we propose a far-reaching generalization of the results in [24] to a much more general
class of kernels and initial data. In particular, we are able to consider unbounded initial data, the case
p = 1, and most importantly singular kernels, which in turn will allow to handle sparse graph sequences
whose limit are the so-called L9-graphons [10, 11]. On such graphs sequences, we will quantitatively
analyse evolution problems and their continuum limit. We will also consider the case p = 1 which was
not handled in [24].

More precisely, for p € [1,4o00], we first provide a general error bound between the solutions of
two evolution problems of the form (P) governed by two kernels and two initial data. This will then
be applied to study consistency of numerical solutions regarded as a discretization of (P) with space
discretization of the kernel J and initial data g, and forward and backward Euler discretization in time.
We eventually apply these results to evolution problems defined on graph sequences whose limit are the
so-called L9-graphons.

1.3 Relation to prior work

The kernels and initial data considered here are beyond reach of the approach developed in [24], and
have not been considered in the literature to the best of our knowledge. Moreover, our error bounds are
directly stated in L2(Q2) and not in L”(2) as done in this previous work. Our proof is also simpler, more
elegant and the argument is made more transparent. This argument will allow us to handle the case p = 1.
More importantly, some limiting assumptions on the kernel and the initial data made in [24] are removed
and replaced by much less stringent ones. This allows in particular to cover a far larger class of kernels
(including singular ones), and also sparse graph sequences that were not handled in that previous work.

Another related work is that in [27, 31]. In these papers, the authors focused on a nonlinear heat
equation on sparse graphs, where Lipschitz-continuity of the operator is of paramount importance. This
assumption was essential to prove well-posedness (existence and uniqueness follow immediately from
the contraction principle), as well as to study the consistency in L?(£2) of the spatial semi-discrete ap-
proximation. The nonlocal p-Laplacian evolution problem considered here is much more general and
cannot be covered by the approach of those previous papers because the lack of Lipschitzianity raises



several challenges (including for well-posedness and error estimates). Unlike those previous works, we
also consider both the semi-discrete and fully-discrete versions with both forward and backward Euler
approximations, that we fully characterize, and develop novel proof techniques.

1.4 Paper organization

The rest of the paper is organized as follows. In Section 2 we start by reviewing some basic nota-
tions and recall some preliminary material necessary to our exposition. In Section 3 , we provide some
prerequisites on L?-graphons and sparse K -random graph models that we are going to deal with. Sec-
tion 4 is devoted to study the well-posedness of the problem (P). In Section 5, we study stability of the
problem (P) with respect to sequences of kernels K, initial data g and second member f. Error bounds
for the semi-discete (i.e., space discretization of (K, g, f)) problem are established in Section 6.1, and
those for the fully discrete (time and space discretization) problem with forward and backward Euler
time-discretization are provided in Section 6.2. Section 7 is devoted to applying these results to fully
discretized problems on sparse random graph models.

2 Preliminaries

2.1 Basic notations

For g € [1,+00], and S C R?, L4(S) is the standard Banach space of Lebesgue g-integrable func-
tions on S. For a function F': S x S — R, we define the L°°%(5?)-norm as

def
1E /sy = sup [F . ags)

If F'is symmetric, then

1Fl e agsy = sup 10 )l o)

L>(S?) is the space of functions on S? of bounded L°°%(5?))-norm, which is of course a Banach
space.
Throughout the paper, we will often use Fubini’s theorem without explicitly referring to it.
C([0,T]; L4(S)) denotes the space of functions w : S x [0,7] — R which are uniformly con-

tinuous in time with values wu(t,-) in LP(S). C([0,T]; L4(S)) is naturally endowed with the norm

def . .
HUHC([O,T];L‘Z(S)) = SUPye(o,7] Hu(~,t)HLq(S). Moreover, L1([0, T]; L(S)) is the space of functions

u: S % [0,T] — R such that HuHLl([O,T];Lq(S)) o fOT |u(-,t dt < +o0.

We define the g-norm on R™, g € [1, +00], as

Mzas)

Ivll, = Z il |

z€ [m]

with the usual adaptation for ¢ = +o0. (+)4 is the positive part function on R.
For a set-valued operator A : X — 2% on a Banach space X, its domain and range are respectively

dom(A) ={ue X : Au# 0} and ran(A) = A(X).



2.2 Projector and injector

Letn € N* and denote the multi-index & = (i1, 4, ...,44) € [n]%. Partition Q into cells (hypercubes)
def d
olm & {H]mik_l, xi) i€ [n]d}
k=1
. def | ~(n) . .
of size h; = |€2; |, and maximal mesh size
def
Op = i — i, 1]).
n = max gfgﬁ(\% i 1)

When the cells are equispaced, then h; = 1/ nd.
We consider the operator P,, : L1(Q) — R

def i

P [ e m

This operator can be also seen as a piecewise constant projector of u on the space of discrete functions.
For simplicity, and with a slight abuse of notation, we keep the same notation for the projector P,, :
Ll(Q2) - Rndxnd'

Our aim is to study the relationship between solutions of discrete approximations and the solution of
the continuum model. It is then convenient to introduce an intermediate model which is the continuum
extension of the discrete solution. Towards this goal, we consider the piecewise constant injector I,, of a
vector v € R™ into L2(€) defined as

Lv(z) € 3 vixgm (@), )

i€[n]?

where we recall that x¢ is the characteristic function of the set C, i.e., takes 0 on C and 1 otherwise.
It is immediate to see that the operator L[,P, is the orthogonal projector on the subspace

Span {XQ@) NS [n]d} of L'(Q). In turn, I,P,,u is the the piecewise constant approximation of .
Lemma 2.1. For a function u € L1(Q), q € [1, +00], we have
HInPn“HLq(Q) < HuHLq(Q)' 3)
For a function K € L>(0?), q € [1,+00)], we have
P K| poc.a 2y < 1K ooy “

Proof: We prove (4) as (3) is a consequence of it. Let K = P, K. We have, Va € (),

/Q 1P| K (2, ) dady = /Q S K 4700 ()00 (9)
. . K J
zh]

=3 Z/(n) K j|%dy | xgom ()
i i 7% ‘

q
1
e K(a',y)dx'dy’ .
h’Lh’g /Q(‘n)XQ(‘n) (mvy) T ay XQE, )(m)
? J

:zi: zj:hj
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1
> /Q i KV | 32
J

(2

Il
S.M

1
h; /Q(n) Z/Q(n) ‘K(azl,y’)|qdy/ dx’ XQ(n)(:B)
i : - $ ;
B J J

(hlz /QE") </Q |K(m',y’)\qdy’> da}’) X ()

< &l 2enior) 22X @) = 1K oy
i

I
s.M

Taking the supremum on the left-hand side yields the bound. O

2.3 Lipschitz spaces

Fro N € N*, let S be a compact subset of RY. We introduce the Lipschitz spaces Lip(s, L4(S)),
g € [1,+oc], which contain functions with, roughly speaking, s "derivatives" in L9(S) [17, Ch. 2,
Section 9].

Definition 2.1. For F' € L1(S), q € [1,+00|, we define the (first-order) L4(S) modulus of smoothness
by

1/q
w(F,h), < sup </ . |F(x + z) — F(x)|? da:> . )
T, r+zE€

z€eR4 |z|<h
The Lipschitz spaces Lip(s, L4(S)) consist of all functions F for which

def
[ F | Lip(s,La(s)) = Suph*w(F, h)q < +o0.
h>0

We restrict ourselves to values s €]0, 1] since for s > 1, only constant functions are in Lip(s, L%(5)).
Itis easy to see that [F| ;s 14(s)) is @ semi-norm. Lip(s, L?(S)) is endowed with the norm

def }

HFHLip(S,Lq(s) |FHLq(s |F|Lip(s,L‘1(S))'

The space Lip(s, LY(S5)) is the Besov space By ., [17, Ch. 2, Section 10] which are very popular in
approximation theory. In particular, Lip(s, L'/#(S)) contains the space BV (S) of functions of bounded
variation on S; see [17, Ch. 2, Lemma 9.2]. Thus Lipschitz spaces are rich enough to contain functions
with both discontinuities and fractal structure.

We now state the following approximation error bounds whose proofs use standard arguments from
approximation theory; see [24, Section 6.2.1] for details.

Lemma 2.2. There exists a positive constant C, depending only on s, such that forall F' € Lip(s, L1(S5)),

s E]O, 1], qE [17 +OO]’
1P = TP Flags) < o P ity ©

We denote by BV ([0, T]; L4(.S)) the Banach space of functions f : 2 x [0,7] — R such that

Vary(f) & sup Z | fCt (=) || oy < +00,

0<to<t1<-- <tN<T

def

endowed with the norm HfHBV([O,T};L(I Hf HLQ(S) + Var,(f).



3 The sparse graph model

One of our fundamental goals in this paper is to understand the behaviour of (P) when discretized on a
sequence of networks. Such networks can be of many types (biological, physical, social, data processing,
etc.), whose details vary widely, but which bear similar structural phenomena. In turn, one may wonder
whether discretization of (P) is stable to the particular realization of the network and input data. It is
then natural to consider a sequence of graphs with size tending to infinity and ask whether the solutions
of discrete forms of (P) on these graphs converge to any meaningful sort of limit. This will allow us
in turn to establish a continuum limit of the solutions to these discrete evolution problems. For this, we
need to be equipped with an appropriate theory of graph limits.

3.1 L7 graphons and graph limits

In [10, 11], the authors laid the foundations of L? graphons, For ¢ > 1, where the term L9 graphon
refers to a symmetric function K € L9([0,1]?). They developed a theory of limits for sequences of
sparse graphs based on such graphons, which generalizes both the existing theory of bounded graphons
that are tailored to dense graph limits [30], and its extension in [9] to sparse graphs under a no dense
spots assumptions. The latter graph model was studied in [25] in the context of continuum limits of
p-Laplacian evolution problems on graphs. Nevertheless, the boundedness assumption of the graphon
underlying these graph models is still highly restrictive. In particular, it does not allow to handle singular
graphons and corresponding network models which have statistics governed by power laws. The theory of
unbounded by L4 graphons allows to analyse graphs with power law degree distributions, hence providing
a broadly applicable limit theory for sparse graphs with unbounded average degrees.

3.2 Sparse K-random graph models

We consider weighted graphs, which include as a special case simple unweighted graphs. Let G =
(V(G), E(G)), be a weighted graphs with vertex set V (G) and edge set E(G) C V(G)?, respectively.
In G, every edge (i, j) € E(G) (allowing loops with i = j) is given a weight 3;; € RT!. We set 8;; = 0
whenever (i, ) € E(G).

The theory of random graphs was founded in the 50’s-60’s by Erdos and Rényi [20], who started
the systematic study of the space of graphs with n labeled vertices and M = M (n) edges, with all
graphs equiprobable. The aim is to turn the set of all graphs with n vertices into a probability space.
Intuitively we should be able to generate a sequence of graphs {G, },, .y randomly as follows: for each
edge (i,j) € [n]?, we decide by some random experiment whether or not (i, j) shall be an edge of G,
these experiments are performed independently.

The idea underlying the sparse K -random graph model proposed by [11] is that each L? graphon K
gives rise to a natural random graph model, which produces a sequence of sparse graphs converging to
K in an appropriate metric. Inspired by their work, we propose the following construction.

Definition 3.1. Fixn € N*, let K be an L' graphon and p,, > 0. Take the equispaced partition of [0, 1]
in intervals |x;_1,;), i € [n], where x; = i/n. Let K € R*™ be a weight matrix such that:
(Hy1) [[TK = K[ 1 0 432y = 0as n — +o0.
H,.2) [|1.K(z, ) — K(, ')HLI([O,n) — 0 uniformly in x € [0,1].
Generate the random graph

Gn = (V(Gn), E(Gn) < G(n, K, pn)

In [11], the weights are even allowed to be negative, but we will not consider this situation which is meaningless in our
context.



as follows: join each pair (i, j) € [n)? of vertices independently, with probability

. /\ S def . -
P((i,5) € E(Gy)|X) = puKij, where K;; = min (K;j,p,"). @)

Remark 3.1. In the original sparse K-random graph model defined in [11], the x;’s are random iid
samples drawn from the uniform distribution on [0,1]). Moreover, K;; = K(x;, x;). In this case, it
follows from [11, Theorem 2.14(a)] (which relies on [26, Theorem]) that assumptions (H,,.1) holds with
probability 1.

Another interesting case is where K = P,, K. Thanks to Lemma 2.1,

TP 112y < 1K 102y
with probability 1. Thus, the Lebesgue differentiation theorem and the dominated convergence theorem
allow to assert that 1, P, K converges to K in Ll(Q2). In turn, assumption (H,,.1) holds.

