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New methods are developed for the stabilization of a linear system with general time-varying distributed delays existing at the system's states, inputs and outputs. In contrast to most existing literature where the function of time-varying delay is continuous and bounded, we assume it to be bounded and measurable. Furthermore, the distributed delay kernels can be any square-integrable function over a bounded interval, where the kernels are handled directly by using a decomposition scenario without using approximations. By constructing a Krasovskiĭ functional via the application of a novel integral inequality, sufficient conditions for the existence of a dissipative state feedback controller are derived in terms of matrix inequalities without utilizing the existing reciprocally convex combination lemmas. The proposed synthesis (stability) conditions, which take dissipativity into account, can be either solved directly by a standard numerical solver of semidefinite programming if they are convex, or reshaped into linear matrix inequalities, or solved via a proposed iterative algorithm. To the best of our knowledge, no existing methods can handle the synthesis problem investigated in this paper. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed methodologies.

Introduction

Time delays exist in systems affected by transportation and aftereffects [START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF]. For certain real-time application such as the models in [START_REF] Anthonis | Design of a Pressure Control System With Dead Band and Time Delay[END_REF]; [START_REF] Molnár | On the effect of distributed regenerative delay on the stability lobe diagrams of milling processes[END_REF], delays can be time-varying. It is of great research interest to investigate a system with bounded time-varying delays since it can be applied in modeling sampled-data [START_REF] Fridman | Robust sampleddata stabilization of linear systems: An input delay approach[END_REF] or networked control systems (NCSs) [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF]. One can find many existing results in the literature pertaining to the stability analysis [START_REF] Jiang | Delay-dependent robust stability for uncertain linear systems with interval time-varying delay[END_REF]; [START_REF] Seuret | Stability of systems with fast-varying delay using improved Wirtinger's inequality[END_REF]; [START_REF] Kwon | Improvement on the feasible region of H ∞ performance and stability for systems with interval time-varying delays via augmented Lyapunov-Krasivskii functional[END_REF]; [START_REF] Qian | Robust stability criteria for uncertain systems with interval time-varying delay based on multi-integral functional approach[END_REF] and stabilization [START_REF] Jiang | On H ∞ control for linear systems with interval time-varying delay[END_REF]; [START_REF] Fridman | A new Lyapunov technique for robust control of systems with uncertain non-small delays[END_REF]; [START_REF] Mohajerpoor | New delay range-dependent stability criteria for interval time-varying delay systems via Wirtinger-based inequalities[END_REF] of linear time-varying delay systems with a bounded continuous time-varying delay. The methods in the aforementioned references are based on the construction of Krasovskiĭ functionals (KF) [START_REF] Briat | Linear Parameter Varying and Time-Delay Systems[END_REF], where the time-varying delay is embedded only in x(t -r(t)). It has been shown in [START_REF] Gao | A new delay system approach to network-based control[END_REF][START_REF] Gao | Stabilization of Networked Control Systems via Dynamic Output-Feedback Controllers[END_REF] that the KF method for linear systems with x(t -r(t)) can be utilized to solve synthesis problems of NCSs. It is worthy mention that unlike systems with constant delays, frequency-domain-based approaches [START_REF] Breda | Pseudospectral Differencing Methods for Characteristic Roots of Delay Differential Equations[END_REF]; [START_REF] Michiels | Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach[END_REF]; [START_REF] Gehring | Control of Linear Delay Systems: An Approach without Explicit Predictions[END_REF]; [START_REF] Vyhlídal | QPmR -Quasi-Polynomial Root-Finder: Algorithm Update and Examples[END_REF] may not be usable to analyze the spectrum of a system if the exact expression of r(t) is unknown.

It has been pointed out in [START_REF] Goebel | L 2 -gain-based controller design for linear systems with distributed input delay[END_REF] that the digital communication channel of NCSs with stochastic packet delays and loss can be modeled by distributed delays. Moreover, the results in [START_REF] Yan | Event-triggered H control of networked control systems with distributed transmission delay[END_REF] have shown that a networked control system with a network channel delay stabilized by an event-triggered H ∞ controller can be modeled as a distributed delay system, where the delay is of constant values. To the best of our knowledge however, no existing methods can handle the stabilization problem of systems considering dissipativity and general distributed delays at system's states, inputs, and outputs where the delay function is time-varying and unknown. In Theorem 2 of [START_REF] Zhou | Stabilization of linear systems with distributed input delay and input saturation[END_REF], a method of stabilizing systems in the form of ẋ(t) = Ax(t)+ 0 -r(t) B(τ )u(t+τ )dτ is proposed. Nevertheless, all the poles of A in [START_REF] Zhou | Stabilization of linear systems with distributed input delay and input saturation[END_REF] are assumed to be located on the imaginary axis, and the lower bound of r(t) is restricted to 0 < r(t) ≤ r 2 . The stability of positive linear systems with distributed time-varying delays is investigated in [START_REF] Ngoc | Stability of positive differential systems with delay[END_REF]; [START_REF] Cui | Stability analysis for positive singular systems with distributed delays[END_REF]. Although the method in [START_REF] Ngoc | Stability of positive differential systems with delay[END_REF] does include criteria to determine the stability of non-positive linear systems, the structure of the delay function r(•) ∈ C (R ≥0 (0, r 2 ]) therein is still restrictive. On the other hand, the synthesis (stability analysis) methods proposed in [START_REF] Münz | Robust stabilization and H ∞ control of uncertain distributed delay systems[END_REF]; [START_REF] Goebel | L 2 -gain-based controller design for linear systems with distributed input delay[END_REF]; [START_REF] Gouaisbaut | Stability of Distributed Delay Systems Via a Robust Approach[END_REF]; [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF]; [START_REF] Feng | Stabilization of uncertain linear distributed delay systems with dissipativity constraints[END_REF], which are developed to handle linear distributed delay systems with constant delay values, may not be easily extended to cope with systems with an unknown timevarying delay. This is especially true for the approximation approaches in [START_REF] Münz | Robust stabilization and H ∞ control of uncertain distributed delay systems[END_REF]; [START_REF] Goebel | L 2 -gain-based controller design for linear systems with distributed input delay[END_REF]; [START_REF] Gouaisbaut | Stability of Distributed Delay Systems Via a Robust Approach[END_REF]; [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF], since the approximation coefficients can become nonlinear with respect to r(t) if the distributed delay kernels are approximated over [-r(t), 0]. Consequently, it is obvious that new methods should be developed for the stabilization (stability analysis) of linear systems with general distributed time-varying delays.

In this paper, new methods for the stabilization of a linear system with general distributed time-varying delays are developed based on the construction of a general Krasovskiĭ functional, where the time-varying delay function r(•) is unknown but measurable and bounded by given values 0 ≤ r 1 ≤ r 2 , r 2 > 0. Our system contains distributed delays at the system's states, inputs and outputs, where the delay kernels can be any L 2 function over a given interval. To ensure that the proposed methods are denoted by linear matrix inequalities (LMIs) with finitedimensions, a novel integral inequality is proposed where the symmetric matrix of the inequality's lower bound is not a function of r(t) but r 1 and r 2 . By using this inequality in constructing a general KF, sufficient conditions for the existence of a state feedback controller, which ensure that the system is stable and dissipative with a supply function, are derived in terms of matrix inequalities summarized in the first theorem of this paper. The synthesis condition of the first theorem has a bilinear matrix inequality (BMI) if a stabilization problem is considered, whereas it becomes convex if non-stabilization scenarios are concerned. To circumvent the difficulties of solving non-convex conditions, a second theorem denoted by LMIs is proposed via the application of Projection Lemma [START_REF] Gahinet | A linear matrix inequality approach to H ∞ control[END_REF]. Next, an iterative algorithm, based on the inner convex approximation scheme developed in [START_REF] Dinh | An inner convex approximation algorithm for BMI optimization and applications in control[END_REF], is proposed for solving the BMI in the first theorem, where the algorithm can be initiated by a feasible solution of the second theorem. To the best of our knowledge, no existing methods in the peer-reviewed literature can handle the synthesis problem in this paper. Finally, two numerical examples are presented to demonstrate the effectiveness of our proposed methodologies.

The major contributions of this paper are summarized as follows:

• We believe the dissipative synthesis problem investigated in this paper cannot be dealt with by any existing method. Our model is sufficiently general with respect to generality of r(t) and distributed delay kernels. A bounded and measurable delay function can be particularly useful to model discontinuous time-varying delays. Finally, the proposed meth-ods only require the use of standard algorithms for semidefinite programming (SDP) without asking for nonlinear solvers.

• The handling of distributed delay kernels in this paper, which is based on the application of a decomposition approach, allows one to consider any L 2 function over an interval, even the interval is related to r(t). This avoids the use of any form of approximations so that no nonlinear terms of r(t) will be introduced into the proposed synthesis conditions.

• The proposed integral inequality allows one to construct Krasovskiĭ functionals without utilizing the reciprocally-convex-combination type of lemmas The rest of the paper is outlined as follows. The synthesis problem investigated in this paper is first formulated in Section 2 where we explain the principle of the decomposition approach. Next, the main results on dissipative stabilization are presented in Section 3, which are summarized in Theorem 1 and 2 and Algorithm 1. Numerical examples and their testing results are presented in Section 4 prior to the final conclusion. Finally, many important proofs are placed in Appendix A-Appendix C in order to ensure coherent presentation.

Notation

Let Y

X := {f (•) : f (•) is a function from X onto Y }, R ≥a := {x ∈ R : x ≥ a} and S n := {X ∈ R n×n : X = X ⊤ }. C(X R n ) := f (•) ∈ (R n ) X : f (•) is continuous on X and C k ([a, b] R n ) := f (•) ∈ C([a, b] R n ) : d k f (x) dx k ∈ C([a, b] R n )
where the derivatives at a and b are one-sided. Moreover,

M L(X )/B(R) X R := f (•) ∈ X R : ∀Y ∈ B(R), f -1 (Y) ∈ L(X )
denotes the space of all L (X ) /B(R) measurable functions from X onto R, where L (X ) contains all the subsets of X which are Lebesgue measurable, and B(R) is the Borel σ-algebra on R. Note that we frequently abbreviate

M L(X )/B(R) X R as M (X R) when the context is clear. In addition, L p (X R n ) := f (•) ∈ M L(X )/B(R n ) X R n : ∥f (•)∥ p < +∞ where X ⊆ R n and ∥f (•)∥ p := X ∥f (x)∥ p 2 dx 1 p .
Moreover, we use ∀x ∈ X to denote the meaning of for almost all x ∈ X with respect to the Lebesgue measure. Sy(X) := X + X ⊤ stands for the sum of a matrix with its transpose. We use

Col n i=1 x i := Row n i=1 x ⊤ i ⊤ = x ⊤ 1 • • • x ⊤ i • • • x ⊤ n ⊤
denotes a column vector containing a sequence of mathematical objects (scalars, vectors, matrices etc.). The symbol

* is used to indicate [ * ]Y X = X ⊤ Y X or X ⊤ Y [ * ] = X ⊤ Y X or [ A B * C ] = A B B ⊤ C . O n,m denotes a n × m zero matrix which can be abbreviated by O n if n = m, while 0 n represents a n × 1 column vector. We frequently use 2 X ⊕ Y = X O * Y
to denote the diagonal sum of two matrices. ⊗ stands for the Kronecker product. The order of matrix operations is matrix (scalars) multiplications > ⊗ > ⊕ > + throughout the paper. Finally, empty matrices, which follow the same definition and rules in Matlab, are applied in this paper to render our synthesis conditions capable of handling the case of r 1 = 0; r 2 > 0 or r 1 = r 2 . Note that we define Col n i=1 = [] when n < 1, where [] is an empty matrix with an appropriate column dimension based on specific contexts.

