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Abstract. The identification of tree species from bark images is a chal-7

lenging computer vision problem. However, even in the era of deep learn-8

ing today, bark recognition continues to be explored by traditional meth-9

ods using time-consuming handcrafted features, mainly due to the prob-10

lem of limited data. In this work, we implement a patch-based convolu-11

tional neural network alternative for analyzing a challenging bark dataset12

Bark-101, comprising of 2587 images from 101 classes. We propose to ap-13

ply image re-scaling during the patch extraction process to compensate14

for the lack of sufficient data. Individual patch-level predictions from fine-15

tuned CNNs are then combined by classical majority voting to obtain16

image-level decisions. Since ties can often occur in the voting process,17

we investigate various tie-breaking strategies from ensemble-based clas-18

sifiers. Our study outperforms the classification accuracy achieved by19

traditional methods applied to Bark-101, thus demonstrating the feasi-20

bility of applying patch-based CNNs to such challenging datasets.21

Keywords: Bark classification, convolutional neural networks, trans-22

fer learning, patch-based CNNs, image re-scaling, bicubic interpolation,23

super-resolution networks, majority voting24

1 Introduction25

Automatic identification of tree species from images is an interesting and chal-26

lenging problem in the computer vision community. As urbanization grows, our27

relationship with plants is fast evolving and plant recognition through digital28

tools provide an improved understanding of the natural environment around29

us. Reliable and automatic plant identification brings major benefits to many30

sectors, for example, in forestry inventory, agricultural automation [32], botany31

[27], taxonomy, medicinal plant research [3] and to the public, in general. In re-32

cent years, vision-based monitoring systems have gained importance in agricul-33

tural operations for improved productivity and efficiency [17]. Automated crop34

harvesting using agricultural robotics [2] for example, relies heavily on visual35

identification of crops from their images. Knowledge of trees can also provide36

landmarks in localization and mapping algorithms [31].37

38
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Although plants have various distinguishable physical features such as leaves,39

fruits or flowers, bark is the most consistent one. It is available round the year,40

with no seasonal dependencies. The aging process is also a slow one, with vi-41

sual features changing over longer periods of time while being consistent during42

shorter time frames. Even after trees have been felled, their bark remains an43

important identifier, which can be helpful for example, in autonomous timber44

assessment. Barks are also more easily visually accessible, contrary to higher-45

level leaves, fruits or flowers. However, due to the low inter-class variance and46

high intra-class variance for bark data, the differences are very subtle. Besides,47

bark texture properties are also impacted by the environment and plant diseases.48

Uncontrolled illumination alterations and branch shadow clutter can addition-49

ally affect image quality. Hence, tree identification from only bark images is a50

challenging task not only for machine learning approaches [5][7][8][25] but also51

for human experts [13].52

53

Recent developments in deep neural networks have shown great progress in image54

recognition tasks, which can help automate manual recognition methods that are55

often laborious and time consuming. However, a major limitation of deep learn-56

ing algorithms is that a huge amount of training data is required for attaining57

good performance. For example, the ImageNet dataset [11] has over 14 million58

images. Unfortunately, the publicly available bark datasets are very limited in59

size and variety. Recently released BarkNet 1.0 dataset [8] with 23,000 images60

for 23 different species, is the largest in terms of number of instances, while61

Bark-101 dataset [25] with 2587 images and 101 different classes, is the largest62

in terms of number of classes. The data deficiency of reliable bark datasets in63

literature presumably explains why majority of bark identification research has64

revolved around hand-crafted features and filters such as Gabor [4][18], SIFT65

[9][13], Local Binary Pattern (LBP) [6][7][25] and histogram analysis [5], which66

can be learned from lesser data.67

68

In this context, we study the challenges of applying deep learning in bark recog-69

nition from limited data. The objective of this paper is to investigate patch-based70

convolutional neural networks for classifying the challenging Bark-101 dataset71

that has low inter-class variance, high intra-class variance and some classes with72

very few samples. To tackle the problem of insufficient data, we enlarge the train-73

ing data by using patches cropped from original Bark-101 images. We propose74

a patch-extraction approach with image re-scaling prior to training, to avoid75

random re-sizing during image-loading. For re-scaling, we compare traditional76

bicubic interpolation [10] with a more recent advance of re-scaling by super-77

resolution convolutional neural networks [12]. After image re-scale and patch-78

extraction, we fine-tune pre-trained CNN models with these patches. We obtain79

patch-level predictions which are then combined in a majority voting fashion to80