For appropriate choices of p,, the graph model constructed according to Definition 3.1 allows to
sample both dense and sparse graphs from the graphon K. In particular, the sparsity assumption p,, — 0
reflects the fact that p,, needs to be arbitrarily close to zero in order to see the unbounded/singular part
of K. The assumption that np,, — +00 means the average degree tends to infinity. To check this, the
average number of edges in this graph model is

E(B(G(n, K. pu)) = pur® (02 3 Ky
(i,5)€[n]?
= 0 (1K s oy = | 0K = 22) s
By assumption (H,,.1), we have HI”KHLl([o g2y = HKHLl([O g2y + o(1). Moreover, since p,, — 0, we
have from (8) that || (LK — p;, '), HLl([o 2y = o(1). In turn,

E(E(G(n, K, pn))) = pnn2 (HKHLl([O,H?) + 0(1)) .

As expected, this gives rise to a sparse graph whose edge density is p, — 0. For the average degree of
this graph model, arguing similarly to above, and using (H,,.2), we have

A
E (degg, (1) = pan | 07! ) Ky
Jeln]

= Pnll (HIHK(% ‘)HLl([o,u) = || (K (2, ) = /’r_Ll)+ HLl([O,l]))

~ pun (/01 K (25, y)dy + 0(1)> .

As anticipated, the average degree is indeed unbounded since p,n — +00 .

The above sequence of graphs generated also enjoys the following convergence result.

Proposition 3.1. Let K be an L' graphon and K be a weight matrix such that (H,,.1) holds. If p,, > 0
with pp, — 0 and np, — +o0 as n — +oc, then p,;'G(n, K, p,) converges almost surely to K in the
cut distance metric (see [11, 10] for details about this metric).



Proof: We essentially adapt the arguments of in the proof of [11, Theorem 2.14(b)]. More precisely,
since (H,,.1) holds, one has to show [11, (7.1)]. For this, we invoke [11, Lemma 7.3] by checking the
condition (7.3) therein. We have by sublinearity of (-) that

1 . _
ﬁ Z (K’L] - pn1)+ = /[01]2 (InK(xvy) - pn1)+ dl‘dy
(i,5)€[n]? ’
< / LK () - K(z,y)), dady + / (K (2,) — pi1) , dedy
[0,1]2 [0,1]2

< [[1K — K o) + /[O o (B = o) dody

(®)
The right-hand side in the above display goes to 0 as n — +o0o by (Hy,.1) and since p,, — 0. Indeed,
for every L > 0, the limit superior of the last term is bounded by || (K — L)+ ||, (0 1]2), and this can be

made arbitrarily small by choosing L large. 0

Example 3.1. For an example that cannot be handled using L*° graphons, and thus does not enter in
the framework of [24, 25], consider a K-random graph model G(n, K, p,) constructed according to
Definition 3.1 with K = P, K, where K (z,y) = J(z —y), J : z € [-1,1] = 271 (1 = B)(2— B)|2| 7,
B €]0,1]. First, observe that the radially symmetric kernel J is singular but fulfills all assumptions
(H’.1), (H’.2) and (H’.3). In addition, by virtue of Remark 3.1, (H,,.1)-(H,,.2) also hold with

1
K] 1 g0 1j2) = 1 and /O K(z,y)dy =272 8) («' 7+ (1 - 2)'™7) e 2712 = B)[1,27).

We also have the following convergence result in the L°>! norm that will be instrumental in Section 7.
According to the construction in Definition 3.1, we let A;;, (i, j) € [n]?,4 # j, be random variables such

A
that p, A;; follows a Bernoulli distribution with parameter p, K;;. For each row i € [n], (A;;)

 are
independent.

jEn

Lemma 3.1. Let K be an L>' graphon, i.e. it satisfies (H.1), (H.2) and (H.3). Take the weight matrix
K = P, K. Assume that p,, — 0 and np, = w ((logn)?) for some ~y > 1. Then with probability 1,

A
HI”AHLOOJ([O,I]Q) - HI”KHLW([OJP) =0

If, moreover, (H,,.2) holds, then

HInAHLoo,l([o,u?) = HKHLOOJ([OJP)'
with probability 1.

Proof: For any € > 0, we have by the union bound

A
P (10l oy = 1K s o) > ¢)

A
=P |mZaXZAW — mzaXZKU‘ > En
J J

A
=P | mZaXanAij — mzaxz anZ-j’ > eppn
J J



A
<P (m@ax ’ an(Aij — K”)’ > epnn)
J
A
< ZP ( an(Aij -Kyj)| > €pnn) :
( J

A
Since (pnAij)j are independent Bernoulli variables with means (anij> , it follows from the variant

J
of the Chernoff bound in [11, Lemma 7.1], that for every € > 0,

A
P (1Al e oy = 1K o] > )

1
< QZexp (3 min (Epnn/\’ 1) apnn)
i Pn Zj Kij

) €
< 2nexp | —- min ,1

= €pnN
LXK w1 0,172

1 €
<2nexp| ——-min | —,1 5w((logn)7)>
( 3 (HKHLM([OJP) )

< 2n—w((log n)”fl)

— )

since v > 1, and where we used (7) and Lemma 2.1 to show that

A
K] e o,112) < MK s 0 112) = 0P| pocsr g0 172) < 15 o o112y

Invoking the (first) Borel-Cantelli lemma, we have the first claim. On the other hand,

A A
H’IHKHLOOJ([OJ]?) o HKHLoo,l([o,u?)} = HI"K - KHLOOJ([()JP)

< K = 1Pk sy + [P = K s
= || (1P K~ pgl)+Hva1([o,1]2) + [T Pr K — KHLOOJ([O,IP)

< H(K - pgl)JrHLoo;l([o,l]?) + H(IHP"K - K)JFHLOOJ([O,I]Q) + HIHPHK - KHLOOJ([O,I]Q)
<N = o)l oo o2y + 2P E = K| oot 0,172y

Since p,, — 0 and in view of (H,,.2), the right-hand side in the above display goes to 0 as n — +o0.
Combined with the first claim we obtain the desired conclusion. O

4 Well-posedness

4.1 The casep €]1, +o0]

To lighten notation, for 1 < p < +o0, we define the function
p—2 . p—1
V:zecRm— ‘a:‘ mz&gn(az)’x‘ ,

9



where we take sign(0) = 0.
The next lemma summarizes key monotonicity and continuity properties of ¥ which will be instru-
mental to us.

Lemma 4.1. (i) Monotonicity: assume that the constant [3 satisfies } € [max(p,2), +oc[. Then for
all x,y € R,

(¥(y) — V(@) (y — 2) > Caly — 2| (jy] + 2P =7, ©)
where the constant C1 is sharp and given by
Cy = 22"Pmin(1,p — 1). (10)
In particular,

ly — p € [2,+00],

_ (11)
ly— 2| (jy + |z)P2 pelL,2).

(W(y) = ¥(z)(y—2) > C4 {

(ii) Continuity: assume that the constant « satisfies o € [0, min(1,p — 1)]. Then for all x,y € R,
[U(y) = U(@)| < Coly — x| (Jy| + [P~ 77, (12)

where the constant Cs is sharp and given by

Cy = max(227P, (p — 1)227P 1). (13)
In particular,
—x + 2P pe 2, +oo],
¥ (y) — ()| < Co v ‘ﬁ?{' T pe el (14)
ly — x| p €l1,2],
Proof:

(i) For (9), see [14, Theorem 2.2]. For (11), set 8 = p for p > 2 and 3 = 2 otherwise in (9); see also
the seminal results of [23, Lemma 5.1 and Lemma 5.2].
(ii) For (12), see [14, Theorem 2.1]. For (14), set « = 1 for p > 2 and o = p — 1 otherwise in (12);
see also the seminal results of [23, Lemma 5.3 and Lemma 5.4].
O

We now collect some preliminary properties of the nonlocal p-Laplacian, an operator on L* () that
we denote for short as

Affu(w,t) = —/ K(:B,y)‘u(y,t) — u(a:,t)‘p_2(u(y,t) — u(x,t))dy.
Q

Proposition 4.1. Assume that K satisfies (H.1), (H.2) and (H.3).
@) AII,( is positively homogeneous of degree p — 1.
(i) Ifp > 2, LP~1(Q) C dom(A[).
(iii) If1 <p <2, dom(A{f) = LY(Q) and A]If is closed in L*(Q2) x L'(f2).
(iv) Let h : R — R. Then for every u,v € LP(),

0< /Q (AN u(z) — AR o(a)) h(u(z) — v(x))da

— 2 K(z,y) (U(u(y) —u(x)) - U(v(y) —v(z))) (h(u(y) — v(y)) = h(u(z) - v(z))) dyde.

2 Jo2
(15)

If h is bounded, then this holds for any u,v € dom(Aff ).
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(V) Foreveryu,v € LP(Q),

max(1,2/p)
% ( . K (x,y)|(u(y) —u(x)) - (v(y) — v(a:))}”dydx>

where
. o) p € [2,+00],
e _ p72
22p_501"K“2w%{Z()Q2) (H“Hm(m + HUHLP(Q)) p €L, 2[.

and C1 is the constant in (10). If u,v € L>®(Q), then

/Q (Afu(a:) - Af’u(w))(u(m) —(z))) dz >
max(1,p/2)
% < 0 K(z,y)|(u(y) — u(x)) — (v(y) - v(:c))ﬁdydm) ’
where
@ p € [2,+od,

p—2
27201 (|l ey + lollpmey) 2120

(vi) Forp €]1,2] and every u,v € L?*(2),
-1
/Q (Afu(@) — Afv()) (u(@) — v(x)) de > C|| AR — Al
where
P=2_ / _1/2 = . .
C =220-1 (C2 HKHLOOJ(QZ)> (1—=1/p), and C4 is the constant in (13).

(vii) Forp €]1,+0], A{f is completely accretive and satisfies the range condition

LP(Q) C ran(I+ AK). (16)
def

Consequently, the resolvent J, AK = (I + )\Af )_1, A > 0, is single-valued on LP(Q)) and non-
expansive in L1(Q) for all q € [1, +o0].

Proof: (i), (ii) and (iii) follow from [2, Remark 2.2] which still holds for our larger class of kernels K.
For (iv), see [24, Lemma A.2]. Monotonicity is immediate since h is non-decreasing.
The proof of (vii) is the same as that of [2, Theorem 2.4], where we invoke the monotonicity claim (i).
We now show (v)2. The case p € [2, +00[ is immediate by inserting Lemma 4.1(i) into (15) with
h(z) = x. For p €]1,2], to lighten notation, denote the nonlocal gradient VNVu(x, y) = u(y) — u(x).
We then have by Lemma 4.1(i) that

IV (u — v) (@) <

(2T u(z,y) — BV, ) (Vu(z, y) - V(@ y)) (V0@ y)| + V()
(17)

“This can be seen as a nonlocal analogue of [23, Proposition 5.1 and Proposition 5.2].
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Taking the power p/2, multiplying by K and integrating, we get
et | K@) 9w v)(a,y)Pdudy <
02
[ (lay) (0 () - 0V () (Pl y) - Vo)
02

(2-p)p/2
(K@) P (V" u(@,y)| + [Vo(@y)) T dady.

It is easily seen that
(K - (V) — B (V) (VN — TNL)) P2 e [2/p(02)

(M7 (9] 4+ [9NE))

It then follows from Holder inequality and (15) that

et [ K@) - v)(a,y)Pdudy <
02
p/2
2 (/Q (Afu(w) - Afv(:c)) (u(x) — v(a:))da:) .

(2—p)/2
([ K@ (v ) + 9@ )Pdedy)
Q2

We have by Jensen’s inequality

[ K@)V ula )|+ 19 (e, )P dady

< 4p1 /92 K(z,y)(lu(@)” + [u(y)” + [v(@)[” + [v(y)[")dedy

< K ey (1l + 1ol
whence we obtain

2/p
o ([ K v o) y)Piedy) <
QQ
2572 (/ (Afu(m) - A{fv(ac)) (u(x) — v(m))dw)
Q

LB NGy (el ey + ol o)

Rearranging proves the bound. For u,v € L°(£2) and p € [2, +-oc] we use that LP(Q2) C L?(Q2). For
p €]1,2], we embark from (17) and use that for all (x,y) € Q2,

2—p

VN, )] + V()] < 2 ([l e + 10 ogey) -

Multiplying (17) by K, integrating and using (15), we conclude.
To prove (vi), we start by showing that A{f is Holder continuous with exponent p — 1 on L?(2). We
have by Jensen inequality (twice) and (14),

2
dx

/Q Kz, ) (T, ) — U(V0(@,y))) dy

HAf“ - Af””i%m = /Q
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< K| oot 2y /Q K(z,y) (¥(Vu(z,y)) - U(VN0(z,y)))’ dedy
< Co|| K| oot g2y /Q K(z,y) (V¥ — v)(2,y))) """ dedy

< PO sy [ (o) () — ()" dady

L g R

= 203 [ K[} s ) lu — 750y - (18)

We are now in position to invoke [6, Corollary 18.14(i)=-(v)] to show that the claimed inequality holds.
]

Solutions of (P) will be understood in the following sense:
Definition 4.1. Let p €]1,+00|. A solution of (P) in [0, T is a function
w € C([0,T]; LH(Q) nWHL(0, T L1 (9)),

that satisfies u(xz,0) = g(x) a.e. x € Q and
0 K .
ﬁu(:c,t) = —Aju(z,t) + f(z,t) ae inQx]0,T].

