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Abstract. The identification of tree species from bark images is a chal-
lenging computer vision problem. However, even in the era of deep learn-
ing today, bark recognition continues to be explored by traditional meth-
ods using time-consuming handcrafted features, mainly due to the prob-
lem of limited data. In this work, we implement a patch-based convolu-
tional neural network alternative for analyzing a challenging bark dataset
Bark-101, comprising of 2587 images from 101 classes. We propose to ap-
ply image re-scaling during the patch extraction process to compensate
for the lack of sufficient data. Individual patch-level predictions from fine-
tuned CNNs are then combined by classical majority voting to obtain
image-level decisions. Since ties can often occur in the voting process,
we investigate various tie-breaking strategies from ensemble-based clas-
sifiers. Our study outperforms the classification accuracy achieved by
traditional methods applied to Bark-101, thus demonstrating the feasi-
bility of applying patch-based CNNs to such challenging datasets.

Keywords: Bark classification, convolutional neural networks, trans-
fer learning, patch-based CNNs, image re-scaling, bicubic interpolation,
super-resolution networks, majority voting

1 Introduction

Automatic identification of tree species from images is an interesting and chal-
lenging problem in the computer vision community. As urbanization grows, our
relationship with plants is fast evolving and plant recognition through digital
tools provide an improved understanding of the natural environment around
us. Reliable and automatic plant identification brings major benefits to many
sectors, for example, in forestry inventory, agricultural automation [32], botany
[27], taxonomy, medicinal plant research [3] and to the public, in general. In re-
cent years, vision-based monitoring systems have gained importance in agricul-
tural operations for improved productivity and efficiency [17]. Automated crop
harvesting using agricultural robotics [2] for example, relies heavily on visual
identification of crops from their images. Knowledge of trees can also provide
landmarks in localization and mapping algorithms [31].
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Although plants have various distinguishable physical features such as leaves,
fruits or flowers, bark is the most consistent one. It is available round the year,
with no seasonal dependencies. The aging process is also a slow one, with vi-
sual features changing over longer periods of time while being consistent during
shorter time frames. Even after trees have been felled, their bark remains an
important identifier, which can be helpful for example, in autonomous timber
assessment. Barks are also more easily visually accessible, contrary to higher-
level leaves, fruits or flowers. However, due to the low inter-class variance and
high intra-class variance for bark data, the differences are very subtle. Besides,
bark texture properties are also impacted by the environment and plant diseases.
Uncontrolled illumination alterations and branch shadow clutter can addition-
ally affect image quality. Hence, tree identification from only bark images is a
challenging task not only for machine learning approaches [5][7][8][25] but also
for human experts [13].

Recent developments in deep neural networks have shown great progress in image
recognition tasks, which can help automate manual recognition methods that are
often laborious and time consuming. However, a major limitation of deep learn-
ing algorithms is that a huge amount of training data is required for attaining
good performance. For example, the ImageNet dataset [11] has over 14 million
images. Unfortunately, the publicly available bark datasets are very limited in
size and variety. Recently released BarkNet 1.0 dataset [8] with 23,000 images
for 23 different species, is the largest in terms of number of instances, while
Bark-101 dataset [25] with 2587 images and 101 different classes, is the largest
in terms of number of classes. The data deficiency of reliable bark datasets in
literature presumably explains why majority of bark identification research has
revolved around hand-crafted features and filters such as Gabor [4][18], SIFT
[9][13], Local Binary Pattern (LBP) [6][7][25] and histogram analysis [5], which
can be learned from lesser data.