attain image-level results. However, there can be ties, i.e. more than one class81

could get the largest count of votes, and it can be challenging when a considerable82

number of ties occur. In our study, we apply concepts of ensemble-based classi-83
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fiers and investigate various tie-breaking strategies [22][23][26][34][35] of major-84

ity voting. We validated our approach on three pre-trained CNNs - Squeezenet85

[20], MobileNetV2 [28] and VGG16 [30], of which the first two are compact and86

light-weight models that could be used for applications on mobile devices in the87

future. Our study demonstrates the feasibility of using deep neural networks for88

challenging datasets and outperforms the classification accuracy achieved using89

traditional hand-crafted methods on Bark-101 in the original work [25].90

91

The rest of the paper is organised as follows. Section 2 reviews existing ap-92

proaches in bark classification. Then, section 3 explains our methodology for93

patch-based CNNs. Section 4 describes the experimentation details. Our results94

and insights are presented in section 5. Finally, section 6 concludes the study95

with discussions on possible future work.96

2 RELATED WORK97

Traditionally, bark recognition has been studied as a texture classification prob-98

lem using statistical methods and hand-crafted features. Bark features from 16099

images were extracted in [33] using textual analysis methods such as gray level100

run-length method (RLM), concurrence matrices (COMM) and histogram in-101

spection. Additionally, the authors captured the color information by applying102

the grayscale methods individually to each of the 3 RGB channels and the overall103

performance significantly improved. Spectral methods using Gabor filters [4] and104

descriptors of points of interests like SURF or SIFT [9][13][16] have also been105

used for bark feature extraction. The AFF bark dataset, having 11 classes and106

1082 bark images, was analysed by a bag of words model with an SVM classifier107

constructed from SIFT feature points achieving around 70% accuracy [13].108

109

An earlier study [5] proposed a fusion of color hue and texture analysis for110

bark identification. First the bark structure and distribution of contours (scales,111

straps, cracks etc) were described by two descriptive feature vectors computed112

from a map of Canny extracted edges intersected by a regular grid. Next, the113

color characteristics were captured by the hue histogram in HSV color space as114

it is indifferent to illumination conditions and covers the whole range of possi-115

ble bark colors with a single channel. Finally, image filtering by Gabor wavelets116

was used to extract the orientation feature vector. An extended study on the117

resultant descriptor from concatenation of these four feature vectors, showed118

improved performance in tree identification when combined with leaves [4]. Sev-119

eral works have also been based on descriptors such as Local Binary Patterns120

(LBP) and LBP-like filters [6][7][25]. Late Statistics (LS) with two state-of-art121

LBP-like filters - Light Combination of Local Binary Patterns (LCoLBP) and122

Completed Local Binary Pattern (CLBP) were defined, along with bark priors on123

reduced histograms in the HSV space to capture color information [25]. This ap-124

proach created computationally efficient, compact feature vectors and achieved125

state-of-art performance on 3 challenging datasets (BarkTex, AFF12, Bark-101)126
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with SVM and KNN classifiers. Another LBP-inspired texture descriptor called127

Statistical Macro Binary Pattern (SMBP) attained improved performance in128

classifying 3 datasets (BarkTex, Trunk12, AFF) [7]. SMBP encodes macrostruc-129

ture information with statistical description of intensity distribution which is130

rotation-invariant and applies an LBP-like encoding scheme, thus being invari-131

ant to monotonic gray scale changes.132

133

Some early works [18][19] in bark research have interestingly been attempted134

using artificial neural networks (ANN) as classifiers. In 2006, Gabor wavelets135

were used to extract bark texture features and applied to a radial basis proba-136

bilistic neural network (RBPNN) for classification [18]. It achieved around 80%137

accuracy on a dataset of 300 bark images. GLCM features have also been used138

in combination with fractal dimension features to describe the complexity and139

self-similarity of varied scaled texture [19]. They used a 3-layer ANN classifier on140

a dataset of 360 images having 24 classes and obtained an accuracy of 91.67%.141

However, this was before the emergence of deep learning convolutional neural142

networks for image recognition.143

144

Recently, there have been few attempts to identify trees from only bark informa-145

tion using deep-learning. LIDAR scans created depth images from point clouds,146

which were applied to AlexNet resulting in 90% accuracy, using two species only147

