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Abstract Cerebellar granule cells (GCs) make up the majority of all neurons in the vertebrate

brain, but heterogeneities among GCs and potential functional consequences are poorly

understood. Here, we identified unexpected gradients in the biophysical properties of GCs in mice.

GCs closer to the white matter (inner-zone GCs) had higher firing thresholds and could sustain

firing with larger current inputs than GCs closer to the Purkinje cell layer (outer-zone GCs). Dynamic

Clamp experiments showed that inner- and outer-zone GCs preferentially respond to high- and

low-frequency mossy fiber inputs, respectively, enabling dispersion of the mossy fiber input into its

frequency components as performed by a Fourier transformation. Furthermore, inner-zone GCs

have faster axonal conduction velocity and elicit faster synaptic potentials in Purkinje cells.

Neuronal network modeling revealed that these gradients improve spike-timing precision of

Purkinje cells and decrease the number of GCs required to learn spike-sequences. Thus, our study

uncovers biophysical gradients in the cerebellar cortex enabling a Fourier-like transformation of

mossy fiber inputs.

Introduction
Digital audio compression (e.g. ‘MP3’; Jayant et al., 1993) and image compression (e.g. ‘JPEG’;

Wallace, 1992) rely on Fourier transformations, which decompose a signal (e.g. sound amplitude as

a function of time or image intensity as a function of space) into its frequency components (power as

a function of frequency). By storing these frequency components with different precision depending

on psychophysical demands of hearing and seeing, the overall storage capacity can be increased

dramatically. In principle, neuronal networks consisting of neurons with varied electrophysiological

properties could be suitable for Fourier-like transformations of information. This could benefit proc-

essing in neuronal circuits by increasing the signal-to-noise ratio of input signals or by selecting only

relevant spectral components of a signal. Interestingly, there are indications that for example pyra-

midal neurons in the visual cortex and in the hippocampus are tuned to different inputs or different

input strengths (Cembrowski and Spruston, 2019; Fletcher and Williams, 2019; Soltesz and

Losonczy, 2018). However, whether these neuronal networks perform a Fourier-like transform of

their inputs remains unknown.
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Controlling the timing and precision of movements is considered to be one of the main functions

of the cerebellum. In the cerebellum, the firing frequency of Purkinje cells (PCs) (Heiney et al.,

2014; Herzfeld et al., 2015; Hewitt et al., 2011; Medina and Lisberger, 2007; Payne et al., 2019;

Sarnaik and Raman, 2018; Witter et al., 2013) or the timing of spikes (Brown and Raman, 2018;

Sarnaik and Raman, 2018) have been shown to be closely related to movement. Indeed, cerebellar

pathology impairs precision in motor learning tasks (Gibo et al., 2013; Martin et al., 1996) and tim-

ing of rhythmic learning tasks (Keele and Ivry, 1990). These functions are executed by a remarkably

simple neuronal network architecture. Inputs from mossy fibers (MFs) are processed by GCs and

transmitted via their parallel fiber (PF) axons to PCs, which provide the sole output from the cerebel-

lar cortex. GCs represent the first stage in cerebellar processing and have been proposed to provide

pattern separation and conversion of the MF input into a sparser representation (recently reviewed

by Cayco-Gajic and Silver, 2019). These MF inputs show a wide variety of signaling frequencies,

ranging from slow modulating activity to kilohertz bursts of activity (Arenz et al., 2008; Rancz et al.,

2007; Ritzau-Jost et al., 2014; van Kan et al., 1993). Interestingly, in most cellular models of the

cerebellum, each MF is considered to be either active or inactive with little consideration for this

wide range of frequencies (Albus, 1971; Marr, 1969). Furthermore, in these models, GCs are gener-

ally considered as a uniform population of neurons.

Here, we show that the biophysical properties of GCs differ according to their vertical position in

the GC layer. GCs located close to the white matter (inner-zone) preferentially transmit high-fre-

quency MF inputs, have shorter action potentials, and a higher voltage threshold to fire an action

potential compared with GCs close to the PC layer (outer-zone). These gradients in properties

of GCs enable a Fourier-like transformation of the MF input, where inner-zone GCs convey the high-

frequency, and outer-zone GCs the low-frequency components of the MF input. The different Four-

ier-like components are sent to PCs by specialized downstream signaling pathways, which differ in

PF axon diameters, action potential conduction velocity, and PC excitatory postsynaptic potential

eLife digest The timing of movements such as posture, balance and speech are coordinated by

a region of the brain called the cerebellum. Although this part of the brain is small, it contains a

huge number of tiny nerve cells known as granule cells. These cells make up more than half the

nerve cells in the human brain. But why there are so many is not well understood.

The cerebellum receives signals from sensory organs, such as the ears and eyes, which are passed

on as electrical pulses from nerve to nerve until they reach the granule cells. These electrical pulses

can have very different repetition rates, ranging from one pulse to a thousand pulses per second.

Previous studies have suggested that granule cells are a uniform population that can detect specific

patterns within these electrical pulses. However, this would require granule cells to identify patterns

in signals that have a range of different repetition rates, which is difficult for individual nerve cells to

do.

To investigate if granule cells are indeed a uniform population, Straub, Witter, Eshra, Hoidis et al.

measured the electrical properties of granule cells from the cerebellum of mice. This revealed that

granule cells have different electrical properties depending on how deep they are within the

cerebellum. These differences enabled the granule cells to detect sensory signals that had specific

repetition rates: signals that contained lots of repeats per second were relayed by granule cells in

the lower layers of the cerebellum, while signals that contained fewer repeats were relayed by

granule cells in the outer layers.

This ability to separate signals based on their rate of repetition is similar to how digital audio files

are compressed into an MP3. Computer simulations suggested that having granule cells that can

detect specific rates of repetition improves the storage capacity of the brain.

These findings further our understanding of how the cerebellum works and the cellular

mechanisms that underlie how humans learn and memorize the timing of movement. This

mechanism of separating signals to improve storage capacity may apply to other regions of the

brain, such as the hippocampus, where differences between nerve cells have also recently been

reported.
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(EPSP) kinetics. Computational simulations show that the biophysical gradients in the GC and molec-

ular layer significantly reduce the number of GCs required to learn a sequence of firing frequencies

and reduce the time needed to switch between firing frequencies.

Results

Gradients in the biophysical properties of inner- to outer-zone GCs
To investigate whether GCs are tuned for different frequencies, we first investigated the intrinsic

membrane properties of GCs from different depths within the GC layer in lobule V of the cerebellum

of P21-30 mice. We divided the GC layer into three zones and performed whole-cell current-clamp

recordings from inner- (closest to the white matter), middle- and outer-zone GCs (closest to

PCs) (Figure 1A,B). Upon current injection, inner-zone GCs were less excitable compared with

outer-zone GCs (Figure 1C). On average, the relationship between the frequency of action poten-

tials and the injected current was surprisingly different for inner- and outer-zone GCs (Figure 1D):

inner-zone GCs needed higher current injections to fire an action potential (inner: 56.8 ± 2.6 pA vs.

middle: 51.2 ± 2.0 pA vs. outer: 39.4 ± 2.0 pA; n = 38, 25, and 37, respectively; PKruskal-Wallis <0.0001;

Figure 1E) and to achieve the maximum firing rate compared with middle- and outer-zone GCs

(inner: 224.6 ± 9.8 pA vs. middle: 190.8 ± 9.6 pA vs. outer: 174.3 ± 9.0 pA, respectively; P
Kruskal-

Wallis
= 0.002; Figure 1F). Consistently, inner-zone GCs had a more depolarized threshold for action

potential generation compared with middle- and outer-zone GCs (�38.0 ± 0.7 mV vs. �38.2 ± 0.8

mV vs. �41.4 ± 0.6 mV; PKruskal-Wallis = 0.003; Figure 1G) and a lower input resistance (486 ± 27 MW

vs. 494 ± 27 MW vs. 791 ± 63 MW; PKruskal-Wallis = <0.0001; Figure 1H). Furthermore, the capacitance

of inner-zone GCs was significantly larger compared with outer-zone GCs (inner: 5.8 ± 0.2 pF vs.

middle: 5.8 ± 0.2 pF vs. outer: 4.6 ± 0.1 pF; PKruskal-Wallis = <0.0001 Figure 1I). In agreement with

these findings, we observed depolarization block in inner-zone GCs at higher current inputs than for

outer-zone GCs (Figure 1C,D). Furthermore, a larger delay of the first spike was observed in inner-

compared with outer-zone GCs (Figure 1J; PKruskal-Wallis = 0.0001; Figure 1K). The delay with 60 pA

current injection was 48 ± 6 ms for inner-, 38 ± 4 ms for middle-, and 23 ± 2 ms for outer-zone GCs

(n = 32, 25, and 37, respectively; note that 6 out of 38 inner-zone GCs did not fire an action poten-

tial at 60 pA). Finally, the action potential half-width of GCs differed significantly between the three

zones (inner: 122 ± 2 ms vs. middle: 137 ± 4 ms vs. outer: 143 ± 4 ms; PKruskal-Wallis = 0.0001;

Figure 1L). The distribution of the raw data (Figure 1—figure supplement 1) suggests a gradual

change in the average cell parameters along the depth axis of the GC layer, but two populations of

neurons (salt and pepper distribution), or three populations of neurons (inner-, middle-, and outer-

zone) cannot fully be ruled out.