In this context, we study the challenges of applying deep learning in bark recog-
nition from limited data. The objective of this paper is to investigate patch-based
convolutional neural networks for classifying the challenging Bark-101 dataset
that has low inter-class variance, high intra-class variance and some classes with
very few samples. To tackle the problem of insufficient data, we enlarge the train-
ing data by using patches cropped from original Bark-101 images. We propose
a patch-extraction approach with image re-scaling prior to training, to avoid
random re-sizing during image-loading. For re-scaling, we compare traditional
bicubic interpolation [10] with a more recent advance of re-scaling by super-
resolution convolutional neural networks [12]. After image re-scale and patch-
extraction, we fine-tune pre-trained CNN models with these patches. We obtain
patch-level predictions which are then combined in a majority voting fashion to
attain image-level results. However, there can be ties, i.e. more than one class
could get the largest count of votes, and it can be challenging when a considerable
number of ties occur. In our study, we apply concepts of ensemble-based classi-
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fiers and investigate various tie-breaking strategies [22][23][26][34][35] of major-
ity voting. We validated our approach on three pre-trained CNNs - Squeezenet
[20], MobileNetV2 [28] and VGG16 [30], of which the first two are compact and
light-weight models that could be used for applications on mobile devices in the
future. Our study demonstrates the feasibility of using deep neural networks for
challenging datasets and outperforms the classification accuracy achieved using
traditional hand-crafted methods on Bark-101 in the original work [25].

The rest of the paper is organised as follows. Section 2 reviews existing ap-
proaches in bark classification. Then, section 3 explains our methodology for
patch-based CNNs. Section 4 describes the experimentation details. Our results
and insights are presented in section 5. Finally, section 6 concludes the study
with discussions on possible future work.

2 RELATED WORK

Traditionally, bark recognition has been studied as a texture classification prob-
lem using statistical methods and hand-crafted features. Bark features from 160
images were extracted in [33] using textual analysis methods such as gray level
run-length method (RLM), concurrence matrices (COMM) and histogram in-
spection. Additionally, the authors captured the color information by applying
the grayscale methods individually to each of the 3 RGB channels and the overall
performance significantly improved. Spectral methods using Gabor filters [4] and
descriptors of points of interests like SURF or SIFT [9][13][16] have also been
used for bark feature extraction. The AFF bark dataset, having 11 classes and
1082 bark images, was analysed by a bag of words model with an SVM classifier
constructed from SIFT feature points achieving around 70% accuracy [13].

An earlier study [5] proposed a fusion of color hue and texture analysis for
bark identification. First the bark structure and distribution of contours (scales,
straps, cracks etc) were described by two descriptive feature vectors computed
from a map of Canny extracted edges intersected by a regular grid. Next, the
color characteristics were captured by the hue histogram in HSV color space as
it is indifferent to illumination conditions and covers the whole range of possi-
ble bark colors with a single channel. Finally, image filtering by Gabor wavelets
was used to extract the orientation feature vector. An extended study on the
resultant descriptor from concatenation of these four feature vectors, showed
improved performance in tree identification when combined with leaves [4]. Sev-
eral works have also been based on descriptors such as Local Binary Patterns
(LBP) and LBP-like filters [6][7][25]. Late Statistics (LS) with two state-of-art
LBP-like filters - Light Combination of Local Binary Patterns (LCoLBP) and
Completed Local Binary Pattern (CLBP) were defined, along with bark priors on
reduced histograms in the HSV space to capture color information [25]. This ap-
proach created computationally efficient, compact feature vectors and achieved
state-of-art performance on 3 challenging datasets (BarkTex, AFF12, Bark-101)
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with SVM and KNN classifiers. Another LBP-inspired texture descriptor called
Statistical Macro Binary Pattern (SMBP) attained improved performance in
classifying 3 datasets (BarkTex, Trunk12, AFF) [7]. SMBP encodes macrostruc-
ture information with statistical description of intensity distribution which is
rotation-invariant and applies an LBP-like encoding scheme, thus being invari-
ant to monotonic gray scale changes.

Some early works [18][19] in bark research have interestingly been attempted
using artificial neural networks (ANN) as classifiers. In 2006, Gabor wavelets
were used to extract bark texture features and applied to a radial basis proba-
bilistic neural network (RBPNN) for classification [18]. It achieved around 80%
accuracy on a dataset of 300 bark images. GLCM features have also been used
in combination with fractal dimension features to describe the complexity and
self-similarity of varied scaled texture [19]. They used a 3-layer ANN classifier on
a dataset of 360 images having 24 classes and obtained an accuracy of 91.67%.
However, this was before the emergence of deep learning convolutional neural
networks for image recognition.