- Japanese Cedar and Japanese Cypress [24]. Closer to our study with RGB148

images, patches of bark images have been used to fine-tune pre-trained deep149

learning models [15]. With constraints on the minimum number of crops and150

projected size of tree on plane, they attained 96.7% accuracy, using more than151

10,000 patches for 221 different species. However, the report lacked clarity on the152

CNN architecture used and the experiments were performed on private data pro-153

vided by a company, therefore inaccessible for comparisons. Image patches were154

also used for transfer-learning with ResNets to identify species from the BarkNet155

dataset [8]. This work obtained an impressive accuracy of 93.88% for single crop156

and 97.81% using majority voting on multiple crops. However, BarkNet is a large157

dataset having 23,000 high-resolution images for 23 classes, which significantly158

reduces the challenges involved. We draw inspiration from these works and build159

on them to study an even more challenging dataset - Bark-101 [25].160

3 METHODOLOGY161

Our methodology presents a plan of actions consisting of four main components:162

Image re-scaling, patch-extraction, fine-tuning pre-trained CNNs and majority163

voting analysis. The following sections discuss our work-flow in detail.164

3.1 Dataset165

In our study, we chose the Bark-101 dataset. It was developed from PlantCLEF166

database, which is part of the ImageCLEF challenges for plant recognition [21].167
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Bark-101 consists of a total of 2587 images (split into 1292 train and 1295 test168

images) belonging to 101 different species. Two observations about Bark-101 ex-169

plain the difficulty level of this dataset. Firstly, these images simulate real world170

conditions as PlantCLEF forms their database through crowdsourced initiatives171

(for example from mobile applications as Pl@ntnet [1]). Although the images172

have been manually segmented to remove unwanted background, Bark-101 still173

contains a lot of noise in form of mosses, shadows or due to lighting conditions.174

Moreover, no constraints were given for image sizes during Bark-101 preparation175

leading to a huge variability of size. This is expected in practical outdoor set-176

tings where tree trunk diameters fluctuate and users take pictures from varying177

distances. Secondly, Bark-101 has high intra-class variability and low inter-class178

variability which makes classification difficult. High intra-class variability can179

be attributed to high diversity in bark textures during the lifespan of a tree.180

Low inter-class variability is explained by the large number of classes (101) in181

the dataset, as a higher number of species imply higher number of visually alike182

textures. Therefore, Bark-101 can be considered a challenging dataset for bark183

recognition.

Fig. 1. Example images from Bark-101 dataset.

184

3.2 Patch preparation185

In texture recognition, local features can offer useful information to the clas-186

sifier. Such local information can be obtained through extraction of patches,187

which means decomposing the original image into smaller crops or segments.188

Compared to semantic segmentation techniques that use single pixels as input,189

patches allow to capture neighbourhood local information as well as reduces ex-190

ecution time. These patches are then used for fine-tuning a pre-trained CNN191

model. Thus, the patch extraction process also helps to augment the available192

data for training CNNs and is particularly useful when the number of images193

per class is low, as is the case with Bark-101 dataset.194

195

Our study focused on using a patch size of 224x224 pixels, following the de-196

fault ImageNet size standards used in most CNN image recognition tasks today.197

However, when the range of image dimensions vary greatly within a dataset, it198
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is difficult to extract a useful number of non-overlapping patches from all im-199

ages. For example, in Bark-101, around 10 percent of the data is found to have200

insufficient pixels to allow even a single square patch of 224x224 size. Contrary201

to common data pre-processing for CNNs where images are randomly re-sized202

and cropped during data loading, we propose to prepare the patches beforehand203

to have better control in the patch extraction process. This also removes the risk204

of extracting highly deformed patches from low-dimension images. The original205

images are first upscaled by a given factor and then patches are extracted from206

them. In our experiments, we applied two different image re-scaling algorithms207

- traditional bicubic interpolation method [10] and a variant of super-resolution208

network, called efficient sub-pixel convolutional neural network (ESPCN) [29].209