Such a solution is also a strong solution (see [3, Definition A.3]).

The main result of existence and uniqueness of a global solution, that is, a solution on [0, 7| for T > 0
is stated in the following theorem.

Theorem 4.1. Suppose that p €|1,+oo[ and assumptions (H.1), (H.2) and (H.3) hold. Let g € LP(Q)
and f € L*([0,T]; LP(£2)).
(i) Forany T > 0, there exists a unique strong solution in [0, T] of (P).
(ii) Moreover, for ¢ € [1,+c], if g; € LY() and fi € LY([0,T); L4()), i = 1,2, and u; is the
solution of (P) with data (f;, g;), then

Hul("t) - “2("75)“Lq(9) < Hgl - 92HLq(Q) + Hfl - fQHLl([o,T];Lq(Q)y vt e [0,T]. (19)

Proof: The proof follows the same lines as that of [2, Theorem 1.2] extended to the case where f # 0
thanks to the results of [7], where we invoke Proposition 4.1(ii), (iii) and (vii). ]

Remark 4.1. In [2] (see also [3, Chapte 6]), the authors impose the following stringent assumptions:
K(z,y) = J(x — y), where J is nonnegative, continuous, radially symmetric, compactly supported,
J(0) > 0and [y J(x)da < +o0. Actually, these assumptions are not needed for existence and unique-
ness. The particular form J(x — y) of the kernel is not needed. Continuity with radial symmetry and
support compactness play a pivotal role to study convergence to the local p-Laplacian problem in [2,
Theorem 1.5]. In addition, J(0) > 0 was mandatory to prove a Poincaré-type inequality in [2, Proposi-
tion 4.1]. Even for the form J(x — y), our assumptions (H’.1), (H.2) and (H’.3) are weaker than those
of [2]. This discussion remains true also for the case p = 1.
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4.2 Thecasep =1

We will need to define subdifferential of the absolute value function on R, which is the well-known
set-valued mapping 9| - | : R — 2,

1 x>0
I -(z)=q[-1,1] ==0
-1 x < 0.

It will be convenient to denote the 1-Laplacian A, This is a set-valued operator in L*(£2) x L!(€2) such
that n € Afw if and only if

n(x) = —/QK(m,y)w(a:,y)dy a.e. in Q,

for a subgradient function w satisfying HwHLm(m) < lLw(x,y) = —w(y,x), and

w(@,y) € 9| - |(u(y) — u(x)).
Solutions of (P) will be understood in the following sense.
Definition 4.2. A solution of (P) for p = 1in[0,T] is a function
u € C([0, ] L' () nWH(J0, TT; L1(9)),

that satisfies u(xz,0) = g(x) for a.e. x € ) and

0
au(az,t) =—n(x,t)+ f(z,t) ae inQ2x]0, T,
where n(-,t) € AKu(-,t).

Observe that for p = 1, the evolution problem (7P) reads

{gtu(a:,t) = o K(z,y)sign(u(y,t) —u(z,t))dy + f(z,t), = ecQ,t>0,
u(x,0) =g(x), =z,

where
X
L 0
i _ W T
sign(z) =
(@) {O x = 0.

0
au(-, t) € —AKu(-1).

In the same vein as Proposition 4.1, the 1-Laplacian enjoys the following properties.

Thus, it satisfies

Proposition 4.2. Assume that K satisfies (H.1), (H.2) and (H.3).
() dom(Af) = LY(Q) and (the graph of) AK is closed in L'(Q) x L'(Q).
(ii) Let h € CY(R) be a nondecreasing function. Then for every u; € L'(Q) and any n; € Afu;,

i=1,2,
0< / (m(x) —n2(x)) (h(u(x) — uz(x))) dz
Q
= % - K(z,y) (w1 (z,y) — w2z, y)) (h(ui(y) —u2(y)) — h(ui(x) — uz(x))) dedy.

(20)
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where w; are the corresponding subgradient functions defined above. In particular,

1
| K@yl yju(@ydedy = — | K@, Y)|uiy) — ui(z)|dedy.
(iii) A{( is completely accretive and satisfies the range condition

L>®(Q) C ran(I + AK). (21)

Proof: For (i), see [2, Remark 2.8] which still holds for our class of kernels K.

The proof of (iii) is again the same as that of [2, Theorem 2.9], where we invoke the monotonicity
claim (ii) to which we turn now.

For any v € L'(Q), we have the integration by parts formula

[ K@ yue.)(y) - o@)dedy 22)

= — | Ky z)wiy, z)o(y)dydz / K (@, y)wi(, y)o(x))dzdy (23)
02 02

=2 K(m y)wi(z, y)v(x)dedy. (24)

Taking v(x) = h(ui(x) — uz(x)) in (24) with w; and ws, and then taking the difference, we arrive at
( K (@, y)(wi(@, ) — (e, y))dy) B () — ()
/ (m() — n2(2)) (h(ui () — ua(2))) da

= |, K@) (i@, y) —wa(@,y)) (uy) = ua(y)) = h(w (@) = ua(2))) dady.

By the mean-value theorem applied to h, we get
=2 [ (@)~ @) (s (2) ~ wa(a))) de

= |, K@ y) (i@ y) —ws(@,y)) W (C(z,y)) (ur(y) — ua(y) — (nr (@) — ua(x))) dedy

= . K@ Y (2, y)) (wi(@,y) — wa(z, y)) (w1 (y) — (@) = (u2(y) — uz(e))) dedy,

where ((x, y) is an intermediate value between u; (y) —u2(y) and u; () —uz(x). Since h is increasing,
that w;(x,y) € 9| |(ui(y) —u;(x)), and 9| - | is a monotone operator, we get the claimed monotonicity.
To get the particular identity, we specialize (24) by taking v = w;, which entails

~ |, K@ ywi@ y)(uly) —wil@))dedy =2 | K@ yjwiz,y)u(@)dedy.

We finally use the equivalent characterization of 8‘ : |, which originates from the Fenchel’s identity since
! . | is positively homogeneous,

O |(x)={¢eR: ¢ <1 and &z = |z|}.

Applying this identity with z = u;(y) — u;(x) and £ = w;(x, y) gives the claim. O
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Theorem 4.2. Suppose that p = 1, and assumptions (H.1), (H.2) and (H.3) hold. Let g € L*()) and
f € LY[0,T]; LY(Q)). For any T > 0, there exists a unique solution in [0, T] of (P) in the sense of
Definition 4.2.

Proof: The proof is an adaptation of [2, Theorem 1.4] to the case where f # 0 thanks to the results
of [7], where we invoke Proposition 4.2(i) and (iii). (]

5 Continuous-continuous estimates

In this section, we provide an estimate that compares solutions of two p-Laplacian evolution problems
of the form (P) with two different kernels and initial data. This estimate will be instrumental to derive
error bounds in the totally discrete case.

5.1 The casep €|1, +o0|
We have the following error bounds and convergence result.

Theorem 5.1. Suppose that p €]1,+oco[. Let u be a solution of (P) with kernel K and data (f,g).
Let u,, be a sequence of solutions to (P) with kernels K,, and data (fy, g). Assume that K and K,
satisfy (H.1), (H.2) and K, K,, € L°?(0?), and that either one of the following holds:

(a) p €1,2], g, g € L*(Q), and f, fn € L'([0,T]; L*(2));

(b) p=2 9,90 € LQ(pil)(Q) and f, fn € Ll([O>T]§ LQ(pil)(Q));

(¢) g,9n € LOO(Q) and f, frn € Ll([O,T]; LOO(Q))'
Then, the following hold.

(i) w and u,, are the unique solutions (P) with respectively data (f, g) and (fn, gn)-

(ii) We have the error estimate

[[un — UHC([O,T};LZ(Q)) < |lgn — gHL2(Q) +[fn - fHLl([O,T];L2(Q))

LT HKn — KHLOOQ(QQ), under (a) or (b) 25)
HKn—KHLQ(m), under (c)
where C'is positive constant that may depend only on p, g and f.

(iii) Moreover, if (c) holds, sup,cn |gn(m)‘ < 400 ae. on () and g, — g pointwise a.e. on (),
SUp,en | fn(®,1))| < +o0 a.e. on Q2 x [0,T) and f, — f pointwise a.e. on 2 x [0,T), and the
sequence {|K”|2}neN is uniformly integrable over Q% and K, — K pointwise a.e. on Q2. Then

=0.

m (e =ull oo ;a0

Remark 5.1. Observe that since L°(2) C L*(Q) and L*®=1(Q) ¢ L*(Q) for p > 2, then the first
two terms involved in (25) provide a non-trivial bound. Similarly, since L°*(Q?) C L*(Q?), the last
term in the bound for case (c) is also non-trivial. In fact, both bounds in (25) can be summarized in one
bound; the first one. However, the second bound for case (c) is obviously sharper.

Proof: In the proof, C' is any positive constant that may depend solely on p and g.
(i) Since L>2(02?) C L°>'(Q?), assumption (H.3) holds for both K and K,,. We also have the
embeddings
« L2(Q) C LP(2) under (a),
« L2P=D(Q) c LP(Q) under (b), and
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o L*>(Q2) C LP(Q2) under (c) .
Thus g, g, € LP(Q) and f, f,, € L*([0,T]; LP(£2)). Existence and uniqueness of the solutions v
and u,, in the sense of Definition 4.1 is a consequence of Theorem 4.1.
(ii) Denote the error function &, (x,t) = u,(x,t) — u(x,t), then from (P), we have a.e.

Borl@0) (A (1) — A (0@, 1) + Jul 1) — f1)

ot
— — (AS (@, 1)) — Al (u(a, 1)) — (AR (u(w, 1)) — AX (u(a, 1)) @O
+ fn(wat) - f(xvt)'
Multiplying both sides of (26) by &, (x, t) and integrating, we get
2 o lenC D2y = _/Q (A (2, 1) — ARvu(a, £)) (un(@, 1) — ulz, t))de
+Aymmm—K@wwwmw—Mam&mwmw (27)

+ /Q (ful@ ) — f(@. 1)) n(a, D)z,

Since g, g, € LP(Q) and f, f, € LY([0,T); LP(2)), un(-,t),u(-,t) € LP(Q) for any t € [0,T]
thanks to (19). We can then apply Proposition 4.1(iv) with h(z) = x to assert that the first term
on the right-hand side of (27) is nonpositive. Let us now bound the second term.

e Case (c): in this case HUHC([ thanks to (19),

otz < N9l oy + 112 omz=()
and we get from Cauchy-Schwartz inequality that

| (@ y) = K(@,y) ¥ (uly, t) —u(@, t))én(z, t)dzdy|

<l [ 1)~ Koo, Oy

(28)
_ p-1
<27 (9l ooy + 1l goryaoan) 1K = Ellagan 166D oy
= Of|En = K| 1202 60 D) 120
* Case (a) or (b): applying again Cauchy-Schwartz inequality we obtain
1/2

< ([ oty ste 0P Vi) ([ 1600 )Pl Py

= ([t ate 0wy ([ ([ 1)~ o) o)

1/2
— </Q2 lu(y,t) — u(iB,t)‘Q(pl)dwdy> | Kn — KHLOW(QF)an('vt)H[g(Q)-

On the one hand, under (a), Jensen’s inequality applied to the concave function x € RT
2P~ ! entails

1/2
( |u(y,t) — u(m,t)!Q(p_l)dmdy>
02
) (p—1)/2
< ( lu(y, t) — u(z,t)| dwdy)
02

_ — 7 p—1
<2 1H“(‘=t)Hi2(lﬂ) <2 <H9HL2(Q) + HfHLl([O,T];LQ(Q))) ;
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where we used (19) in the last inequality. On the other hand, under (b), we have

_ 2(p-1) V2 p—1(,,( ~|P1
02 ‘U,(y,t) U(CL‘,t)| dil?dy < 2 HU( 7t)‘ L2(P*1)(Q)
<2 (HgHLQ(P*U(Q) + HfHLl([O,T};LQ(P*U(Q))) :

In turn, under either (a) or (b), we have the bound

\/QQ(Kn(w,y) — K(x,y))¥(u(y, t) — u(®,1))é(x, t)dedy|

< C[|Kn = K| o2z 160 (O 2 -

(29)

Inserting (28) and (29) into (27), ignoring the first term which is non-positive as argued above, and
using Cauchy-Schwartz inequality on the last term, we obtain

Ol K = K| o2(g2)> under (a) or (b)

0

8t” " HLQ(Q) | HLQ(Q) C||K, — KHL2(92), under (c).
Integrating this inequality on [0, ¢] and taking the supremum over ¢ € [0, T, we get (25).