To test whether these gradients are specific to lobule V, we investigated GCs in lobule IX. Here,

we observed very similar gradients to lobule V (Figure 1—figure supplement 2). In short, outer-

zone GCs were more excitable and had broader spikes compared with inner-zone GCs. Interestingly,

the absolute values between lobule V and IX differed (Figure 1—figure supplement 2), consistent

with previously described differences in, for example the firing frequency in vivo between these two

lobules (Witter and De Zeeuw, 2015a; Zhou et al., 2014) and in the differential density of Kv4 and

Cav3 channel expression in GCs across different lobules (Heath et al., 2014; Rizwan et al., 2016;

Serôdio and Rudy, 1998). Taking the large functional difference between spino- and vestibulo-cere-

bellum into account (Witter and De Zeeuw, 2015b), these data suggest that different biophysical

properties of GCs are likely a conserved mechanism throughout the entire cerebellar cortex, poten-

tially tuning GCs to different frequencies.

Development can have large effects on the physiology of neurons, and GCs in particular undergo

profound changes during development (Dhar et al., 2018; Lackey et al., 2018). To exclude con-

founding effects of the developmental stage, we tested whether these gradients were also present

in more adult mice. Recordings obtained from GCs in lobule V in animals between 80 and 100 days

of age revealed very similar gradients to those observed in young animals (Figure 1—figure supple-

ment 3). Together, these data show prominent gradients in the electrophysiological properties of

GCs over the depth of the GC layer, and that these gradients can consistently be found across differ-

ent lobules and ages.
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Figure 1. Gradients in the biophysical properties of inner- to outer-zone GCs. (A) Scheme of a parasagittal slice from the cerebellar cortex where lobule

V is indicated by an arrow. Enlargement shows a schematic representation of the white matter, the GC, PC and molecular layer of the cerebellar cortex.

Throughout the manuscript, inner-zone GCs (close to the white matter) are depicted in green, the middle-zone GCs in gray, and the outer-zone GC

(close to the PCs) in magenta. (B) Example differential-interference-contrast (DIC) microscopic images of acute cerebellar slices during recordings from

outer- (top) and an inner-zone GCs (bottom). The pipette is indicated with a dashed line. (C) Example current-clamp recordings from an outer-zone GC

(magenta, top) and an inner-zone GC (green, bottom) after injection of increasing currents (40 pA, 60 pA and 300 pA). (D) Average action potential

frequency from inner- (green, n = 38) and outer- (magenta, n = 37) zone GCs plotted against the injected current. Note that the maximum frequency is

similar but outer-zone GCs achieved the maximum firing rate with a lower current injection (error bars represent SEM). (E) Average current threshold for

action potential firing of inner-, middle- and outer-zone GCs (PDunns = 0.0001 for inner- vs outer-zone GCs). All bar graphs represent mean and SEM. (F)

Average current needed to elicit maximum firing frequency for inner-, middle- and outer-zone GCs (PDunns = 0.001 for inner- vs outer-zone GCs). (G)

Left: example action potentials from an inner- and outer-zone GC with the indicated (arrows) mean voltage-threshold for firing action potentials. Right:

Comparison of the average voltage threshold for action potential firing (PDunns = 0.006 for inner- vs outer-zone GCs). (H) Average input resistance of

inner-, middle- and outer-zone GCs (PDunns = 0.0001 for inner- vs outer-zone GCs). (I) Average capacitance of inner-, middle- and outer-zone GCs

(PDunns = 0.0001 for inner- vs outer-zone GCs). (J) Delay time of the first action potential plotted against injected current. Note that only 32 of 38 inner-

zone GCs fired action potentials at a current injection of 60 pA. (K) Delay of the first action potential of inner-, middle- and outer-zone GCs at a current

injection of 60 pA (PDunns = 0.0001 for inner- vs outer-zone GCs). (L) Average action potential half-duration of inner-, middle- and outer-zone GCs

(PDunns = 0.0001 for inner- vs outer-zone GCs).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Raw data of the bar graphs from Figure 1.

Figure supplement 2. Gradients in the biophysical properties of GCs and PFs are preserved throughout the cerebellar cortex.

Figure supplement 3. Gradients in the biophysical properties of GCs and PFs are also found in 3-month-old animals.
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Voltage-gated potassium currents are larger at inner-zone GCs
To investigate possible biophysical causes for the gradients in the biophysical properties, we investi-

gated voltage-gated potassium (Kv) currents by performing voltage-clamp recordings in outside-out

patches from somata of inner- and outer-zone GCs in lobule V (Figure 2A). The maximum Kv current

at -60 mV was significantly higher in inner-zone GCs (282 ± 29 pA, n = 48) compared with outer-

zone GCs (221 ± 28 pA, n = 54, PMann-Whitney = 0.04; Figure 2B; Figure 2—figure supplement 1).

Neither the steady-state activation curve (Figure 2C) nor the degree of inactivation (Figure 2D) was

different between the two GC populations. Furthermore, steady-state inactivation, which was investi-

gated with different holding potentials, was similar between inner- and outer-zone GCs (Figure 2—

figure supplement 2). These data suggest that inner- and outer-zone GCs have a similar composi-

tion of Kv channels, but inner-zone GCs have a higher Kv channel density. The larger Kv currents in

inner-zone GCs are consistent with the short action potential duration of inner-zone GCs (cf. Fig-

ure 1). Thus, our data provide a biophysical explanation for the observed gradients in GC

properties.

MF inputs are differentially processed by inner- and outer-zone GCs
The gradients within the GC layer create an optimal range of input strengths for each GC. To test

how these gradients impact the processing of synaptic MF inputs, we performed Dynamic Clamp

experiments (Desai et al., 2017) and investigated whether different MF input frequencies

Figure 2. Voltage-gated potassium currents are larger at inner-zone GCs. (A) Example potassium currents from

outside-out patches of cerebellar GCs evoked by voltage steps from �90 to +60 mV in 10 mV increments with a

duration of 10 ms. All recordings were made in the presence of 1 mM TTX and 150 mM CdCl2 to block voltage-

gated sodium and calcium channels, respectively. (B) Average peak potassium current (Imax) plotted versus step

potential of inner (green) and outer-zone (magenta) GCs. Significance level was tested with a Mann-Whitney U

Test for the value at +60 mV and the p value is indicated in the figure. (C) Average normalized peak potassium

conductance (G/Gmax) versus step potential of inner (green) and outer-zone (magenta) GCs. (D) Average steady-

state current (Iss, mean current of the last 2 ms of the 10 ms depolarization) normalized to the peak current (Imax)

versus step potential of inner (green) and outer-zone GCs (magenta).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Raw data of the amplitude of potassium currents at 60 pA current injection.

Figure supplement 2. Steady-state activation and inactivation are similar for inner and outer GCs.
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differentially affect spiking in inner- and outer-zone GCs (Figure 3A and B). We first recorded excit-

atory postsynaptic currents (EPSC) from GCs in inner- and outer-zones of lobule V after single MF

stimulation. We found no significant differences in the amplitude or kinetics of EPSCs in inner- and

outer-zone GCs (Figure 3—figure supplement 1).

Individual MFs span the entire depth of the GC layer, contacting both inner- and outer-zone GCs

(Krieger et al., 1985; Palay and Chan-Palay, 1974). Furthermore, GCs are electronically extremely

compact neurons and can be considered as a single compartment (D’Angelo et al., 1993;

Figure 3. MF inputs are differentially processed by inner- and outer-zone GCs. (A) Schematic representation of the

Dynamic Clamp system. (B) Illustration of MF conductance (Gmossy), GC membrane potential (Vm), and MF current

(Imossy) for the Dynamic Clamp technique. Note the prediction of a negative current during an action potential as

apparent in the experimental traces in panel C. (C) Example Dynamic Clamp recordings of inner- (green) and

outer-zone (magenta) GCs at different holding potentials (�90 mV left; �80 mV middle and �70 mV right) at a

stimulation frequency of 100 Hz. Upper traces represent poisson-distributed MF currents. Lower traces show the

measured corresponding membrane potential with EPSPs and action potentials. (D) Average firing frequency of

inner- and outer-zone GCs during MF- like inputs at different frequencies and at the indicated holding potentials.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. MF input is similar for inner- and outer-zone GCs.

