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Abstract. In this work, we are interested in the analysis of time-harmonic Maxwell’s equations
in presence of a conical tip of a material with negative dielectric constants. When these constants
belong to some critical range, the electromagnetic field exhibits strongly oscillating singularities
at the tip which have infinite energy. Consequently Maxwell’s equations are not well-posed in
the classical L2 framework. The goal of the present work is to provide an appropriate functional
setting for 3D Maxwell’s equations when the dielectric permittivity (but not the magnetic per-
meability) takes critical values. Following what has been done for the 2D scalar case, the idea
is to work in weighted Sobolev spaces, adding to the space the so-called outgoing propagating
singularities. The analysis requires new results of scalar and vector potential representations of
singular fields. The outgoing behaviour is selected via the limiting absorption principle.

Key words. Time-harmonic Maxwell’s equations, negative metamaterials, Kondratiev weighted
Sobolev spaces, T -coercivity, compact embeddings, scalar and vector potentials, limiting absorp-
tion principle.

1 Introduction

For the past two decades, the scientific community has been particularly interested in the study
of Maxwell’s equations in the unusual case where the dielectric permittivity ε is a real-valued
sign-changing function. There are several motivations to this which are all related to spectacular
progress in physics. Such sign-changing ε appear for example in the field of plasmonics [3, 33, 6].
The existence of surface plasmonic waves is mainly due to the fact that, at optical frequencies,
some metals like silver or gold have an ε with a small imaginary part and a negative real part.
Neglecting the imaginary part, at a given frequency, one is led to consider a real-valued ε which
is negative in the metal and positive in the air around the metal. A second more prospective
motivation concerns the so-called metamaterials, whose micro-structure is designed so that their
effective electromagnetic constants may have a negative real part and a small imaginary part in
some frequency ranges [46, 45, 44]. Let us emphasize that for such metamaterials not only the
dielectric permittivity ε may become negative but the magnetic permeability µ as well. At the
interface between dielectrics and negative-index metamaterials, one can observe a negative refrac-
tion phenomenon which opens a lot of exciting prospects. Finally let us mention that negative ε
also appear in plasmas, together with strong anisotropic effects. But we want to underline a main
difference between plasmas and the previous applications. In the case of plasmonics and metama-
terials, ε is sign-changing but does not vanish (and similarly for µ), while in plasmas, ε vanishes
on some particular surfaces, leading to the phenomenon of hybrid resonance (see [21, 39]). The
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theory developed in the present paper does no apply to the case where ε vanishes.

The goal of the present work is to study the Maxwell’s system in the case where ε, µ change
sign but do not vanish. In case of invariance with respect to one variable, the analysis of time-
harmonic Maxwell’s problem leads to consider the 2D scalar Helmholtz equation

div
(1
ε
∇ϕ

)
+ ω2µϕ = f.

Here f denotes the source term and the unknown ϕ is a component of the magnetic field. For
this scalar equation, only the change of sign of ε matters because roughly speaking, the term
involving µ is compact (or locally compact in freespace). In the particular case where ε takes
constant values ε+ > 0 and ε− < 0 in two subdomains separated by a a curve Σ, the results are
quite complete [8]. If Σ is smooth (of class C1), the equation has the same properties in the H1

framework as in the case of positive coefficients, except when the contrast κε := ε−/ε+ takes the
particular value −1. One way to show this consists in finding an appropriate operator T such
that the coercivity of the variational formulation is restored when testing with functions of the
form Tϕ′ (instead of ϕ′). This approach is called the T-coercivity technique. When κε = −1,
Fredholmness is lost in H1 but some results can be established in some weighted Sobolev spaces
where the weight is adapted to the shape of Σ [41, 37, 42]. The picture is quite different when
Σ has corners. For instance, in the case of a polygonal curve Σ, Fredholmness in H1 is lost not
only for κε = −1 but for a whole interval of values of κε around −1. We name this interval the
critical interval. The smaller the angle of the corners, the larger the critical interval is. In fact,
we can still find a solution in that case but this solution has a strongly singular behaviour at
the corners in riη where r is the distance to the corner and η is a real coefficient. In particular,
this hypersingular solution does not belong to H1. It has been shown that Fredholmness can be
recovered in an appropriate unusual framework [10] which is obtained by adding a singular func-
tion to a Kondratiev weighted Sobolev space of regular functions. The proof requires to adapt
Mellin techniques in Kondratiev spaces [30] to an equation which is not elliptic due to the change
of sign of ε (see [20] for the first analysis). From a physical point of view, the singular1 function
corresponds to a wave which propagates towards the corner, without never reaching it because
its group velocity tends to zero with the distance to the corner [7, 25, 26]. In the literature,
this wave which is trapped by the corner is commonly referred to as a black-hole wave. It leads
to a strange phenomenon of leakage of energy while only non-dissipative materials are considered.

The objective of this article is to extend this type of results to 3D Maxwell’s equations. The
case where the contrasts in ε and µ do not take critical values has been considered in [9]. Using
the T-coercivity technique, a Fredholm property has been proved for Maxwell equations in a clas-
sical functional framework as soon as two scalar problems (one for ε and one for µ) are well-posed
in H1. The case where these problems satisfy a Fredholm property in H1 but with a non trivial
kernel has also been treated in [9]. Let us finally mention [38] where different types of results
have been established for a smooth inclusion of class C 1. In the present work, we consider a 3D
configuration with an inclusion of material with a negative dielectric permeability ε. We suppose
that this inclusion has a tip at which singularities of the electromagnetic field exist. The objec-
tive is to combine Mellin analysis in Kondratiev spaces with the T-coercivity technique to derive
an appropriate functional framework for Maxwell’s equations when the contrast κε takes critical
values (but not the contrast in µ). We emphasize that due to the non standard singularities we
have to deal with, the results we obtain are quite different from the ones existing for classical
Maxwell’s equations with positive materials in non smooth domains [4, 14, 5, 16, 15].