Problem formulation

Consider a linear distributed delay system

ẋ(t) = A 1 x(t) + 0 -r(t) A 2 (τ )x(t + τ )dτ + B 1 u(t) + 0 -r(t) B 2 (τ )u(t + τ )dτ + D 1 w(t), ∀t ≥ t 0 z(t) = C 1 x(t) + 0 -r(t) C 2 (τ )x(t + τ )dτ + B 4 u(t) + 0 -r(t) B 5 (τ )u(t + τ )dτ + D 2 w(t), ∀θ ∈ [-r 2 , 0], x(t 0 + θ) = ϕ(τ ), r(•) ∈ M (R [r 1 , r 2 ]) (1) 
to be stabilized, where

t 0 ∈ R and ϕ(•) ∈ C([-r 2 , 0] R n ), and 
r 2 > 0, r 2 ≥ r 1 ≥ 0 are given constants. Furthermore, x : [t 0 -r 2 , ∞) → R n satisfies (1), u(t) ∈ R p denotes input signals, w(t) ∈ L 2 ([t 0 , +∞) R q ) represents disturbance,
and z(t) ∈ R m is the regulated output. The size of the given state space parameters in (1) is determined by the values of n ∈ N and m; p; q ∈ N 0 := N ∪ {0}. Finally, the matrix-valued distributed delays in (1) satisfy

A 2 (•) ∈ L 2 ([-r 2 , 0] R n×n ), C 2 (•) ∈ L 2 ([-r 2 , 0] R m×n ) B 2 (•) ∈ L 2 ([-r 2 , 0] R n×p ), B 5 (•) ∈ L 2 ([-r 2 , 0] R m×p ).
(2)

Remark 1. Systems with distributed delays and a timevarying delay function can be found among the models of neural networks [START_REF] Ge | Robust passivity analysis for uncertain neural networks with discrete and distributed time-varying delays[END_REF]; [START_REF] Dong | Observer design for neutral-type neural networks with discrete and distributed time-varying delays[END_REF].

The distributed delays in (2) are infinite-dimensional. In order to construct synthesis constraints with finite dimensions for (1), we propose a decomposition scenario as follows.

Proposition 1. Let r 0 = 0. The conditions in (2) holds if and only if there exist

f 1 (•) ∈ C 1 ([-r 2 , 0] R d1 ), f 2 (•) ∈ C 1 ([-r 2 , 0] R d2 ), φ 1 (•) ∈ L 2 ([-r 2 , 0] R δ1 ), φ 2 (•) ∈ L 2 ([-r 2 , 0] R δ2 ), M 1 ∈ R d1×κ1 , M 2 ∈ R d2×κ2 , A 2 ∈ R n×κ1n , A 3 ∈ R n×κ2n , B 2 ∈ R n×κ1p , B 3 ∈ R n×κ2p , C 2 ∈ R m×κ1n , C 3 ∈ R m×κ2n , B 5 ∈ R m×κ1p and B 6 ∈ R m×κ2p such that ∀i ∈ {1, 2} and ∀τ ∈ [-r i , -r i-1 ] A 2 (τ ) = A i+1 f i (τ ) ⊗ I n , B 2 (τ ) = B i+1 f i (τ ) ⊗ I p (3) C 2 (τ ) = C i+1 f i (τ ) ⊗ I n , B 5 (τ ) = B i+4 f i (τ ) ⊗ I p , ( 4 
)
df i (τ ) dτ = M i f i (τ ) (5) 
G i = [] 0×0 or G i ≻ 0, G i := -ri -ri-1 f i (τ ) f ⊤ i (τ )dτ (6)
where

κ 1 = d 1 + δ 1 , κ 2 = d 2 + δ 2 with d 1 ; d 2 ; δ 1 ; δ 2 ∈ N 0 satisfying d 1 + d 2 > 0, and 
f 1 (τ ) = φ 1 (τ ) f 1 (τ ) , f 2 (τ ) = φ 2 (τ ) f 2 (τ ) . ( 7 
)
Finally, the derivatives in (5) at τ = 0 and τ = -r 2 are one-sided derivatives. Note that if matrix multiplications in (3)-( 7) involve any empty matrix, then it follows the definition and properties of empty matrices in Matlab.

Proof. See [START_REF] Feng | Dissipative Stabilization for Linear Systems with Time-Varying General Distributed Delays[END_REF]. ■ Remark 2. Proposition 1 provides an effective way to handle the distributed delays in (1). It uses a group of "basis" functions to decompose the distributed delays without appealing to the application of approximations. The potential choices of the functions in (3)-(4) will be further discussed in the next section in light of the construction of a KF related to f 1 (•) and f 2 (•).

The formulation of the closed-loop system

Assume the open-loop system in (1) is stabilized by u(t) = Kx(t) with K ∈ R p×n . Then the closed-loop system can be derived as

ẋ(t) = A 1 x(t) + 0 -r1 A 2 f 1 (τ ) ⊗ I n x(t + τ )dτ + -r1 -r(t) A 3 f 2 (τ ) ⊗ I n x(t + τ )dτ + B 1 Kx(t) + 0 -r1 B 2 (I κ1 ⊗ K) f 1 (τ ) ⊗ I n x(t + τ )dτ + -r1 -r(t) B 3 (I κ2 ⊗ K) f 2 (τ ) ⊗ I n x(t + τ )dτ + D 1 w(t) z(t) = C 1 x(t) + 0 -r1 C 2 f 1 (τ ) ⊗ I n x(t + τ )dτ + -r1 -r(t) C 3 f 2 (τ ) ⊗ I n x(t + τ )dτ + B 4 Kx(t) + 0 -r1 B 5 (I κ1 ⊗ K) f 1 (τ ) ⊗ I n x(t + τ )dτ + -r1 -r(t) B 6 (I κ2 ⊗ K) f 2 (τ ) ⊗ I n x(t + τ )dτ + D 2 w(t), ∀θ ∈ [-r 2 , 0], x(t 0 + θ) = ϕ(τ ), r(•) ∈ M (R [r 1 , r 2 ]) (8) 
by Lemma 2 and Proposition 1, where the decomposition of the distributed delays are constructed via

f i (τ ) ⊗ I p K = f i (τ ) ⊗ I p (1 ⊗ K) = I κi f i (τ ) ⊗ KI n = (I κi ⊗K) f i (τ ) ⊗ I n , i = 1, 2 (9) 
by (A.2). Note that (8) has different forms for the following three cases r 2 > r 1 > 0, and r 1 = 0; r 2 > 0, and r 1 = r 2 > 0. 1 This implies that each case of these three may require a distinct formulation for the corresponding synthesis conditions for (8). To avoid deriving three separated synthesis conditions, we rewrite (8) as

ẋ(t) = A + B 1 I 3+κ ⊗ K ⊕ O q χ(t), ∀t ≥ t 0 z(t) = C + B 2 I 3+κ ⊗ K ⊕ O q χ(t), ∀θ ∈ [-r 2 , 0], x(t 0 + θ) = ϕ(θ) ( 10 
)
with t 0 and ϕ(•) in (1), where κ = κ 1 + 2κ 2 and

A = O n,n A 1 2 Row i=1 A i+1 G i ⊗ I n O n,κ2n D 1 (11) B 1 = O n,p B 1 2 Row i=1 B i+1 G i ⊗ I p O n,κ2p O n,q (12) 
C = O m,n C 1 2 Row i=1 C i+1 G i ⊗ I n O m,κ2n D 2 (13) B 2 = O m,p B 4 2 Row i=1 B i+4 G i ⊗ I p O m,κ2p O m,q (14) χ(t) =                 1x(t -r 1 ) 1x(t -r 2 ) x(t) 0 -r1 G -1 1 f 1 (τ ) ⊗ I n x(t + τ )dτ -r1 -r(t) G -1 2 f 2 (τ ) ⊗ I n x(t + τ )dτ -r(t) -r2 G -1 2 f 2 (τ ) ⊗ I n x(t + τ )dτ w(t)                 (15) O n,p =      O n,2p for r 2 > r 1 > 0 O n,p for r 1 = r 2 > 0 O n,p for r 1 = 0; r 2 > 0 3 =      3 for r 2 > r 1 > 0 2 for r 1 = r 2 > 0 2 for r 1 = 0, r 2 > 0 (16) 1 = I n for r 2 > r 1 ≥ 0, [] 0×n for r 1 = r 2 > 0, 1 = I n for r 2 ≥ r 1 > 0, [] 0×n for r 1 = 0, r 2 > 0. ( 17 
)
1 Since (8) becomes a delay free system with r 1 = r 2 = 0, hence such a case is not considered here.

Note that

√ X stands for the unique square root of X ≻ 0 and the terms in ( 11)-( 14) are obtained by the following relations for i ∈ {1, 2}:

f i (τ ) ⊗ I n = G i G -1 i f i (τ ) ⊗ I n = G i ⊗ I n G -1 i f i (τ ) ⊗ I n , ( 18 
) (I κi ⊗ K) f i (τ ) ⊗ I n = G i G -1 i ⊗ K f i (τ ) ⊗ I n = G i ⊗ I p (I κi ⊗ K) G -1 i f i (τ ) ⊗ I n ( 19 
)
which themselves can be obtained via (A.1) with the fact that G 1 and G 2 in (6) are invertible2 . Now the expressions of the closed-loop system in (8) at r 1 = r 2 > 0 and r 1 = 0; r 2 > 0 can be obtained by ( 10) with r 1 = r 2 > 0, d 2 = δ 2 = 0, and r 1 = 0; r 2 > 0, d 1 = δ 1 = 0 in ( 11)-( 16), respectively.

Remark 3. By introducing the terms O, 3, 1 and 1 in ( 16)-( 17), the expression of the closed-loop system in ( 8) can be equivalently denoted by ( 10) which can characterize all the cases of r 2 ≥ r 1 ≥ 0, r 2 > 0 without introducing redundant terms into the parameters in ( 11)-( 16). This is critical in deriving well-posed synthesis conditions in this paper.