Figure supplement 2. Raw data of the bar graphs from Figure 3. Same data as in Figure 3D, but shown as box

plots (median and interquartile range with whiskers) superimposed with single data points.
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Delvendahl et al., 2015; Silver et al., 1992). Therefore, we could use the Dynamic Clamp technique

to implement the conductance of identical MF signals in inner- and outer-zone GCs based on the

measured EPSC kinetics. We first applied input of a single MF with Poisson-distributed firing-fre-

quencies ranging between 30 and 500 Hz for 300 ms duration while changing the resting membrane

potential to simulate the large variability of membrane potential observed in GCs in vivo

(Chadderton et al., 2004). In line with the gradients in the electrophysiological properties of GCs,

inner-zone GCs fired fewer action potentials compared with outer-zone GCs in response to low-fre-

quency MF inputs at a membrane potential of approximately –90 mV (Figure 3C and D; Figure 3—

figure supplement 2). In contrast, inner-zone GCs fired more action potentials compared with

outer-zone GCs in response to high-frequency MF inputs at a membrane potential of approximately

–70 mV. In vivo, such a depolarization would be caused by reduced inhibition and/or simultaneous

activation of multiple MF inputs. These data suggest that outer- and inner-zone GCs are specialized

to process low- and high-frequency MF inputs, respectively.

Fourier-like transformation of MF input frequency
To further test whether inner- and outer-zone GCs can extract different frequency components from

a MF input signal, which would resemble a Fourier-transformation, we varied the MF input frequency

sinusoidally between 30 and 300 Hz, representing a range of in-vivo-like tonic firing behaviour

(Figure 4A; Arenz et al., 2008; van Kan et al., 1993). At a holding potential of �70 mV, commonly

occurring in vivo (Chadderton et al., 2004), inner-zone GCs responded preferentially to high-fre-

quency MF inputs up to 300 Hz, while outer-zone GCs responded preferentially to low-frequency

inputs up to 100 Hz (Figure 4B; Figure 4—figure supplement 1). To estimate the optimal frequency

at which inner- and outer-zone GCs preferentially fire action potentials, we calculated the phase

angle (see Materials and methods, Equation 3). The mean phase angle, at which GC preferentially

fired, was 162 ± 8˚ for inner-zone (n = 10) and 100 ± 20˚ for outer-zone GCs (n = 7; PMann-Whit-

ney = 0.02; Figure 4C), representing an average firing frequency of 284 and 116 Hz for inner- and

outer-zone GCs, respectively (cf. Equation 2). Thus, the gradients in the biophysical properties

enable the cerebellar GC layer to split incoming MF signals into different frequency bands and

thereby to perform a Fourier-like transformation of the compound MF input signal.

The position of PFs is correlated with the position of GC somata
A Fourier-like transformation in the GC layer (i.e. a separation of the spectral components of MF sig-

nals) could be particularly relevant if downstream pathways are specialized for these spectral compo-

nents. Early silver-stainings and drawings from Ramón y Cajal indicate that inner-zone GCs give rise

to PFs close to the PC layer and outer-zone GCs give rise to PFs close to the pia (Eccles et al.,

1967; Cajal, 1911 but see Espinosa and Luo, 2008; Wilms and Häusser, 2015). To test this possi-

bility, we examined the axons of GCs. First, we investigated whether there is a correlation between

the relative positions of the PF in the molecular layer and the GC somata in the GC layer. DiI was

injected in vivo into the GC layer to label GCs and their axons. Several GCs were clearly stained 24

hr after DiI injection (Figure 5A), and the position of their soma and PF in the cerebellar cortex could

be measured (Figure 5B–D). Even though the length of the ascending GC axon showed consider-

able variation (196 ± 5.5 mm, range: 144 to 291 mm, n = 39 axons in n = 6 mice), after normalization

for the thickness of the molecular and GC layers, the GC soma position was significantly correlated

with the position of the bifurcation in the GC axon (Figure 5C,D; R = –0.86, p<0.001). These data

show that inner-zone GCs preferentially give rise to PF located near the PC layer (inner-zone PFs)

and outer-zone GC give rise to PF near the surface of the cerebellar cortex (outer-zone PFs).

Inner-zone PFs have larger diameter and higher action potential
conduction velocity
Next, we tested whether PFs, like GCs, have different properties depending on their position within

the molecular layer. First, we compared the PF diameters in electron microscopic images of parasa-

gittal sections of lobule V of mouse cerebellum and found significantly larger diameters for inner-

zone PFs compared with middle- and outer-zone PFs (182 ± 2.6 nm, n = 703 vs. 159 ± 2.0 nm,

n = 819 vs. 145 ± 1.7 nm, n = 1024 Figure 6A–C; PKruskal-Wallis <0.0001), which is in agreement with
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previous investigations reported in cat (Eccles et al., 1967), monkey (Fox and Barnard, 1957), rat

(Pichitpornchai et al., 1994), and mouse (Wyatt et al., 2005).

The axonal diameter is usually correlated with conduction velocity (Jack et al., 1983). We there-

fore recorded compound action potentials of PFs in lobule V and compared their conduction velocity

in the inner-, middle-, and outer-zone of the molecular layer (Figure 6D–F). We detected a signifi-

cantly higher velocity in inner-zone PFs compared with middle- or outer-zone PFs (0.334 ± 0.003

m*s�1, n = 8 vs. 0.303 ± 0.004 m*s�1, n = 6 vs. 0.287 ± 0.007 m*s�1, n = 8; Figure 6F; PKruskal-

Wallis <0.0001). The absolute velocity and the gradient in the velocity from inner- to outer-zone PFs

agree well with previous studies (Baginskas et al., 2009; Vranesic et al., 1994). These results sug-

gest that inner-zone PFs are specialized for fast signaling, which is consistent with the concept that

inner-zone GCs are tuned for high-frequency inputs (cf. Figures 1 and 2).

In addition to the above results obtained from lobule V, similar gradients in both axon diameter

and axon conduction velocity were found in lobule IX (Figure 6—figure supplement 1). This sug-

gests that gradients in axon diameter and axon conduction speed are general features of the cere-

bellar cortex.

A possible confounder of our results could be an over-representation of large-diameter Lugaro

cell axons within inner-zone PFs (Dieudonné and Dumoulin, 2000). However, this would predict that

the histograms of the axon diameters show two peaks with varying amplitude. Instead, we observed

a single bell-shaped distribution in each zone (Figure 6—figure supplement 2), arguing that the

Figure 4. Fourier-like transformation of MF input frequency. (A) Target frequency of the Dynamic Clamp MF-like

inputs during two cycles. The frequencies varied sinusoidally on a logarithmic scale between 30 to 300 Hz and the

cycle duration was 1 s (Equation 2). The degree values denote the phase angle. Black: example trace of poisson-

distributed MF-like inputs. Magenta and green: example membrane potential during Dynamic Clamp experiments

of an outer- and an inner-zone GC, respectively, at a holding potential of approximately �70 mV. (B) Average

normalized frequency of action potentials (APs) fired by inner- and outer-zone GCs (green and magenta,

respectively) versus the phase angle and the target MF-like frequency within one cycle (for each cell, the integral of

the spike histogram was normalized to 1; see Figure 4—figure supplement 1 for absolute frequency). The light

green and magenta areas represent the SEM. (C) Polar plot of phase angle and vector strength of the preferred

firing frequency according to Equation 3 from inner- (green) and outer-zone (magenta) GCs (dots: single

cells; arrows: average). Bar graph of the average phase angle at which inner- and outer-zone GCs preferentially

fired action potentials.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Raw data of the traces shown in Figure 4B.
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measured differences between axon diameters were not due to varying contributions from Lugaro

cell axons, but reflect the differences between inner-, middle-, and outer-zone PFs.

PCs process inner-, middle-, and outer-zone PF inputs differentially
Our data thus far indicate that GCs and PFs are adapted to different MF input frequencies and con-

duction velocities, respectively. This arrangement could in principle provide PFs with functionally

segregated information streams that are differentially processed in PCs. To investigate this possibil-

ity, we made whole-cell current-clamp recordings from PCs in sagittal slices of the cerebellar vermis.

PCs were held at a hyperpolarized voltage to prevent spiking and to isolate excitatory inputs. Electri-

cal stimulation of PFs was performed at inner-, middle-, and outer-zones of the molecular layer and

the stimulation intensity was adjusted to obtain similar EPSP amplitudes in all zones (Figure 7A,B).

Stimulation of inner-zone PFs resulted in EPSPs (Barbour, 1993; Roth and Häusser, 2001) with

shorter rise and decay times compared with EPSPs obtained from stimulating outer-zone PFs (rise20-

80: inner: 0.57 ± 0.04 ms, n = 12; middle: 0.93 ± 0.17 ms, n = 4; outer: 1.83 ± 0.33 ms, n = 12; PKrus-

kal-Wallis = 0.0001; decay: inner: 21.9 ± 1.5 ms, middle: 39.7 ± 1.1 ms outer: 40.8 ± 4.1 ms; PKruskal-

Wallis = 0.0004, Figure 7C; Figure 7—figure supplement 1). These results suggest that inner-zone

PF inputs undergo less dendritic filtering in PCs compared with outer-zone PF inputs (De Schutter

and Bower, 1994a; Roth and Häusser, 2001 but see De Schutter and Bower, 1994b). To investi-

gate high-frequency inputs to PCs, we elicited five EPSPs at 100 Hz and 500 Hz (Figure 7D,E).