3.3 Image re-scaling210

Image re-scaling refers to creating a new version of an image with new dimen-211

sions by changing its pixel information. In our study, we apply upscaling which212

is the process of obtaining images with increased size. However, these operations213

are not loss-less and have a trade-off between efficiency, complexity, smoothness,214

sharpness and speed. We tested two different algorithms to obtain high-resolution215

representation of the corresponding low-resolution image (in our context, reso-216

lution referring to spatial resolution, i.e. size).217

Bicubic interpolation This is a classical image upsampling algorithm involv-218

ing geometrical transformation of 2D images with Lagrange polynomials, cubic219

splines or cubic convolutions [10]. In order to preserve sharpness and image220

details, new pixel values are approximated from the surrounding pixels in the221

original image. The output pixel value is computed as a weighted sum of pixels222

in the 4-by-4 pixel neighborhood. The convolution kernel is composed of piece-223

wise cubic polynomials. Compared to bilinear or nearest-neighbor interpolation,224

bicubic takes longer time to process as more surrounding pixels are compared225

but the resampled images are smoother with fewer distortions. As the destina-226

tion high-resolution image pixels are estimated using only local information in227

the corresponding low-resolution image, some details could be lost.228

Super-resolution using sub-pixel convolutional neural network Super-229

vised machine learning methods can learn mapping functions from low-resolution230

images to their high-resolution representations. Recent advances in deep neu-231

ral networks called Super-resolution CNN (SRCNN) [12] have shown promising232

improvements in terms of computational performances and reconstruction accu-233

racy. These models are trained with low-resolution images as inputs and their234

high-resolution counterparts are the targets. The first convolutional layers of235

such neural networks perform feature extraction from the low-resolution images.236

The next layer maps these feature maps non-linearly to their corresponding237

high-resolution patches. The final layer combines the predictions within a spa-238

tial neighbourhood to produce the final high-resolution image.239



Patch-based CNN evaluation for bark classification 7

Fig. 2. SRCNN architecture [12].

240

In our study, we focus on the efficient sub-pixel convolutional neural network241

(ESPCN) [29]. In this CNN architecture, feature maps are extracted from low-242

resolution space, instead of performing the super-resolution operation in the243

high-resolution space that has been upscaled by bicubic interpolation. Addition-244

ally, an efficient sub-pixel convolution layer is included that learns more complex245

upscaling filters (trained for each feature map) to the final low-resolution feature246

maps into the high-resolution output. This architecture is shown in figure 3, with247

two convolution layers for feature extraction, and one sub-pixel convolution layer248

which accumulates the feature maps from low-resolution space and creates the249

super-resolution image in a single step.250

Fig. 3. Efficient sub-pixel convolutional neural network (ESPCN) [29].

3.4 CNN classification251

The CNN models used for image recognition in this work are 3 recent architec-252

tures: Squeezenet [20], MobileNetV2 [28] and VGG16 [30]. Since Bark-101 is a253

small dataset, we apply transfer-learning and use the pre-trained weights of the254

models trained on the large-scale image data of ImageNet [11]. The convolutional255

layers are kept frozen and only the last fully connected layer is replaced with a256

new one having random weights. We only train this layer with the dataset to257
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make predictions specific to the bark data. We skip the detailed discussion of258

the architectures, since its beyond the scope of our study and can be found in259

the references for the original works.260

3.5 Evaluation metrics261

In our study, we report two kinds of accuracy: patch-level and absolute.262

– Patch-level accuracy - Describes performance at a patch-level, i.e. among263

all the patches possible (taken from 1295 test images), we record what per-264

centage of patches has been correctly classified.265

– Absolute accuracy - Refers to overall accuracy in the test data, i.e. how266

many among 1295 test images of Bark-101 could be correctly identified. In267

our patch-based CNN classification, we computed this by majority voting268

using 4 variants for resolving ties, described in the following section 3.6.269

3.6 Majority Voting270

Majority voting [23][35] is a popular label-fusion strategy used in ensemble-based271

classifiers [26]. We use this for combining the independent patch-level predictions272

into image-level results for our bark classification problem. In simple majority273

voting, the class that gets the largest number of votes among all patches is con-274

sidered the overall class label of the image. Let us assume that an image I can be275

cropped into x parent patches and gets x1, x2, x3 number of patches classified276

as the first, second and third classes. The final prediction class of the image is277

taken as the class that has max(x1, x2, x3) votes, i.e. the majority voted class.278