Remark 4. The existence and uniqueness of the solution of the closed-loop system (10) are guaranteed by Theorem 1.1 in Chapter 6 of [START_REF] Hale | Introduction to Functional Differential Equations[END_REF] which is developed for a general linear delay system. See the same remark in [START_REF] Feng | Dissipative Stabilization for Linear Systems with Time-Varying General Distributed Delays[END_REF] for more explanations.

Main results

Since the differential equation in ( 8) holds for almost all t ≥ t 0 even in the case of w(t) ≡ 0 n , thus the standard Lyapunov Krasovskiĭ stability theorem3 cannot be applied to (8). A Lyapunov-Krasovskiĭ stability criterion is presented as follows which can analyze the stability of (8). See Lemma 4 in Appendix A for the general Lyapunov-Krasovskiĭ stability criterion which is derived for analyzing the stability of general functional differential equations subject to the Caratheodory conditions in section 2.6 of [START_REF] Hale | Introduction to Functional Differential Equations[END_REF].

Corollary 1. Let w(t) ≡ 0 q in (10) and r 2 ≥ r 1 ≥ 0, r 2 > 0 be given, then the trivial solution x(t) ≡ 0 n of (10

) is uniformly asymptotically stable in C([-r 2 , 0] R n ) if there exist ϵ 1 ; ϵ 2 ; ϵ 3 > 0 and a differentiable functional v : C([-r 2 , 0] R n ) → R with v(0 n (•)) = 0 such that ∀ϕ(•) ∈ C([-r 2 , 0] R n ), ϵ 1 ∥ϕ(0)∥ 2 2 ≤ v(ϕ(•)) ≤ ϵ 2 ∥ϕ(•)∥ 2 ∞ , (20) ∀t ≥ t 0 ∈ R, d dt v(x t (•)) ≤ -ϵ 3 ∥x(t)∥ 2 2 (21)
where

x t (•) in (21) is defined by the equality ∀t ≥ t 0 , ∀θ ∈ [-r 2 , 0], x t (θ) = x(t + θ) in which x(•) ∈ C (R ≥t0-r2 R n ) satisfies ẋ(t) = A + B 1 I 3+κ ⊗ K ⊕ O q χ(t) in (10) with w(t) ≡ 0 q .
Proof. Since (10) with w(t) ≡ 0 q is a linear system and

r(•) ∈ M (R [r 1 , r 2 ]
),thus (10) with w(t) ≡ 0 q is a special case of the general time-varying system in (A.5). Then ( 20) and ( 21) can be obtained by letting 10) with a supply rate function s(z(t), w(t)) is said to be dissipative if there exists a differentiable func-

α 1 (s) = ϵ 1 s 2 , α 2 (s) = ϵ 2 s 2 , α 3 (s) = ϵ 3 s 2 with ϵ 1 ; ϵ 2 ; ϵ 3 > 0. ■ Definition 1. Given 0 ̸ = r 2 ≥ r 1 ≥ 0 with r 2 > 0, the system in (
tional v : C([-r 2 , 0] R n ) → R such that ∀t ≥ t 0 , v(x t (•)) -s(z(t), w(t)) ≤ 0 (22) 
where t 0 , z(t) and w(t) are given in (10) together with

∀t ≥ t 0 , ∀θ ∈ [-r 2 , 0], x t (θ) = x(t + θ) where x(t)
is the solution of the system in (10).

Note that ( 22) implies the origin integral-based definition of dissipativity via the properties of Lebesgue integrals. To characterize dissipativity, a quadratic supply function

s(z(t), w(t)) = z(t) w(t) ⊤ J ⊤ J -1 1 J J 2 * J 3 z(t) w(t) S m ∋ J ⊤ J -1 1 J ⪯ 0, S m ∋ J -1 1 ≺ 0, J ∈ R m×m (23)
is applied in this paper where the structures in ( 23) are based the quadratic constraints in [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF].

Note that s(z(t), w(t)) in ( 23) can characterize numerous performance criteria such as

• L 2 gain performance: J 1 = -γI m , J = I m , J 2 = O m,q , J 3 = γI q where γ > 0.
• Passivity:

J 1 ∈ S m ≺0 , J = O m , J 2 = I m , J 3 = O m with m = q.
Two integral inequalities, which are presented in Lemma 5 and 6 in Appendix B, are required to derive the main results in this paper. The inequality in Lemma 6 is specifically proposed as an important contribution in this paper to ensure that the dimensions of the resulting synthesis conditions are finite.

The main results of this paper are summarized in two theorems and an algorithm in the rest of this section.

Theorem 1. Let r 2 > r 1 > 0 and all the parameters in Proposition 1 be given, then the closed-loop system (10) with the supply rate function in (23) is dissipative and the trivial solution x(t) ≡ 0 n of (10) with w(t) ≡ 0 q is uniformly asymptotically stable

in C([-r, 0] R n ) if there exist K ∈ R p×n and P 1 ∈ S n , P 2 ∈ R n×ϱ , P 3 ∈ S ϱ with ϱ = (d 1 + d 2 )n and Q 1 ; Q 2 ; R 1 ; R 2 ∈ S n and Y ∈ R n×n such that P 1 P 2 * P 3 + O n ⊕ I d1 ⊗ Q 1 ⊕ I d2 ⊗ Q 2 ≻ 0, (24) 
Q 1 ⪰ 0, Q 2 ⪰ 0, R 1 ⪰ 0, R 2 Y * R 2 ⪰ 0, (25) 
Ψ Σ ⊤ J ⊤ * J 1 = Sy P ⊤ Π + Φ ≺ 0 ( 26 
)
where

Σ = C + B 2 I 3+κ ⊗ K ⊕ O q with C and B 2 in (13
) and ( 14), and

Ψ = Sy     O ⊤ n,n O ⊤ ϱ,n In On,ϱ Oκn,n I ⊤ Oq,n Oq,ϱ   P 1 P 2 * P 3 A + B 1 I 3+κ ⊗ K ⊕ O q F ⊗ I n O ϱ,q -    O ⊤ m,n O (n+κn),m J ⊤ 2    Σ    -Ξ (27) I = F -1 1 ⊕ F -1 2 O d 1 ,δ 1 I d 1 O d 1 ,δ 2 O d 1 ,d 2 O d 1 ,δ 2 O d 1 ,d 2 O d 2 ,δ 1 O d 2 ,d 1 O d 2 ,δ 2 I d 2 O d 2 ,δ 2 I d 2 × √ G 1 ⊕ √ G 2 ⊕ √ G 2 ⊗ I n (28) Ξ = [Q 1 -Q 2 -r 3 R 2 ] ⊕ [1Q 2 ] ⊕ 1(-Q 1 -r 1 R 1 ) ⊕ (I κ1 ⊗ R 1 ) ⊕ * R 2 Y * R 2 ⊗ I κ2 K (n,κ2) O κ2n * K (n,κ2) ⊕ J 3 (29) F =   -F -1 1 f 1 (-r 1 ) 0 d1 F -1 1 f 1 (0) F -1 2 f 2 (-r 1 ) -F -1 2 f 2 (-r 2 ) 0 d2 • • • -F -1 1 M 1 √ G 1 O d1,κ2 O d1,κ2 O d2,κ1 -F -1 2 M 2 √ G 2 -F -1 2 M 2 √ G 2   (30) with A, B 1 in (11)-(12) and 1, 1 in (17) and G 1 ,G 2 in (6). Moreover, F 1 = 0 -r1 f 1 (τ )f ⊤ 1 (τ )dτ and F 2 = -r1 -r2 f 2 (τ )f ⊤ 2 (τ )
dτ and the rest of the parameters in (26) is defined as

P = O n,n P 1 P 2 I O n,q O n,m , (31) 
Π = A + B 1 I 3+κ ⊗ K ⊕ O q O n,m (32) 
and 26) are a dissipative synthesis condition for the closed-loop system in (10) with 26) are a dissipative synthesis condition for the closed-loop system in (10) with r 2 > 0; r 1 = 0.

Φ = Sy      O ⊤ ϱ,n P2 I ⊤ P3 O (q+m),ϱ F ⊤ ⊗ I n O (q+m),ϱ ⊤ +      O ⊤ m,n O (n+κn),m -J ⊤ 2 J      Σ O m      -Ξ ⊕ (-J 1 ) . (33) Furthermore, with r 1 = r 2 , d 2 = δ 2 = 0 and Q 2 = R 2 = Y = O n , then the inequalities in (24)-(
r 1 = r 2 > 0. Finally, with r 2 > 0; r 1 = 0, d 1 = δ 1 = 0 and Q 1 = R 1 = O n , then the inequalities in (24)-(
Proof. See Appendix C. ■ Remark 5. Without using 1, 1 and O, the synthesis condition derived for the case of r 2 > r 1 > 0 may not be directly applied to the cases of r 1 = r 2 or r 1 = 0; r 2 > 0. This is due to the changes of the mathematical structures of the closed-loop system in (10) and the functional (C.1) corresponding to r 1 = r 2 or r 1 = 0; r 2 > 0.

Remark 6. Note that f 1 (•) and f 2 (•) in (C.2) can be any differentiable function since the decompositions in ( 3)-( 4) are always constructible via some proper choices of φ 1 (•) and φ 2 (•). On the other hand, the functions inside of f 1 (•) and f 2 (•) can be chosen in view of the functions inside of the distributed delays in (1).