Figure 5. The position of PFs is correlated with the position of GC somata. (A) Example of GCs labeled with DiI 24

hr post injection. Numerous GCs from inner-, middle-, and outer-zone were labeled. (B) Example of traced axons

from different GCs from the outer zone. The axon was traced (red) from the cell soma to the bifurcation site in the

molecular layer. Stained cell bodies of GCs are also visible (white). ML: molecular layer; PCL: Purkinje cell layer;

GCL: granule cell layer. (C) The distance between labeled GCs and the PC layer strongly correlated with the

distance between the axon bifurcation and the PC layer (Pearson’s correlation coefficient R = –0.86; p<0.001).

Solid black line depicts the linear interpolation and the gray lines represent SEM of the fit. The number of GCs (n)

is indicated. (D) Position of the GC somata within the GC layer of each traced cell linked to the position of the

bifurcation site in the molecular layer. The distances were normalized to the height of the corresponding layers.
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Individual EPSPs evoked from inner-zone PFs showed clear individual rising phases and peaks

between each stimulus and less summation compared with outer-zone PFs (Figure 7D–F; Figure 7—

figure supplement 1). These results suggest that inner-zone PFs can transmit timing information

more faithfully compared with outer-zone PFs and thus control spike timing of PCs more precisely.

The observed neuronal gradients increase storing capacity and improve
temporal precision of PC spiking
Thus far we have described prominent gradients in the electrophysiological properties of GCs over

the depth of the GC layer that enable inner- and outer-zone GCs to preferentially respond to high-

and low-frequency inputs, respectively. The different frequency components are transferred via spe-

cialized PFs, which enable PCs to interpret high-frequency signals rapidly at the base of their den-

dritic trees and low-frequency signals slowly at more distal parts of their dendritic trees (Figure 8A).

To address the functional implications of these gradients in the GC and molecular layer, we per-

formed computational modeling of a neuronal network of the cerebellar cortex with integrate-and-

fire neurons. The model consisted of one PC and a varying number of GCs and MFs (Figure 8A).

GCs received randomly determined MF inputs with either tonic (Arenz et al., 2008; van Kan et al.,

1993) or bursting (Rancz et al., 2007) in-vivo-like spiking sequences. MF inputs were randomly

Figure 6. Inner-zone PFs have larger diameter and higher action potential conduction velocity. (A) Electron

microscopic image of the outer (A) and inner zone (B) of sagittal sections through the molecular layer. (C)

Summary of axon diameters in the inner- (green), middle- (gray), and outer-zone (magenta) of the molecular layer

(PDunns = 0.0001 for inner- vs outer-zone GCs). (D) DIC image of the molecular layer superimposed with a

schematic illustration of the experimental setup to measure compound action potentials from PFs. Compound

action potentials were evoked by a stimulus electrode (right) and recorded by a proximal and distal recording

electrode (middle, left). (E) Example traces used to determine the conduction velocity of inner- and outer-zone

PFs. The time difference between the compound action potential arriving at the proximal electrode (solid traces)

and the distal electrode (light traces) was used to determine the velocity. The time was shorter for inner-zone PFs

(green) compared with outer-zone PFs (magenta). (F) Summary of conduction velocity in inner-, middle- and outer-

zones (PDunns = 0.0007 for inner- vs outer-zone GCs).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Differences in axon diameter and conduction velocity are also found in lobule IX.

Figure supplement 2. Histogram of the axon diameters.
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distributed across layers, consistent with MFs having rosettes throughout the depth of the granule

cell layer (Krieger et al., 1985; Palay and Chan-Palay, 1974). By changing the synaptic weights of

the GC to PC synapses, the PC had to acquire a target spiking sequence with regular 80-, 40- and

120 Hz firing (Figure 8B). The algorithm for changing the synaptic weights was a combination of a

learning algorithm based on climbing-fiber-like punishments and an unbiased minimization algorithm

(see Materials and methods).

We first compared a model without gradients, where the parameters were set at the average of

the experimentally determined values, with a model including all experimentally determined gra-

dients (black and red, respectively, throughout Figure 8). To measure the difference between the

final PC spiking and the target sequence, we calculated van Rossum errors using a time constant of

30 ms (van Rossum, 2001; Figure 8C–E). With an increasing number of GCs, the final PC spiking

sequence resembled the target sequences increasingly better, as illustrated by an average spiking

histogram from many repetitions with different random sets of MF inputs for models consisting of

100 and 1000 GCs (Figure 8B). As expected, the average minimal van Rossum error (for many repe-

titions with different random sets of MF inputs) decreased with increasing number of GCs

(Figure 8C). For all sizes of the GC population, the average minimal van Rossum error was signifi-

cantly smaller in the model containing all the experimentally determined gradients compared with

the model without any gradients. For example, to obtain the spiking precision of the model contain-

ing 400 GCs with all gradients, the model without gradients required 800 GCs (cf. red arrows in

Figure 8C). This indicates that for a cerebellum exploiting gradients, the number of GCs can at least

be halved while obtaining a certain temporal precision compared with a cerebellum containing no

gradients.

To investigate the relative contribution of each of the gradients, we tested models containing sin-

gle gradients in isolation, resulting in intermediate van Rossum errors (blue, yellow, and green in

Figure 8C,D). The average relative differences between the models across all sizes of the GC

Figure 7. PCs differentially process inner-, middle-, and outer-zone PF inputs. (A) DIC image of the molecular layer

superimposed with a schematic illustration of PC recordings while stimulating inner- (top) and outer-zone PFs

(bottom). Shown are the GC layer (GCL), PC layer (PCL) and molecular layer (ML). (B) EPSPs measured at the PC

soma after stimulation (1 Hz) of inner- (green), middle- (gray), and outer-zone PFs (magenta). (C) Average 20% to

80% rise time, time to peak and weighted decay time-constant of PC EPSPs after stimulation of inner- (green;

n = 12), middle- (gray; n = 4) and outer-zone PFs (magenta; n = 12) as shown in B (PDunns = 0.0001; PDunns = 0.0001;

PDunns = 0.0009 for inner- vs outer-zone GCs, respectively). Note, one cell out of 12 had a monoexponentiell

decay. (D-E) Example traces of EPSPs from a PC after five impulses to inner- (green) and outer-zone PFs (magenta)

at 100 Hz (D) and 500 Hz (E). (F) Average paired-pulse ratio measured in PCs after five 100 Hz stimuli at inner-

(green; n = 11), middle- (gray, n = 3) and outer- zone PFs (magenta, n = 8; PDunns = 0.04 for inner- vs outer-zone

GCs).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Raw data of the bar graphs from Figure 7.
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populations suggest an almost additive behavior of the individual gradients to the overall perfor-

mance (Figure 8E).

To further investigate the interplay of the different gradients, we investigated a model containing

all gradients, but the connectivity between GCs, PF action potential conduction velocity, and PC

EPSP kinetics were randomly intermixed (red dashed lines in Figure 8C–E). The network benefits

Figure 8. The observed neuronal gradients increase storing capacity and improve temporal precision of PC spiking. (A) Schematic illustration of the

network model of the cerebellar cortex as explained in the main text. (B) Average spiking histogram for models consisting of 100 and 1000 GCs,

superimposed with double sigmoidal fits constrained to 80, 40 and 120 Hz. The target spiking sequence is indicated above. tT indicates the transition

time of the sigmoidal fit for the respective number of GCs. (C) Double logarithmic plot of the average minimal van Rossum error plotted against the

number of GCs for models with no gradients (black), with only gradually varied PF conduction velocity (blue), GC parameters (yellow), )and EPSP

kinetics (green), and with all gradients (red). Furthermore, all parameters were gradually varied but the connectivity between GC, PF and EPSPs was

random (all gradients mixed; dashed red). Red dashed lines with arrows indicate the number of GCs needed to obtain the same van Rossum error with

all gradients compared to no gradients. With no gradients, twice as many GCs are needed to obtain the same van Rossum error. (D) Average van

Rossum error as shown in panel C but normalized to values obtaned from the model without gradients, superimposed with a smoothing spline

interpolation. (E) Average of the relative differences shown in panel D.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. The observed neuronal gradients reduce the temporal error and improve rate coding of PC spikes.
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from these intermixed gradients, but maximum optimization can only be obtained with correct con-

nectivity (Figure 8E).

The time constant to calculate the van Rossum error can be decreased or increased to investigate

spike timing or slower changes in firing rate, respectively. The impact of the gradients increased

with increasing time constant (Figure 8—figure supplement 1A,B), indicating that rate coded sig-

naling especially benefits from the here described gradients. To specifically test the effect of gra-

dients on the cerebellum’s ability to switch between firing frequencies, we made sigmoid fits around

the times of firing rate changes. The transition time (tT; see Materials and methods) from these fits

showed that models with all gradients showed on average about 30% faster ‘frequency-switching’

than models without any gradients (Figure 8—figure supplement 1C–F).