Recently, there have been few attempts to identify trees from only bark informa-
tion using deep-learning. LIDAR scans created depth images from point clouds,
which were applied to AlexNet resulting in 90% accuracy, using two species only
- Japanese Cedar and Japanese Cypress [24]. Closer to our study with RGB
images, patches of bark images have been used to fine-tune pre-trained deep
learning models [15]. With constraints on the minimum number of crops and
projected size of tree on plane, they attained 96.7% accuracy, using more than
10,000 patches for 221 different species. However, the report lacked clarity on the
CNN architecture used and the experiments were performed on private data pro-
vided by a company, therefore inaccessible for comparisons. Image patches were
also used for transfer-learning with ResNets to identify species from the BarkNet
dataset [8]. This work obtained an impressive accuracy of 93.88% for single crop
and 97.81% using majority voting on multiple crops. However, BarkNet is a large
dataset having 23,000 high-resolution images for 23 classes, which significantly
reduces the challenges involved. We draw inspiration from these works and build
on them to study an even more challenging dataset - Bark-101 [25].

3 METHODOLOGY

Our methodology presents a plan of actions consisting of four main components:
Image re-scaling, patch-extraction, fine-tuning pre-trained CNNs and majority
voting analysis. The following sections discuss our work-flow in detail.

3.1 Dataset

In our study, we chose the Bark-101 dataset. It was developed from PlantCLEF
database, which is part of the ImageCLEF challenges for plant recognition [21].
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Bark-101 consists of a total of 2587 images (split into 1292 train and 1295 test
images) belonging to 101 different species. Two observations about Bark-101 ex-
plain the difficulty level of this dataset. Firstly, these images simulate real world
conditions as PlantCLEF forms their database through crowdsourced initiatives
(for example from mobile applications as Pl@ntnet [1]). Although the images
have been manually segmented to remove unwanted background, Bark-101 still
contains a lot of noise in form of mosses, shadows or due to lighting conditions.
Moreover, no constraints were given for image sizes during Bark-101 preparation
leading to a huge variability of size. This is expected in practical outdoor set-
tings where tree trunk diameters fluctuate and users take pictures from varying
distances. Secondly, Bark-101 has high intra-class variability and low inter-class
variability which makes classification difficult. High intra-class variability can
be attributed to high diversity in bark textures during the lifespan of a tree.
Low inter-class variability is explained by the large number of classes (101) in
the dataset, as a higher number of species imply higher number of visually alike
textures. Therefore, Bark-101 can be considered a challenging dataset for bark
recognition.

Fig. 1. Example images from Bark-101 dataset.

3.2 Patch preparation

In texture recognition, local features can offer useful information to the clas-
sifier. Such local information can be obtained through extraction of patches,
which means decomposing the original image into smaller crops or segments.
Compared to semantic segmentation techniques that use single pixels as input,
patches allow to capture neighbourhood local information as well as reduces ex-
ecution time. These patches are then used for fine-tuning a pre-trained CNN
model. Thus, the patch extraction process also helps to augment the available
data for training CNNs and is particularly useful when the number of images
per class is low, as is the case with Bark-101 dataset.

Our study focused on using a patch size of 224x224 pixels, following the de-
fault ImageNet size standards used in most CNN image recognition tasks today.
However, when the range of image dimensions vary greatly within a dataset, it
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is difficult to extract a useful number of non-overlapping patches from all im-
ages. For example, in Bark-101, around 10 percent of the data is found to have
insufficient pixels to allow even a single square patch of 224x224 size. Contrary
to common data pre-processing for CNNs where images are randomly re-sized
and cropped during data loading, we propose to prepare the patches beforehand
to have better control in the patch extraction process. This also removes the risk
of extracting highly deformed patches from low-dimension images. The original
images are first upscaled by a given factor and then patches are extracted from
them. In our experiments, we applied two different image re-scaling algorithms
- traditional bicubic interpolation method [10] and a variant of super-resolution
network, called efficient sub-pixel convolutional neural network (ESPCN) [29].

3.3 Image re-scaling

Image re-scaling refers to creating a new version of an image with new dimen-
sions by changing its pixel information. In our study, we apply upscaling which
is the process of obtaining images with increased size. However, these operations
are not loss-less and have a trade-off between efficiency, complexity, smoothness,
sharpness and speed. We tested two different algorithms to obtain high-resolution
representation of the corresponding low-resolution image (in our context, reso-
lution referring to spatial resolution, i.e. size).