The outline is as follows. In the remaining part of the introduction, we present some general
notation. In Section 2, we describe the assumptions made on the dielectric constants ε, µ. Then

1From now on, we simply write “singular” instead of “hypersingular”.
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we propose a new functional framework for the problem for the electric field and show its well-
posedness in Section 3. Section 4 is dedicated to the analysis of the problem for the magnetic
field. We emphasize that due to the assumptions made on ε, µ (the contrast in ε is critical but
the one in µ is not), the studies in sections 3 and 4 are quite different. We give a few words of
conclusion in Section 5 before presenting technical results needed in the analysis in two sections
of appendix. The main outcomes of this work are Theorem 3.6 (well-posedness for the electric
problem) and Theorem 4.9 (well-posedness for the magnetic problem).

All the study will take place in some domain Ω of R3. More precisely, Ω is an open, connected
and bounded subset of R3 with a Lipschitz-continuous boundary ∂Ω. Once for all, we make the
following assumption:

Assumption 1. The domain Ω is simply connected and ∂Ω is connected.

When this assumption is not satisfied, the analysis below must be adapted (see the discussion in
the conclusion). For some ω 6= 0 (ω ∈ R), the time-harmonic Maxwell’s equations are given by

curlE − iω µH = 0 and curlH + iω εE = J in Ω. (1)

Above E and H are respectively the electric and magnetic components of the electromagnetic
field. The source term J is the current density. We suppose that the medium Ω is surrounded
by a perfect conductor and we impose the boundary conditions

E × ν = 0 and µH · ν = 0 on ∂Ω, (2)

where ν denotes the unit outward normal vector field to ∂Ω. The dielectric permittivity ε and the
magnetic permeability µ are real valued functions which belong to L∞(Ω), with ε−1, µ−1 ∈ L∞(Ω)
(without assumption of sign). Let us introduce some usual spaces in the study of Maxwell’s
equations:

L2(Ω) := (L2(Ω))3

H1
0(Ω) := {ϕ ∈ H1(Ω) |ϕ = 0 on ∂Ω}

H1
#(Ω) := {ϕ ∈ H1(Ω) |

ˆ
Ω
ϕdx = 0}

H(curl ) := {H ∈ L2(Ω) | curlH ∈ L2(Ω)}
HN (curl ) := {E ∈ H(curl ) |E × ν = 0 on ∂Ω}

and for ξ ∈ L∞(Ω):

XT (ξ) := {H ∈ H(curl ) |div(ξH) = 0, ξH · ν = 0 on ∂Ω}
XN (ξ) := {E ∈ HN (curl ) | div(ξE) = 0} .

We denote indistinctly by (·, ·)Ω the classical inner products of L2(Ω) and L2(Ω). Moreover, ‖ ·‖Ω
stands for the corresponding norms. We endow the spaces H(curl ), HN (curl ), XT (ξ), XN (ξ)
with the norm

‖ · ‖H(curl ) := (‖ · ‖2Ω + ‖curl · ‖2Ω)1/2.

Let us recall a well-known property for the particular spaces XT (1) and XN (1) (cf. [47, 1]).

Proposition 1.1. Under Assumption 1, the embeddings of XT (1) in L2(Ω) and of XN (1) in
L2(Ω) are compact. And there is a constant C > 0 such that

‖u‖Ω ≤ C ‖curlu‖Ω, ∀u ∈ XT (1) ∪XN (1).

Therefore, in XT (1) and in XN (1), ‖curl · ‖Ω is a norm which is equivalent to ‖ · ‖H(curl ).
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2 Assumptions for the dielectric constants ε, µ

In this document, for a Banach space X, X∗ stands for the topological antidual space of X (the
set of continuous anti-linear forms on X).
In the analysis of the Maxwell’s system (1)-(2), the properties of two scalar operators associated
respectively with ε and µ play a key role. Define Aε : H1

0(Ω)→ (H1
0(Ω))∗ such that

〈Aεϕ,ϕ′〉 =
ˆ

Ω
ε∇ϕ · ∇ϕ′ dx, ∀ϕ,ϕ′ ∈ H1

0(Ω) (3)

and Aµ : H1
#(Ω)→ (H1

#(Ω))∗ such that

〈Aµϕ,ϕ′〉 =
ˆ

Ω
µ∇ϕ · ∇ϕ′ dx, ∀ϕ,ϕ′ ∈ H1

#(Ω).

Assumption 2. We assume that µ is such that Aµ : H1
#(Ω)→ (H1

#(Ω))∗ is an isomorphism.

Assumption 2 is satisfied in particular if µ has a constant sign (by Lax-Milgram theorem). We
underline however that we allow µ to change sign (see in particular [17, 11, 8, 9] for examples of
sign-changing µ such that Assumption 2 is verified). The assumption on ε, that will be responsi-
ble for the presence of (hyper)singularities, requires to consider a more specific configuration as
explained below.