Finally, we repeated the modeling experiments but used a target sequence with a firing pause

(i.e. 80, 0, and 120 Hz instead of 80, 40, and 120 Hz) resulting in similar conclusions regarding the

van Rossum errors and transition times (Figure 8—figure supplement 1G–M). A pause in firing

enabled us to quantify the temporal error at the beginning and the end of the pause (Figure 8—fig-

ure supplement 1N–Q). These spike times have been proposed to be of particular relevance for

behavior (Hong et al., 2016). Analysis of the temporal error in the beginning and the end of the

pause revealed similar results compared with the van Rossum error and the transition time. Thus, our

modeling results show that the experimentally determined gradients improve the spiking precision,

accelerate ‘frequency-switching’, and increase the storing capacity of the cerebellar cortex.

Discussion
In this study, we describe gradients in the biophysical properties of superficial to deep GCs, which

enables the GC layer to perform a Fourier-like transformation of the MF input. Furthermore, we

show that the downstream pathways from GCs to PCs are specialized for transmitting the frequency

band for which the corresponding GCs are tuned to. Finally, computational modeling demonstrates

that both the gradients in the GC layer and the specialized downstream pathways improve the spik-

ing precision, accelerate the switching between firing frequencies of PCs, and increase storing

capacity in the cerebellar cortex.

Fourier-like transformation in the cerebellar cortex
Our data demonstrate that outer-zone GCs preferentially fire during MF input with low frequency

(‘low-frequency’ GCs, magenta in Figure 9A), whereas inner-zone GCs preferentially fire during MF

input with high frequency (‘high-frequency’ GCs, green in Figure 9A). The separation of a signal into

its frequency components resembles a Fourier transformation (Figure 9B). The analogy with a Four-

ier transformation has the limitations that (1) the separation is only partial with overlapping ranges of

preferred frequency, (2) a single MF cannot transmit two frequencies simultaneously but only sepa-

rated in time (as illustrated in Figure 9A) and (3) concurrent inputs from two MFs with different fre-

quencies synapsing onto a single GC cannot be separated. Yet, our data indicate that the entire GC

layer with several MFs sending various frequencies to numerous GCs can execute a Fourier-like

transformation. In analogy to the dispersion of white light into its spectral components by an optical

prism, the broadband MF signal is separated into its spectral components with inner- to outer-zone

GCs preferentially transmitting the high- to low-frequency components, respectively.

Such a partial separation offers the chance to differentially process high- and low-frequency com-

ponents. Indeed, in the molecular layer, the high-frequency components of the MF signal are sent

via rapidly conducting axons to proximal parts of the PC dendritic tree. This allows fast (phasic) sig-

nals to have a strong and rapid impact on PC firing. On the other hand, low-frequency components

of the MF signal are conducted more slowly and elicit slower EPSPs, allowing slow (tonic) signals to

have a modulatory impact on PC firing. Our data indicate that, in analogy to the increased storing

capacity of digital audio and image compression (Jayant et al., 1993; Wallace, 1992), the combina-

tion of a Fourier-like transformation in the GC layer and specialized downstream signaling pathways

in the molecular layer dramatically reduce the number of required GCs for precise PC spiking (Fig-

ure 8). Furthermore, our data support the ‘adaptive filter’ theory of the cerebellum, where broad-

band MF input is differentially filtered by GCs (Dean et al., 2010; Fujita, 1982; Singla et al., 2017).

Within this framework, our data indicate gradients in the band-pass filtering properties of GCs. Fur-

thermore, our data could provide an additional explanation for the improvement in motor learning
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when elevating background activity of MFs (Albergaria et al., 2018): the elevated MF activity will

help to overcome the high threshold of inner-zone GCs, which rapidly and effectively impact PCs via

fast conducting PFs at the proximal dendrite.

Axes of frequency specialization in the cerebellum
There are at least two axes of heterogeneity in the cerebellar cortex. First, Zebrin stripes can be

observed as parasagittal zones (‘medio-lateral’ axis) in cerebellar cortex (Apps et al., 2018). Firing

rate, firing regularity, synaptic connectivity and synaptic plasticity seems to differ between PCs in

zebrin positive and negative zones (Valera et al., 2016; Wadiche and Jahr, 2005; Xiao et al., 2014;

Zhou et al., 2014). Second, there is a lobular organization (‘rostro-caudal’ axis) as shown here by

the functional differences between lobules V and IX (Figure 1—figure supplement 1). GCs in lobule

IX are tuned to lower frequencies than GCs in lobule V. These findings are largely in line with previ-

ous investigations (Heath et al., 2014; Witter and De Zeeuw, 2015a; Zhou et al., 2014), where the

anterior cerebellum was identified to process high-frequency or bursting signals, while the vestibulo-

cerebellum mainly processed lower frequency or slowly-modulating inputs. Furthermore, the optimal

time intervals for introduction of spike timing dependent plasticity differ between the vermis and the

flocculus (Suvrathan et al., 2016).

In addition to these two known axes of heterogeneity, we described an axis that is orthogonal to

the surface of the cerebellar cortex. This ‘depth’ axis causes inner-zone GCs to be tuned to higher

frequencies than outer-zone GCs. The frequency gradients along the ‘depth’-axes are in line with

recently described connections of nucleo-cortical MFs and PC, which specifically target GCs close to

the PC layer (Gao et al., 2016; Guo et al., 2016). These connections send slow feedback signals to

the outer-zone GCs, which –– according to our framework –– are ideally suited to process such slow

modulatory signals. Independent of these specialized feedback pathways, MFs exhibit heterogeneity

(Chabrol et al., 2015; Bengtsson and Jörntell, 2009). Consistent with MFs having rosettes through-

out the depth of the granule cell layer (Krieger et al., 1985; Palay and Chan-Palay, 1974), our data

indicate that each type of the heterogeneous MF inputs is split into its frequency components along

the depth axis. A preference of some MFs to specific zones could furthermore contributes to the fre-

quency separation (Quy et al., 2011; Jörntell and Ekerot, 2006).

Our results predict that superficial GCs, such as the ones imaged recently in the investigation of

eye-blink conditioning and reward representation in the cerebellar cortex (Giovannucci et al., 2017;

Figure 9. Illustration of the concept of Fourier-like transformation in the cerebellar cortex. (A) Illustration of a

broadband MF input conveying a sequence of low, high, and low firing frequency. Inner-zone GCs will

preferentially fire during high-frequency inputs (‘high-frequency’ GC) and outer-zone GCs during low-frequency

inputs (‘low-frequency’ GC). (B) Schematic illustration of the signal flow through the cerebellar cortex. The Fourier-

like transformation in the GC layer is illustrated as an optical prism separating the spectral components on the MF

input. Thereby, the MF signal in the time domain is partially transformed into the frequency domain and sent to

PCs via specialized signaling pathways in the molecular layer.
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Wagner et al., 2017), would preferentially convey low-frequency signals to PCs and might not be

representative for the full range of frequencies present over the depth of the GC layer. Recently,

diverse adaptation of GCs to 2-s-lasting current injections has been described (Masoli et al., 2019),

but it remains unknown to which extent this form of adaptation exhibits a gradient along the depth

axis. The genetic reasons for the here-observed gradients in cerebellar cortex are currently not

known. Due to a large variability within each zone, our data cannot rule out a salt and pepper distri-

bution of two populations of neurons (Espinosa and Luo, 2008). However, neurons in the medial

vestibular nucleus exhibit a graded tuning of the capacity for fast-spiking by expression levels of spe-

cific ion channels (Kodama et al., 2020). Thus, including this new ‘depth’ axis, there are three

orthogonal axes along which the cerebellar cortex is tuned for preferred frequency, indicating the

importance of proper frequency tuning of the circuitry.

The role of inhibition
In the current study we did not investigate molecular layer interneurons, which can have a large

impact on PC spiking (Blot et al., 2016; Dizon and Khodakhah, 2011; Gaffield and Christie, 2017;

Mittmann et al., 2005; Sudhakar et al., 2017). However, the spatial arrangement of stellate and

basket cell interneurons is consistent with our framework. Although the dendrites of molecular layer

interneurons can span the entire molecular layer, the dendrites of basket cells seem to be preferen-

tially located at the inner-zone of the molecular layer (Palkovits et al., 1971; Rakic, 1972), which

positions them ideally to receive rapid high-frequency signals of inner-zone PFs. Consistently, they

impact PC firing rapidly and efficiently via their pinceaus (Blot and Barbour, 2014). Furthermore,

the dendrites of a subset of stellate cells (with their somata located in the outer-zone molecular

layer) are preferentially located at the outer-zone molecular layer (Palkovits et al., 1971;

Rakic, 1972), which positions them ideally to receive modulatory low-frequency signals and elicit

slow IPSPs in PCs. Furthermore, molecular layer interneurons seem to represent a continuum along

the vertical axis, with a correlation between the vertical location of the soma, axonal boutons, and

dendrite location (Sultan and Bower, 1998), which is consistent with the here-described continuum

of biophysical properties along the vertical axis of the cortex. Incorporating molecular layer inter-

neurons, their synaptic plasticity and their potential gradients into the frequency-dispersion frame-

work may show a further increase in the dynamic range of frequency separation within the cerebellar

cortex c what we have described here (Gao et al., 2012).