(iii) By assumptions on {K,}, ., we are in position to apply the Vitali convergence theorem [33,
p. 133]in L?(922) to get that HKn - KHLQ(QQ) — 0 as n — +oo. We have by assumption that
the sequence {gn },,cy is dominated by a constant function. The latter is obviously in L?(£2) since
|2] < 4o0. It then follows from the dominated convergence theorem that H In — gH 2@ 0 as
n — 4o00. We now turn to the sequence f,,. We have

1/2 _ /2
[ £ = fHLl([o,T];m(Q)) <1 [ fn = fHLQ([O,T];LZ(Q)) =1 [ fn = fHL?(Qx[o,T])'
Arguing as for g,, using our assumptions, entails again that H fm—=1rf H L (0.TL2(9) 0asn —
+00. Passing to the limit in the second inequality of (25), the claim follows.
O

In the case where the kernel takes the form K (x,y) = J(x —y), we have the following consequence
of Theorem 5.1.

Corollary 5.1. Suppose that p €|1,+oc[. Let u be a solution of (P) with kernel K (x,y) = J(x —y)
and data (f,g). Let uy, be a sequence of solutions to (P) with kernels K, (x,y) = J,(x — y) and
data (fn, gn). Assume that J and J,, satisfy (H’.1), (H’.2) and J, J,, € L*(Q2 — Q), and that either one
of (a), (b) or (c) in Theorem 5.1 holds. Then, the following hold.

(i) w and u,, are the unique solutions of the corresponding evolution problems.

(ii) We have the error estimate

H“n_“HC([o,T];L2(Q)) = Hgn_gHL2(Q)+Hf"_fHLl([O,T};LQ(Q))+CTHJ”_JHL2(Q—Q)’ (30)

where C'is positive constant that may depend only on p, g and f.

(iii) Moreover, if the sequence {|Jn|2}n€N is uniformly integrable over Q) — Q, J, — J pointwise a.e.
on Q — Q, g, — g pointwise a.e. on ), f, — [ pointwise a.e. on Q x [0,T), and either one of
the following holds:

(a’) p€]l1,2], {’g"‘Q}neN (resp. {|fn\2}n€N) is uniformly integrable over ) (resp. Q) x [0,T1]);
(b’) p=>2, {|gn|2(p_1)}neN (resp. {|fn|2(p_1)}n€N) is uniformly integrable over §) (resp.  x
[0,T7);
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() sup,en |gn(@)| < 400 a.e. on Q and sup,,cy | fo(x,t)| < +o00 a.e. on Q2 x [0,T).
Then

lim Hun =0.

| “Ho([o,T];m(Q))

Proof:
(i) We argue in the same way as in the proof Theorem 5.1 since L?(Q — Q) c L'(Q — Q) implies
that assumption (H’.3) holds for both J and J,,.
(i) The error bound (30) is a specialization of (25) since

[ 1ate.) ~ Ky = [ 192 - )Pz < 10— T 2o o

Thus
1 = K| o2y < 1K = K| ey < 190 = Tl 200y
(iii) Case (a’) follows from the Vitali convergence theorem applied to J,, g, and f,,. The latter argu-
ment also applies to case (b’) since L>P~D(Q — Q) ¢ L*(Q — Q), L?P~D(Q) ¢ L*(Q) and
LXP=1(Q x [0,T]) € L'([0,T]; L*(R2)). Case (c’) uses the Vitali convergence theorem on .J,,
and the dominated convergence theorem on g, and f;, as argued in the proof of Theorem 5.1(iii).
O

Remark 5.2. At this stage, we only relied on the monotonicity property of Aff in Proposition 4.1(iv)
to get our bounds. One may then wonder if the stronger notions of monotonicity established in Propo-
sition 4.1(v) can yield bounds better than (30). We answer this question positively by (slightly) improv-
ing the dependence on T for p €|1,2] but at the price of more stringent assumptions on J. For this,
we embark from (27), bound all terms as in the proof of Theorem 5.1, use Proposition 4.1(v) and that
L%(Q) C LP(RQ) in this case to get

QatHﬁn Dz + O /m J(@ — y)| VN (w0, y)[*dyda <

(CHJn - JHL2(Q_Q) + an<'7t> o f('vt)Hm(Q)) “gn("t)“L2(Q)’

for two positive constants C, C (in the following Cj; is a positive constant). Assume in addition that J is
compactly supported and J(0) > 0. One can then invoke the Poincaré inequality [2, Proposition 4.1] to
show that

C2H£n('>t) _/an(mvt)deiQ(Q) < /92 J(m—y)‘VNLfn(m’y)‘Qdydm_

Thus

1 2 2
316Dl < 60 = [ 6t 0ol + ([ i)

Altogether, we arrive at

c,C
5t 2y <

2
(CHJn - JHL?(Q_Q) +[ £ 1) - f("t)HL2(Q)) an(wt)Hm(Q) + GG (/Q §n(a:,t)dw> :

By integrating (P), it is easy to see by applying Proposition 4.1(v) and (iv) with h(x) = 1 that the
solution of (P) preserves the total mass in (), whence we deduce

/£n z,t)dx —/(gn / / fulz,s) — f(x, s))dxds.
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If (f,g) and ( fn, gn) have the same mass, we get

19
20t

2 €10y 2
[6n (O ) + 1T||§n(‘vt)HL2(Q) <

(CHJn - JHLQ(Q—Q) + an(7t) - f(vt)HL2(Q)) an(Wt)HLZ(Q);
and therefore

0 CC
e DMz + Dz < (Ol — Ty + 1) = £ 0]

Applying Gronwall’s lemma yields the estimate

[un (2, t) — u(w’t)HLQ(Q) <|[fa— fHLl([O,T};LQ(Q)) +exp(—C10at/2) || gn — gHL2(Q)

C
. (1— exp(—C102t/2))HJn - JHL2(Q—Q)'

+

This bound is clearly better than (30). In turn,

2C
H“n_“HC([o,T];Lz(Q)) < Hf"_fHLl([O,T};LQ(Q))—i—maX <Hgn - gHL2(Q)’ mHJn - JHL2(Q—Q)> :

The same reasoning as above can be carried out to sharpen the error bounds for the discrete problems
in Section 6. Nevertheless, this will not be detailed further in this work.

5.2 Thecasep=1

We now turn to the case p = 1.

Theorem 5.2. Let u be a solution of (P) for p = 1 with kernel K and data (f,g). Let u,, be a sequence
of solutions to (P) for p = 1 with kernels K,, and data ( f,,, gn). Assume that K and K, satisfy (H.1)
and (H.2), that K, K,, € L>®?%(Q?), g, g, € L*(Q) and f, f, € L'([0,T); L*(Q)). Then, the following
hold.
(i) w and w,, are the unique solutions in the sense of Definition 4.2 of the corresponding evolution
problems.
(ii) We have the error estimate

[ un — UHC([O,T};LQ(Q)) < [|gn - 9HL2(Q) +|fn = fHLl([U,T];L2(Q)) +T|| K — KHL2(Q2)' G
(iii) Moreover, if K,, — K pointwise a.e. on Q?, g, — g pointwise a.e. on Q, f, — [ pointwise

a.e. on ) x [0,T], and {|K"|2}neN is uniformly integrable over QZ, {|gn|2} is uniformly
integrable on (), and {| fnl? }n cn is uniformly integrable on €2 X [0,T). Then

neN

i lun =l o r1.z2(0y) = 0

Proof:
(i) Existence and uniqueness of w and u, follow from Theorem 4.2 where we argue as in Theo-
rem 5.1(i) since g, g, € L?(2) € LY(Q) and K, K,, € L>=?(Q?) C L>=(Q?).
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(ii)

(iii)

Denote the error function &, (x,t) = uy,(x,t) — u(x, t), then from Definition 4.2, we have a.e.

Pu®0) _ (Ko .y — Koyt 9.0)dy + o)~ S0
Q
- [ Ku@w) iy —wlwy.0)dy+ [ (Kulw.y) = K@)y, Ody

Q
+ fn(.’L',t) - f(:l;',t),
(32)

where w (resp. wy,) is the subgradient function associated to u (resp. u,) as in Definition 4.2.
Multiplying both sides of (32) by &, (x, t) and integrating, we get

10

5&”571(’75)”22(9) = /{22 Kn(:li,y) (wn(wayat) - w(mayvt))gn(xat)dwdy

+ [ (Kuw.y) - K@y)ue.v.06 @ Odady 63
+ [ Galent) = f(ont) &l e,

In view of the monotonicity claim in Proposition 4.2(ii), we have

Kn(z,y) (wn(®,y,t) —w(@,y,t)) &ala, t)dzdy < 0.
Q
Let us turn to bounding the second term. We have by the Cauchy-Schwartz inequality and that

HwHLoo(mx]o,T[) =1L

| [ aw) ~ Koo, v. 06 . )iz
= / | K (2, y) — K(z,y) || (2, ) |dedy (34)
Q2

< HKn - KHLZ’(QQ)an("t)HLZ'(Q)'

Inserting (34) into (33), ignoring the first term which is non-positive as argued above, and using
Cauchy-Schwartz inequality on the last term, we obtain

0
aan('J)HL?(Q) S an("t) - f('7t)HL2(Q) + HKn - KHL2(Q2)'

Integrating this inequality on [0, ¢] and taking the supremum over ¢ € [0, T, we get (31).
We argue again using the Vitali convergence theorem since K, K,, € L>2(Q?) c L?*(Q?) and
LN([0,T); L3(9)) € LA(Q x [0,T)).

O

The following corollary is immediate in the same vein as Corollary 5.1.

Corollary 5.2. Let u be a solution of (P) for p = 1 with kernel K (x,y) = J(x — y) and data (f, g).
Let u,, be a sequence of solutions to (P) for p = 1 with kernels K, (x,y) = Jy,(x — y) and data
(fns gn). Assume that J and J, satisfy (H’.1), (H’.2) and J, J,, € L*(Q — ), that g, g, € L*(Q) and
I, fa € LY([0,T]; L3(Q)). Then, the following hold.

(i)

u and u,, are the unique solutions in the sense of Definition 4.2 of the corresponding evolution
problems.
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(ii) We have the error estimate

[[n — UHC([O,T];LQ(Q)) < [lgn - 9HL2(Q) +fn - fHLl([O,T];LQ(Q)) +T||Jn - JHLQ(Q—Q)‘ (35)

(iii) Moreover, if J, — J pointwise a.e. on ) — (), g, — g pointwise a.e. on (), f, — f pointwise
a.e. on Q) x [0,T], and {|Jn|2}n€N is uniformly integrable over ) — (), {|gn|2} is uniformly
integrable on (), and {| fnl? }n cn is uniformly integrable on 2 X [0,T). Then

neN

i lun =0 1,020y =0

6 Error bounds for the discrete problem

Let K € R" > and g e R" be discrete approximations of, respectively, the kernel K and initial
data g in (P), on a regular mesh of size §,,. Typically, one can take K = P,K and g = P,g. For
1 < p < o0, the discrete p-Laplacian operator with kernel K is

~K d —2
Ap u€eR” — — Z thij‘uj — ui‘p (uj — ui) = — Z thij\I/(uj — ui).
Jj€n)d Jj€n)d

~K
In the same way, we define the discrete 1-Laplacian operator as the set-valued operator A; : R —
nd ~K
28" such that n € A, wif and only if
mi=— Y hiKijwij,
j€m)?
where HWHOO <1, w;; = —wj;, and
wij € 0] |(u5 — uy).
By construction, we have the following simple lemma whose proof is immediate.
Lemma 6.1. Forany K € R gpd u € R”d, the following holds:

(i) If 1 <p < 4o,
K

LA,

(u) = ALK(L,u).
(ii) Ifp=1,

Lnn (@) = —AInK(w,y)InW(w,y)dy, where  L,w(z,y) € 9] - [(l,u(y) — Lu(z)).

Moreover, }IanLw(Qz) <landl,w(x,y) = -1,w(y,x).