2.1 Conical tip and scalar (hyper)singularities

We assume that Ω contains an inclusion of a particular material (metal at optical frequency,
metamaterial, ...) located in some domain M such that M ⊂ Ω (M like metal or metamaterial).
We assume that ∂M is of class C 2 except at the origin O where M coincides locally with a
conical tip. More precisely, there are ρ > 0 and some smooth domain $ of the unit sphere
S2 := {x ∈ R3 | |x| = 1} such that B(O, ρ) ⊂ Ω and

M ∩B(O, ρ) = K ∩B(O, ρ) with K := {r θ | r > 0, θ ∈ $}.

Here B(O, ρ) stands for the open ball centered at O and of radius ρ. We assume that ε takes the
constant value ε− < 0 (resp. ε+ > 0) in M ∩B(O, ρ) (resp. (Ω \M) ∩B(O, ρ)). And we assume
that the contrast κε := ε−/ε+ < 0 and $ (which characterizes the geometry of the conical tip)
are such that there exist singularities of the form

s(x) = r−1/2+iηΦ(θ, φ) (4)

satisfying div(ε∇s) = 0 in K with η ∈ R, η 6= 0. Here (r, θ, φ) are the spherical coordinates
associated with O while Φ is a function which is smooth in $ and in S2 \$. We emphasize that
since the interface between the metamaterial and the exterior material is not smooth, singularities
always exist at the conical tip. However, here we make a particular assumption on the singular
exponent which has to be of the form −1/2 + iη with η ∈ R, η 6= 0. Such singularities play a
particular role for the operator Aε introduced in (3) because they are “just” outside H1. More
precisely, we have s /∈ H1(Ω) but rγs ∈ H1(Ω) for all γ > 0. With them, we can construct a
sequence of functions un ∈ H1

0(Ω) such that

∀n ∈ N, ‖un‖H1(Ω) = 1 and lim
n→+∞

‖div(ε∇un)‖(H1
0(Ω))∗ + ‖un‖Ω = 0.

Then this allows one to prove that the range of Aε : H1
0(Ω)→ (H1

0(Ω))∗ is not closed (see [12, 8, 10]
in 2D). Of course, for any given geometry, such singularities do not exist when κε > 0 because
we know that in this case Aε : H1

0(Ω)→ (H1
0(Ω))∗ is an isomorphism. On the other hand, when

$ = {(cos θ cosφ, sin θ cosφ, sinφ) | −π ≤ θ ≤ π, −π/2 ≤ φ < −π/2+α} for some α ∈ (0;π) (5)
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Figure 1: The domain Ω with the inclusion M exhibiting a conical tip.

(the circular conical tip, see Figure 1), it can be shown that such s exists for κε > −1 (resp.
κε < −1) and |κε + 1| small enough (see [28]) when α < π/2 (resp. α > π/2). For a general
smooth domain $ ⊂ S2 and a given contrast κε, in order to know if such s exists, one has to
solve the spectral problem

Find (Φ, λ) ∈ H1(S2) \ {0} × C such thatˆ
S2
ε∇SΦ · ∇SΦ′ ds = λ(λ+ 1)

ˆ
S2
εΦ Φ′ ds, ∀Φ′ ∈ H1(S2), (6)

and see if among the eigenvalues some of them are of the form λ = −1/2 + iη with η ∈ R, η 6= 0.
Above, ∇S stands for the surface gradient. With a slight abuse, when ε is involved into integrals
over S2, we write ε instead of ε(ρ ·). Note that since ε is real-valued, if λ = −1/2 + iη is an
eigenvalue, we have λ(λ + 1) = −η2 − 1/4, so that λ = −1/2 − iη is also an eigenvalue for the
same eigenfunction. And since λ(λ + 1) ∈ R, we can find a corresponding eigenfunction which
is real-valued. From now on, we assume that Φ in (4) is real-valued. Let us mention that this
problem of existence of singularities of the form (4) is directly related to the problem of existence
of essential spectrum for the so-called Neumann-Poincaré operator [29, 43, 13, 27]. A noteworthy
difference with the 2D case of a corner in the interface is that several singularities of the form
(4) with different values of |η| can exist in 3D [28] (this depends on ε and on $). To simplify the
presentation, we assume that for the case of interest, singularities of the form (4) exist for only
one value of |η|. Moreover we assume that the quantity

´
S2 ε|Φ|2ds does not vanish. In this case,

exchanging η by −η if necessary, we can set η so that

η

ˆ
S2
ε|Φ|2ds > 0. (7)

For the 2D problem, it can be proved that the quantity corresponding to
´
S2 ε|Φ|2ds vanishes if

and only if the contrast κε coincides with a bound of the critical interval. We conjecture that
this also holds in 3D. Note that when

´
S2 ε|Φ|2ds = 0, the singularities have a different form from

(4). To fix notations, we set
s±(x) = χ(r)r−1/2±iηΦ(θ, φ) (8)

In this definition the smooth cut-off function χ is equal to one in a neighbourhood of 0 and is
supported in [−ρ; ρ]. In particular, we emphasize that s± vanish in a neighbourhood of ∂Ω.