Bicubic interpolation This is a classical image upsampling algorithm involv-
ing geometrical transformation of 2D images with Lagrange polynomials, cubic
splines or cubic convolutions [10]. In order to preserve sharpness and image
details, new pixel values are approximated from the surrounding pixels in the
original image. The output pixel value is computed as a weighted sum of pixels
in the 4-by-4 pixel neighborhood. The convolution kernel is composed of piece-
wise cubic polynomials. Compared to bilinear or nearest-neighbor interpolation,
bicubic takes longer time to process as more surrounding pixels are compared
but the resampled images are smoother with fewer distortions. As the destina-
tion high-resolution image pixels are estimated using only local information in
the corresponding low-resolution image, some details could be lost.

Super-resolution using sub-pixel convolutional neural network Super-
vised machine learning methods can learn mapping functions from low-resolution
images to their high-resolution representations. Recent advances in deep neu-
ral networks called Super-resolution CNN (SRCNN) [12] have shown promising
improvements in terms of computational performances and reconstruction accu-
racy. These models are trained with low-resolution images as inputs and their
high-resolution counterparts are the targets. The first convolutional layers of
such neural networks perform feature extraction from the low-resolution images.
The next layer maps these feature maps non-linearly to their corresponding
high-resolution patches. The final layer combines the predictions within a spa-
tial neighbourhood to produce the final high-resolution image.
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Fig. 2. SRCNN architecture [12].

In our study, we focus on the efficient sub-pixel convolutional neural network
(ESPCN) [29]. In this CNN architecture, feature maps are extracted from low-
resolution space, instead of performing the super-resolution operation in the
high-resolution space that has been upscaled by bicubic interpolation. Addition-
ally, an efficient sub-pixel convolution layer is included that learns more complex
upscaling filters (trained for each feature map) to the final low-resolution feature
maps into the high-resolution output. This architecture is shown in figure 3, with
two convolution layers for feature extraction, and one sub-pixel convolution layer
which accumulates the feature maps from low-resolution space and creates the
super-resolution image in a single step.

Fig. 3. Efficient sub-pixel convolutional neural network (ESPCN) [29].

3.4 CNN classification

The CNN models used for image recognition in this work are 3 recent architec-
tures: Squeezenet [20], MobileNetV2 [28] and VGG16 [30]. Since Bark-101 is a
small dataset, we apply transfer-learning and use the pre-trained weights of the
models trained on the large-scale image data of ImageNet [11]. The convolutional
layers are kept frozen and only the last fully connected layer is replaced with a
new one having random weights. We only train this layer with the dataset to
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make predictions specific to the bark data. We skip the detailed discussion of
the architectures, since its beyond the scope of our study and can be found in
the references for the original works.

3.5 Evaluation metrics

In our study, we report two kinds of accuracy: patch-level and absolute.

– Patch-level accuracy - Describes performance at a patch-level, i.e. among
all the patches possible (taken from 1295 test images), we record what per-
centage of patches has been correctly classified.

– Absolute accuracy - Refers to overall accuracy in the test data, i.e. how
many among 1295 test images of Bark-101 could be correctly identified. In
our patch-based CNN classification, we computed this by majority voting
using 4 variants for resolving ties, described in the following section 3.6.

3.6 Majority Voting

Majority voting [23][35] is a popular label-fusion strategy used in ensemble-based
classifiers [26]. We use this for combining the independent patch-level predictions
into image-level results for our bark classification problem. In simple majority
voting, the class that gets the largest number of votes among all patches is con-
sidered the overall class label of the image. Let us assume that an image I can be
cropped into x parent patches and gets x1, x2, x3 number of patches classified
as the first, second and third classes. The final prediction class of the image is
taken as the class that has max(x1, x2, x3) votes, i.e. the majority voted class.

