Performance and Low-Frequency Noise of 22-nm FDSOI Down to 4.2 K for Cryogenic Applications
Bruna Cardoso Paz, Mikaël Cassé, Christoforos Theodorou, Gérard Ghibaudo, Thorsten Kammler, Luca Pirro, Maud Vinet, Silvano de Franceschi, Tristan Meunier, Fred Gaillard

To cite this version:

HAL Id: hal-02969741
https://hal.science/hal-02969741
Submitted on 25 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Performance and Low Frequency Noise of 22nm FDSOI down to 4.2K for Cryogenic Applications

Bruna Cardoso Paz, Mikaël Cassé, Christoforos Theodorou, Gérard Ghibaudo, Fellow IEEE, Thorsten Kammler, Luca Pirro, Maud Vinet, Silvano de Franceschi, Tristan Meunier and Fred Gaillard

Abstract—This work presents the performance and low frequency noise of 22nm FDSOI CMOS technology. The experimental measurements and the analysis are performed as a function of temperature for the first time, focusing on cryogenic applications, down to 4.2K. The back bias impact on device performance is evaluated. The results reveal that the threshold voltage tuning is found to be temperature independent, allowing extra drain current improvement. This is particularly interesting for short channel devices, whose drain current gain with temperature lowering is expected to be smaller in comparison to long channel MOSFETs. Low frequency noise is characterized by means of time-domain current sampling measurements. Moderate and strong inversion regimes are investigated. The carrier number with correlated mobility fluctuations model can well describe the 1/f noise behavior down to 4.2K. The physical origin behind the drain current low frequency noise to signal power augmentation with temperature lowering could be mainly attributed to the normalized transconductance improvement.

Index Terms—Cryogenic applications, FDSOI MOSFET, low frequency noise.

I. INTRODUCTION

The interest in cryogenic electronics relies on several applications, such as space and cooling systems [1], [2], and has been recently boosted by the quantum computing field [3], [4]. Recently, monolithic integration between qubits and readout circuitry has been demonstrated at 2K in 22nm FDSOI technology [5], and the electrical performance of several CMOS technologies has shown to be significantly improved with temperature (T) decrease [6]–[8]. On the other hand, in [9] it is indicated that the low frequency noise to signal powers increases at cryogenic T, especially in the presence of subband scattering mechanisms [10]. Moreover, in [11] the authors claim that low frequency charge noise is one of the key parameters to improve qubit fidelity in Si spin qubits.

To the best of our knowledge, the performance of 22nm FDSOI MOSFETs at deep cryogenic temperatures has not been explored yet, especially regarding the device optimization by means of forward biasing (FBB). Furthermore, there is a lack of information on low frequency noise (LFN) behavior at cryogenic temperatures available in literature for commercial technologies. In this work, our goal is to cover the above mentioned topics, concerning advanced FDSOI MOSFET characterization at 4.2K, with special focus on the origin of LFN down to 4.2K and the underlying physics.

II. DEVICES CHARACTERISTICS AND METHODOLOGY

Si NMOSFETs and SiGe (with Ge content around 25%) PMOSFETs fabricated with gate-first High-K Metal Gate integration in commercial 22nm FDSOI CMOS technology [12] were evaluated in this work. The undoped semiconductor channel is about 6nm thin, whereas the buried oxide thickness is 20nm and the equivalent oxide thickness (EOT) is around 1.3nm.

Experimentional measurements were performed down to 4.2K using a manual cryogenic probe station. Fast IV module B1530A from Agilent was used for low frequency noise characterization through time-domain current sampling measurements [13]. For spectral analysis, Welch function was used to apply the Fourier transform and obtain the power spectral density.

III. PERFORMANCE DEPENDENCE ON TEMPERATURE

Fig. 1 presents the drain current (I_DS) as a function of the gate voltage (V_GS) at high and low drain bias (V_DS), for N- and PMOS, down to 4.2K. Temperature lowering leads to expected threshold voltage (V_TH) and I_DS increase, in absolute values, for both N- and PMOS. As T decreases, the balance between mobility increase and V_TH shift towards higher absolute value originates the zero-temperature coefficient (ZTC). Since the T-dependence of V_TH/|V_TH/ΔT|, is higher for PMOS (>0.71mV/K, in comparison to ∼0.57mV/K for NMOS), larger V_DS dependence if found for V_ZTC [14].

Fig. 2 (a) shows V_TH as a function of T for NMOS at V_DS = 50mV and 0.9V, and at a back gate bias (V_B) of 0V and 1.4V. The applied 1.4V at the back bias gives the same V_TH value as for the device...
operating at room temperature. Fig. 2 (b) indicates the V_B required to shift V_{TH} back to its value at 300K for each temperature operation. FBB is an efficient way to correct the significant V_{TH} increase with T lowering and, therefore, enhance power efficiency. The measured Drain-Induced Barrier Lowering (DIBL) is ≈74 mV/V at both conditions, at 300K with $V_B = 0V$ and at 4.2K with $V_B = 1.4V$.