In order to recover Fredholmness for the scalar problem involving ε, an important idea is too
add one (and only one) of the singularities (8) to the functional framework. From a mathemati-
cal point of view, working with the complex conjugation, it is obvious to see that adding s+ or s−
does not change the results. However physically one framework is more relevant than the other.
More precisely, we will explain in §3.7 with the limiting absorption principle why selecting s+,
with η such that (7) holds, together with a certain convention for the time-harmonic dependence,
is more natural.
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2.2 Kondratiev functional framework

In this paragraph, adapting what is done in [10] for the 2D case, we describe in more details how
to get a Fredholm operator for the scalar operator associated with ε. For β ∈ R and m ∈ N, let
us introduce the weighted Sobolev (Kondratiev) space Vm

β (Ω) (see [30]) defined as the closure of
C∞0 (Ω \ {O}) for the norm

‖ϕ‖Vm
β

(Ω) =

 ∑
|α|≤m

‖r|α|−m+β∂αxϕ‖2L2(Ω)

1/2

.

Here C∞0 (Ω \ {O}) denotes the space of infinitely differentiable functions which are supported in
Ω \ {O}. We also denote V̊1

β(Ω) the closure of C∞0 (Ω \ {O}) for the norm ‖ · ‖V1
β

(Ω). We have the
characterisation

V̊1
β(Ω) = {ϕ ∈ V1

β(Ω) |ϕ = 0 on ∂Ω}.

Note that using Hardy’s inequality
ˆ 1

0

|u(r)|2

r2 r2dr ≤ 4
ˆ 1

0
|u′(r)|2 r2dr, ∀u ∈ C 1

0 [0; 1),

one can show the estimate ‖r−1ϕ‖Ω ≤ C ‖∇ϕ‖Ω for all ϕ ∈ C∞0 (Ω \ {O}). This proves that
V̊1

0(Ω) = H1
0(Ω). Now set β > 0. Observe that we have

V̊1
−β(Ω) ⊂ H1

0(Ω) ⊂ V̊1
β(Ω) so that (V̊1

β(Ω))∗ ⊂ (H1
0(Ω))∗ ⊂ (V̊1

−β(Ω))∗.

Define the operators A±βε : V̊1
±β(Ω)→ (V̊1

∓β(Ω))∗ such that

〈A±βε ϕ,ϕ′〉 =
ˆ

Ω
ε∇ϕ · ∇ϕ′ dx, ∀ϕ ∈ V̊1

±β(Ω), ϕ′ ∈ V̊1
∓β(Ω). (9)

Working as in [10] for the 2D case of the corner, one can show that there is β0 > 0 (depending only
on κε and $) such that for all β ∈ (0;β0), Aβε is Fredholm of index +1 while A−βε is Fredholm
of index −1. We remind the reader that for a bounded linear operator between two Banach
spaces T : X→ Y whose range is closed, its index is defined as indT := dim ker T −dim coker T ,
with dim coker T = dim (Y/range(T )). On the other hand, application of Kondratiev calculus
guarantees that if ϕ ∈ V̊1

β(Ω) is such that A+β
ε ϕ ∈ (V̊1

β(Ω))∗ (the important point here being that
(V̊1

β(Ω))∗ ⊂ (V̊1
−β(Ω))∗), then there holds the following representation

ϕ = c− s
− + c+ s

+ + ϕ̃ with c± ∈ C and ϕ̃ ∈ V̊1
−β(Ω). (10)

Note that s±, with s± defined by (8), belongs to V̊1
β(Ω), but not to H1

0(Ω), and a fortiori not to
V̊1
−β(Ω). Then introduce the space V̊out := span(s+) ⊕ V̊1

−β(Ω), endowed with the norm

‖ϕ‖Vout = (|c|2 + ‖ϕ̃‖2V1
−β(Ω)))

1/2, ∀ϕ = c s+ + ϕ̃ ∈ V̊out, (11)

which is a Banach space. Introduce also the operator Aout
ε such that for all ϕ = c s+ + ϕ̃ ∈ V̊out

and ϕ′ ∈ C∞0 (Ω \ {O}),

〈Aout
ε ϕ,ϕ′〉 =

ˆ
Ω
ε∇ϕ · ∇ϕ′ dx = −c

ˆ
Ω

div(ε∇s+)ϕ′ dx+
ˆ

Ω
ε∇ϕ̃ · ∇ϕ′ dx.

Note that due to the features of the cut-off function χ, we have div(ε∇s+) ∈ L2(Ω). And since
div(ε∇s+) = 0 in a neighbourhood of O, we observe that there is a constant C > 0 such that
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|〈Aout
ε ϕ,ϕ′〉| ≤ C ‖ϕ‖Vout ‖ϕ′‖V1

β
(Ω). The density of C∞0 (Ω \ {O}) in V̊1

β(Ω) then allows us to
extend Aout

ε as a continuous operator from V̊out to (V̊1
β(Ω))∗. And we have

〈Aout
ε ϕ,ϕ′〉 = −c

ˆ
Ω

div(ε∇s+)ϕ′ dx+
ˆ

Ω
ε∇ϕ̃ · ∇ϕ′ dx, ∀ϕ = c s+ + ϕ̃, ϕ′ ∈ V̊1

β(Ω).

Working as in [10] (see Proposition 4.4.) for the 2D case of the corner, one can prove that
Aout
ε : V̊out → (V̊1

β(Ω))∗ is Fredholm of index zero and that ker Aout
ε = ker A−βε . In order to

simplify the analysis below, we shall make the following assumption.

Assumption 3. We assume that ε is such that for β ∈ (0;β0), A−βε is injective, which guarantees
that Aout

ε : V̊out → (V̊1
β(Ω))∗ is an isomorphism.