6.1 The semi-discrete problem

Case p €]1,+o00[: We start with the case 1 < p < +oo and consider the space semi-discretization
of (P),

(PSP)
u(0) =g. P

where u : t € RT — u(t) € R and similarly for f.
Our aim is to compare the solutions of problems (P) and (PED). The solution of (PS’D) being discrete
in space, we consider its continuum space extensions of u and f on € for any ¢ > 0 as

wn(@,1) = (Lou() (@) and fo(@, 1) = LED) (@), (36)

{gtu(t) = —Aju(t) +£(1), t>0,
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Theorem 6.1. Suppose that p €)1, +oco[. Let u be a solution of (P) with kernel K and data (f, g), and
u that of (PSD) withK =P, K, g =P,gand £(t) =P, f(-,t) fort € [0,T)]. Let u,, and f,, as defined
in (36). Assume that K satisfies (H.1), (H.2) and K € L°%(Q?), and that g and f satisfy either one of
the conditions (a), (b) or (c) in Theorem 5.1. Then, the following hold.

(i) w and u, are the unique solutions of (P) with data respectively (f,g) and (fn,1,Ppng).

(ii) We have the error estimate

[ n = UHC([O,T};LQ(Q)) < [[TnPng — gHL2(Q) + | = fHLl([O,T];LQ(Q))

or |1nPrK — K|} oo (@2, under (a)-(b) a7
[T Pn K — K[| 22y, under (c)

where C'is positive constant that depends only on p, g and f.
(iii) If, moreover, g € L>(Q)NLip(s, L?()), K € Lip(s, L>(Q?)) and f(-,t) € L*>(Q)NLip(s, L*(Q))
foreveryt € [0,T], then

[un = ull oo y.2(0y) < CA+ T, (38)

where C' is positive constant that depends only on p, g, f, K, s.

Proof:

(i) Existence and uniqueness of u were proved in Theorem 5.1(i). We also see that [,, K verifies (H.1)
and (H.2). Using Lemma 2.1, we have I,g € LP(Q), f, € L'([0;7],LP(Q)) and I, K €
L>>2(0%) ¢ L>=1(Q?), and thus I, K fulfills (H.3). In view of Lemma 6.1(i), it follows from (P5P)
that the function w,, satisfies (P) with kernel I, K and data ( f,,, I,,g). Existence and uniqueness of
up, then follow from Theorem 4.1.

(ii) The claim is a specialization of (25) in Theorem 5.1(ii).
(iii) As K € L>2(0Q2%) C L?(Q?), we insert the estimate (6) (see Lemma 2.2) in the second bound of

(37).
O
Case p = 1: We now turn to the case p = 1, and consider the evolution problem
%u(t) = —U(t) + f(t)u >0, SD
(P1™)
u(0) =g,

where K
n;(t) = — Z h;K;jsign(u; —u;), andthus n(t) € Ay u(t).
g€n]?

Theorem 6.2. Let u be a solution of (P) for p = 1 with kernel K and data (f, g), and u is that of (P{P)
withK =P,K, g =P,gand f(t) =P, f(-,t) fort € [0,T]. Let u,, and f, as defined in (36). Assume
that K satisfies (H.1), (H.2) and K € L°*%(Q?), and that g € L*() and f € L*([0,T]; L*(Q2)). Then,
the following hold.
(i) w and u,, are the unique solutions in the sense of Definition 4.2 of the corresponding evolution
problems.
(ii) We have the error estimate

[[n — UHC([O,T};LQ(Q)) < [[TnPng _9HL2(Q) +fn - fHLl([O,T];LQ(Q)) +T||T.Pn K — KHL2(Q2)'
(39)
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(iii) If, moreover, g € Lip(s, L*(Q)), K € Lip(s, L*(Q?)) and f(-,t) € Lip(s, L*(Q)) for every
t €[0,T), then

[un = ull oo y.20y) < CA+ T, (40)

where C'is positive constant that depends only on p, g, f, K and s.

Proof:

(i) Existence and uniqueness of v were proved in Theorem 5.2(i). In addition, [,,K verifies (H.1)
and (H.2). Using Lemma2.1,1,g € L*(Q) c LY(Q), f, € L'([0,T]; L*(Q)) c L*(][0,T]; L*(Q))
and I, K € L>2(Q%) ¢ L>>1(Q?), and thus I, K fulfills (H.3). By virtue of Lemma 6.1(ii), uy,
the space continuum extension of u, will satisfy (P) with kernel I,, K and data ( f,,, I,,g). Existence
and uniqueness of u,, in the sense of Definition 4.2 follow from Theorem 4.2.

(ii) This claim is a specialization of (31) in Theorem 5.2(ii).

(iii) Insert the estimate (6) in (39).

6.2 The totally discrete problem

We establish in this section error bounds for fully discrete (in time and space) approximations of (P).
For that, let 0 < t; <ty < --- < ty_1 < tny = T be a partition (not necessarily equispaced) of [0, T].

def
Let 7.1 = ’tk — tk—l‘ and denote 7 = max 7.
ke[N]

6.2.1 Forward/Explicit Euler discretization

Case p €]1,2]: We start with p €]1, 2] and consider a totally discrete problem with forward/explicit
Euler scheme in time,

u® —u ~K
— =AU 41, ke[N,

Th_1 p [V] (p;)rDF)
uw =g,

where u* f ¢ R"™'. We have implicitly assumed that f does not depend on time, which is a standard
assumption in the context of explicit discretization.

Since our aim is to compare the solutions of problems (P) and (PgDF), we introduce the following
continuum extensions in space and/or time of {uk } ke[N] 38

uf =1,uf k€ [N], and f, = L.f,

tr — 1t t—tp_
U (,t) = 22— ub (@) + —E Lk (@), (x,t) € Qxty_1, t] k € [N],

n

Tk—1 Tk—1
N

Up(x,t) = Zuﬁfl(w)x}tkil,tk](t), (x,t) € 2x]0,T].
k=1

Then, in the same vein as Lemma 6.1, it is easy to see that (P,PF) is equivalent to the following
evolution problem

{gtun(m,t) = —ALKG, (z,) + fu(x), (2,t) € Qx]0,T], @

tp(z,0) = L,g(x), =€

Before turning to the consistency result, we collect some useful estimates.
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Lemma 6.2. Consider problem (77;)F PFY with kernel K, data (f, g) and variable step-size T, < 2C ‘ ‘ A},"Ku,]j—

2-p
an Zgl , where C is the constant in Proposition 4.1(vi). Assume that I,g € L*(Q) and 1,K satis-

fies (H. 1 ), (H.2) and (H.3). Suppose also that for each n € N, f is such that (PTDF) has a stationary
solution w* and that sup,, ¢y HIng L,u HL2(Q < +o00. Then

T (-,t) € L*(Q),Vt € [0,T], and sup Hﬂn(,t) T,u HL2 < +00.
te[0,T],neN

Remark 6.1.

(1) Condition on the time-step T can be seen as an abstract non-linear CFL condition. It is better
than the one in [24] since we here exploit the Holder continuity of A]ID"K on L*(Q) for p €]1,2],

see Proposition 4.1(vi). For p = 2, where A;"K is linear Lipschitz continuous operator on LQ(Q),
the condition reads 1, < 2C. Such condition for explicit time-discretization of evolution problems
with accretive and Lipschitz-continuous operators is known, see e.g., [32]. It is also consistent
with known convergence results for finding zeros of co-called co-coercive operators on Hilbert
spaces [6].

(2) The assumption on £ and K imply that f,, € L*(S2). Indeed, (18) entails

[ £all 2y = 185 )| 2y < 2P Coll K[ [ Tw2* [

(3) The assumption made on f is trivially true when £ = 0 since 0 is a stationary solution int this
case. In turn, using Lemma 2.1, one can see that the uniform boundedness conditions on g and K

are fulfilled if g = P,g and K = P, K, where g € L*(Q) and K satisfies (H.1)-(H.3).
Proof: We show the claim by an induction argument. Since A;}"K(Inlﬁ) = fn, we have

[ I”u*HiQ(Q)

= g = 1) = 20 | (AF(g)(@) — ful@) (o) ~ L) do
+ 75 ]| Ay E (Tg) — ani?(Q)
= ||1,g - Inu*HiQ @ — 270 /Q (ALK (1,g)(z) — ALK (,u")(2)) (Tg(z) — L,u*) de
+ 76 A5 () = fall72()
By assumption on g, u* and 7%, we can invoke Proposition 4.1(vi) to get

H“}z - I”U*HiQ(Q)

< |tug = o[22 ) = 2070 | A} (1ug) — ful oy + TSHAI”KI )= Fall iz
< [[Tngg = T [z g + 70| A5 (Tne) anLz ) (200185 (1) = faull 287 = m0)

< |[Tng — Tpu* HL2(Q)
Suppose now that, for any k£ > 1,
k 2 2
e = Tnw"[ 2(g) < [|Tng = Tnw*[[ 2
and thus u* € L2(2). We can then use Proposition 4.1(vi) as above to see that

H“ZH - Inu*”i?(g)
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< s~ T ) — AL () = fullFaq (2R ) - 1558 O = )
< [[Tug = L[|} -

Thus the sequence { |uk HLQ(Q) }k et bounded, and so is ||zn (-, ) HLQ(Q) fort € [0, 7] by its definition.
€
We also have

sup Han(-,t)—lnu*HLQ(Q) = sup Hqu—Inu*HLz( <supHIng—Inu HL2 < 400.
t€[0,T],neN (n,N)eN2 ke[N]

O

Lemma 6.3. In addition to the assumptions of Lemma 6.2, suppose that sup,,cy HI”KH Loe1(2) < ~+o00.
Then

sup Hﬂn(vt)_un ) HLQ S CTa
t€[0,T],neN

where C'is a positive constant that does not depend on (n, N, T).

Proof: It is easy to see that for ¢ €|t;_1, ], k € N,

k
i) = )y = (= 1) [

= (t = i) [ A5 ™ = Fall 2y

= (0=t Ayt = A EIw| g

| FAVE T AzlonKInu*Hm(Q) = 7| Ay (1) - A;"KInU*HLZ(Q)'

IN

As Alr¥ is Hlder continuous on L?(€2) with exponent p — 1, see (18), we get
§ 1/2 _ -1
)~ Dy < 72O ey )~ oy

We then take the supremum over ¢ and n, and use Lemma 6.2 to conclude. O

We are now in position to state the error bound for the totally discrete problem (P; DFy,

Theorem 6.3. Suppose that p €]1,2]. Let u be a solution of (P) with kernel K and data (f, g) where
f is time-independent, and {uk } ke[N] is the sequence generated by (PgDF) with K =P,K, g =P,g,

= P,.f and 1, as prescribed in Lemma 6.2. Assume that K satisfies (H.1), (H.2) and K € L>?(Q?),

and that f, g belong either to L*()) or L°°(S2). Then, the following hold.
(i) wis the unique solution of (P), {uk } ke[N] is uniquely defined and { HIn u” H L2(9) }k ] is bounded
€

(uniformly in n when f = 0).
(ii) We have the error estimate

Lu"! — < exp(T/2) [ |[1aPng —
kG[N],fél]Ifk,l,tk] H nu HLQ exp( / (H ntng QHLQ(Q)

L,P,K — K|, g€ L*(Q)
T2 [ £1/3-p) - | Lee2(Q2) .42
e (T ! Hf fHLQ(Q)+ {HInPnK_KHM(gp)a g € L*(Q) @)

for T sufficiently small, where C'is positive constant that depends only on p, g, f and K.
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(iii) If, moreover, f,g € L°°(Q) N Lip(s, L%(Q)) and K € Lip(s, L*(Q?)), then
sup Hlnuk—l _ HL2 < Cexp(T/2) ((1 +TY2)58 4 Tl/le/(3—p)) . (43)
ke[N]telty—1,tx]

Sor T sufficiently small, where C is positive constant that depends only on p, g, f, K and s.

Proof: In the proof, C is any positive constant that may depend only on p, g, f, K and/or s, and that

may be different at each line.
(i) Existence and uniqueness of u were proved in Theorem 5.1(i). The claimed well-posedness of the

sequence {u’“} ke[N] is a consequence of Lemma 6.2 and Remark 6.1(3).
(ii) Denote &, (x,t) = iy (x,t) — u(x, t), &z, t) = Un(2,t) — u(z,t), gn = 1,Ppg and K

I,,P,, K. We thus have a.e.
Torl®l) (AR (il 1) — A (u(a, 1) + nle) ~ (@)

— — (MK (@ (@,1) — AL (u(@, 1)) — (AL (u(@, 1) — AK (u(@,1)) + (ful@) - f(2).
Multiplying both sides by én(m, t), integrating and rearranging the terms, we get

19
2 0t

[— /Q (A (2, 1) — AR, 1)) (i, 1) — u(e, £))de

_ /Q (A;I;(”U(:c,t) — Afu(m,t)) En(a, t)d

(44)
- /Q (Aé{"ﬂn(w,t) — A}If"u(cc,t)) (Up(x,t) — Up(x,t)) de

+ /Q (@) — F(@)) € (. t)de.