Fig. 3 (a) presents V_{TH} as a function of V_B for short-channel N- and $PMOS$ at 300K and 4.2K. The back bias efficiency, evaluated through the body factor ($\gamma = \Delta V_{TH}/\Delta V_B$) does not change with T. This is because the doping concentration of the back planes in ultra-thin body and buried oxide MOSFETs is high enough to be always activated in such a way that they do not suffer from any freeze-out effects [15], which could reduce γ at low T. Fig. 3 (b) shows γ as a function of T for N- and PMOSFETs with three different channel lengths, $L = 24nm$, 70nm and 1μm. Fig. 3 (b) confirms that γ is T-independent, since $\Delta\gamma/\Delta T < 5\%$ for all studied devices. Therefore, the back bias remains a powerful tool down to cryogenic T and can still be used to facilitate circuits design [16]. We can observe slightly lower $|\gamma|$ as the channel length becomes shorter, likely due to stronger influence of source and drain potentials inside the channel in shorter transistors. The difference between γ in N- and PMOS is expected since the position of the inversion layer in the channel (centroid of charges) differs according to the type of carriers (hole versus electron) and channel material (SiGe versus Si) [17].

Fig. 2. V_{TH} versus T at $V_{DS} = 50mV$ and 0.9V, and at $V_B = 0V$ and 1.4V (a). V_B needed to shift V_{TH} back to its value at 300K for each temperature operation, at $V_{DS} = 50mV$ (b).

Fig. 3. V_{TH} versus V_B (a) and γ versus T (b) for N- and PMOS, at $|V_{DS}| = 50mV$.

Fig. 4. I_{On} versus T for $NMOS$, at $V_{GS} = V_{DS} = 0.9V$, and varying V_B (a). I_{On}/I_{Off} versus T for long and short channels $NMOS$, at $V_{GS} = V_{DS} = 0.9V$, and at $V_B = 0V$ and 1.4V (b).

![Graph](image-url)

TABLE I

<table>
<thead>
<tr>
<th>Threshold Voltage</th>
<th>22nm FDSOI – THIS WORK</th>
<th>28nm Bulk [6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TH}</td>
<td>V_{TH}, 300K</td>
<td>V_{TH}, 300K</td>
</tr>
<tr>
<td>NMOS</td>
<td>$0.24V$</td>
<td>$0.26V$</td>
</tr>
<tr>
<td>PMOS</td>
<td>$-0.33V$</td>
<td>$-0.37V$</td>
</tr>
<tr>
<td>V_{DS}</td>
<td>$0.36V$</td>
<td>$0.35V$</td>
</tr>
</tbody>
</table>

Fig. 4 (a) shows the on-state current (I_{On}) as a function of T for $NMOS$ at $V_{GS} = V_{DS} = 0.9V$ and varying V_B. The I_{On} gain observed with T decrease is attributed to the effective mobility increase due to suppression of phonon scattering contribution [18], whereas the I_{On} gain observed with T increase is the consequence of the V_{TH} shift, and thus gate voltage overdrive ($V_{GR} = V_{GS} - V_{TH}$) increase. Fig. 4 (b) shows I_{On} normalized by I_{On} extracted at 300K and no back bias, I_{On}/I_{Off}, as a function of T for short and long NMOSFETs. The I_{On} gain with T reduction and FBB is higher for the long channel MOSFET in comparison to short channel one. This could be explained by the fact that shorter MOSFETs suffer from stronger self-heating effect [19], due to higher normalized input power, but also from larger access resistance impact and stronger contribution of T-independent transport mechanisms, related to neutral defect scattering and/or ballisticity effect [20].
Fig. 5 (a) shows the maximum transconductance ($g_{m,peak}$) and (b) the respective cutoff frequency ($f_{T,peak}$) as a function of T. The $f_{T,peak}$ values in this work were calculated from $g_{m,peak}/(2 \pi C_{ox} W/L)$ where C_{ox} = 0.028F/m² is the oxide capacitance per unit area, and are very similar to those obtained using RF characterization in [12], at 300K. Curves are presented for two bias configuration, at fixed V_{gs} = 0V and at V_{gs} required to keep V_{th} constant at its value obtained at 300K ($V_{th,300}$). A very small V_{th} impact in $g_{m,peak}$ (around ±3%) is observed for the short channel transistors in Fig. 5, while for long channel MOSFETs, FBB is found to improve $g_{m,peak}$ results in a more significant way (up to +11%, not shown). This indicates that power consumption optimization can be achieved by means of back biasing, while >450GHz cutoff frequency is kept. Moreover, we clearly observe the $g_{m,peak}$ (and therefore $f_{T,peak}$) improvement with T lowering for both NMOS (up to 38%) and PMOS (up to 16%). The results obtained in this work for 22nm FDSOI are benchmarked against 28nm Bulk CMOS technology [6]. RTNt and HVTp flavors from [6] were chosen for comparison to match similar V_{th} to our devices, as indicated in Table I. From the $f_{T,peak}$ values in Fig. 5 (b), it is observed that FDSOI outperforms Bulk, especially for the NMOSFET, where a large $g_{m,peak}$ gain is obtained at cryogenic temperatures.