Functional implications for the cerebellum
MF firing frequencies range from <1 to ~1000 Hz (Arenz et al., 2008; Chadderton et al., 2004;

Jörntell and Ekerot, 2006; Rancz et al., 2007; van Kan et al., 1993). Many previous modeling

studies investigating cerebellar function considered the activity of each MF as a constant digital

value (Albus, 1971; Babadi and Sompolinsky, 2014; Brunel et al., 2004; Clopath et al., 2012;

Marr, 1969), a constant analog value (Chabrol et al., 2015; Clopath and Brunel, 2013), or spike

sequences with constant frequency (Billings et al., 2014; Cayco-Gajic et al., 2017; Steuber et al.,

2007). We focused on the time-varying aspects of MF integration in GCs, and therefore imple-

mented a model with a corresponding large range of MF input frequencies that could change over

time. It would be interesting to elucidate whether models with more uniform MF inputs, such as

those found in many previous models, would benefit from the here-observed biophysical gradients.

To implement these gradients in a model, we used a simplified cerebellar circuitry that does not

consider active dendrites (Llinás and Sugimori, 1980) or the tonic activity of PCs (Raman and Bean,

1997). It will therefore be interesting to investigate if the here-observed gradients in the GC and

molecular layer improve the performance of more complex models of the cerebellar cortex

(De Schutter and Bower, 1994a; Garrido et al., 2013; Masoli et al., 2015; Medina et al., 2000;

Rössert et al., 2015; Spanne and Jörntell, 2013; Steuber et al., 2007; Sudhakar et al., 2017;

Walter and Khodakhah, 2009; Yamazaki and Tanaka, 2007). Furthermore, it remains to be investi-

gated whether gradients in the GC layer also improve models that aim to explain tasks such as eye-

blink conditioning (Mauk and Buonomano, 2004) and vestibulo-ocular reflexes (Lac et al., 1995).

Our model simulated the learning that PCs undergo to acquire specific firing frequencies in

response to GC input. PC firing rate and spiking precision have been shown to be closely related to

movement (Brown and Raman, 2018; Sarnaik and Raman, 2018). Our results show that the same
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temporal spiking precision or the same frequency switching speed can be obtained with approxi-

mately half the number of GCs when GC gradients are implemented (Figure 8). Taking into account

the large number of cerebellar GCs in the brain (Herculano-Houzel, 2009; Williams and Herrup,

1988), a significant reduction in the number of GCs could represent an evolutionary advantage to

minimize neuronal maintenance energy (Howarth et al., 2012; Isler and van Schaik, 2006). There-

fore, the dramatic increase in storing capacity for precise PC spiking provides an evolutionary expla-

nation for the emergence of gradients in the neuronal properties.

Functional implications for other neural networks
Based on the described advantages of the Fourier transformation for rapid and storing-efficient

information processing, we hypothesize that other neural networks also perform Fourier-like trans-

formations and use segregated frequency-specific signaling pathways. To our knowledge, this has

rarely been shown explicitly, but similar mechanisms might operate, for example, in the spinal cord

network: descending motor commands from the pyramidal tract send broadband signals to moto-

neurons with different input resistances resulting from differences in size. This enables small moto-

neurons to fire during low-frequency inputs and large motoneurons only during high-frequency

inputs (Henneman et al., 1965). Furthermore, specialized efferent down-stream signaling pathways

innervate specific types of muscles with specialized short-term plasticity of the corresponding neuro-

muscular junctions (Wang and Brehm, 2017).

In the hippocampus, frequency preferences of hippocampal neurons are well established in

enabling segregation of compound oscillatory input into distinct frequency components (Pike et al.,

2000). Furthermore, there is increasing evidence that what has been considered a homogeneous

population of neurons exhibit gradients in the neuronal properties (Cembrowski and Spruston,

2019), such as the intrinsic electrical properties and synaptic connectivity in CA3 pyramidal neurons

(Galliano et al., 2013). The here reported heterogeneity furthermore enables functional segregation

of information streams for example in CA1 pyramidal neurons (Soltesz and Losonczy, 2018). Addi-

tionally, gradients in biophysical properties of neurons in the entorhinal cortex might serve to gener-

ate functional outcomes relevant for the generation of grid cell sizes (Giocomo et al., 2007;

Schmidt-Hieber and Nolan, 2017; Orchard et al., 2013). Finally, in the neocortex, gradients in ana-

tomical and biophysical properties were recently uncovered (Fletcher and Williams, 2019).

In summary, our findings contribute to the growing body of evidence that the neurons of a cell

layer can exhibit systematic functional heterogeneities with differential tuning of neurons along gra-

dients. Our data furthermore suggest that such gradients facilitate complex transformation of infor-

mation, such as Fourier-like transformations, to cope with a broad temporal diversity of signals in

the central nervous system.

Materials and methods

Electrophysiology
Parasagittal 300-mm-thick cerebellar slices were prepared from P21–P30 (young animals) or from

P80– P100 (old animals) C57BL/6 mice of either sex as described previously (Ritzau-Jost et al.,

2014; Delvendahl et al., 2015). Animals were treated in accordance with the German and French

Protection of Animals Act and with the guidelines for the welfare of experimental animals issued by

the European Communities Council Directive. The extracellular solution for the whole-cell measure-

ments contained (in mM): NaCl 125, NaHCO3 25, glucose 20, KCl 2.5, CaCl2 2, NaH2PO4 1.25,

MgCl21 (310 mOsm, pH 7.3 when bubbled with Carbogen (95%O2/5%CO2)). For outside-out meas-

urements of potassium currents (Figure 2), 150 mM CdCl2 and 1 mM TTX were added to the external

solution to block voltage-gated calcium channels and sodium channels, respectively. The intracellular

solution contained in mM: K-Gluconate 150, NaCl 10, K-Hepes 10, Mg-ATP 3, Na-GTP 0.3, EGTA

0.05 (305 mOsm, pH 7.3). A liquid junction potential of +13 mV was corrected for. All electrophysio-

logical measurements were performed with a HEKA EPC10 amplifier (HEKA Elektronik, Lambrecht/

Pfalz, Germany) under control of the Patchmaster software. All measurements were performed at

34–37˚C.
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Current clamp recordings in GCs
Action potentials were evoked in current-clamp mode by current pulses (amplitude 20–400 pA, dura-

tion 300 ms). To determine the input resistance, subthreshold current pulses were applied from �20

to + 20 pA in 2 pA steps. The resistance of the solution-filled patch-pipettes was between 6 and 12

MW . Data were sampled at 200 kHz.

Outside-out recordings in GCs
To reliably clamp potassium currents from the soma of GCs (Figure 2), potassium currents were

measured in outside-out patches pulled from the soma of inner and outer GCs by applying 10-ms

voltage steps from �90 to +60 mV with 10 mV increments at an intersweep interval of 1 s. The inter-

sweep holding potential was �90 mV. Data were sampled at 100 kHz.

Compound action potentials in PFs
For the detection of compound action potentials in PFs, two pipettes (tip resistances 1–4 MW) filled

with extracellular solution and connected to the patch-clamp amplifier were positioned within the

molecular layer of horizontally cut slices of the cerebellar vermis. The average distance between two

recording electrodes was 143 ± 5 mm. Compound action potentials were evoked by voltage stimula-

tion (100 V) for 100 ms with a third pipette connected to an accumulator powered stimulation device

(ISO-Pulser ISOP1, AD-Elektronik, Buchenbach, Germany). 40 to 80 stimulations delivered at 1 Hz

were averaged and analyzed.

Excitatory postsynaptic potentials in PC
Excitatory postsynaptic potentials (EPSPs) in PC were elicited by voltage stimulation of the PFs

within the inner, middle or outer third of the molecular layer from horizontally cut cerebellar slices

(Figure 7). 10 mM SR95531 was added to the external solution to block GABAA receptors. The stim-

ulation pipette was filled with extracellular solution, and the voltage was adjusted between 6 to 25 V

to elicit EPSPs with amplitudes between 1 and 2 mV. EPSPs were measured after a single 100 ms

voltage stimulation or five stimulations (100 ms duration) at a frequency of 100 and 500 Hz. Averages

of 30 trains per stimulation protocol were used for data analysis.

Excitatory postsynaptic currents in GCs
To measure evoked EPSCs from GCs (Figure 3—figure supplement 1), 90–100 days-old mice were

used. GCs from inner- or outer-zone from lobule V were held at resting conditions and MF axons

were stimulated at 1 Hz with a second pipette. The average stimulation voltage was 36 ± 3 V for

outer-zone GCs and 37 ± 3 V for inner-zone GCs.

Dynamic Clamp of MF conductance in GCs
In order to analyze the response of GCs on in vivo-like MF inputs, we used a Dynamic Clamp imple-

mented with the microcontroller Teensy 3.6 (https://www.pjrc.com) as described by

Desai et al. (2017). The Teensy was programmed using the Arduino integrated development envi-

ronment with the code provided by Desai et al. (2017) and modified for our need as described in

the following.

The time course of MF conductance was

GEPSC tð Þ ¼Gmax Anorm �e�
t
tr þ

X

3

i¼1

aie
� t

ti

 !