A comment on (B.5)

The significance of the proposed inequality in (B.5) can be understood considering the procedures in the proof of Theorem 1. Indeed, assume that (B.2) is directly applied to

-r1 -r(t) x ⊤ (t+τ )Q 2 x(t+τ )dτ and -r(t) -r2 x ⊤ (t+τ )Q 2 x(
t+ τ )dτ without using (B.5) at the step in (C.10), which gives the inequalities

-r1 -r(t) x ⊤ (t + τ )Q 2 x(t + τ )dτ ≥ [ * ] F -1 1 (r(t)) ⊗ Q 2 × -r1 -r(t) f 2 (τ ) ⊗ I n x(t + τ )dτ (34) -r(t) -r2 x ⊤ (t + τ )Q 2 x(t + τ )dτ ≥ [ * ] F -1 2 (r(t)) ⊗ Q 2 × -r(t) -r2 f 2 (τ ) ⊗ I n x(t + τ )dτ (35) 
where

F 1 (r(t)) = -r1 -r(t) f 2 (τ ) f ⊤ 2 (τ )dτ and F 2 (r(t)) = -r(t) -r2 f 2 (τ ) f ⊤ 2 (τ )dτ . Now combine (34)-(35), we have -r1 -r2 x ⊤ (t+τ )Q 2 x(t+τ )dτ ≥   -r1 -r(t) f 2 (τ ) ⊗ I n x(t + τ )dτ -r(t) -r2 f 2 (τ ) ⊗ I n x(t + τ )dτ   ⊤ × F -1 1 (r(t)) ⊗ Q 2 O d1n,d2n O d2n,d1n F -1 2 (r(t)) ⊗ Q 2 * (36)
which also furnishes a lower bound for -r1

-r2 x ⊤ (t+τ )Q 2 x(t+ τ )dτ . Conventionally, the reciprocally convex combination lemma [START_REF] Park | Reciprocally convex approach to stability of systems with time-varying delays[END_REF] or its derivatives Seuret & Gouaisbaut (2017); Zhang et al. (2017a,b) can be applied to a matrix in the form of 1 1-α X On On 1 α X to construct a tractable lower bound with finite dimensions. However, the structure of

1 1-α X On On 1 α X
may not be always guaranteed by the matrix

F -1 1 (r(t)) ⊗ Q 2 O d1n,d2n O d2n,d1n F -1 2 (r(t)) ⊗ Q 2 (37)
in ( 36), since F -1 1 (r(t)) and F -1 2 (r(t)) are nonlinear with respect to r(t) in general. 4 On the other hand, if (36) is applied directly to replace the step at (C.8) without the use of any kind of reciprocally convex combination lemmas, then the matrix in (37) will appear in the corresponding (26), where (26) becomes infinite-dimensional and also generally nonlinear with respect to r(t). In contrast, the symmetric matrix in the lower bound in (C.10) is of finitedimensional, which is constructed via the application of (B.5). This shows the contribution of the integral inequality in (B.5) by which a dissipative synthesis condition with finite dimensions can be derived via the Krasovskiĭ functional method.

A convex dissipative synthesis condition

Sy P ⊤ Π + Φ ≺ 0 in ( 26) is bilinear with respect to the variables in P and Π if a synthesis problem is concerned, which cannot be solved directly via standard SDP solvers. To tackle this problem, a convex dissipative synthesis condition is constructed in the following theorem via the application of Projection Lemma Gahinet & Apkarian (1994) to (26).

Lemma 1 (Projection Lemma). [START_REF] Gahinet | A linear matrix inequality approach to H ∞ control[END_REF] Given n; p; q ∈ N, Π ∈ S n , P ∈ R q×n , Q ∈ R p×n , there exists Θ ∈ R p×q such that the following two propositions are equivalent :

Π + P ⊤ Θ ⊤ Q + Q ⊤ ΘP ≺ 0, ( 38 
)
P ⊤ ⊥ ΠP ⊥ ≺ 0 and Q ⊤ ⊥ ΠQ ⊥ ≺ 0, ( 39 
)
where the columns of P ⊥ and Q ⊥ contain bases of null space of matrix P and Q, respectively, which means that

P P ⊥ = O and QQ ⊥ = O.
Proof. Refer to the proof of Lemma 3.1 of [START_REF] Gahinet | A linear matrix inequality approach to H ∞ control[END_REF] and Lemma C.12.1 of [START_REF] Briat | Linear Parameter Varying and Time-Delay Systems[END_REF]. ■ Theorem 2. Given {α i } 3+κ i=1 ⊂ R and r 2 > r 1 > 0 and the functions and parameters in Proposition 1, then the closed-loop system in (10) with the supply rate function in (23) is dissipative and the trivial solution x(t) ≡ 0 n of (10) with w(t) ≡ 0 q is uniformly asymptotically stable in

C([-r, 0] R n ) if there exists Ṕ1 ∈ S n , Ṕ2 ∈ R n×ϱ , Ṕ3 ∈ S ϱ and Q1 ; Q2 ; Ŕ1 ; Ŕ2 ; X ∈ S n and Ý ∈ R n×n and V ∈ R p×n such that Ṕ1 Ṕ2 * Ṕ3 + O n ⊕ I d1 ⊗ Q1 ⊕ I d2 ⊗ Q2 ≻ 0, ( 40 
)
Q1 ⪰ 0, Q2 ⪰ 0, Ŕ1 ⪰ 0, Ŕ2 Ý * Ŕ2 ⪰ 0, (41) 
Sy       I n Col 3+κ i=1 α i I n O (q+m),n    -X Π    + O n Ṕ * Φ ≺ 0 ( 42 
)
where (q+m) with I in (28) and

Π = A I 3+κ ⊗ X ⊕ I q + B 1 I 3+κ ⊗ V ⊕ O q O n,m and Ṕ = O n,n Ṕ1 Ṕ2 I O n,
Φ = Sy          O ⊤ ϱ,n Ṕ2 I ⊤ Ṕ3 O (q+m),ϱ     F ⊤ ⊗ I n O (q+m),ϱ ⊤ +      O ⊤ m,n O (n+κn),m -J ⊤ 2 J      Σ O m      - Q1 -Q2 -r 3 Ŕ2 ⊕1 Q2 ⊕ 1(-Q1 -r 1 Ŕ1 ) ⊕ I κ1 ⊗ Ŕ1 ⊕ [ * ] Ŕ2 Ý * Ŕ2 ⊗ I κ2 K (n,κ2) O κ2n * K (n,κ2) ⊕J 3 ⊕(-J 1 ) (43 
) 42) are a dissipative synthesis condition for the closed-loop system with r 1 = r 2 > 0. Finally, with r 2 > 0; r 1 = 0, d 1 = δ 1 = 0 and Q1 = Ŕ1 = O n , then the inequalities in (40)-( 42) are a dissipative synthesis condition for the closed-loop system with r 2 > 0; r 1 = 0.

with Σ = C I 3+κ ⊗ X ⊕ I q + B 2 I 3+κ ⊗ V ⊕ O q and A,B 1 ,B 2 ,C are given in (11)-(14). The controller gain is calculated via K = V X -1 . Furthermore, with r 1 = r 2 , d 2 = δ 2 = 0 and Q2 = Ŕ2 = Ý = O n , then the in- equalities in (40)-(
Proof. Consider the case of r 2 > r 1 > 0. First of all, note that the inequality Sy P ⊤ Π + Φ ≺ 0 in (26) can be reformulated into

Sy P ⊤ Π + Φ = * O n P * Φ Π I 3n+κn+q+m ≺ 0. ( 44 
)
where the structure of ( 44) is similar to one of the inequalities in (39) as part of the statements of Lemma 1. Given the fact that there are two matrix inequalities in (39), thus a new matrix inequality must be constructed accordingly to use Lemma 1 in order to decouple the product between P and Π in (44). Now consider

Υ ⊤ O n P * Φ Υ ≺ 0 (45)
with Υ ⊤ := O (q+m),(4n+κn) I q+m . The inequality in (45) can be further simplified as

Υ ⊤ O n P * Φ Υ = -J 3 -Sy(D ⊤ 2 J 2 ) D ⊤ 2 J * J 1 ≺ 0. ( 46 
)
where the left-hand side of the inequality in ( 46) is the 2 × 2 block matrix at the right bottom of Sy P ⊤ Π + Φ or Φ. As a result, it is clear that ( 46) is automatically satisfied if ( 44) or ( 26) holds. Hence ( 46) and ( 26) hold if and only if (26) holds. On the other hand, the following identities

-I n Π Π I 3n+κn+q+m = O n,(3n+κn+q+m) , -I n Π ⊥ = Π I 3n+κn+q+m , I 4n+κn O (4n+κn),(q+m) O (4n+κn),(q+m) I q+m = I 4n+κn O (4n+κn),(q+m) Υ = O (4n+κn),(q+m) I 4n+κn O (4n+κn),(q+m) ⊥ = O (4n+κn),(q+m) I q+m = Υ (47) 
where rank -I n Π = n and rank I 4n+κn O (4n+κn),(q+m) = 4n + κn, imply that Lemma 1 can be used with the terms in (47) given the rank nullity theorem.

Applying Lemma 1 to ( 44) and ( 46) with (47) yields the conclusion that (44) holds if and only if there exists W ∈ R (4n+κn),n such that

Sy I 4n+κn O (q+m),(4n+κn) W -I n Π + O n P * Φ ≺ 0. (48) 
Now the inequality in ( 48) is still bilinear due to the product between W and Π. To convexify (48), consider

W := Col W, Col 3+κ i=1 α i W (49)
with W ∈ S n and {α i } 3+κ i=1 ⊂ R. With (49), the inequality in (48) becomes

Θ = Sy     W Col 3+κ i=1 α i W O (q+m),n   -I n Π   + O n P * Φ ≺ 0 (50) 
which infers (44). Note that using the structured in (49) infers that ( 50) is no longer an equivalent but only a sufficient condition implying (44) which is equivalent to (26).

It is also important to stress that an invertible W is automatically inferred by ( 50) since the expression -2W is the only element at the first top left diagonal block of Θ.

Let X ⊤ = W -1 , we now apply congruence transformations (Caverly & Forbes, 2019, page 12) to the matrix inequalities in ( 24),( 25) and ( 50) with the fact that an invertible W is inferred by (50). Then one can conclude that

X ⊤ Q 1 X ≻ 0, X ⊤ Q 2 X ≻ 0, X ⊤ R 1 X ≻ 0, X O n * X ⊤ R 2 Y * R 2 X O n * X ≻ 0, I 4+κ ⊗ X ⊤ ⊕ I q+m Θ [(I 4+κ ⊗ X) ⊕ I q+m ] ≺ 0, [ * ] P 1 P 2 * P 3 + O n ⊕ I d1 ⊗ Q 1 ⊕ I d2 ⊗ Q 2 × (I 1+d1+d2 ⊗ X) ≻ 0 (51) 
hold if and only if ( 24),( 25) and ( 50) hold. Moreover, considering (A.1) and the definitions Ý := X ⊤ Y X and

Ṕ1 Ṕ2 * Ṕ3 := [ * ] P 1 P 2 * P 3 (I 1+d1+d2 ⊗ X) , Q1 Q2 Ŕ1 Ŕ2 := X ⊤ Q 1 X Q 2 X R 1 X R 2 X , (52) 
then the inequalities in ( 51) can be rewritten into ( 40) and ( 41) and

[ * ] Θ [(I 4+κ ⊗ X) ⊕ I q+m ] = Θ = Sy     I n Col 3+κ i=1 α i I n O (q+m),n   -X Π   + O n Ṕ * Φ ≺ 0 (53) 
where

Ṕ = XP [(I 3+κ ⊗ X) ⊕ I q+m ] = O n,n Ṕ1 Ṕ2 I O n,q O n,m (54) 
and

Π = Π [(I 3+κ ⊗ X) ⊕ I q+m ] = A [(I 3+κ ⊗ X) ⊕ I q ] + B 1 [(I 3+κ ⊗ KX) ⊕ O q ] O n,m = A [(I 3+κ ⊗ X) ⊕ I q ] + B 1 [(I 3+κ ⊗ V ) ⊕ O q ] O n,m (55) 
with V = KX and Φ in (43). Note that (53)-( 55) is equivalent to the statements in Theorem 2 given the definition of 3 and O in ( 16). Note that also the form of Φ in ( 43) is derived via the relations I (I κ ⊗ X) = (I d1+d2 ⊗ X) I and

F ⊗ I n O ϱ,(q+m) [(I 3+κ ⊗ X) ⊕ I q+m ] = I d1+d2 F ⊗ XI n O ϱ,(q+m) = (I d1+d2 ⊗ X) F ⊗ I n O ϱ,(q+m) = (I d1+d2 ⊗ X) F ⊗ I n O ϱ,(q+m) , (56) 
K (n,κ2) O κ2n * K (n,κ2) I κ2 ⊗ X O κ2n * I κ2 ⊗ X = X ⊗ I κ2 O κ2n * X ⊗ I κ2 K (n,κ2) O κ2n * K (n,κ2) = X O n * X ⊗ I κ2 K (n,κ2) O κ2n * K (n,κ2) (57) 
which are derived from the properties of matrices with (A.1),(A.2) and (A.3). Furthermore, since -2X is the only element at the first top left diagonal block of Θ in (42), thus X is invertible if (42) holds. This is consistent with the fact that an invertible W is implied by the matrix inequality in (50).