279

However, there may be cases when more than one class gets the largest num-280

ber of votes. There is no one major class and ties can be found, i.e. multiple281

classes can have the highest count of votes. In our study, we examine few tie-282

breaking strategies from existing literature in majority voting [22][23][26][34][35].283

The most common one is Random Selection [23] of one of the tied classes, all of284

which are assumed to be equi-probable. Another trend of tie-breaking approaches285

relies on class priors and we tested two variants of class prior probability in our286

study. First, by Class Proportions strategy [34] that chooses the class having the287

higher number of training samples among the tied classes. Second, using Class288

Accuracy (given by F1-score), the tie goes in favor of the class having a better289

F1-score. Outside of these standard methods, more particular to neural network290

classifiers is the breaking of ties in ensembles by using Soft Max Accumulations291

[22]. Neural network classifiers output, by default, the class label prediction ac-292

companied by a confidence of prediction (by using soft max function) and this293

information is leveraged to resolve ties in [22]. In case of a tie in the voting pro-294

cess, the confidences for the received votes of the tied classes, are summed up.295

Finally, the class that accumulates the Maximum Confidence sum is selected.296
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4 EXPERIMENTS297

4.1 Dataset298

Pre-processing As we used pre-trained models for fine-tuning, we resized and299

normalised all our images to the same format the network was originally trained300

on, i.e. ImageNet standards. For patch-based CNN experiments, no size transfor-301

mations were done during training as the patches were already of size 224x224.302

For the benchmark experiments with whole images, the images were randomly303

re-sized and cropped to the size of 224x224 during image-loading. For data aug-304

mentation purposes, torchvision transforms were used to obtain random hori-305

zontal flips, rotations and color jittering, on all training images.306

Patch details Non-overlapping patches of size 224x224 were extracted in a307

sliding window manner from non-scaled original and upscaled Bark-101 images308

(upscale factor of 4). Bark-101 originally has 1292 training images and 1295 test309

images. After patch-extraction by the two methods, we obtain a higher count of310

samples as shown in table 1. In our study, 25% of the training data was kept for311

validation.

Table 1. Count of extracted unique patches from Bark-101.

Source Image Train Validation Test

Non-Scaled Bark-101 3156 1051 4164

Upscaled Bark-101 74799 24932 99107

312

4.2 Training details313

We used CNNs that have been pre-trained on ImageNet. Three architectures314

were selected - Squeezenet, MobileNetV2 and VGG16. We used Pytorch to fine-315

tune these networks with the Bark-101 dataset, starting with an initial learning316

rate of 0.001. Training was performed over 50 epochs with the Stochastic gradi-317

ent descent (SGD) optimizer, reducing the learning rate by a factor of 0.1 every318

7th epoch.319

320

ESPCN was trained from scratch for a factor of 4, on the 1292 original training321

images of Bark-101, with a learning rate of 0.001 for 30 epochs.322

5 RESULTS AND DISCUSSIONS323

We present our findings with the two kinds of accuracy described in section 3.5.324

Compared to absolute accuracy, patch-level accuracy provides a more precise325
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measure of how good the classifier model is. However, for our study, it is the ab-326

solute accuracy that is of greater importance as the final objective is to improve327

identification of bark species. It is important to note that Bark-101 is a challeng-328

ing dataset and the highest accuracy obtained in the original work on Bark-101329

[25] was 41.9% using Late Statistics on LBP-like filters and SVM classifiers. In330

our study, we note this as a benchmark value for comparing our performance331

using CNNs.332

5.1 Using whole images333

We begin by comparing the classification accuracy of different pre-trained CNNs334

fine-tuned with the non-scaled original Bark-101 data. Whole images were used335

and no explicit patches were formed prior to training. Thus, training was carried336

out on 1292 images and testing on 1295. Table 2 presents the results.

Table 2. Classification of whole images from Bark-101.