Since f,g € LP(Q) in both cases, so is u(-,t) thanks to (19). We also have ,(-,t) € L*(Q) C
LP(€2) by Lemma 6.2. We are then in position to use Proposition 4.1(iv) with h(z) = x to assert
that the first term on the right-hand side of (44) is nonpositive. Let us now bound the second term.
Similarly to the estimates (29) and (28) in the proof of Theorem 5.1, and using Young inequality,
we have

AK" (x,t) — Afu(as,t)) én(a:,t)dw‘

{ 3|2y 9 € LA(Q)
CHK KHL?(Q2)H§n ’ HL2(Q)’ g € L=(Q),
2 Ol K = K[ ey 9 € L(9)
e {CHK T )

IN

—_

(@)

For the third term in (44), we invoke Lemma 6.3 to get

|/ (AKn g, (2, 1) — AKvu(a, 1)) (in(@, ) — G, 1)) da]

< HAP Unp '7 )_ Af;(n '7 HLQ(Q) an('7t) _an('at)H[;(Q)

< ClAF tin (1) = AFrul, )] 2 )
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We then use the fact that A;,”K is Holder continuous on L?(2) with exponent p — 1, see (18), to
obtain

€ D2y + 77

|AK (- ) = ARv ()] gy < CllE G [Fagy < C(

where we used Lemma 6.3 to go from &, to &, and that p €]1,2]. It then follows by Cauchy-
Schwartz inequality that

‘ /Q (Af“ﬂn(w,t) — Af"u(a:,t)) (U () — Up(, 1)) de|
<C (Hgn()t)‘ pL;(lg)T + Tp)

<

1,: 2 _
6 fn('>t)HL2(Q) +C(T2/(3 P) +7P).

Using Young inequality to bound the last term in (44), and combining the bounds on the three other
terms, we have shown that

én(at)Hig(Q) + C<T2/(3_p) + 77+ Hf" - inQ(Q)

+ {HK" _KHz,OOQ(QQ)a g e LQ(Q) )
1K = K2z 9€ L2

0

Using the Gronwall’s lemma and taking the square-root, we get

U — UHC([O,T};LZ(Q)) <exp(T/2) (HInPng - gHL2(Q)

[TPu K = K| ey 9 € LA(Q) ) )

712 (216G | w2y g
+C (T + TP+ Hf fHL2(Q) + {HInPnK 7 KHLZ’(QQ)’ g e L®(Q)

(45)

Since 1/2 < 1/(3 — p) < p/2 for p €]1,2] the dependence on 7 scales as O(7/3=P)) for 7
sufficiently small (or N large enough). Inserting (45) into

E—1 _ .
sup uy = (e t) = ||t, —u , < ||ty —u ) +Cr,
] sy = i = Wl oqoizncan < lin = wlogoyascon
(46)
completes the proof of the error bound.
(iii) Plug (6) into (42).
O

Remark 6.2. Error bounds in LP(Q)) were derived in [24] for forward Euler discretization. Their rate
is better than ours and is provided for the range p €|1, +oco[. Unfortunately, we believe that their proof
contains invalid arguments that can be fixed but only for p €]1, 2.
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Case p = 1: We now turn to the case p = 1, and consider the discrete system

k k—1
u"—u k-1
— =-—n""+f, ke[N]|
T 1 [ ] (PiFDF)
uw =g.
where K
n*=— Z h;K;j sign(uf —u), andthus n* e A] uf.

jen]?
We consider the continuum extensions in space and/or time of {uk } ke[N] 3 before, namely u”, i,, and

Uy, fn = Lo, and the space-time continuum extension of {77’“ } ke[N]

N
(@, 1) = > (L") (@)Xt 1, (1) = — / LK (z,y) sign(iin(y, t)—tn (w0, 1), (x,t) € 2x]0,T].
k=1 L

In view of Lemma 6.1, these extensions satisfy the evolution problem

{gtan@;,t) = — 7 (2, t) + fulz), (z,1) € Qx]0,T], )

an(xao) = Ing(m)a H RS Qa

and
(. t) € AKa, (x,1).

We have the following counterpart estimates of Lemma 6.2.

Lemma 6.4. Consider problem (P{°F) with kernel K, data (f,g) and variable step-size

523

= , Where Zai < +00.
max <H1n77k _anL2(Q)a1> keN

Assume that 1,g € LQ(Q) and 1, K satisfies (H.1)-(H.2) and (H.3). Suppose also that for eachn € N,
f is such that (P;DF) has a stationary solution u* and that sup,,cy Hlng —L,u* HLQ(Q) < 400. Then

Tn(-,t) € L3(Q),Vt € [0,T], and sup Hﬂn(,t) — Inu*HLQ(Q) < +o00.
te[0,T],neN

Remark 6.3. The condition on the time-step Ty, is reminescent of subgradient descent and has been used
in [24]. The assumptions on (f, g, K) are again verified when f = 0, g = P,,g and K = P, K, where
g € L*(Q) and K satisfies (H.1)-(H.3).

: f : . . .
Proof: Define the series s def Zf:o a?. As in Lemma 6.2, we proceed by induction using the

monotonicity of the 1-Laplacian (Proposition 4.2(ii)). Indeed, since f,, € A%,"K(Inu*), we have

[y, — InU*H;(Q) = |[Tng - Inu*“imz)
—2m / (A5 (g (@) = A (Lu") (@) (Lg(@) — L") da + af.
Q
By assumption on g, u*, we can invoke Proposition 4.2(ii) to get
[, — In“*Hiz’(Q) < |[Tng - I"U*HiQ(Q) + so-
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Suppose now that, for any k£ > 1,

o, = T[22 < [[Tngs = Tnr*[ |7 g + 501

and thus u* € L2(2). We can then invoke again Proposition 4.2(ii) to see that

H“ﬁﬂ - In“*H;(Q)

= Huﬁ - Inu*Hiz(Q) - 2Tk/

) (A;nK(u,’g)(m) - A;nK(Inu*)(:n)) (uﬁ(m) - Inu*) da + a2

2
S HIng - I?’Lu*HL2(Q) + Sk
This shows that for all £ € N,

H“Z - Iani?(Q) < |tg - I”u*Hi%Q) + Seo,

and thus {HlnukHLQ(Q)}ke[N] is bounded. In turn, so is Hﬂn(-, t)HL2(Q) for t € [0, T] by its definition.

Moreover,

k

sup  ||tn(-t) — I"u*HL2(Q) = sup || — Inu*HL2(Q)

t€[0,7],neN (n,N)ENZ2 k€[N]

< sup HIng - InU*HL2(Q) + Sclx/>2 < +o0.
neN

We also have the following analogue of Lemma 6.3.

Lemma 6.5. In addition to the assumptions of Lemma 6.4, suppose that sup,,cn HI”KH Loe1(2) < ~+o00.
Then

"n_,t_*n_’t SC,
o |00~ Dl gy < 7

where C'is a positive constant that does not depend on (n, N, T).

Proof:  Arguing as the beginning of Lemma 6.3, we get for any ¢ €]t;_1,1x], k € N,

(1) = Tn( ) 1oy < (@ 8) = ful 12

By Holder inequality, we have

2
Ity = [ | 1o sign(an 5.) ~ 0| do

2
2
< [ ([ 1K@ wiy) do< 18]

Thee same bound also holds on H I . We then take the supremum over ¢ and n to conclude. [

20

Theorem 6.4. Let u be a solution of (P) with kernel K and data (f, g) where f is time-independent, and
{uk } ke[N] is the sequence generated by (PIP")withK = P, K, g = P,g, f = P, f and 1y, as prescribed
in Lemma 6.4. Assume that K satisfies (H.1), (H.2) and K € L>?(Q?), and that f,g € L*(Q). Then,
the following hold.
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(i) wis the unique solution of (P), {uk }ke[N} is uniquely defined and { HInuk HLQ(Q) }k ] is bounded
€

(uniformly in n when £ = 0).
(ii) We have the error estimate

Sup HInuk_l —u(, t)HL2(Q) <exp(T/2) (HInPng - gHLQ(Q)
kE[N]telty—1,tx]

+ OV (772 4 | fu = £l oy + [TPuK = K] ) ) (45)

where C'is positive constant that depends only on K.
(iii) If, moreover, f,g € Lip(s, L?(Q)) and K € Lip(s, L*(Q?)), then

sup [y t)HL2(Q) < Cexp(T/2) <(1 L T8 T1/271/2> (49)
ke[N]telty_1,tk]

where C'is positive constant that depends only on g, f, K and s.

Proof: (' is any positive constant that may depend only on g, f, K and s, and that may be different at
each line. We use the same notation as in the proof of Theorem 6.3.
(i) Existence and uniqueness of u were proved in Theorem 5.1(i). Well-posedness of {u
follows from Lemma 6.4 and Remark 6.1(3).
(ii) We have

k}ke[N]

Fenlet) _ /Q K, y) (wn(,y,1) = w(@,y,1)) dy

+ [ () - Klay)ule.y.0dy + (@) - (@)
Q

where w is the subgradient function associated to u (see Definition 4.2), and w,, (x, y, t) = sign(u,(y,t)—
tn(x,t)). Multiplying both sides by &, (x, t), integrating and rearranging the terms, we get

19
20t

Ol oy = [, n(@9) (0 (2,.) = 0@ .0) (00(2,1) = ula, )y
+ [ (alw) = Kl ).y, (o O dady
+ [ Kl w) (nl9.0) = wla.y,0) (n(a.) = 10, 0) dody
+ [ (o) = f@)) (a1
(50)
As u(-,t) € L' and 4, (-, ) € L*(Q) € L'(Q) by Lemma 6.4, the monotonicity claim in Propo-

sition 4.2(ii) yields that the first term in (50) is nonpositive. The second and third terms can be
easily bounded as

§n("t)Hiﬂ(Q)

IN

10 = K 12

} QQ(Kn(way) - K(xvy))w(wvyat)gn(wvt)dwdy‘ 02)

1

4

&0 z2(ey + [ = K z2(n)-

IN
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and the third term using Lemma 6.5

‘ /QKn(m,y) (wn (2, y,t) —w(x,y,t)) (U, (2, t) — Uy (x,t)) dacdy| < QHKHiOO,Q(QZ)T.

Bounding the last term by Young inequality, we obtain

d .
aan('ﬁ)H;(Q) S an('vt)Hiz(Q) +2|fn = inQ(Q) +2| Ky — KH2L?(QQ) tOr

Using the Gronwall’s lemma and (46), we get the claimed bound.
(iii) Insert (6) into (48).

6.2.2 Backward/Implicit Euler discretization

Forward Euler discretization was able to deal only with p € [1, 2]. For backward Euler discretization,
we will tackle p €]1, +o0].
We consider the fully discrete problem with backward Euler time scheme

k k—1
u" —u ~K
= A u+fF ke[N],
Tk—1 p [ ] ('PgDB)
u =g,

where u*, ¥ ¢ R™". This can also be written equivalently as

ub =J

k-1 k
‘rk713:,<(u + 71 7).

This is known as the proximal iteration, and is at the heart of so-called mild solutions as well as existence
and uniqueness of solutions to (P) through the nonlinear semigroups theory [16, 7, 29, 8]. Denoting as
before u¥ = I,,u” and f* = I,,£* the space continuum extensions of u* and f*, we also have

k k—1 k
Up = JTk_lA;nK(un + kalfn)'

We also let the time-space continuum extensions

tp — 1 t— g
N CO R

ub(x), (x,t) € Qx|tp_1,tx], k € [N],
Tk—1 Tk—1

Up(x,t) =

=z

N
ﬂn(.’L‘, t) = Z uﬁ(m)X}tk,l,tk](t) and fn(:nv t) = Z fﬁ(m)X]tk,l,tk} (t)’ (:Bv t) € QX]Ov T]'
k=1 k=1

Observe that the difference with the explicit Euler case_lies in the definition of #,,. From (PgDB) one
clearly sees that @, and 4, then satisfy again (41) with f,(x, t) replacing f,(x).
The following estimates holds.