As a result, we have shown the equivalence between ( 24)-( 25) and ( 40)-( 41) for the case of r 2 > r 1 > 0. Meanwhile, it has been shown that ( 42) is equivalent to (50) which infers (26). Consequently, ( 24)-( 26) are satisfied if ( 40)-( 42) hold with some W ∈ S n and {α i } 3+κ i=1 ⊂ R. Thus it demonstrates that the existence of the feasible solutions of ( 40)-( 42) ensures that the trivial solution x(t) ≡ 0 n of the closed-loop system in (10) with w(t) ≡ 0 q is uniformly asymptotically stable in C([-r, 0] R n ) and ( 10) with ( 23) is dissipative. Now for the case of r 1 = r 2 , it is not difficult to show that a synthesis condition can be obtained by letting d 2 = δ 2 = 0 in (40)-( 42) with Q2 = Ŕ2 = Ý = O n and r 1 = r 2 , given the definition of 3 and O in ( 16). The proof of such a synthesis condition for r 1 = r 2 follows the same procedures we have presented above with the substitutions 3 ← 3 and 4 ← 3 + 1 and d 2 = δ 2 = 0 in (44)-(57). Similarly, a synthesis condition for the case of r 1 = 0; r 2 > 0 can be obtained by letting d 1 = δ 1 = 0 in ( 40)-( 42) with the substitutions the substitutions 3 ← 3 and 4 ← 3 + 1 and Q1 = Ŕ1 = O n and r 1 = 0; r 2 > 0. ■ Remark 7. Note that Theorem 2 is specifically derived to solve a synthesis problem for (10). If an open-loop system is considered with

B 1 = B 2 (τ ) = O n,p and B 4 = B 5 (τ ) = O m,p
, then Theorem 1 should be applied instead of Theorem 2. This is because Theorem 2 is more conservative compared to Theorem 1 for a specific problem of stability analysis. 42), some values of α i can have more significant impact on the feasibility of (42). For example, the value of α 3 may have a significant impact on the feasibility of (42) since it may determine the feasibility of the very diagonal block related to A 1 in (42). A simple assignment for {α i } 3+κ i=1 ⊂ R can be α i = 0 for i = 1 • • • 3 + κ with i ̸ = 3 which allows one to only adjust the value of α 3 to use Theorem 2.

Remark 8. For {α

i } 3+κ i=1 ⊂ R in (

An inner convex approximation solution of Theorem 1

The simplification we employed in ( 49) can render Theorem 2 more conservative than Theorem 1, while the BMI in Theorem 1 cannot be solved by standard SDP solvers. To tackle these problems, an iterative algorithm is derived in this subsection based on the method proposed in [START_REF] Dinh | An inner convex approximation algorithm for BMI optimization and applications in control[END_REF]. The algorithm provides an inner convex approximation solution for the BMI in ( 26), which can be initiated by a feasible solution of Theorem 2. Thus the advantage of both Theorem 1 and 2 are combined together in the proposed algorithm without the need to use nonlinear solvers.

First of all, note that ( 24)-( 25) remain convex even when a synthesis problem is considered. Now it is obvious that (26) can be rewritten into

U(H, K) := Sy P ⊤ Π + Φ = Sy P ⊤ B I 3+κ ⊗ K ⊕ O p+m + Φ ≺ 0 (58) with B := B 1 O n,m and Φ := Sy P ⊤ A O n,m +Φ,
where P is given in (31), and A and B 1 are given in ( 11)-( 12), and H := P 1 P 2 with P 1 and P 2 in Theorem 1. It is important to stress here that Φ is convex with respect to all the decision variables it contains. Considering the conclusions of Example 3 in [START_REF] Dinh | An inner convex approximation algorithm for BMI optimization and applications in control[END_REF], then the function ∆ • , G, • , Γ , which is defined as

∆ G, G, Γ, Γ := * [Z ⊕ (I n -Z)] -1 G -G Γ -Γ + Sy G ⊤ Γ + G ⊤ Γ -G ⊤ Γ + T (59) with Z ⊕ (I n -Z) ≻ 0 satisfying ∀G; G ∈ R n×l , ∀Γ; Γ ∈ R n×l T + Sy G ⊤ Γ ⪯ ∆ G, G, Γ, Γ T + Sy G ⊤ Γ = ∆(G, G, Γ, Γ) (60) is a psd-convex overestimate of ∆(G, Γ) = T + Sy G ⊤ Γ with respect to the parameterization vec( G) vec( Γ) = vec(G) vec(Γ) . ( 61 
)
Now let

T = Φ, G = P = O n,n P 1 P 2 I O n,q O n,m , G = P = O n,n P 1 P 2 I O n,q O n,m , H = P 1 P 2 , H := P 1 P 2 , P 1 ∈ S n , P 2 ∈ R n×dn Γ = BK, K = I 3+κ ⊗ K ⊕ O p+m , Γ = B K, K = I 3+κ ⊗ K ⊕ O p+m (62)
in ( 59) with l = 3n + κn + q + m and Z ⊕ (I n -Z) ≻ 0 and assume that Φ, H and K are in line with the definition in (58), then

U(H, K) = Φ + Sy P ⊤ B I 3+κ ⊗ K ⊕ O p+m ⪯ S H, H, K, K := Φ+Sy P ⊤ BK+P ⊤ B K-P ⊤ B K + P ⊤ -P ⊤ K ⊤ B ⊤ -K ⊤ B ⊤ [Z ⊕ (I n -Z)] -1 [ * ] (63) 
by ( 60), where S( • , H, • , K) in ( 63) is a psd-convex overes- timate of U(H, K) in ( 58) with respect to the parameterization

vec( H) vec( K) = vec(H) vec(K) . ( 64 
)
By (63), it is obvious that S H, H, K, K ≺ 0 infers (58).

Moreover, it is also true that S H, H, K, K ≺ 0 holds if and only if

Φ+Sy P ⊤ BK+P ⊤ B K-P ⊤ B K P ⊤ -P ⊤ K ⊤ B ⊤ -K ⊤ B ⊤ * -Z On * * Z-In ≺ 0 (65) 
holds based on the application of the Schur complement given Z ⊕ (I n -Z) ≻ 0. Consequently, ( 58) is inferred by ( 65) which can be solved by standard numerical solvers of SDPs provided that the values of H and K are known. By using the results in [START_REF] Dinh | An inner convex approximation algorithm for BMI optimization and applications in control[END_REF], Algorithm 1 is constructed accordingly where x consists of all the variables in P Z in (65). Note that H, H, K and K in Algorithm 1 are defined in (62) and ρ 1 , ρ 2 and ε are given constants for regularizations and setting up error tolerance, respectively.

3 , Q 1 , Q 2 R 1 , R 2 , Y in Theorem 1 and
According to [START_REF] Dinh | An inner convex approximation algorithm for BMI optimization and applications in control[END_REF], the values of H and K must be provided to initialize Algorithm 1, which can be supplied by a feasible solution of ( 24)-( 26) in Theorem 1. Consequently, P 1 ← P 1 , P 2 ← P 2 and K ← K is used for the initial data of H and K in Algorithm 1 if P 1 , P 2 and K are a feasible solutions of ( 24)-( 26). Generally speaking, acquiring a feasible solution of Theorem 1 may not be an easy task. Nevertheless, initial values of P 1 , P 2 and K can be supplied by utilizing Theorem 2 with given values5 of

{α i } 3+κ i=1 .
Algorithm 1: An inner convex approximation solution for Theorem 1 with r 2 > r 1 > 0 begin solve Theorem 2 with given α i to obtain a feasible K, and then solve Theorem 1 with the previous K to obtain

H = P 1 P 2 . update H ←-H, K ←-K, solve min x,H,K tr ρ 1 [ * ] H -H + ρ 2 [ * ] K -K
subject to ( 24)-( 25) and ( 65) to obtain H and 24)-( 25) and ( 65) to obtain H and K; end end Remark 9. If a convex objective function is considered in Theorem 1, for instance L 2 gain γ > 0 minimization, a termination criterion [START_REF] Dinh | An inner convex approximation algorithm for BMI optimization and applications in control[END_REF] can be added to Algorithm 1 in order to characterize the progress of the objective function between each adjacent iteration. Nonetheless, such a condition has not been concerned by the tests of our numerical examples in this paper.

K while vec(H) vec (K) - vec( H) vec( K) ∞ vec( H) vec( K) ∞ + 1 ≥ ε do update H ←-H, K ←-K; solve min x,H,K tr ρ 1 [ * ] H -H + ρ 2 [ * ] K -K subject to (
Remark 10. For the delay values r 2 > 0; r 1 = 0 or r 2 = r 1 > 0, Algorithm 1 can be utilized via the corresponding synthesis conditions with appropriate parameter assignments as stated in the statements of Theorem 1 and 2.

Since we have proposed many technical results in this paper, a summary concerning their relations is presented as follows:

• The first important technical result is the decomposition scenario in Proposition 1. This enables us to denote general distributed delays in terms of the products between constants and some appropriate functions.

• By using Proposition 1, one can derive the synthesis results in Theorem 1 where the synthesis condition is characterized by optimization constraints of finite dimensions thanks to the application of the integral inequality proposed in (B.5).

• Theorem 2 has been proposed as a convexification of the BMI in Theorem 1 via the application of the Projection Lemma.

• Algorithm 1 has been further proposed to solve the BMI in Theorem 1 based on the inner convex approximation algorithm. The initial value of Algorithm 1 can be provided by solving the synthesis condition in Theorem 2.