In what follows, we shall also need to work with the usual Laplace operator in weighted Sobolev
spaces. For γ ∈ R, define Aγ : V̊1

γ(Ω)→ (V̊1
−γ(Ω))∗ such that

〈Aγϕ,ϕ′〉 =
ˆ

Ω
∇ϕ · ∇ϕ′ dx, ∀ϕ ∈ V̊1

γ(Ω), ϕ′ ∈ V̊1
−γ(Ω)

(observe that there is no ε here). Combining the theory presented in [32] (see also the founding
article [30] as well as the monographs [34, 36]) together with the result of [31, Corollary 2.2.1],
we get the following proposition.

Proposition 2.1. For all γ ∈ (−1/2; 1/2), the operator Aγ : V̊1
γ(Ω)→ (V̊1

−γ(Ω))∗ is an isomor-
phism.

Note in particular that for γ = 0, this proposition simply says that ∆ : H1
0(Ω)→ (H1

0(Ω))∗ is an
isomorphism. In order to have a result of isomorphism both for Aout

ε and Aβ, we shall often make
the assumption that the weight β is such that

0 < β < min(1/2, β0) (12)

where β0 is defined after (9).
To measure electromagnetic fields in weighted Sobolev norms, in the following we shall work in
the spaces

V0
β(Ω) := (V0

β(Ω))3

V̊1
β(Ω) := (V̊1

β(Ω))3.

Note that we have V0
−β(Ω) ⊂ L2(Ω) ⊂ V0

β(Ω).

3 Analysis of the problem for the electric component

In this section, we consider the problem for the electric field associated with (1)-(2). Since the
scalar problem involving ε is well-posed in a non standard framework involving the propagating
singularity s+ (see (11)), we shall add its gradient in the space for the electric field. Then we
define a variational problem in this unsual space, and prove its well-posedness. Finally we justify
our choice by a limiting absorption principle.

3.1 A well-chosen space for the electric field

Define the space of electric fields with the divergence free condition

Xout
N (ε) := {u = c∇s+ + ũ, c ∈ C, ũ ∈ L2(Ω) | curlu ∈ L2(Ω), div(εu) = 0 in Ω \ {O},

u× ν = 0 on ∂Ω}. (13)
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In this definition, for u = c∇s+ + ũ, the condition div(εu) = 0 in Ω\{O} means that there holdsˆ
Ω
εu · ∇ϕdx = 0, ∀ϕ ∈ C∞0 (Ω \ {O}), (14)

which after integration by parts and by density of C∞0 (Ω \ {O}) in H1
0(Ω) is equivalent to

− c
ˆ

Ω
div(ε∇s+)ϕdx+

ˆ
Ω
εũ · ∇ϕdx = 0, ∀ϕ ∈ C∞0 (Ω). (15)

Note that we have XN (ε) ⊂ Xout
N (ε) and that dim (Xout

N (ε)/XN (ε)) = 1 (see Lemma D.1 in
Appendix). For u = c∇s+ + ũ with c ∈ C and ũ ∈ L2(Ω), we set

‖u‖Xout
N (ε) = (|c|2 + ‖ũ‖2Ω + ‖curlu‖2Ω)1/2 .

Endowed with this norm, Xout
N (ε) is a Banach space.

Lemma 3.1. Pick some β satisfying (12). Under Assumptions 1 and 3, for any u = c∇s+ + ũ ∈
Xout
N (ε), we have ũ ∈ V0

−β(Ω) and there is a constant C > 0 independent of u such that

|c|+ ‖ũ‖V0
−β(Ω) ≤ C ‖curlu‖Ω. (16)

As a consequence, the norm ‖·‖Xout
N (ε) is equivalent to the norm ‖curl ·‖Ω in Xout

N (ε) and Xout
N (ε)

endowed with the inner product (curl ·, curl ·)Ω is a Hilbert space.
Proof. Let u = c∇s+ + ũ be an element of Xout

N (ε). The field ũ is in L2(Ω) and therefore
decomposes as

ũ = ∇ϕ+ curlψ (17)
with ϕ ∈ H1

0(Ω) and ψ ∈ XT (1) (item iv) of Proposition A.1). Moreover, since u× ν = 0 on ∂Ω
and since both s+ and ϕ vanish on ∂Ω, we know that curlψ × ν = 0 on ∂Ω. Then noting that
−∆ψ = curl ũ = curlu ∈ L2(Ω), we deduce from Proposition A.2 that curlψ ∈ V0

−β(Ω) with
the estimate

‖curlψ‖V0
−β(Ω) ≤ C ‖curlu‖Ω. (18)

Using (14), the condition div(εu) = 0 in Ω \ {O} impliesˆ
Ω
ε∇(c s+ + ϕ) · ∇ϕ′ dx = −

ˆ
Ω
εcurlψ · ∇ϕ′ dx, ∀ϕ′ ∈ V̊1

−β(Ω),

which means exactly that Aβε (c s+ + ϕ) = −div(ε curlψ) ∈ (V̊1
−β(Ω))∗. Since additionally

−div(ε curlψ) ∈ (V̊1
β(Ω))∗, from (10) we know that there are some complex constants c± and

some ϕ̃ ∈ V̊1
−β(Ω) such that

c s+ + ϕ = c− s
− + c+ s

+ + ϕ̃.