CNN Absolute accuracy

Squeezenet 43.7%

VGG16 42.3%

MobilenetV2 34.2%

337

5.2 Using patches338

In this section, we compare patch-based CNN classification using patches ob-339

tained by the image re-scaling methods explained in section 3.3.340

341

In the following tables (3, 4 and 5), the column for Patch-level accuracy gives342

the local performance, i.e how many of the test patches are correctly classified.343

This number of test patches vary across the two methods - patches from non-344

scaled original and those from upscaled Bark-101 (see table 1). For Absolute345

accuracy, we calculate how many of the original 1295 Bark-101 test images are346

correctly identified, by majority voting (with 4 tie-breaking strategies) on patch-347

level predictions. Column Random selection gives results of arbitrarily breaking348

ties by randomly selecting one of the tied classes (averaged over 5 trials). In Max349

confidence column, the tied class having the highest soft-max accumulations is350

selected. The last two columns use class priors for tie-breaking. Class proportions351

selects the tied class that appears most frequently among the training samples352

(i.e. having highest proportion) while Class F1-scores resolves ties by select-353

ing the tied class which has higher prediction accuracy (metric chosen here is354

F1-score). The best absolute accuracy among different tie-breaking methods for355

each CNN model, is highlighted in bold.356
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357

Patches from Non-Scaled Original Images Patches of size 224x224 were358

extracted from Bark-101 data, without any re-sizing of the original images. The359

wide variation in the sizes of Bark-101 images resulted in a minimum of zero360

and a maximum of 9 patches possible per image. We kept all possible crops, re-361

sulting in a total of 3156 train, 1051 validation and 4164 test patches. Although362

the number of training samples is higher than that for training with whole im-363

ages (section 5.1), only a total of 1169 original training images (belonging to 96364

classes) allowed at least one square patch of size 224x224. Thus, there is data365

loss as the images from which not even a single patch could be extracted were366

excluded. Results obtained by this strategy are listed in Table 3.

Table 3. Classification of patches from non-scaled original Bark-101.

CNN Patch-level
Absolute accuracy(%) by Majority Voting

model accuracy(%)Random
selection

Max con-
fidence

Class pro-
portions

Class F1-
scores

Squeezenet 47.84 43.47 44.09 43.17 43.63

VGG16 47.48 44.40 45.25 44.32 44.09

MobilenetV2 41.83 37.61 38.69 36.68 37.22

367

368

We observe that the patch-level accuracy is higher than absolute accuracy,369

which can possibly be explained due to the data-loss. From the original test data,370

only 1168 images (belonging to 96 classes) had dimensions that allowed at least371

one single patch of 224x224, resulting in a total of 4164 test patches. Around372

127 test images were excluded and by default, classified as incorrect, therefore373

reducing absolute accuracy. For patch-level accuracy, we reported how many of374

the 4164 test patches were correctly classified.375

376

Patches from Upscaled Images The previous sub-section highlights the need377

for upscaling original images, so that none is excluded from patch-extraction.378

Here, we first upscaled all the original Bark-101 images by a factor of 4 and then379

extracted square patches of size 224x224 from them. Figure 4 shows an example380

pair of upscaled images and their corresponding patch samples.381

382

We observe that among all our experiments, better absolute accuracy is ob-383

tained when patch-based CNN classification is performed on upscaled Bark-101384

images and shows comparable performance between both methods of upscaling385

(bicubic or ESPCN). The best classifier performance in our study is 57.22%386

from VGG16 fine-tuned by patches from Bark-101 upscaled by bicubic interpo-387

lation (table 4). This is a promising improvement from both the original work388

[25] on Bark-101 (best accuracy of 41.9%) as well as the experiments using whole389
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Fig. 4. An example pair of upscaled images and sample patches from them. The left-
most image has been upscaled by ESPCN and the right-most one by bicubic interpola-
tion. Between them, sample extracted patches are shown where the differences between
the two methods of upscaling become visible.

Table 4. Classification of patches from Bark-101 upscaled by bicubic interpolation.

CNN Patch-level
Absolute accuracy(%) by Majority Voting

model accuracy(%)Random Max con-
fidence

Class pro-
portions

Class F1-
scores

Squeezenet 35.69 48.32 48.57 48.11 48.19

VGG16 41.04 57.21 56.99 57.22 57.14

MobilenetV2 33.36 43.73 43.60 43.83 43.60

Table 5. Classification of patches from Bark-101 upscaled by ESPCN.