Numerical examples

In this section, two numerical examples are presented to demonstrate the effectiveness of our proposed methodologies. The numerical tests are conducted in Matlab environment using Yalmip [START_REF] Löfberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF] as the optimization interface. Moreover, we use SDPT3 Toh et al. (2012) for solving SDPs numerically.

Stability and dissipative analysis of a linear system with a time-varying distributed delay

Consider a system of the form (1) with any r(•) ∈ M R [r 1 , r 2 ] and the state space matrices

A 1 = 0.1 0 0 -1 , B 1 = B 2 (τ ) = B 4 = B 5 (τ ) = 0 0 , A 2 (τ ) =
0.3e cos(5τ ) -0.1e sin(5τ ) -0.4 0.01e cos(5τ ) -0.1e sin(5τ ) +1 ln(2-τ )-1 0.4-0.3e cos(5τ )

,

D 1 = 0.1 0.2 , D 2 = 0.12 0.1 , C 1 = -0.1 0.2 0 0.1 , C 2 (τ ) = 0.
2e sin(5τ ) -0.11 0.1-0.5 ln(2-τ ) 0.1e sin(5τ ) 0.14e cos(5τ ) -0.2e sin(5τ ) .

(66)

Moreover, let

J 1 = -γI m , J = I m , J 2 = O m,q , J 3 = γI q (67)
for the supply rate function in ( 23) where the objective is to calculate the minimum value of L 2 gain γ. Note that all the controller gains in (66) are of zero values, and the distributed delays in (66) contain different types of functions.

To the best of our knowledge, no existing approaches, neither time nor frequency-domain based methods, can analyze the stability of (1) with the parameters in (66). Note that since r(t) is time-varying and its expression is unknown, hence the distributed delay kernels in (66) may not be approximated over [-r(t), 0] via the approaches in [START_REF] Münz | Robust stabilization and H ∞ control of uncertain distributed delay systems[END_REF]; [START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF]. For the same reason, the distributed delays may not be easily analyzed in frequency domain analytically via the existing methods in [START_REF] Kharitonov | Frequency stability analysis of linear systems with general distributed delays[END_REF]; [START_REF] Breda | Stability of linear delay differential equations: A numerical approach with MATLAB[END_REF]; [START_REF] Vyhlídal | QPmR -Quasi-Polynomial Root-Finder: Algorithm Update and Examples[END_REF]. Finally, no existing methods may calculate the L 2 gain of the system considered in this subsection.

By observing the functions inside of A 2 (•), C 2 (•) in ( 66), we choose

f 1 (τ ) = f 2 (τ ) = 1 e sin(5τ ) e cos(5τ ) ln(2-τ ) , φ 1 (τ ) = φ 2 (τ ) = cos(5τ )e sin(5τ ) sin(5τ )e cos(5τ ) 1 τ -2 , M 1 = M 2 =     0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 -5 0 0 0 0 0 0 0 1 0 0 0 0     (68) for the functions f 1 (•), f 2 (•) and φ 1 (•), φ 2 (•) in Proposition 1, which corresponds to d 1 = d 2 = 4, δ 1 = δ 2 = 3, n = m = 2, q = 1, and B 2 = B 3 = B 5 = B 6 = O 2×7 and A 2 = A 3 = 0 0 0 0 0 0 -0.4 1 -0.1 -0.1 0.3 0.01 0 0 0 0 0 0 0 0 -1 0.4 0 0 0 -0.3 1 0 C 2 = C 3 = 0 0 0 0 0 0 -0.11 0.1 0.2 0 0 0 0 -0.5 0 0 0 0 0 0 0 0 0.1 -0.2 0 0.14 0 0 . ( 69 
)
Now apply Theorem 1 to (10) with the parameters in ( 66)-( 69), where the conditions in Theorem 1 are all convex in this case. It produces the results in Tables 12, where several detectable delay boundaries are presented with the corresponding min γ. The results of min γ in Table 1 indicate that smaller r 3 can lead to smaller min γ values. Indeed, it is more difficult to make the system to be dissipative for all r(

•) ∈ M (R [r 1 , r 2 ]) with a large value of r 3 than for all r(•) ∈ M (R [ŕ 1 , ŕ2 ]) with a smaller value of ŕ3 = ŕ2 -ŕ1 if [ŕ 1 , ŕ2 ] ⊂ [r 1 , r 2 ].
On the other hand, the values of min γ in table 2 show that the values of r 1 and r 2 can significantly affect the resulting min γ even with a fixed r 3 = r 2 -r 1 .

In order to partially verify the results in Tables 1 and2, we utilize the frequency domain method in [START_REF] Breda | Stability of linear delay differential equations: A numerical approach with MATLAB[END_REF] to (66) assuming that r(•) ∈ M (R [r 1 , r 2 ]) is an unknown function with a constant value. (Note that an unknown r(•) with a constant value is an option for r(

•) ∈ M (R [r 1 , r 2 ]))
The result shows that the system with a constant value of r is stable over [0.61, 1.64], which is consistent with the results in Tables 1 and2. This is because the results in Tables 1 and 2 infer that the system with a constant delay value is stable over the intervals therein, which are all the subsets of [0.61, 1.64].

Remark 11. Note that the values of min γ in Tables 1-2 are valid for any r(•) ∈ M (R [r 1 , r 2 ]) with given r 1 and r 2 since the proposed methods in this paper guarantee that the system with ( 67) is dissipative for any r(•) ∈ M (R [r 1 , r 2 ]). This is also true for other options for dissipative constraints.

Dissipative stabilization of a linear system with a timevarying distributed delay

Consider a system of the form (1) with any r(•) ∈ M (R [0.5, 1]) and the state space parameters

A 1 = -1 -1.9 0 0.1 , B 1 = 0 1 , B 2 (τ ) = 0.
1 sin(e τ ) -0.1 0.12 cos(e τ ) + 0.1

A 2 (τ ) = 0.2 cos(e τ )+0.1 sin(e τ ) 0.01 cos(e τ )-0.1 sin(e τ ) 0 -0.4 cos(e τ ) , τ ∈ [-r 1 , 0] A 2 (τ ) = 0.2 cos(e τ )+0.1 sin(e τ )-0.2 0.01 cos(e τ )-0.1 sin(e τ )+1 ln(2-cos(τ ))-1.2 1-0.4 cos(e τ ) , τ ∈ [-r(t) D 1 = 0.01 0.02 , C 1 = 0.1 0.15 0 -0.2 , B 4 = 0 0.1 C 2 (τ ) = 0.2 sin(e τ )+0.1 0.1 -0.2 sin(e τ ) 0.3 sin(e τ )-0.1 cos(e τ ) , B 5 (τ ) = 0 0.1 -0.1 sin(e τ ) , D 2 = 0.1 0.2 . ( 70 
)
Moreover, let

J 1 = -γI m , J = I m , J 2 = O m,q , J 3 = γI q (71)
for the supply rate function in (23) to calculate the minimum value of L 2 gain γ. According to our best knowledge, no existing methods can find a controller for (1) with the parameters in (70).

By observing the functions inside of

A 2 (•), B 2 (•), C 2 (•), B 5 (•), we choose f 1 (•), f 2 (•) and φ 1 (•), φ 2 (•) in Proposition 1 to be f 1 (τ ) =   1 sin(e τ ) cos(e τ )   , f 2 (τ ) =     1 sin(e τ ) cos(e τ ) ln(2 -cos τ )     , φ 1 (τ ) = e τ cos(e τ ) e τ sin(e τ ) , φ 2 (τ ) =    e τ cos(e τ ) e τ sin(e τ ) sin τ 2 -cos τ    M 1 = 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 , M 2 = 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 (72) with d 1 = 3, d 2 = 4, δ 1 = 2, δ 3 = 3, n = m = 2, q = 1, and A 2 = 0 0 0 0 0 0 0.1 -0.1 0.2 0.01 0 0 0 0 0 0 0 0 0 -0.4 , A 3 = 0 0 0 0 0 0 -0.2 1 0.1 -0.1 0.2 0.01 0 0 0 0 0 0 0 0 -1.2 1 0 0 0 -0.4 1 0 B 2 = 0 0 -0.1 0.1 0 0 0 0.1 0 0.12
, B 3 = 0 0 0 -0.1 0.1 0 0 0 0 0 0.1 0 0.12 0 C 2 = 0 0 0 0 0.1 0.1 0.2 0 0 0 0 0 0 0 0 0 -0.2 0.3 0 -0.1 , C 3 = 0 0 0 0 0 0 0.1 0.1 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2 0.3 0 -0.1 0 0 B 5 = 0 0 0 0 0 0 0 0.1 -0.1 0 , B 6 = 0 0 0 0 0 0 0 0 0 0 0.1 -0.1 0 0 .

(73)

Now apply Algorithm 1 to (10) with the parameters in ( 70)-( 73) and with α 1 = α 2 = α i = 0, i = 4 • • • 12 and α 3 = 0.5 for the initialization of Algorithm 1 via Theorem 2. It produces the controller gains and the corresponding min γ in Tables 3, where NoIs stands for the number of iterations in the while loop inside of Algorithm 1. Since r(t) in this paper is time-varying and its expression is unknown, hence existing frequency-domain-based approaches may not be directly applied to analyze the stability of the resulting closed-loop systems obtained by our methods. To partially verify our synthesis results in Tables 3, we confine r(t) to be an unknown constant r ∈ [r 1 , r 2 ]. This allows one to apply the spectral method in [START_REF] Breda | Stability of linear delay differential equations: A numerical approach with MATLAB[END_REF] to calculate the spectral abscissa of the spectrum of the resulting closed-loop systems with a constant delay. Since our synthesis results indicate that any resulting closed-loop system is stable for all r(•) ∈ M (R [r 1 , r 2 ]), thus the same closed-loop systems with a constant delay r are stable for r ∈ [r 1 , r 2 ] as the case of r(t) = r is included by M (R [r 1 , r 2 ]). The numerical results produced by [START_REF] Breda | Stability of linear delay differential equations: A numerical approach with MATLAB[END_REF] show that all the resulting closed-loop systems are stable for r ∈ [r 1 , r 2 ] with the assumption that r(t) = r is a constant delay.