This implies c− = 0, c+ = c (because ϕ ∈ H1
0(Ω)) and so ϕ = ϕ̃ is an element of V̊1

−β(Ω). This
shows that c s++ϕ ∈ V̊out and thatAout

ε (c s++ϕ) = −div(ε curlψ). SinceAout
ε : V̊out → (V̊1

β(Ω))∗
is an isomorphism, we have the estimate

|c|+ ‖ϕ‖V1
−β(Ω) ≤ C ‖div(ε curlψ)‖(V̊1

β
(Ω))∗ ≤ C ‖curlψ‖V0

−β(Ω). (19)

Finally gathering (17)–(19), we obtain that ũ ∈ V0
−β(Ω) and that the estimate (16) is valid.

Noting that ‖ũ‖Ω ≤ C ‖ũ‖V0
−β(Ω), this implies that the norms ‖ · ‖Xout

N (ε) and ‖curl · ‖Ω are
equivalent in Xout

N (ε).

Thanks to the previous lemma and by density of C∞0 (Ω \ {O}) in V̊1
β(Ω), the condition (15) for

u = c∇s+ + ũ ∈ Xout
N (ε) is equivalent to

− c
ˆ

Ω
div(ε∇s+)ϕdx+

ˆ
Ω
εũ · ∇ϕdx = 0, ∀ϕ ∈ V̊1

β(Ω) (20)

where all the terms are well-defined as soon as β satisfies (12).
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3.2 Definition of the problem for the electric field

Our objective is to define the problem for the electric field as a variational formulation set in
Xout
N (ε). For some γ > 0, let J be an element of V0

−γ(Ω) such that divJ = 0 in Ω. Consider the
problem

Find u ∈ Xout
N (ε) such thatˆ

Ω
µ−1curlu · curlv dx− ω2

 
Ω
εu · v dx = iω

ˆ
Ω
J · v dx, ∀v ∈ Xout

N (ε), (21)

where the term  
Ω
εu · v dx (22)

has to be carefully defined. The difficulty comes from the fact that Xout
N (ε) is not a subspace of

L2(Ω) so that this quantity cannot be considered as a classical integral.
Let u = cu∇s+ + ũ ∈ Xout

N (ε). First, for ṽ ∈ V0
−β(Ω) with β > 0, it is natural to set

 
Ω
εu · ṽ dx :=

ˆ
Ω
εu · ṽ dx. (23)

To complete the definition, we have to give a sense to (22) when v = ∇s+. Proceeding as for the
derivation of (20), we start from the identity

ˆ
Ω
εu · ∇ϕdx = −cu

ˆ
Ω

div(ε∇s+)ϕdx+
ˆ

Ω
εũ · ∇ϕdx, ∀ϕ ∈ C∞0 (Ω \ {O}).

By density of C∞0 (Ω \ {O}) in V̊1
β(Ω), this leads to set

 
Ω
εu · ∇ϕdx := −cu

ˆ
Ω

div(ε∇s+)ϕdx+
ˆ

Ω
εũ · ∇ϕdx, ∀ϕ ∈ V̊1

β(Ω). (24)

With this definition, condition (20) can be written as
 

Ω
εu · ∇ϕdx = 0, ∀ϕ ∈ V̊1

β(Ω).

In particular, since s+ ∈ V̊1
β(Ω), for all u ∈ Xout

N (ε) we have
 

Ω
εu · ∇s+ dx = 0 and so

ˆ
Ω
εũ · ∇s+ dx = cu

ˆ
Ω

div(ε∇s+)s+ dx. (25)

Finally for all u = cu∇s+ + ũ and v = cv∇s+ + ṽ in Xout
N (ε), using (23) and (25), we find

 
Ω
εu · v dx =

ˆ
Ω
εu · ṽ dx = cu

ˆ
Ω
ε∇s+ · ṽ dx+

ˆ
Ω
εũ · ṽ dx.

But since v ∈ Xout
N (ε), we deduce from the second identity of (25) that

ˆ
Ω
ε∇s+ · ṽ dx = cv

ˆ
Ω

div(ε∇s+)s+ dx. (26)

Summing up, we get
 

Ω
εu · v dx = cucv

ˆ
Ω

div(ε∇s+)s+ dx+
ˆ

Ω
εũ · ṽ dx, ∀u,v ∈ Xout

N (ε). (27)
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Remark 3.2. Even if we use an integral symbol to keep the usual aspects of formulas and facilitate
the reading, it is important to consider this new quantity as a sesquilinear form

(u,v) 7→
 

Ω
εu · v dx

on Xout
N (ε)×Xout

N (ε). In particular, we point out that this sesquilinear form is not hermitian on
Xout
N (ε)×Xout

N (ε). Indeed, we have
 

Ω
εv · u dx =

ˆ
Ω
εũ · ṽ dx+ cucv

ˆ
Ω

div(ε∇s+)s+ dx

so that  
Ω
εu · v dx−

 
Ω
εv · u dx = 2icucv =m

(ˆ
Ω

div(ε∇s+) s+ dx

)
. (28)

But Lemma C.1 and assumption (7) show that

=m
( ˆ

Ω
div(ε∇s+) s+ dx

)
6= 0.

In the sequel, we denote by aN (·, ·) (resp. `N (·)) the sesquilinear form (resp. the antilinear form)
appearing in the left-hand side (resp. right-hand side) of (21).