Lemma 6.6. Consider problem (73; DBy with kernel K and data (f,g) and step-sizes T, > 0 for all k.
Assume that 1, K satisfies (H.1)-(H.2) and (H.3), that 1,,g € Lmax(2:9)(Q), for some q € [1,+00], and
SUP,eN HIngHLq(Q) < 400, and that f,, € L*([0,T]; L™2*P9)(Q)) and sup,,cy Hf”HLl([O,T];Lq(Q)) <
+o00. Then

tn (-, t) € L™™>PD(Q) Vit € [0,T], and  sup Hﬁn(-,t)HLq(Q) < 400.
t€[0,T],neN
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Proof: Recall from Proposition 4.1(vii) that J, \1,x, A > 0, is single-valued on LP(2) and nonexpan-

AAP
sive on L4(Q) for all ¢ € [1, 4+00]. Therefore, by 1nduction, we have that for any k € [N],

k N
ol oy < gl oy + D Till il oy < gl oy + D 7ill Fill oy
=0 i=0

= HI”gHLP(Q) + Hf”HLl([O,T];LP(Q))‘

Thus u* € LP(Q), for all k € [N]. In turn, J_ LA « (ul) is single-valued for all k, and arguing as above,
its nonexpansiveness yields

HquHLq(Q) < HIngHLq(Q) + Hf"HLl([O,T];Lq(Q))‘

Taking the supremum over k£ and n and using the definition of %,, and the assumptions on g and f, we
conclude. O

Lemma 6.7. Suppose that the assumptions of Lemma 6.6 are satisfied with ¢ = 2 when p_e]l, 2], q =
2(p—1) when p > 2. Assume in addition that sup,,cy HInKHLw,l(QQ) < +ooandsup,,cy an
~+o00. Then

sup Hﬁn(-,t)—un ,
t€[0,T),neN

where C'is a positive constant that does not depend on (n, N, T).

Proof: Fort €]ty_1,1;], k € N, we have

|

-~ unil — Up

Un (-5 1) = Un(, HL2 = (tk_t)HTHLQ(Q)
(tr — )| Ay ur; — fr]me(Q)
THAzIo"K“];L - fr]fHLQ(Q)

= 7| A7 ) = falst HLz

IN

<7 (HA nKun s Uk HL2 +2an ) z fn ti1 HL2 + an(ao)HLz(Q)>
<7 (185, 10) 2y + Varg(Fn) + [ O )
=7 (HALW Un (- t HL2(Q) + Hf”HBV([O,T];LQ(Q))) : G

For p €]1, 2], we have from (18) that

1Ay -t < 2203 K|y gy - O]

k>HL2(Q) L)

For p > 2, it is easy to to show with simple arguments as before that

HAIn Un < 9P~ 3/2HKHL°°1 2)Hﬂn('at)}p_1

k) HLQ(Q) L2-1)(Q)"

Inserting the last two estimates in (51), taking the supremum over ¢ and n over both sides, and applying
Lemma 6.6, we conclude. OJ
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Remark 6.4. As observed in the case of explicit time-discretization the uniform (over n) boundedness as-
sumption made in the last two lemmas hold true ifg = P, g, K = P, K and f* = T ! t':il P, f(-, t)dt,
where g,  and K verify simple assumptions. Indeed, in this case, we have thanks to Lemma 2.1 that for
any q € [1,+o0],

SUD [|Tngt| oy < 19 agey SUR K a2y < 1K pany:
i‘ég Hf"HLl([O,T};Lq(Q)) = HfHLl([o,T];Lq(Q)) and i‘ég anHBV([o,T];Lq(Q)) = HfHBV([O,T];LfI(Q))‘
In fact, the condition f € BV([0,T]; L4(2)) is sufficient to ensure that
i Hf”HLl([o,T];Lq(Q)) < 400 and i ¢ anHBV([O,T];Lq(Q)) < F00.

Indeed, arguing as in [12, Lemma A.1], this conditions implies f € L*([0,T]; L4(Y)). In turn, using
Lemma 2.1, we get

Hf"HLl([O,T];Lq(Q)) < HfHLl([o,T];Lq(Q)) = HfHLOO([O,T];Lq(Q))
< Hf(‘vO)HLq(Q) + Var,(f) = HfHBV([O,T};Lq(Q))'

We are now in position to state the error bound for the fully discrete problem with backward/implicit
Euler time discretization.

Theorem 6.5. Suppose that p €]1,+oo[. Let u be a solution of (P) with kernel K and data (f, g), and
{uk}ke[N] is the sequence generated by (P;FDB) withK =P,K, g = P,g, f¥ = Tk_l tt:,l P, f(-, t)dt.

Assume that K satisfies (H.1), (H.2) and K € L>?(Q?), and that f, g satisfy either one of the condi-
tions (a), (b) or (c) in Theorem 5.1, and that f € BV ([0, T); L*(R2)). Then, the following hold.

(i) wis the unique solution of (P), {uk } ke[N] is uniquely defined and { HIn u” H £2(Q) } is bounded

kE[N]
uniformly in n.
(ii) We have the error estimate
k _
ke[N]jg]gk_l,tk] |[Tnu _u("t)HLZ(Q) <exp(T/2) <HInPng—guL2(Q)+Hf”_fHLl([o,T];B(Q))

TV/(B=p) 4 HInPnK — KHLOQQ(QQ) under (a)

7/ Cr) 4 |LPoK — K| sy under (b) ) )
r1/B-p) 4 HInPnK - KHLQ(Qz) under (c) when p €]1,2] )’

T+ HInPnK — KHLQ(QQ) under (c) when p > 2.

+OTV/?

for T sufficiently small, where C'is positive constant that depends only on p, g, f and K.
(iii) If, moreover, g € L>(Q) N Lip(s, L*(2)), K € Lip(s, L?(0?)), and f € L'([0,T]; L°(Q)) N
Lip(s, L?(2 x [0,T7))) then

sup Hlnuk — u(.,t)HLQ(Q) < Cexp(T/2) ((1 + T1/2)5fL

kE[N]tEltp—1,ts]
in(s,1/(3—
L 7min(s,1/B=p))  ywhen p €]1,2] 53
T° when p > 2
Jor T sufficiently small, where C'is positive constant that depends only on p, g, f, K and s. The

term 7% in the dependence on T disappears when f is time-independent.
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Proof: In the proof, C is any positive constant that may depend solely on p, g, f, K and/or s, and that
may be different at each line.

(i) Existence and uniqueness of u were proved in Theorem 5.1(i). Well-posedness of the sequence
{uk } ke[N] is a consequence of Lemma 6.6 and Remark 6.4.

(ii) For p €]1, 2], the proof of the error bound is exactly the same as that of (42) in Theorem 6.3 using
the modified definition of #,, and that now f is time-dependent, and thus we replace f;, there by
fn. We also denote g,, = I[,,P,,g and K,, = 1,,P,, K.
For the p > 2, the argument is also similar, and the main change consists in bounding appropriately
the third term in (44). We then invoke Lemma 6.7 to show that

\ /Q (At (m,t) — AXru(w, ) (in (2, t) — Gn(z, 1) da| < C||Af Un (-, 1) — A}If"u(-,t)HLQ(Q)T,

where C' is indeed a finite constant owing to the assumption on f and Remark 6.4. We now use
Lemma 4.1(ii) to get the bound

1A (-, 8) = Afrul, 8)][ 7o)
- /Q | /Q Ko, ) (U@ () — (2, 1)) — U(u(y, ) — ule, 1)) dy|de
2
< /Q < /Q Ko@) [En(y, 1) — &z, )] ([n (9, 1) — n(z, 1)) + [u(y, £) — u(a, £)])P2 dy) da.
(54)
For case (c), we infer from Lemma 6.6 (with ¢ = +00) and Lemma 2.1 that

HAfnﬂn('at) - A{;(nu(at)Hiz(Q)
< (4 22 K 3 3 ay) d
< (4 (Il sy + Wl rgomymien)) . ( | Eu@wlénw.0 — &la.0)] y) z
2(p—2) _ _
< (4 (HgHLoo(Q)HfHLl([O’T};Loo(Q)))) HKHLOO,2(92) /{22 Kn(way)‘gn(yat) - En(mvt))|2dmdy
2(p—2) _
=4 (4 <HgHLoo(Q)HfHLl([o,T];Loo(Q))>) HKHLOOvQ(QQ) /Q2 Kn(m’y)‘gn(m’twdmdy

2(p—2) _
<4 (4 (loll 1l ompzmqn) ) KN agany IEnC D32 (55)

It then follows by Cauchy-Schwartz inequality that

\/Q(A{fnan(x,t) AR, 1)) (n(@, 1) — (. 1)) de
< Cll&n )] 2T
<C (Hgn("t)HLQ(Q)T T 72)

1
< gn(>t)HiQ(Q) +C7—2-

6

Inserting this in (44), using again Young inequality for the last term, we have shown that when
p > 2 and (c) holds,

0, - . _
SlIénC D20y < 0GB Faq) +C (72 + 1Fals8) = FC DN a0 + 1 = K 7202, ) -
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Using the Gronwall’s lemma, taking the square-root and using (46), we get the error bound in this
case.

It remains to consider the case (b), when p > 2. For this, we embark from (54), and use the
continuity of ¥ in Lemma 4.1 (i) (see (12)) with &« = 1/p. Combining this with Jensen and
Holder inequalities, we get

1A (-, 8) = Af (- 8)][ o)

< HKHLOOJ(QQ) /g;Z (Kn(wa y)‘gn(y7t) - gn(:z:,t))‘Q/p>
(Itin (Y, £) — i (2, )] + [u(y, 1) — ulz, )20~/ dady
_ _ 1/
< iy [, (5t ]~ )

(B, )" (0, £) = (. O] + uly, £) = (e, )P/ dzdy
1/p
< K| oot 2y (/Q Kn(z,y)|&n(y,t) — gn(m,t))dedy>
< Ky (x,y) (Jun(y,t) — an(x, t)| + |u(y, t) — u(a:,t)|)2p—2/(p_1) dwdy) (p—1)/
N _ 1/p
< K] oo 2y (4/92 Kn(x,y)\gn(m,t))\Qda;dy>

(22p—2/(p—1)/ Ky (z,y) (\ﬂn(m,t)] + }u(a:,t)|)2”‘2/(p_1) da:dy)
02

2 _ 9 1/p
< 4HKHLOO,1(Q2) (/Q2 ‘fn(w,t))‘ dil)dy)

(p=1)/p
(/ (|@n (e, t)] + ’u(m,t)‘)%_w(p_l) d:cdy) .
02

Observe that L2P—2/ (=1 (Q) c L*P=1(Q), hence by Holder inequality and Lemma 6.6 with
g = 2(p — 1) and Lemma 2.1, the last term in the above display can be bounded as

(r=1)/p
(/ (‘an(m,t)} + ‘u(m,t)‘)%_w(p_l) dwdy)

2(p—1)-2/p
L2(r=1)(Q)

(p—1)/p

<H‘unmt’+}umt|u

2(p—1)-2/p
= (HQHL%wl)(Q) + HfHLl([O,T};L%P*l)(Q))) )

We then arrive at
Kn - Kn
HAP Up (-, t) — Ap

) 2ay < ONE e Il 260

Hence

| / (A (2, 1) — AR, 1)) (n(@, 1) — (. 1)) de

< )&y
< 0 (JIgnc- Hi/fm 0O
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<1§

< + C(r2/ =) 4 7 (+1)/p),

DIz

Inserting this into (44), using again Young inequality for the last term,

9
ot

Enlst) |22y <

Iz <

&nl

s+ (D 4 )= Dl

+ HKn—KHiW))-

Hence, using the Gronwall’s lemma, taking the square-root and using (46), we get the error bound
in this case, after observing that the dependence on 7 scales as O(Tp/ (2p _1)) for 7 sufficiently small
(or N large enough) since 1/2 < p/(2p—1) < (p+1)/(2p) for p > 2.

(iii) Plug (6) into (52) after observing that

< CTY? max(r%,6%).

<7V o = T2 fom

an_fHLl([O,T];LQ(Q)) fHLQ([O,T};LQ(Q)) fHLz(Qx[o,T])

For the scaling in 7, we use that s €]0, 1].
O

Another way to derive error bounds for (Pg DB)) i5 as follows. To lighten notation, denote g,, = 1,,P,,g,
fu(t) = L,P,f(-,t) fort € [0,T], and K,, = I,P, K. Let u,, be a solution to (P) with data ( f,,, gn)
and kernel K,,. Under the assumptions of Theorem 6.5 on (f, g, K'), uy, is unique. Then one has

H“n - uHC([O,T];LQ(Q)) < H“n - U"HC([O,T];LQ(Q)) + H“n - UHC([O,T};LQ(Q))‘

Theorem 5.1 provides a bound on the last term of the right-hand side in the above display, which captures
the space-discretization error. Bounds for the first term, which corresponds to the time-discretization
error, were derived in C'([0, T]; LP(£2)) by Crandall and Liggett in their seminal paper [16] for constant
time step-size and f = 0, and then extended to non-uniform time partitions in [29], see also [32]. More
precisely, using [32, Theorem 1] and the fact that @y, (-, 0) = uy(-,0) = gy, the following bound holds

[tn—tin| cyj0.77.L0 () < Hf”_f”HLl([O,T];LP(Q))_'_QTl/Q (Hf% = D] oy + Varp(fn)) 2

The first term can be bounded as follows (for constant step-size to simplify)
TN T Z/ I / Fulv+8)ds = Fus )] o
1 t
) Z 0 A L LR

S“/T(/ 176+~ vtwup@dt)ds

<t/ " sVary(f)ds = rVar, (f).

where we used Lemma 2.1 in the first inequality and [12, Lemma A.1] in the last one. Overall, this shows
U HC([O T):L0(02) scales as O ((TT)1/2> for 7 sufficiently small.