For numerical simulation, consider the closed-loop systems stabilized by the controller K = 0.6505 -2.6021 in Table 3. Specifically, assume t 0 = 0, z(t) = 0 2 , t < 0, and ϕ(τ ) = 50 30 ⊤ , τ ∈ [-1, 0] as the initial condition, and w(t) = 50 sin 10t(u(t) -u(t -5)) as the disturbance where u(t) is the Heaviside step function. Moreover, we consider a time-varying delay r(t) = 0.75 + 0.25 cos(100t) which6 exhibits strong oscillation. Numerical simulation is performed in Simulink with the aforementioned data via the ODE solver ode8 with 0.0001 as the fundamental sampling time. The result of our simulation is presented in Figures 123concerning the trajectories of the states, outputs and the controller compensation of the closed-loop systems. Note that the update method of the Matlab function block in Simulink is set as 'discrete' for our simulation. Note that also the modeling of the distributed delays for simulation is attained by discretizing the integrals with the trapezoidal rule 0 -r2

F (t, τ )x(t + τ )dτ ≈ r 2 n F (t, -r 2 )x(t -r 2 ) 2 + n-1 k=1 F t, kr 2 n -r 2 x(t + kr 2 n -r 2 ) + F (t, 0)x(t) 2 (74) 
where ] in Table 3 Remark 13. Due to the absence of proper numerical solvers in Simulink for delay systems, we can only use an ODE solver (ODE8) in Simulink to conduct our simulation. Since we cannot predict the potential problems of using an ODE solver to a delay system, thus the numerical results in Figures 1-3 only give an estimation of the actual behavior of the system trajectories and output, and the numerical accuracy in this case may not be guaranteed. 

F (t, τ ) := F (τ ) ∀τ ∈ [-r(t), 0] 0 ∀τ ∈ [-r 2 , r(t)) ( 75 

Conclusion

In this paper, new methods on the dissipative state feedback stabilization of a linear system with distributed delays (1) have been proposed, where the distributed delay kernels can be any L 2 function and the time-varying delay function is bounded and measurable. The key step of deriving the synthesis condition in Theorem 1 is the application of the novel inequality proposed in Lemma 6 together with the decomposition scenario in Proposition 1, which results in LMIs with finite dimensions as explained in subsection 3.1. Moreover, Algorithm 1 has proposed to the BMI in ( 26), which can be initiated through a feasible solution of the convex conditions in Theorem 2. Another distinct feature of the proposed approach is the use of empty matrices, which enables us to formulate synthesis conditions for three cases simultaneously.

Lemma 4. Consider the functional differential equation

∀t ≥ t 0 , ẋ(t) = f (t, x t (•)), ∀θ ∈ [-r, 0], x(t 0 + θ) = x t0 (θ) = ϕ(θ), r > 0 ∀t ∈ R, 0 n = f (t, 0 n (•)) (A.5)
where t 0 ∈ R and f : R × C ([-r, 0] R n ) → R n satisfies the Caratheodory conditions in section 2.6 of [START_REF] Hale | Introduction to Functional Differential Equations[END_REF] and there exists c(

•) ∈ R R>0 >0 such that ∀δ > 0, ∀ϕ(•) ∈ C δ ([-r, 0] R n ) , ∀t ∈ R, ∥f (t, ϕ(•))∥ 2 < c(δ). (A.6)
Then the trivial solution x(t) ≡ 0 n of (A.5) is uniformly .5) for almost all t ≥ t 0 . Moreover, K ∞ follows the standard definition in [START_REF] Khalil | Nonlinear systems, 3rd. New Jewsey[END_REF]. Note that the notation ∀ means for almost all with respect to the Lebesgue measure. 

asymptotically stable in C([-r, 0] R n ) if there exist α 1 (•); α 2 (•); α 3 (•) ∈ K ∞ , and a continuous functional v : R×C([-r, 0] R n ) → R with ∀t ∈ R, v(t, 0 n (•)) = 0 such that ∀t ∈ R, ∀ϕ(•) ∈ C([-r 2 , 0] R n ), α 1 (∥ϕ(0)∥ 2 ) ≤ v(t, ϕ(•)) ≤ α 2 (∥ϕ(•)∥ ∞ ) , (A.7) ∀t ≥ t 0 ∈ R, d dt v(t, x t (•)) ≤ -α 3 (∥x(t)∥ 2 ) (A.8) where ∥ϕ(•)∥ 2 ∞ := max -r2≤τ ≤0 ∥ϕ(τ )∥ 2 2 , and x t (•), x(•) in (A.8) satisfy ẋ(t) = f (t, x t (•)) in (A
. Suppose U ∈ S n ⪰0 and f(•) ∈ L 2 ϖ K R d satisfying K ϖ(τ )f(τ )f ⊤ (τ )dτ ≻ 0, (B.1) then we have K ϖ(τ )x ⊤ (τ )U x(τ )dτ ≥ [ * ] F -1 ⊗ U K ϖ(τ )F (τ )x(τ )dτ (B.2) for all x(•) ∈ L 2 ϖ R n ), where n; d ∈ N and F (τ ) = f(τ ) ⊗ I n and F = K ϖ(τ )f(τ )f ⊤ (τ )dτ and L 2 ϖ K R d = ϕ(•) ∈ M L(K)/B(R d ) K R d : ∥ϕ(•)∥ 2,ϖ < ∞ (B.3) with ∥ϕ(•)∥ 2 2,ϖ := K ϖ(τ )ϕ ⊤ (τ )ϕ(τ )dτ .
Proof. See eq.( 5) in Theorem 1 of [START_REF] Feng | General Integral Inequalities Including Weight Functions[END_REF]. Note that F in (B.2) is defined differently compared to the definition of F in the theorem 1 of [START_REF] Feng | General Integral Inequalities Including Weight Functions[END_REF]. ■ Lemma 6. Given K = [a, b] with 0 ≤ a < b and . Assume U ∈ S n ⪰0 with n ∈ N and f(τ Thus it means that ϱ can be a function of any kind as long as its value is bounded by [a, b]. This property enables us to deal with time-varying delays, and derive tractable dissipative conditions in the next section.

) := Col d i=1 f i (τ ) ∈ L 2 ϖ [a, b] R d satisfying b a ϖ(τ )f(τ )f ⊤ (τ )dτ ≻ 0, (B.4) then we have b a ϖ(τ )x ⊤ (τ )U x(τ )dτ ≥ [ * ] U Y * U ⊗ F -1 × b ϱ (I n ⊗ f(τ )) x(τ )ϖ(τ )dτ ϱ a (I n ⊗ f(τ )) x(τ )ϖ(τ )dτ = [ * ] * U Y * U ⊗ F -1 K (n,d) O dn * K (n,d) × b ϱ (f(τ ) ⊗ I n ) x(τ )ϖ(τ )dτ ϱ a (f(τ ) ⊗ I n ) x(τ )ϖ(τ )dτ (B.5) for all x(•) ∈ L 2 ϖ (K R n ), ϱ ∈ [a, b] and for any Y ∈ R n×n satisfying [ U Y * U ] ⪰ 0, where F = b a ϖ(τ )f(τ )f ⊤ (τ )dτ . Proof. See

Appendix C. Proof of Theorem 1

The proof of Theorem 1 is via the construction of

v(x t (•)) = η ⊤ (t) P 1 P 2 * P 3 η(t) + 0 -r1 x ⊤ (t + τ ) Q 1 + (τ + r 1 )R 1 x(t + τ )dτ + -r1 -r2 x ⊤ (t + τ ) [Q 2 + (τ + r 2 )R 2 ] x(t + τ )dτ (C.1)
where x t (•) follows the same definition in (22), and

P 1 ∈ S n , P 2 ∈ R n×ϱ , P 3 ∈ S ϱ with ϱ = (d 1 +d 2 )n, and Q 1 ; Q 2 ; R 1 ; R 2 ∈ S n and η(t) :=       x(t) 0 -r1 F -1 1 f 1 (τ ) ⊗ I n x(t + τ )dτ -r1 -r2 F -1 2 f 2 (τ ) ⊗ I n x(t + τ )dτ       (C.2) with F 1 = 0 -r1 f 1 (τ )f ⊤ 1 (τ )dτ and F 2 = -r1 -r2 f 2 (τ )f ⊤ 2 (τ )
dτ . Note that given the conditions in (6), both F -1 1 and F -1 2 are well defined. We will first prove this theorem for the case of r 2 > r 1 > 0. Then the synthesis conditions for the cases of r 1 = r 2 > 0 and r 1 = 0; r 2 > 0 can be easily obtained based on the synthesis condition for r 2 > r 1 > 0, respectively. Now given t 0 ∈ R in (10) with r 2 > r 1 > 0, differentiating v(x t (•)) along the trajectory of (10) and consider (23) produces

∀t ≥ t 0 , v(x t (•)) -s(z(t), w(t)) = χ ⊤ (t) Sy         O 2n,n O 2n,ϱ I n O n,ϱ O κn,n I ⊤ O q,n O q,ϱ     P 1 P 2 * P 3 × A + B 1 I 3+κ ⊗ K ⊕ O q F ⊗ I n O ϱ,q - O (3n+κn),m J ⊤ 2 Σ χ(t) + x ⊤ (t) (Q 1 + r 1 R 1 ) x(t) -x ⊤ (t -r 2 )Q 2 x(t -r 2 ) -x ⊤ (t -r 1 ) (Q 1 -Q 2 -r 3 R 2 ) x(t -r 1 ) -w ⊤ (t)J 3 w(t) - 0 -r1 x ⊤ (t + τ )R 1 x(t + τ )dτ - -r1 -r2 x ⊤ (t + τ )R 2 x(t + τ )dτ -χ ⊤ (t)Σ ⊤ J ⊤ J -1 1 JΣχ(t) (C.3)
where χ(t) is given in ( 16) and Σ, I and F are defined in the statements of Theorem 1. Note that the expression of F in (30) is obtained by the relations

0 -r1 F -1 1 f 1 (τ ) ⊗ I n ẋ(t+τ )dτ = F -1 1 f 1 (0) ⊗ I n x(t) - F -1 1 f 1 (-r 1 ) ⊗ I n x(t -r 1 ) - F -1 1 M 1 G 1 ⊗ I n 0 -r1 G -1 1 f 1 (τ ) ⊗ I n x(t+τ )dτ (C.4) -r1 -r2 F -1 2 f 2 (τ ) ⊗ I n ẋ(t + τ )dτ = F -1 2 f 2 (-r 1 ) ⊗ I n x(t-r 1 )- F -1 2 f 2 (-r 2 ) ⊗ I n x(t-r 2 ) - F -1 2 M 2 G 2 ⊗ I n -r1 -r(t) G -1 2 f 2 (τ ) ⊗ I n x(t+τ )dτ - F -1 2 M 2 G 2 ⊗ I n -r(t) -r2 G -1 2 f 2 (τ ) ⊗ I n x(t+τ )dτ (C.5)
which are derived via ( 5)-( 7) and (A.1)-(A.2). On the other hand, the structure of I in (C.3) is obtained based on the identities

f 1 (τ ) = O d1,δ1 I d1 f 1 (τ ), f 2 (τ ) = O d2,δ2 I d2 f 2 (τ ) (C.6)     0 -r1 F -1 1 f 1 (τ ) ⊗ I n x(t + τ )dτ -r1 -r2 F -1 2 f 2 (τ ) ⊗ I n x(t + τ )dτ     = I         0 -r1 G -1 1 f 1 (τ ) ⊗ I n x(t + τ )dτ -r1 -r(t) G -1 2 f 2 (τ ) ⊗ I n x(t + τ )dτ -r(t) -r2 G -1 2 f 2 (τ ) ⊗ I n x(t + τ )dτ         (C.7)
in light of the form of η(t) in (C.2) and χ(t) in ( 16) and the property of the Kronecker product in (A.2). Note that also the parameters A, B 1 , C and B 2 in (C.3) are given in ( 11)-( 14).