CNN Patch-level
Absolute accuracy(%) by Majority Voting

model accuracy(%)Random Max con-
fidence

Class pro-
portions

Class F1-
scores

Squeezenet 34.85 49.40 49.38 49.45 49.38

VGG16 39.27 55.86 55.75 55.76 55.75

MobilenetV2 32.12 42.19 41.78 41.93 41.85

images (best accuracy of 43.7% by Squeezenet, from table 2).390

391

The comparison of tie-majority strategies shows that the differences are not392

substantial. This is because the variations can only be visible when many ties are393

encountered, which was not always the case for us. Table 6 lists the count of test394

images (whole) where ties were encountered. We observe that test images in the395

patch method with non-scaled original Bark-101, encounter 4-5 times more ties396

than when using upscaled images (bicubic or EPSCN). Our study thus corrob-397

orates that the differences among tie-breaking strategies are more considerable398
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Fig. 5. Comparison of Bark-101 classification accuracy (absolute) using CNNs in this
work. Best accuracy of 41.9% was obtained in the original work [25] using Late Statistics
on LBP-like filters and SVM classifiers.

when several ties occur (table 3), than when fewer ties are found (tables 4 and 5).399

However, since the total number of test images in Bark-101 is 1295, the overall400

count of ties can still be considered low in our study. Nevertheless, we decided401

to include this comparison to demonstrate the difficulties of encountering ties402

in majority voting for patch-based CNN and investigate existing strategies to403

overcome this. It is interesting to observe (in table 3) that for patches extracted404

from non-scaled original Bark-101 (where there is a higher number of ties), the405

best tie-breaking strategy is the maximum confidence sum, as affirmed in [22]406

where the authors had tested it on simpler datasets (having a maximum of 26407

classes in the Letter dataset) taken from the UCI repository [14].

Table 6. Count of test images showing tied classes in majority voting.

Patch Method Squeezenet VGG16 MobilenetV2

Non-Scaled Original 217 283 274

Upscaled by Bicubic 52 45 45

Upscaled by ESPCN 50 46 63

408

To summarise, we present few important insights. First, when the total count of409

training samples is low, patch-based image analysis can improve accuracy due410

to better learning of local information and also since the total count of training411

samples increases. Second, image re-scaling invariably introduces distortion and412

reduces the image quality, hence patches from upscaled images have a loss of fea-413

ture information. As expected, patch-level accuracy is lower when using patches414

from upscaled images (tables 4 and 5), compared to that of patches from non-415

scaled original images having more intact features (table 3). However, we also416
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observe that absolute accuracy falls sharply for patches taken from non-scaled417

original Bark-101. This is because several of the original images have such low418

image dimensions, that no patch formation was possible at all. Therefore, all419

such images (belonging to 5 classes, see section 5.2 for details) were by default420

excluded from our consideration, resulting in low absolute accuracy across all421

the CNN models tested. Thus, we infer that for datasets having high diversity422

and variation of image dimensions, upscaling before patch-extraction can ensure423

better retention and representation of data. Finally, we also observe that it is424

useful to examine tie-breaking strategies in majority voting compared to rely-425

ing on simple random selection. These strategies are particularly significant if a426

considerable number of ties are encountered.427

6 CONCLUSION AND FUTURE WORK428

Our study demonstrates the potential of using deep learning for studying chal-429

lenging datasets such as Bark-101. For a long time, bark recognition has been430

treated as a texture classification problem and traditionally solved using hand-431

crafted features and statistical analysis. A patch-based CNN classification ap-432

proach can automate bark recognition greatly and reduce the efforts required433

by time-consuming traditional methods. Our study shows its effectiveness by434

outperforming accuracy on Bark-101 from traditional methods. An objective435

of our work was also to incorporate current trends in image re-scaling and436

ensemble-based classifiers in this bark analysis, to broaden perspectives in the437

plant vision community. Thus, we presented recent approaches in re-scaling by438

super-resolution networks and several tie-breaking strategies for majority voting439

and demonstrated their impact on performance. Super-resolution networks have440

promising characteristics to counter-balance the degradation introduced due to441

re-scaling. Although for our study with texture data as bark, its performance442

was comparable to traditional bicubic interpolation, we hope to investigate its443

effects on other plant data in future works. It would also be interesting to de-444

rive inspiration from patch-based image analysis in medical image segmentation445

where new label fusion methods are explored to integrate location information of446

patches for image-level decisions. In future works, we intend to accumulate new447

state-of-art methods and extend the proposed methodology to other plant or-448

gans and develop a multi-modal plant recognition tool for effectively identifying449

tree and shrub species. We will also examine its feasibility on mobile platforms,450

such as smart-phones, for use in real-world conditions.451
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