(1)

where the exponential rise time (tr) was 0.1 ms, the decay time constants (t1, t2, and t3) were 0.3, 8,

and 40 ms, respectively, and the relative amplitude of the decay components (a1, a2, and a3) were

0.7, 0.26, and 0.04, respectively. The peak conductance (Gmax) was 1 nS (Hallermann et al., 2010)

and the normalization factor (Anorm) was 0.518, which was numerically calculated to obtain a peak

amplitude of 1. The kinetics of the MF conductance were chosen to reproduce the measured mixed

AMPA and NMDA EPSC kinetics of single EPSCs (Figure 3—figure supplement 1) and trains of

EPSCs (Baade et al., 2016). The short-term plasticity during Poisson sequence of spikes was imple-

mented by changing Gmax according to a simple phenomenological model (Tsodyks and Markram,
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1997) assuming a release probability pr0 of 0.4 (Ritzau-Jost et al., 2014). Facilitation was imple-

mented as an increase in the release probability according to pr = pr + 0.2*(1- pr) and decaying back

to pr0 with a time constant of 12 ms (Saviane and Silver, 2006). Depression was implemented

according to a recovery process with a time constant of 25 ms, which approximates a biexponential

recovery process of 12 ms and 2 s (Hallermann et al., 2010; Saviane and Silver, 2006). The result-

ing short-term plasticity reproduced previously obtained data with regular spiking ranging from 20

to 1000 Hz (Baade et al., 2016; Hallermann et al., 2010; Ritzau-Jost et al., 2014).

The microcontroller was programmed to implement the MF conductance and its short-term plas-

ticity with Poisson distributed spike times with a constant frequency ranging from 30 to 500 Hz for

300 ms (Figure 3). In each cell, each frequency was applied five times.

To investigate the response to sinusoidally varying input frequencies (Figure 4), the target fre-

quency of the Poisson process (F) was varied on a logarithmic scale according to:

F tð Þ ¼ exp log Fminð Þþ log Fmaxð Þ� log Fminð Þð Þ 0:5� 0:5 cos 2pt=Tð Þð Þð Þ (2)

where the minimal and maximal frequency (Fmin and Fmax) were 30 and 300 Hz, respectively, and the

duration of the sine wave cycle (T ) was 1 s. In each cell, 10 cycles were applied consecutively for at

least four times (interval >30 s). The histogram of the spike times (Figure 4B) was averaged across

the last four cycles of all cells. The vector strength and phase angle (van Kan et al., 1993) were cal-

culated as the absolute value and the argument of the complex number � (i¼
ffiffiffiffiffiffiffi

�1
p

):

�¼ 1

N

X

N

n¼1

ei2p
tn
T (3)

where tn are the spike times of all N spikes per experiment and T the cycle duration (1 s). To

increase statistical validity, only those cells that fired more than 100 action potentials during the ana-

lyzed cycles were included in the analysis. This criterion resulted in the exclusion of 3 out of 13 and 2

out of 9 cells for inner- and outer-zone GCs, respectively. However, inclusion of these cells in the

analysis resulted in similar preference for MF firing frequency [phase angle along the cycle: 146 ± 10˚

for inner-zone (n = 13) and 103 ± 18˚ for outer-zone GCs (n = 9; PMann-Whitney= 0.06), representing an

average firing frequency of 246 and 123 Hz for inner- and outer-zone GCs, respectively].

Electron microscopy
Four C57BL/6 mice of either sex with an age between P23–P28 were sacrificed, followed by transcar-

dial perfusion with saline and consecutively a fixative containing 4% paraformaldehyde and 2% glu-

taraldehyde in phosphate-buffered saline (PBS). After removal of the brain, the tissue was allowed to

post-fix over night at 4˚C and sagittal sections of the cerebellum were prepared at a thickness of 60

mm using a Leica microtome (Leica Microsystems, Wetzlar, Germany). The sections were stained in

0.5% osmium tetroxide in PBS for 30 min followed by dehydration in graded alcohol and another

staining step with 1% uranyl acetate in 70% ethanol. After further dehydration, the tissue was

embedded in durcupan (Sigma-Aldrich), which was allowed to polymerize for 48 hr at 56˚C between

coated microscope slides and cover glasses. Regions of interest were identified by light microscopy,

cut and transferred onto blocks of durcupan to obtain ultra-thin sections using an Ultramicrotome

(Leica Microsystems). Ultra-thin sections were transferred onto formvar-coated copper grids and

stained with lead citrate. Ultrastructural analysis was performed using a Zeiss SIGMA electron micro-

scope (Zeiss NTS, Oberkochen, Germany) equipped with a STEM detector and ATLAS software.

Measurement of parallel-fiber axon diameter
Electron micrographs were manually analyzed in a blind manner (numbered by masked randomiza-

tion) and each micrograph was divided into eight identically sized fields. The diameter of each paral-

lel-fiber axon was measured as the longest chord in one or two of these fields. Cross sections with

visible active zones or mitochondria were excluded from analysis.

DiI injections and GC tracking
Six P20 CD1 mice were anesthetized with isoflurane (4%). An incision of the skin to expose the skull

was made and a hole was manually drilled using a 25G needle above the desired injection site.
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Injections of small amounts of DiI (1,1-dioctadecyl-3,3,3,3 tetramethylindocarbocyanine perchlorate,

ThermoFisher Scientific, 10% in N,N-dimethylformamide) were performed using a broken glass

pipette connected to a picospritzer II (Parker Instrumentation). 24 hr after injection, animals were

sacrificed and transcardially perfused with 4% paraformaldehyde in PBS. The cerebellum was dis-

sected, fixed overnight, and embedded in 4% agarose in PBS. 150 mm thick sections were then cut

in the transverse or sagittal plane using a vibratome (VT1000, Leica microsystems). Z-Stacks (1 mm

steps) were acquired using a confocal microscope (Leica SP5 II, 63x objective). GCs were traced

from their soma to the axonal bifurcation of PFs. (Average stack depth: 84 ± 20 mm). GC axons were

reconstructed using the ‘Simple Neurite Tracer’ plugin (Longair et al., 2011) in Fiji (ImageJ, NIH,

USA). This plugin allowed us to assess the continuity of axons between several cross-sections. GC

ascending axons were then fully traced and measured within the Z-limits of image sections. The size

of the different layers of cerebellar cortex was reconstructed in each Z-stack. To avoid variability, all

distances were normalized to the corresponding molecular layer height.

Data analysis
Current-clamp data were analyzed using custom-written procedures in Igor Pro software (WaveMet-

rics, Oregon, USA) as previously described (Eshra et al., 2019). Intrinsic properties of GCs were

determined from the injected currents that elicited the largest number of action potentials. The

action potential threshold was defined as the membrane voltage at which the first derivative

exceeded 100 V s�1, the minimal action potential peak was set at �20 mV and the minimal ampli-

tude at 20 mV. All action potentials with a half-width shorter than 50 ms and longer than 500 ms were

excluded. Action potential voltage threshold and half-width were calculated from the average of the

first five action potentials. If a trace contained less than five action potentials, only the first action

potential was considered. The action potential frequency was determined by dividing the number of

action potentials during the 300-ms-lasting current injection by 300 ms. Membrane capacitance, rest-

ing membrane potential and series resistance were read from the amplifier software (HEKA) after

achieving the whole-cell configuration. Input resistance (Rin) was analyzed from alternating sub-

threshold current injections from �20 to 20 pA (2 pA steps). The resulting voltage was plotted

against the injected current and a spline interpolation was performed to obtain the slope at the

holding membrane potential (0 pA current injection).

The peak-current from outside-out patches was determined from voltage steps (�90 to +60 mV)

with Fitmaster software (HEKA). Steady-state inactivation was determined from the last 2 ms of the

respective sweep. Cells were only included if 50 pA <Imax < 1 nA to exclude potential whole-cell

measurements and membrane-vesicles.

EPSP measurements from PCs and EPSC measurements from GCs were analyzed with the Fitmas-

ter software (HEKA). For PC EPSPs, 20–80% rise time and time to peak were determined from the

average of 30 individual single EPSPs. GCs EPSCs were averaged from 25 traces. To obtain the

decay kinetics, single EPSPs/EPSCs were fitted with either one or two exponentials. The weighted

time constant was calculated as:

tw ¼ AslowtslowþAfasttfast

Aslow þAfast

(4)

Paired-pulse ratio was determined between the first and the 5th EPSP after stimulation with 100

Hz trains. Single EPSCs from inner- and outer-zone GCs were averaged and fitted with two exponen-

tials. The decay kinetics and amplitude of the grand-average was used to implement the MF EPSCs

for the Dynamic Clamp.

Neuronal networking modeling
The neuronal network consisted of varying numbers of MF inputs, GCs, and one PC and was imple-

mented in Matlab (The MathWorks, Inc, Natick, Massachusetts, R2017a). For each simulation, a ran-

dom set of MF inputs was generated. This input was then fed to a layer of integrate-and-fire GCs.