Let R 1 ⪰ 0 and R2 Y * R2 ⪰ 0 with Y ∈ R n×n . Now apply (B.2) and (B.5) with ϖ(τ ) = 1 and f(τ

) = G -1 1 f 1 (τ ), f(τ ) = G -1
2 f 2 (τ ) to the integral terms 0 -r1 x ⊤ (t+τ )R 1 x(t+ τ )dτ and 

I n ⊗ G -1 2 f 2 (τ ) x(t + τ )dτ     = [ * ] * R 2 Y * R 2 ⊗ I κ2 K (n,κ2) O κ2n * K (n,κ2) ×     -r1 -r(t) G -1 2 f 2 (τ ) ⊗ I n x(t + τ )dτ -r(t) -r2 G -1 2 f 2 (τ ) ⊗ I n x(t + τ )dτ     .
(C.10)

Given the definition of 1 and 1 in (17) and O in ( 16) for the case of r 2 > r 1 > 0, applying (C.8)-(C.10) to (C.3) with (25) produces ∀t ≥ t 0 , v(x t (•))-s(z(t), w(t)) ≤ χ ⊤ (t) Ψ -Σ ⊤ J ⊤ J -1 1 JΣ χ(t) (C.11) where Ψ is given in (27) and χ(t) is given in ( 16). Now it is obvious to conclude that if (25) and Ψ-Σ ⊤ J ⊤ J -1 1 JΣ ≺ 0 are true, then ∃ϵ 3 > 0 : ∀t ≥ t 0 , v(x t (•)) -s(z(t), w(t)) ≤ -ϵ 3 ∥x(t)∥ 2 .

(C.12) Moreover, assuming w(t) ≡ 0 q , one can also obtain ∃ϵ 3 > 0, ∀t ≥ t 0 , v(x t (•)) ≤ -ϵ 3 ∥x(t)∥ 2 (C.13) by the structure of Ψ with the fact that Ψ ≺ 0 and the elements in χ(t) considering the properties of quadratic forms. Note that x t (•) in (C.13) is in line with the definition of x t (•) in ( 21). As a result, there exists a functional in (C.1) satisfying ( 22) and ( 21) if ( 25) and Ψ -Σ ⊤ J ⊤ J -1 1 JΣ ≺ 0 are feasible for some matrices. Finally, applying the Schur complement to Ψ -Σ ⊤ J ⊤ J -1

1 JΣ ≺ 0 with (25) and J -1 1 ≺ 0 gives the equivalent condition in (26). Therefore we have proved that the existence of the feasible solutions of ( 25) and ( 26) infer the existence of a functional (C.1) and ϵ 3 > 0 satisfying ( 22) and ( 21). Now we start to show that if ( 24) and ( 25) are feasible for some matrices, then there exist ϵ 1 > 0 and ϵ 2 > 0 such that (C.1) satisfies (20). Let ∥ϕ(•)∥ 

f(τ ) = F -1 1 f 1 (τ ), f(τ ) = F -1 2 f 2 (τ ) produces 0 -r1 x ⊤ (t + τ )Q 1 x(t + τ )dτ ≥ [ * ] I d1 ⊗ Q 1 × 0 -r1 F -1 1 f 1 (τ ) ⊗ I n x(t + τ )dτ -r1 -r2 x ⊤ (t + τ )Q 2 x(t + τ )dτ ≥ [ * ] I d2 ⊗ Q 2 × -r1 -r2
F -1 2 f 2 (τ ) ⊗ I n x(t + τ )dτ 25) and (C.14), it is clear to see that the existence of the feasible solutions of ( 24) and (25) infer that (C.1) satisfies (20) with some ϵ 1 ; ϵ 2 > 0.

In conclusion, we have shown that there exists a functional (C.1) and ϵ 1 ; ϵ 2 > 0 satisfying the dissipative condition in ( 22), and the stability criteria in ( 20)-( 21) if the conditions in ( 24)-( 26) are feasible for some matrices. As a result, it shows that the existence of the feasible solutions of ( 24)-( 26) infers that the trivial solution of the closed-loop system in (10) with w(t) ≡ 0 q is uniformly asymptotically stable in C([-r, 0] R n ), and the system in (10) with ( 23) is dissipative. Now consider the situation of r 1 = r 2 where the delay of the system in ( 10) is of constant values. It is not difficult to show that the corresponding synthesis condition constructed via the functional in (C.1), following the procedures (C.1)-(C.15) with r 1 = r 2 , can be obtained by choosing d 2 = δ 2 = 0 in ( 24)-( 26) with Q 2 = R 2 = Y = O n . Similarly, the corresponding synthesis condition for r 1 = 0; r 2 > 0 can be obtained by choosing d 1 = δ 1 = 0 in ( 24)-( 26) with Q 1 = R 1 = O n . Note that the use of 1, 1 in ( 17) and ( 29), and O in ( 16) allows ( 24)-( 26) to cover the corresponding synthesis conditions for the cases of r 1 = r 2 and r 1 = 0; r 2 > 0, without introducing redundant matrices or matrices with ill-posed dimensions.

  ) and F (τ ) is piecewise continuous on [-r(t), 0]. Remark 12. (75) enables one to discretize 0 -r(t) F (τ )x(t+ τ )dτ via (74) which avoids dealing with 0 -r(t) F (τ )x(t + τ )dτ directly.

Figure 1 :

 1 Figure 1: The close-loop system's trajectory x(t) with K = [ 0.6505 -2.6021] in Table3

Figure 2 :

 2 Figure 2: The trajectory of the controller effort u(t) = Kx(t) with K = [ 0.6505 -2.6021 ] in Table3

Figure 3 :

 3 Figure 3: The output of the closed-loop system z(t) with K = [ 0.6505 -2.6021 ] in Table3

  Proof. See[START_REF] Feng | Dissipative Stabilization for Linear Systems with Time-Varying General Distributed Delays[END_REF]. ■Appendix B. Two integral inequalitiesLemma 5. Given ϖ(•) ∈ M L(K)/B(R) (K R ≥0 ) and assume ϖ(•) has only countably infinite or finite number of zero values, where K ∈ L (R) and its Lebesgue measure is nonzero

  [START_REF] Feng | Dissipative Stabilization for Linear Systems with Time-Varying General Distributed Delays[END_REF] ■ Remark 16. Note that the value of F in (B.5) is related to the values of a and b, and not related to the value of ϱ.

  ⊤ (t+τ )R 2 x(t+τ )dτ in (C.3), respectively. Then we have 0 -r1 x ⊤ (t + τ )R 1 x(t + τ )dτ ≥ [ * ] I κ1 ⊗ R 1 t + τ )R 2 x(t + τ )dτ ≥ [ * ] t) I n ⊗ G -1 2 f 2 (τ ) x(t + τ )dτ -r(t) -r2

2∞

  := sup -r2≤τ ≤0 ∥ϕ(τ )∥ 2 2and consider the structure of (C.1) with t = t 0 , it follows that there exists λ > 0 such thatv(x t0 (•)) = v(ϕ(•)) ≤ η ⊤ (t 0 )λη(t 0 ) + (τ ) ⊗ I n ϕ(τ )dτ ≤ (λ + λr 2 ) ∥ϕ(∈ C ([-r 2 , 0] R n ) in (10), where (C.14) is derived via the property of quadratic forms: ∀X ∈ S n , ∃λ > 0 : ∀x ∈ R n \ {0}, x ⊤ (λI n -X) x > 0 together with the application of (B.2) with ϖ(τ ) = 1 and appropriate f(τ ). Consequently, the result in (C.14) shows that one can construct an upper bound of (C.1) which satisfies (20) with a ϵ 2 > 0.Now applying (B.2) to (C.1) twice with ϖ(τ ) = 1 and

  that (25) holds. Moreover, by utilizing (C.15) to (C.1) with (

Table 1 :

 1 min γ produced with decreasing values of r3

	[r 1 , r 2 ]	[0.98, 1.25] [1, 1.23] [1.02, 1.21] [1.04, 1.19]
	r 3 = r 2 -r 1	0.27	0.23	0.19	0.15
	min γ	0.5511	0.51356	0.48277	0.45692
	[r 1 , r 2 ]	[0.8, 1.07] [1, 1.27] [1.2, 1.47] [1.32, 1.59]
	r 3 = r 2 -r 1	0.27	0.27	0.27	0.27
	min γ	0.35556	0.59179	1.7935	25.9774

Table 2 :

 2 min γ produced with a fixed value for r3

Table 3 :

 3 Controller gains with min γ produced with different iterations

Note that √ X -1 = √ X -1for any X ≻ 0, based on the application of the eigendecomposition of X ≻ 0

See Theorem 2.1 of Section 5.1 in[START_REF] Hale | Introduction to Functional Differential Equations[END_REF], and Theorem 1.3 in[START_REF] Gu | Stability of Time-Delay Systems[END_REF] 

If f 2 (τ ) only contains Legendre polynomials with appropriate structures, then the reciprocally convex combination lemma or its derivatives can be applied to (37). Nevertheless, this is a very special case of f 2 (•) ∈ L 2 [-r 2 , 0] R d 2 +δ 2 considered in this paper.

Note that as we have elaborated in Remark 8 that one may apply Theorem 2 with α i = 0 for i = 1 • • • 3 + κ, i ̸ = 3 which allow users to only adjust the value of α 3 to solve the conditions in Theorem 2

Note that this function satisfies ∀t ≥ t 0 , r 1 = 0.5 ≤ r(t) ≤ 1 = r 2

Appendix A. Important Lemmas

The following properties of the Kronecker product will be used throughout this paper, which are derived from the definition of the Kronecker product and the property

for any A, B, C, D with appropriate dimensions.

The following property of the commutation matrix Magnus & Neudecker (1979) are utilized throughout this paper.

where K (n,d) is the commutation matrix defined by the identity

which follows the definition in [START_REF] Magnus | The Commutation Matrix: Some Properties and Applications[END_REF], where vec(•) stands for the vectorization of a matrix. See Section 4.2 of [START_REF] Dhrymes | Mathematics for Econometrics[END_REF] for the definition and more details of vec(•).

Remark 15. Note that for K (n,d) , we have K (n,1) = K (1,n) = I n , ∀n ∈ N which gives the identity