3.3 Equivalent formulation

Define the space
Hout
N (curl ) := span(∇s+)⊕HN (curl ) ⊃ Xout

N (ε)

(without the divergence free condition) and consider the problem

Find u ∈ Hout
N (curl ) such that

aN (u,v) = `N (v), ∀v ∈ Hout
N (curl ),

(29)

where the definition of  
Ω
εu · v dx

has to be extended to the space Hout
N (curl ). Working exactly as in the beginning of the proof of

Lemma 3.1, one can show that any u ∈ Hout
N (curl ) admits the decomposition

u = cu∇s+ +∇ϕu + curlψu, (30)

with cu ∈ C, ϕu ∈ H1
0(Ω) and ψu ∈ XT (1), such that curlψu ∈ V0

−β(Ω), for β satisfying (12).
Then, for all u = cu∇s+ + ∇ϕu + curlψu and v = cv∇s+ + ∇ϕv + curlψv in Hout

N (curl ), a
natural extension of the previous definitions leads to set

 
Ω
εu · v dx :=

ˆ
Ω
ε (∇ϕu + curlψu) · (∇ϕv + curlψv) dx

+
ˆ

Ω
cu ε∇s+ · curlψv + cv ε curlψu · ∇s+ dx

−
ˆ

Ω
cucv div(ε∇s+)s+ + cu div(ε∇s+)ϕv + cv ϕudiv(ε∇s+) dx.

(31)

Note that (31) is indeed an extension of (27). To show it, first observe that for u = cu∇s+ +
∇ϕu+ curlψu, v = cv∇s+ +∇ϕv + curlψv in Xout

N (ε), the proof of Lemma 3.1 guarantees that
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ϕu, ϕv ∈ V̊1
−β(Ω) with β satisfying (12). This allows us to integrate by parts in the last two

terms of (31) to get
 

Ω
εu · v dx :=

ˆ
Ω
ε (∇ϕu + curlψu) · (∇ϕv + curlψv) dx

+
ˆ

Ω
cu ε∇s+ · (∇ϕv + curlψv) + cv ε (∇ϕu + curlψu) · ∇s+ dx

−cucv
ˆ

Ω
div(ε∇s+)s+ dx.

(32)

Using (25), (26), the second line above can be written as
ˆ

Ω
cu ε∇s+ · (∇ϕv + curlψv) + cv ε (∇ϕu + curlψu) · ∇s+ dx

= cucv

ˆ
Ω

div(ε∇s+)s+ dx+ cucv

ˆ
Ω

div(ε∇s+)s+ dx.

(33)

Inserting (33) in (32) yields exactly (27).

Lemma 3.3. Under Assumptions 1 and 3, the field u is a solution of (21) if and only if it solves
the problem (29).

Proof. If u ∈ Hout
N (curl ) satisfies (29), then taking v = ∇ϕ with ϕ ∈ C∞0 (Ω \ {O}) in (29), and

using that divJ = 0 in Ω, we get (14), which implies that u ∈ Xout
N (ε). This shows that u solves

(21).

Now assume that u ∈ Xout
N (ε) ⊂ Hout

N (curl ) is a solution of (21). Let v be an element of
Hout
N (curl ). As in (30), we have the decomposition

v = cv∇s+ +∇ϕv + curlψv, (34)

with cv ∈ C, ϕv ∈ H1
0(Ω) and ψv ∈ XT (1) such that curlψv ∈ V0

−β(Ω) for all β satisfying (12).
By Assumption 3, there is ζ ∈ V̊out such that

Aout
ε ζ = −div(ε curlψv) ∈ (V̊1

β(Ω))∗. (35)

The function ζ decomposes as ζ = αs+ + ζ̃ with ζ̃ ∈ V̊1
−β(Ω). Finally, set

v̂ = curlψv −∇ζ = v −∇(cvs+ + ϕv + ζ).

The function v̂ is in Xout
N (ε), it satisfies curl v̂ = curlv and from (25), we deduce that

 
Ω
εu · v̂ dx =

 
Ω
εu · v dx.

Using also that J ∈ V0
−γ(Ω) for some γ > 0 and is such that divJ = 0 in Ω, so that

ˆ
Ω
J · v̂ dx =

ˆ
Ω
J · v dx,

this shows that aN (u,v) = aN (u, v̂) = `N (v̂) = `N (v) and ends the proof.

In the following, we shall work with the formulation (21) set in Xout
N (ε). The reason being that, as

usual in the analysis of Maxwell’s equations, the divergence free condition will yield a compactness
property allowing us to deal with the term involving the frequency ω.
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3.4 Main analysis for the electric field

Define the continuous operators Aout
N : Xout

N (ε) → (Xout
N (ε))∗ and Kout

N : Xout
N (ε) → (Xout

N (ε))∗
such that for all u, v ∈ Xout

N (ε),

〈Aout
N u,v〉 =

ˆ
Ω
µ−1curlu · curlv dx, 〈Kout

N u,v〉 =
 

Ω
εu · v dx.

With this notation, we have 〈(Aout
N + Kout

N )u,v〉 = aN (u,v).

Proposition 3.4. Under Assumptions 1–3, the operator Aout
N : Xout

N (ε) → (Xout
N (ε))∗ is an

isomorphism.

Proof. Let us construct a continuous operator T : Xout
N (ε) → Xout

N (ε) such that for all u, v ∈
Xout
N (ε), ˆ

Ω
µ−1curlu · curl (Tv) dx =

ˆ
Ω

curlu · curlv dx.

To proceed, we adapt the method presented in [9]. Assume that v ∈ Xout
N (ε) is given. We con-

struct Tv in three steps.