The rate O(Tl/ 2) is known to be optimal for general accretive operators in Banach spaces (see [32]). In

that the time discretization error }|an —
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turn, by standard comparisons of L?(2) norms (assuming that (c) holds so that boundedness of ,, and
uy, is in force), this strategy gives us a bound which scales as

v B O (r1/2) p>2,
20 = wnllogoryin) = {5 (/1) p €L, 2).

This is strictly worse than the rates in 7 obtained from (52). There is however no contradiction in this
and the reason is that the strategy outlined above is too general and does not exploit all properties of the
operator A}If among which its continuity that was a key to derive better rates in 7. In this sense, our
present results are optimal. We also remark that our rates are consistent with those in [24] for p > 2.

7 Application to random graph sequences

In this section, we study continuum limits of fully discrete problems on the random graph model of
Definition 3.1 with backward/implicit Euler time discretization. Explicit discretization can also be treated
following our results in Section 6.2.1, but we will not elaborate further on it for the sake of brevity.

Recall the notations in Section 3, in which case we now set {2 = [0, 1]. Recall also the the construc-
tion of the random graph model in Definition 3.1 where each edge (i, j) is independently set to 1 with
probability (7). This entails that the random matrix A is symmetric. However, it is worth emphasizing
that the entries of A are not independent, but only the entries in each row are mutually independent?.
This observation will be instrumental in deducing our error bound.

We consider the fully discrete on K -random graphs G(n, K, p,,) with backward Euler time scheme

uf — ukt 1
. - Onhl Z \I/<u.7 - ui) + fkv ke [N]7 TDB,G
-1 " ) EB(G(n K pn)) (Pp=)
u =g,

where u*, f¥ € R”. It is important to keep in mind that, since G(n, K, p,,) is a random variable taking

values in the set of simple graphs, the evolution problem (73;,r DB"G) must be understood in this sense.

Observe that the normalization in (77];F DB’G') by pnn corresponds to the average degree (see Section 3.2
for details).

Problem (77];F DB’G') can be equivalently written as

k k—1
- ~A
T AN+ ff, ke[N),
Tk—1
uw =g.

We define the time-space continuum extensions ., and %, and as in Section 6.2.2. One then sees
that they satisfy

{gtan(x,t) = A, (2,1) + fu(z,t), (2,t) € Qx]0,T], 56

’[Ln(.’E,O) = Ing(ﬁﬂ), z €.
Toward our goal of establishing error bounds, we define v as the solution of the fully discrete prob-

A
lem (P)PP) with data (f,g) and discrete kernel K. Its time-space continuum extensions, ¥, and o,
defined similarly as above, fulfill

A
%@n(:r,t) = —A;”Kq_)n(:r,t) + fu(z,t), (z,t) € 2x]0,T7,
Op(x,0) =1,g(x), z€Q.

(57)

3This feature was already used in the proof of Lemma 3.1
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We have
[ tin — uHC([QT];L?(Q)) < [Jttn — @HHC([O,T];B(Q)) +||on — UHC([O,T];L2(Q))' (58)

This bound is composed of two terms: the first one captures the error of random sampling, and the second
that of (space and time) discretization. We start by bounding the first term by comparing (56) and (57).

Lemma 7.1. Assume that (f¥, g, K, f, g, K) verify the assumptions of Theorem 6.5. Assume also that
pn — 0and np, = w ((logn)") for some v > 1. Then, for any 3 €]0, 1],

TP p €1, 2],
T p > 2. .

|t — U (59)

oo < Coxp (T/2) T2 (<pnn>—ﬁ/2 E {

with probability at least 1 — (p,n)~ =) In particular,

1/(3-p)
g P 611,2],> 0

L 1/2 —B/2
10 = nllc oy ey < € (T/2)T (0 ((ogm)77/2) + {r p>2.

with probability at least 1 — o <(log n)—v(l—ﬂ))‘
. B X X
and A,, = I,,A. We thus have from (56) and (57) that a.e.

&, (1)

- <A§<n (B, ) — Adn (un(:c,t))>

= (A @) - A2 (00(.0)) - (A ) - A . ).

Multiplying both sides by En(x, t), integrating and rearranging the terms, we get

%% fn(-,t)HiQ(Q) = —/Q (Ag"ﬁn(x,t) - A;}"ﬂn(m,t)) (Un(zyt) — Up(z,t))dx

[Q"T) x — A”T) T 3 T X
_/(; <Ap n( ’t) Ap n( at)> gn( 7t)d (61)
— /Q (AL D (2, t) — Abry (2,)) (0n(2,1) — Tn(2,1) — (n(2,1) — Gn(2,1))) da.

Under our condition on np,, Lemma 3.1 tells us that with probability 1,

AN
[An] oot 2y = 1K n | oot g2y + 0(1) < TP || oot g2y + 0(1) < [ K[ oot g2y + 0(1),

so in particular || Ap|| ;o (g2 is uniformly bounded with probability 1. A, is also positive and symmet-
ric. Since g € L4(Q) and f € L*([0,7]; L4(2)) N BV([0,T]; L*(2)), ¢ € {2,2(p — 1), +0oc}, the
conclusions of Lemma 6.6 and Lemma 6.7 remain true which shows that with probability 1,

te[o?ﬂli}r,)neN Hﬁn(.,t)HLq(Q) < 400 and te[o?ﬂlf}l,)neN n (- ) — an(-,t)HLz(Q) <CrT.

The same claim holds for v,, and v,, since HIA{nHLw,l( ) < HKHLOOJ(QQ) < 400 and I/\(n is positive

Q2

A
and symmetric, i.e. K, obeys (H.1)-(H.3). Thus Proposition 4.1(iv) entails that the first term on the
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right-hand side of (61) is nonpositive with probability 1. Let us now bound the second term. Denote the

A
random variables Z; def 1 22 <ln (Aij — Kij)¥(v; — v;). By Cauchy-Schwartz inequality, we have

M 20

\/Q(Agnan(m,t)—Afnan(x,t)> Eule,t)de] < ClLZ| 1oy €t

For the last term in (61), we argue as in the proof of Theorem 6.5 to show that, with probability 1,

\/ wiin (2, 1) — AN () (ton (1 8) — i (1,8)) — (B (2, 8) — B (2, 1)) dt

o JI&C g+ e,
o an ,tHL2 T—|-7'2 p > 2.

Collecting all these bounds, after using Young inequality, we have shown that (again with probability 1),

3 T2/B=p) 4 1P p€]l,2],
A (R A

Using the Gronwall’s lemma and taking the square-root, we get for 7 sufficiently small

0

<
ot

01 s

. TGP p el 2],
i = Bulloo 2y < Coxp (T/2) T (HInZHL2<m * {T pr2. ) @

It remains to bound the random variable HInZH L2(Q)" For this purpose, we have by Markov inequality
that fore > 0

P ([|12Z]| oy > =) =P <n1 >z 62> <e?n 'Y E(Z).

By independence of (A;;) for each i € [n], we get

j€n]
A A
E (22 (pnn)~ Z V (pnAij) Vi))2 = (pnn)72 Z pnKij (1 — pnXKij) (¥(v; — Vi))2
Jj€(n] Jj€ln]
,Onn Z Kl]’v] V’L p 1 )
J€[n]
In turn,
P(HI"ZHLQ(Q) = ) < (e*pnn Z KZJ‘VJ vi =y
i,j€[n]

(e2pnn / K, (x,y) ‘vn ) — Up(x ‘ (p_l)dydw.

If the condition (a) holds, then by the symmetry of the kernel, Jensen inequality and Holder inequality,
one gets

N B ) _

K (@, 9)|0a(y) — 0a ()" Vayda < 4/92 K (@, 9)|oa(@) 2P dyda
/\ —

<A Kall sy | [on(@)
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1)

< ARl o o 1035y

Under the condition (b), by the symmetry of the kernel and Jensen inequality again, we have

A _ A _
| (@ y)loaly) = o) dyde < 207 /Q Ku(@,y)[ou(@)[*"Vdyde

A
< P K| s 190150
Similarly, under condition (c), we have

A
/m R, )[0u(y) = o) "7y < 207D 0 12 2[R0

< 20D K| iyl 12 Q))

Since HIA(nHLOOJ(m) < HKHLOOJ(QQ) (see (4) in Lemma 2.1), we have

P (HI"ZHL2(Q) z 5) = C(EQPH”)AHKHLOOJ(W)’

where
4sup,, H%Hi(p_l), under (a),
C = 22~ Ygup, HU”HLQ(P 3)(9), under (b),
22(p—1) sup,, anHLm(Q)), under (c),

1/2
C||K
and C' < +o0 thanks to Lemma 6.6. Taking ¢ = (W) , we get

1
P (HI"ZHL2(Q) 2 5) = o) F°

Plugging the latter into (62) completes the proof. O

Remark 7.1. Lemma 7.1 gives a deviation bound which holds with a controlled probability. On may ask
if a claim with probability 1 could be afforded. A naive and straightforward approach would be to invoke
the Borel-Cantelli lemma as done in [25, Remark 3.4(iv)] for the case of graphons. But this argument
does not apply to the more complex setting of Li-graphons given that the probability of success in the
statement Lemma 7.1 does not converge sufficiently fast. This is not even possible to make faster as py,
has to converge to 0. Thus, it is not clear at this stage whether this is even possible to achieve or not. We
leave this to a future research.

We finally obtain the following error bound on fully discretized problems on sparse random graphs.

Theorem 7.1. Suppose that p €]1,+oo[. Let u be a solution of (P) with kernel K and data (f,9), and
{uk}ke[N is the sequence generated by ('P,;FDB ywithK =P, K, g =P,g, f* = Tk t Pof(-,t)dt
Assume that (f, g, K) satisfy the assumptions of Theorem 6.5, and that those of Lemma 7. ] also hold.

1. Forany § €)0,1[, with probability at least 1 — (p,n)~1=#),

sup HInuk_u<'7 t) HL2(Q) <exp(T/2) (HITZPTLg_gHLQ(Q)—"_an_fHLl([O T].L2(Q))+CT1/2(pnn)_6/2
k€[N, t€]tk—1,tk] o
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TY/G=P) ¢ ||(K — p;1)+|,m2(m) + || T PnK — KHLOQ,Z(QQ) under (a)

+CT1/2 Tp/(Qp_l) + H(K - pT_Ll)-i-HLoo,2(Q2) + HInPnK - KHLOO,Q(QQ) under (b)
TGP 4 |(K — Pﬁl)+HL2(Qz) + [P K — KHL2(92) under (c) when p €]1, 2]
T+ H(K - pﬁl)+HL2(Qg) + HInPnK - KHLz(Qz) under (c) when p > 2.

for T sufficiently small, where C'is positive constant that depends only on p, g, f and K.
2. If, moreover, g € L>(Q) N Lip(s, L?(2)), K € Lip(s, L2(Q?)), and f € L*([0,T]; L>°(2)) N
Lip(s, L2(Q x [0,T7))) then, for any 6 €]0, 1|, with probability at least 1 — (p,n)~ =5,

sup [Lnu® =l 8)|[ 12y < Cexp(T/2) <(1 + T2+ TYV2[(K = p )| o)
EE[N]telty_1,tx]
min(s,1/(3—p)) h 1,2
B . when p €|1,
4 TY2(pn) 6/2+T1/2<{ . when];>]2 ] . (64)

for T sufficiently small, where C' is positive constant that depends only on p, g, f, K and s, and
H (K — p;l)_,_HLQ(QQ) = 0o(1). The term 7° in the dependence on T disappears when f is time-
independent.

Proof: In view of (58), we shall use Theorem 6.5 to bound the second term, and a bound on the first
term is provided by Lemma 7.1. Since Inﬁ(x, y) <L, K(z,y) = I,P,K(z,y), the assumptions on K
transfer to IA( and the second term of (58) can then be bounded using (52), replacing 1,,P,, K there by
Inﬁ. Observing that

A
[T K — KHL?(Qz) = || min(I,Pn K, p;, ") — KHL2(92)
< || min(I,PnK, p, ') — InPnKHLQ(m) + |1 Pr K — K||L2(Q2)
= [|[PnE — o)l 22y + [TaPrK = K| 12 ey
< H(K - P;1)+HL2(QQ) + 2HInPnK - KHLz(Qz)y

and similarly for the L°> norm. The fact that ||(K — p;1)+HL2(QQ) = o(1) is because p, — 0 by the
same argument as the end of the proof of Proposition 3.1. This completes the proof. O
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