However, there may be cases when more than one class gets the largest num-
ber of votes. There is no one major class and ties can be found, i.e. multiple
classes can have the highest count of votes. In our study, we examine few tie-
breaking strategies from existing literature in majority voting [22][23][26][34][35].
The most common one is Random Selection [23] of one of the tied classes, all of
which are assumed to be equi-probable. Another trend of tie-breaking approaches
relies on class priors and we tested two variants of class prior probability in our
study. First, by Class Proportions strategy [34] that chooses the class having the
higher number of training samples among the tied classes. Second, using Class
Accuracy (given by F1-score), the tie goes in favor of the class having a better
F1-score. Outside of these standard methods, more particular to neural network
classifiers is the breaking of ties in ensembles by using Soft Max Accumulations
[22]. Neural network classifiers output, by default, the class label prediction ac-
companied by a confidence of prediction (by using soft max function) and this
information is leveraged to resolve ties in [22]. In case of a tie in the voting pro-
cess, the confidences for the received votes of the tied classes, are summed up.
Finally, the class that accumulates the Maximum Confidence sum is selected.
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4 EXPERIMENTS

4.1 Dataset

Pre-processing As we used pre-trained models for fine-tuning, we resized and
normalised all our images to the same format the network was originally trained
on, i.e. ImageNet standards. For patch-based CNN experiments, no size transfor-
mations were done during training as the patches were already of size 224x224.
For the benchmark experiments with whole images, the images were randomly
re-sized and cropped to the size of 224x224 during image-loading. For data aug-
mentation purposes, torchvision transforms were used to obtain random hori-
zontal flips, rotations and color jittering, on all training images.

Patch details Non-overlapping patches of size 224x224 were extracted in a
sliding window manner from non-scaled original and upscaled Bark-101 images
(upscale factor of 4). Bark-101 originally has 1292 training images and 1295 test
images. After patch-extraction by the two methods, we obtain a higher count of
samples as shown in table 1. In our study, 25% of the training data was kept for
validation.

Table 1. Count of extracted unique patches from Bark-101.

Source Image Train Validation Test

Non-Scaled Bark-101 3156 1051 4164

Upscaled Bark-101 74799 24932 99107

4.2 Training details

We used CNNs that have been pre-trained on ImageNet. Three architectures
were selected - Squeezenet, MobileNetV2 and VGG16. We used Pytorch to fine-
tune these networks with the Bark-101 dataset, starting with an initial learning
rate of 0.001. Training was performed over 50 epochs with the Stochastic gradi-
ent descent (SGD) optimizer, reducing the learning rate by a factor of 0.1 every
7th epoch.

ESPCN was trained from scratch for a factor of 4, on the 1292 original training
images of Bark-101, with a learning rate of 0.001 for 30 epochs.

5 RESULTS AND DISCUSSIONS

We present our findings with the two kinds of accuracy described in section 3.5.
Compared to absolute accuracy, patch-level accuracy provides a more precise
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measure of how good the classifier model is. However, for our study, it is the ab-
solute accuracy that is of greater importance as the final objective is to improve
identification of bark species. It is important to note that Bark-101 is a challeng-
ing dataset and the highest accuracy obtained in the original work on Bark-101
[25] was 41.9% using Late Statistics on LBP-like filters and SVM classifiers. In
our study, we note this as a benchmark value for comparing our performance
using CNNs.

5.1 Using whole images

We begin by comparing the classification accuracy of different pre-trained CNNs
fine-tuned with the non-scaled original Bark-101 data. Whole images were used
and no explicit patches were formed prior to training. Thus, training was carried
out on 1292 images and testing on 1295. Table 2 presents the results.

Table 2. Classification of whole images from Bark-101.

CNN Absolute accuracy

Squeezenet 43.7%

VGG16 42.3%

MobilenetV2 34.2%

5.2 Using patches

In this section, we compare patch-based CNN classification using patches ob-
tained by the image re-scaling methods explained in section 3.3.