An integrate-and-fire PC received the output of the GCs as EPSPs with delays based on PF conduc-

tion velocity. The PF-to-PC synaptic weights were optimized with the aim to make the PC spiking

sequence similar to the target sequence. In the following, each component of the model is explained

in detail.
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MF inputs
To simulate in vivo-like MF firing patterns, half of the MFs fired tonically (van Kan et al., 1993) and

the other half fired bursts (Rancz et al., 2007). All MF spike trains were modeled first by generating

a ‘threshold trace’. For tonically firing MFs, this threshold trace was a Gaussian function with a peak

and standard deviation chosen from uniform distributions ranging between 10 and 100 Hz and 0.2

and 0.5 s respectively, and a peak time point between 0 and 0.5 s. For burst firing MFs, the thresh-

old trace was an exponential function with a peak randomly chosen between 600 and 1200 Hz, a

decay time constant of 30 ms and a peak between 0 and 0.5 s. The threshold trace was then evalu-

ated against random numbers from a uniform distribution to determine the occurrence of a spike.

To accelerate the simulations, the sampling time interval was adjusted to 1 ms.

GC properties
GCs were implemented as integrate and fire models with the following parameters: membrane resis-

tance linearly varied between 450 MW for inner GCs to 800 MW for outer GCs (Figure 1H) and the

threshold linearly varied between �37 mV for inner GCs to �42 mV for outer GCs (Figure 1G). For

the models without the GC gradient, these values were set to the mean of the values for the inner

and outer GC (i.e. 625 MW and �39 mV). The reset potential was set to �90 mV and the membrane

potential to �80 mV.

PF properties
To simulate a different action potential conduction velocity, the GC spike times were delayed by a

value linearly varied between 0 for inner and 3 ms for outer GCs. The delay was calculated as the dif-

ference in conduction time required to travel 5 mm with a speed of 0.28 and 0.33 m s�1 (Figure 4F).

Even with this anatomically rather too large PF length (Harvey and Napper, 1991), the PF conduc-

tion speed had only a small impact on the model performance (see e.g. blue lines and bars in

Figure 7C–E), arguing against a big impact of PF conduction delays (Braitenberg et al., 1997) at

least in our model approach.

Synaptic connections and properties
Each MF was connected to 10 GCs and each GC received 2 MF inputs, that is, the number of MF

was 1/5 of the number of GCs. Since our model consists only of ‘active’ MFs, we chose only 2 and

not 4 MFs per GCs (Billings et al., 2014). The MF to GC synapse was implemented as a model with

one pool of vesicles with a release probability of 0.5 and a vesicle recruitment time constant of 13

ms (Hallermann et al., 2010). Synaptic facilitation was implemented by increasing the release proba-

bility after each spike by 0.2 decaying to the resting release probability with a time constant of 12

ms (Saviane and Silver, 2006). The synaptic conductance had exponential rise and decay time con-

stants of 0.1 and 2 ms, respectively, and a peak amplitude of 1.9 nS (Silver et al., 1992). Corre-

spondingly, the GC to PC synapse was implemented as a model with one pool of vesicles with a

release probability (pr0) of 0.4 and a vesicle recruitment time constant of 50 ms. Synaptic facilitation

was implemented by increasing the release probability after each spike by 0.2 decaying to the rest-

ing release probability with a time constant of 50 ms (Doussau et al., 2017; Isope and Barbour,

2002; Valera et al., 2012). The synaptic conductance had an exponential rise time constant

between 0.5 and 2 ms and a decay time constant between 17.5 and 70 ms for inner- and outer-zone

GCs, respectively (Figure 6). The peak amplitude was adjusted to equalize the charge of the EPSC

and to generate an approximately correct number of PC spikes (with the initial start values, that is,

all GC to PC synaptic weight factors = 1) by linearly varying between 0.5 and 0.15 nS for inner- and

outer-zone GCs, respectively.

PC properties
The PC was implemented as an integrate and fire model with a membrane resistance of 15 MW, rest-

ing membrane potential of �50 mV, and a firing threshold of �45 mV. Spontaneous firing of PCs

(Raman and Bean, 1997) was not implemented, and the only inputs to drive PCs to threshold were

the GC-to-PC EPSCs.
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Target sequence and van Rossum error
Based on in vivo firing patterns (Witter and De Zeeuw, 2015a), an arbitrary target firing sequence

of 80, 40, and 120 Hz for 300, 100, and 100 ms, respectively, was chosen. The distance between the

PC and the target spiking sequence was quantified with the van Rossum error (van Rossum, 2001).

Both spiking sequences were convolved with an exponential kernel with a decay time constant of 30

ms (or values ranging from 2 to 300 ms in (Figure 8—figure supplement 1A,B). The van Rossum

error was defined as the integral of the square of the difference between these two convolved

traces. We also tested another algorithm to calculate the van Rossum error (Houghton and Kreuz,

2012), C++ code taken from http://pymuvr.readthedocs.io/ and incorporated into Matlab via the

MEX function and results were comparable.

Learning and minimization algorithm
For each random set of MF inputs, the GC to PC synaptic weights were changed according to the

following algorithm with the aim to minimize the van Rossum error between the PC spiking

sequence and the target sequence. The initial values of the synaptic weights were 1, and values

were allowed to change between 0 and 100. First, an algorithm was used that was based on super-

vised learning (Raymond and Medina, 2018) to punish the GCs that have spikes that precede

unwanted PC spikes. Subsequently, an unbiased optimization of the GC to PC synaptic weight was

performed using the patternsearch() algorithm of Matlab to minimize the van Rossum error. To

increase the chance that a global (and not local) minimum was found, the minimization of the routine

was repeated several times with random starting values. Other optimization routines such as a sim-

plex [(fminsearch() of Matlab) or a genetic algorithm (ga() of Matlab)] revealed similar results. To

exclude the possibility that the differences in the minimal van Rossum error between models with

and without gradients were due to a bias in our learning algorithm, we performed a set of simula-

tions with networks consisting of less than 100 GCs, in which we skipped the learning algorithm and

only used an unbiased minimization algorithm. This resulted in similar difference in the minimal van

Rossum error between models with and without gradients, indicating that the learning algorithm

was not biased toward one type of model. For networks consisting of more than 100 GCs the pre-

learning was required to facilitate the finding of the global minimum.

300 different sets of random MF inputs were used to determine 300 statistically independent min-

imal van Rossum values for each of the models with a different number of GCs and a different num-

ber of implemented gradients (illustrated as mean ± SEM in Figure 8C). Comparing different models

with the same set of MF input (using the nonparametric paired Wilcoxon signed-rank statistical test)

the difference was significant (p<0.001) for all of the models and all number of GCs. The van Rossum

errors were then normalized to the mean of the error of the model without gradients (Figure 8D).

The values in Figure 8D were fitted with cubic spline interpolation using the logarithm of the num-

ber of GCs as abscissa.

To quantify the transition time between two target frequencies of the PC, the spike histogram

was fitted with the equation

f tð Þ ¼ 80þ �80þ 40

1þ e� t�200ð Þ=tT þ
�40þ 120

1þ e� t�300ð Þ=tT (5)

where f is the spike frequency in Hz and t the time in ms. The transition time tT corresponds to the

23% to 77% decay and rise time for the transition from 80 to 40 Hz and from 40 to 120 Hz,

respectively.

Sensitivity of model parameters
We verified that our conclusions do not critically depend on specific parameters of the model. For

example, decreasing the simulation time interval from 1 ms to 100 ms, resulted in a difference of the

best van Rossum error of 21% between models with and without gradients consisting of 100 GC,

compared with a difference of 17% between the corresponding models with the default simulation

time interval of 1 ms (cf. Figure 8D). With 4 MFs per GC (not 2) the difference of the best van Ros-

sum error was 15% between models with and without gradients consisting of 100 GC (17% with 2

MF per GC). With a membrane resistance of the PC of 100 MW (not 15 MW) the difference of the

best van Rossum error was 23% between models with and without gradients consisting of 100 GCs
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(17% with 15 MW). Finally, changing the target sequence to 80, 0, and 120 Hz (not 80, 40, and 120

Hz) resulted in very similar results as obtained with the original target (compare Figure 8C–E with

Figure 8—figure supplement 1H–J and Figure 8—figure supplement 1D–F with Figure 8—figure

supplement 1K–M).

Code
The Matlab scripts used to reproduce the model results in Figure 8 are available at: https://github.

com/HallermannLab/2019_GC_heterogen (Straub, 2019; copy archived at https://github.com/elifes-

ciences-publications/2019_GC_heterogen/settings).

Statistical testing
Data are expressed as mean ± SEM or as box plots with median and interquartile range. The number

of analyzed cells is indicated in the figures. To test for statistically significant differences, we per-

formed Kruskal-Wallis (for three groups) or Mann-Whitney U tests (for two groups) and provide the

p values (PKr-Wa, or PMann-Whitney) above the bar-graphs. In case of three groups, we performed non-

parametric Dunn’s multiple comparisons post-hoc tests and provide the p values in the figure

legends (PDunn). Results were considered statistically significant if p<0.05.
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