A. Subthreshold regime

Fig. 6 presents $I_{ds}(V_{gs})$ for a short device measured in 4 different dies at 4.2K (a), and the swing $\partial \overline{V_{gs}}/\partial (\log I_{ds})$ as a function of the normalized current at 300K and 4.2K (b). Unlike the room temperature operation, where the subthreshold swing (SS) can be easily extracted, the appearance of oscillatory regime likely due to quantum interference in the subthreshold region at cryogenic temperatures makes it difficult to extract SS at 4.2K, due to the strong dependence of this parameter on the current level used for the extraction. As shown in Fig. 6 (a), this phenomenon presents high variability. The extracted ideality factor (η) is \approx1.22 at 300K, and more than 10 at 4.2K, which cannot be explained by an increase of the interface trap density, but the appearance of an exponential tail of states in the subband, as discussed in [21], [22], which leads to the SS saturation versus T below \approx50K. From a performance point of view, even though the experimental SS is much higher than the theoretical limit at 4.2K (SS \approx 0.8mV/dec), it induces an off-state current (I_{off}) reduction of several orders of magnitude in comparison to the room temperature operation, lying below the equipment accuracy (1fA).

![Fig. 6. I_{ds} versus V_{gs} (a) and $\partial \overline{V_{gs}}/\partial (\log I_{ds})$ versus $I_{ds}/(W/L)$ (b) for short channel NMOS, at $V_{ds} = 50$mV.](image)

![Fig. 7. S_{ID}/I_{ds} versus f for NMOS, varying T, at $V_{gs} = 0$V and at $V_{ds} = 50$mV (a) and 0.9V (b).](image)

![Fig. 8. S_{ID}/I_{ds} versus I_{ds} for NMOS at different T conditions, $V_{ds} = 50$mV, and at $f = 10$Hz. Lines indicate the CNF/CMF model [23]. $\Omega = 4$V⁻¹.](image)

IV. LOW FREQUENCY NOISE

Fig. 7 presents the normalized drain current power spectral density (S_{ID}) as a function of frequency (f), varying T, in linear (a) and saturation (b) regimes. From 300K down to 4.2K, both N- and PMOSFET (not shown) exhibit 1/f noise behavior. Moreover, S_{ID}/I_{ds}² increases with temperature reduction. In order to identify the sources of noise and explain its behavior with T, S_{ID}/I_{ds}² values at 10Hz are presented as a function of I_{ds}, from moderate to strong inversion in Fig. 8. The lines indicate the carrier number fluctuations with correlated mobility fluctuations (CNF/CMF) analytical model described in equation (1), where Ω is a noise parameter related to the Coulomb scattering coefficient and S_{vb} is the flat band voltage power spectral density related to the trapping/detrapping of carriers in slow oxide states [23]. Since good agreement between the data and the model is obtained from 300K down to 4.2K, we can conclude that carrier number fluctuation and correlated mobility fluctuation are the sources of noise, and the 1/f noise to signal power increases with T lowering because of the g_{m}/I_{ds} improvement, on the same way as previously found for bulk CMOS [24]. Moreover, as the 1/f noise decays with exponent equal to 1, i.e. trap distribution exponential factor = 1, the oxide traps are mostly uniformly distributed in depth, inside the gate oxide.

Results of S_{vb} were extracted using the equation (1), for N- and
V. Conclusion

In this work, we have shown that FDSOI is a good option for cryogenic-CMOS applications. While MOS performance significantly improves with T lowering, reaching $I_{ON} > 1.2\text{mA}/\mu\text{m}$ and f_T close to 500GHz, high back bias efficiency remains a powerful tool for circuit optimization down to 4.2K. Back biasing can be safely used for V_{TH} tunability, improving circuits performance at low T, especially when low dynamic power consumption and high bandwidth are required, e.g. quantum integrated circuits [26]. The g_{m}/I_{BS} improvement was correlated to the normalized drain current power spectral density increase at cryogenic T, being the CNF + CMF model valid from 300K down to 4.2K for Quantum Computing,” 2018 J. Appl. Phys. 124, no. 2, pp. 571–581, Feb. 2006, doi: 10.1063/1.2142025.