In the following tables (3, 4 and 5), the column for Patch-level accuracy gives
the local performance, i.e how many of the test patches are correctly classified.
This number of test patches vary across the two methods - patches from non-
scaled original and those from upscaled Bark-101 (see table 1). For Absolute
accuracy, we calculate how many of the original 1295 Bark-101 test images are
correctly identified, by majority voting (with 4 tie-breaking strategies) on patch-
level predictions. Column Random selection gives results of arbitrarily breaking
ties by randomly selecting one of the tied classes (averaged over 5 trials). In Max
confidence column, the tied class having the highest soft-max accumulations is
selected. The last two columns use class priors for tie-breaking. Class proportions
selects the tied class that appears most frequently among the training samples
(i.e. having highest proportion) while Class F1-scores resolves ties by select-
ing the tied class which has higher prediction accuracy (metric chosen here is
F1-score). The best absolute accuracy among different tie-breaking methods for
each CNN model, is highlighted in bold.
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Patches from Non-Scaled Original Images Patches of size 224x224 were
extracted from Bark-101 data, without any re-sizing of the original images. The
wide variation in the sizes of Bark-101 images resulted in a minimum of zero
and a maximum of 9 patches possible per image. We kept all possible crops, re-
sulting in a total of 3156 train, 1051 validation and 4164 test patches. Although
the number of training samples is higher than that for training with whole im-
ages (section 5.1), only a total of 1169 original training images (belonging to 96
classes) allowed at least one square patch of size 224x224. Thus, there is data
loss as the images from which not even a single patch could be extracted were
excluded. Results obtained by this strategy are listed in Table 3.

Table 3. Classification of patches from non-scaled original Bark-101.

CNN Patch-level
Absolute accuracy(%) by Majority Voting

model accuracy(%)Random
selection

Max con-
fidence

Class pro-
portions

Class F1-
scores

Squeezenet 47.84 43.47 44.09 43.17 43.63

VGG16 47.48 44.40 45.25 44.32 44.09

MobilenetV2 41.83 37.61 38.69 36.68 37.22

We observe that the patch-level accuracy is higher than absolute accuracy,
which can possibly be explained due to the data-loss. From the original test data,
only 1168 images (belonging to 96 classes) had dimensions that allowed at least
one single patch of 224x224, resulting in a total of 4164 test patches. Around
127 test images were excluded and by default, classified as incorrect, therefore
reducing absolute accuracy. For patch-level accuracy, we reported how many of
the 4164 test patches were correctly classified.

Patches from Upscaled Images The previous sub-section highlights the need
for upscaling original images, so that none is excluded from patch-extraction.
Here, we first upscaled all the original Bark-101 images by a factor of 4 and then
extracted square patches of size 224x224 from them. Figure 4 shows an example
pair of upscaled images and their corresponding patch samples.

We observe that among all our experiments, better absolute accuracy is ob-
tained when patch-based CNN classification is performed on upscaled Bark-101
images and shows comparable performance between both methods of upscaling
(bicubic or ESPCN). The best classifier performance in our study is 57.22%
from VGG16 fine-tuned by patches from Bark-101 upscaled by bicubic interpo-
lation (table 4). This is a promising improvement from both the original work
[25] on Bark-101 (best accuracy of 41.9%) as well as the experiments using whole
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Fig. 4. An example pair of upscaled images and sample patches from them. The left-
most image has been upscaled by ESPCN and the right-most one by bicubic interpola-
tion. Between them, sample extracted patches are shown where the differences between
the two methods of upscaling become visible.

Table 4. Classification of patches from Bark-101 upscaled by bicubic interpolation.

CNN Patch-level
Absolute accuracy(%) by Majority Voting

model accuracy(%)Random Max con-
fidence

Class pro-
portions

Class F1-
scores

Squeezenet 35.69 48.32 48.57 48.11 48.19

VGG16 41.04 57.21 56.99 57.22 57.14

MobilenetV2 33.36 43.73 43.60 43.83 43.60

Table 5. Classification of patches from Bark-101 upscaled by ESPCN.

CNN Patch-level
Absolute accuracy(%) by Majority Voting

model accuracy(%)Random Max con-
fidence

Class pro-
portions

Class F1-
scores

Squeezenet 34.85 49.40 49.38 49.45 49.38

VGG16 39.27 55.86 55.75 55.76 55.75

MobilenetV2 32.12 42.19 41.78 41.93 41.85

images (best accuracy of 43.7% by Squeezenet, from table 2).

The comparison of tie-majority strategies shows that the differences are not
substantial. This is because the variations can only be visible when many ties are
encountered, which was not always the case for us. Table 6 lists the count of test
images (whole) where ties were encountered. We observe that test images in the
patch method with non-scaled original Bark-101, encounter 4-5 times more ties
than when using upscaled images (bicubic or EPSCN). Our study thus corrob-
orates that the differences among tie-breaking strategies are more considerable
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Fig. 5. Comparison of Bark-101 classification accuracy (absolute) using CNNs in this
work. Best accuracy of 41.9% was obtained in the original work [25] using Late Statistics
on LBP-like filters and SVM classifiers.

when several ties occur (table 3), than when fewer ties are found (tables 4 and 5).
However, since the total number of test images in Bark-101 is 1295, the overall
count of ties can still be considered low in our study. Nevertheless, we decided
to include this comparison to demonstrate the difficulties of encountering ties
in majority voting for patch-based CNN and investigate existing strategies to
overcome this. It is interesting to observe (in table 3) that for patches extracted
from non-scaled original Bark-101 (where there is a higher number of ties), the
best tie-breaking strategy is the maximum confidence sum, as affirmed in [22]
where the authors had tested it on simpler datasets (having a maximum of 26
classes in the Letter dataset) taken from the UCI repository [14].

Table 6. Count of test images showing tied classes in majority voting.

Patch Method Squeezenet VGG16 MobilenetV2

Non-Scaled Original 217 283 274

Upscaled by Bicubic 52 45 45

Upscaled by ESPCN 50 46 63

To summarise, we present few important insights. First, when the total count of
training samples is low, patch-based image analysis can improve accuracy due
to better learning of local information and also since the total count of training
samples increases. Second, image re-scaling invariably introduces distortion and
reduces the image quality, hence patches from upscaled images have a loss of fea-
ture information. As expected, patch-level accuracy is lower when using patches
from upscaled images (tables 4 and 5), compared to that of patches from non-
scaled original images having more intact features (table 3). However, we also
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observe that absolute accuracy falls sharply for patches taken from non-scaled
original Bark-101. This is because several of the original images have such low
image dimensions, that no patch formation was possible at all. Therefore, all
such images (belonging to 5 classes, see section 5.2 for details) were by default
excluded from our consideration, resulting in low absolute accuracy across all
the CNN models tested. Thus, we infer that for datasets having high diversity
and variation of image dimensions, upscaling before patch-extraction can ensure
better retention and representation of data. Finally, we also observe that it is
useful to examine tie-breaking strategies in majority voting compared to rely-
ing on simple random selection. These strategies are particularly significant if a
considerable number of ties are encountered.

6 CONCLUSION AND FUTURE WORK

Our study demonstrates the potential of using deep learning for studying chal-
lenging datasets such as Bark-101. For a long time, bark recognition has been
treated as a texture classification problem and traditionally solved using hand-
crafted features and statistical analysis. A patch-based CNN classification ap-
proach can automate bark recognition greatly and reduce the efforts required
by time-consuming traditional methods. Our study shows its effectiveness by
outperforming accuracy on Bark-101 from traditional methods. An objective
of our work was also to incorporate current trends in image re-scaling and
ensemble-based classifiers in this bark analysis, to broaden perspectives in the
plant vision community. Thus, we presented recent approaches in re-scaling by
super-resolution networks and several tie-breaking strategies for majority voting
and demonstrated their impact on performance. Super-resolution networks have
promising characteristics to counter-balance the degradation introduced due to
re-scaling. Although for our study with texture data as bark, its performance
was comparable to traditional bicubic interpolation, we hope to investigate its
effects on other plant data in future works. It would also be interesting to de-
rive inspiration from patch-based image analysis in medical image segmentation
where new label fusion methods are explored to integrate location information of
patches for image-level decisions. In future works, we intend to accumulate new
state-of-art methods and extend the proposed methodology to other plant or-
gans and develop a multi-modal plant recognition tool for effectively identifying
tree and shrub species. We will also examine its feasibility on mobile platforms,
such as smart-phones, for use in real-world conditions.

ACKNOWLEDGEMENTS

This work has been conducted under the framework of the ReVeRIES project
(Reconnaissance de Vgtaux Rcrative, Interactive et Educative sur Smartphone)
supported by the French National Agency for Research with the reference ANR15-
CE38-004-01.



Patch-based CNN evaluation for bark classification 15

References
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