1) Since curlv ∈ L2(Ω) and Aµ : H1
#(Ω) → (H1

#(Ω))∗ is an isomorphism, there is a unique
ζ ∈ H1

#(Ω) such that
ˆ

Ω
µ∇ζ · ∇ζ ′ dx =

ˆ
Ω
µ curlv · ∇ζ ′ dx, ∀ζ ′ ∈ H1

#(Ω).

Then the field µ(curlv−∇ζ) ∈ L2(Ω) is divergence free in Ω and satisfies µ(curlv−∇ζ) · ν = 0
on ∂Ω.

2) From item ii) of Proposition A.1, we infer that there is ψ ∈ XN (1) such that

µ(curlv −∇ζ) = curlψ.

Thanks to Lemma A.5, we deduce that ψ ∈ V0
−β(Ω) for all β ∈ (0; 1/2) and a fortiori for β

satisfying (12).

3) Suppose now that β satisfies (12). Then we know from the previous step that div(εψ) ∈
(V̊1

β(Ω))∗. On the other hand, by Assumption 3, Aout
ε : V̊out → (V̊1

β(Ω))∗ is an isomorphism.
Consequently we can introduce ϕ ∈ V̊out such that Aout

ε ϕ = −div(εψ).

Finally, we set Tv = ψ − ∇ϕ. Clearly Tv is an element of Xout
N (ε). Moreover, for all u, v

in Xout
N (ε), we have

ˆ
Ω
µ−1curlu · curlTv dx =

ˆ
Ω
µ−1curlu · curlψ dx

=
ˆ

Ω
curlu · curlv dx−

ˆ
Ω

curlu · ∇ζ dx

=
ˆ

Ω
curlu · curlv dx.

From Lemma 3.1 and the Lax-Milgram theorem, we deduce that T∗Aout
N : Xout

N (ε)→ (Xout
N (ε))∗ is

an isomorphism. And by symmetry, permuting the roles of u and v, it is obvious that T∗Aout
N =

Aout
N T, which allows us to conclude that Aout

N : Xout
N (ε)→ (Xout

N (ε))∗ is an isomorphism.
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Proposition 3.5. Under Assumptions 1 and 3, if (un = cn∇s+ + ũn) is a sequence which is
bounded in Xout

N (ε), then we can extract a subsequence such that (cn) and (ũn) converge respec-
tively in C and in V0

−β(Ω) for β satisfying (12). As a consequence, the operator Kout
N : Xout

N (ε)→
(Xout

N (ε))∗ is compact.

Proof. Let (un) be a bounded sequence of elements of Xout
N (ε). From the proof of Lemma 3.1,

we know that for n ∈ N, we have

un = cn∇s+ +∇ϕn + curlψn (36)

where the sequences (cn), (ϕn), (ψn) and (curlψn) are bounded respectively in C, V̊1
−β(Ω),

XT (1) and V0
−β(Ω). Observing that curlun = curl curlψn = −∆ψn is bounded in L2(Ω),

we deduce from Proposition A.3 that there exists a subsequence such that curlψn converges in
V0
−β(Ω). Moreover, by (19), we have

|cn − cm|+ ‖ϕn − ϕm‖V1
−β(Ω) ≤ C‖curl (ψn −ψm)‖V0

−β(Ω),

which implies that (cn) and (ϕn) converge respectively in C and in V̊1
−β(Ω). From (36), we see

that this is enough to conclude to the first part of the proposition.
Finally, observing that

‖Kout
N u‖(Xout

N (ε))∗ ≤ C (‖ũ‖V0
−β(Ω) + |cu|),

we deduce that Kout
N : Xout

N (ε)→ (Xout
N (ε))∗ is a compact operator.

We can now state the main theorem of the analysis of the problem for the electric field.

Theorem 3.6. Under Assumptions 1–3, for all ω ∈ R the operator Aout
N − ω2Kout

N : Xout
N (ε) →

(Xout
N (ε))∗ is Fredholm of index zero.

Proof. Since Kout
N : Xout

N (ε) → (Xout
N (ε))∗ is compact (Proposition 3.5) and Aout

N : Xout
N (ε) →

(Xout
N (ε))∗ is an isomorphism (Proposition 3.4), Aout

N −ω2Kout
N : Xout

N (ε)→ (Xout
N (ε))∗ is Fredholm

of index zero.

The previous theorem guarantees that the problem (21) is well-posed if and only if uniqueness
holds, that is if and only if the only solution for J = 0 is u = 0. Since uniqueness holds for ω = 0,
one can prove with the analytic Fredholm theorem that (21) is well-posed except for at most a
countable set of values of ω with no accumulation points (note that Theorem 3.6 remains true
for ω ∈ C).
However this result is not really relevant from a physical point of view. Indeed, negative values
of ε can occur only if ε is itself a function of ω. For instance, if the inclusion M is metallic, it is
commonly admitted that the Drude’s law gives a good model for ε. But taking into account the
dependence of ε with respect to ω when studying uniqueness of problem (21) leads to a non-linear
eigenvalue problem, where the functional space Xout

N (ε) itself depends on ω. This study is beyond
the scope of the present paper (see [24] for such questions in the case of the 2D scalar problem).
Nonetheless, there is a result that we can prove concerning the cases of non-uniqueness for problem
(21).

Proposition 3.7. If u = c∇s+ + ũ ∈ Xout
N (ε) is a solution of (21) for J = 0, then c = 0 and

u ∈ XN (ε).

Proof. When ω = 0, the result is a direct consequence of Theorem 3.6 (because zero is the
only solution of (21) for J = 0). From now on, we assume that ω ∈ R \ {0}. Suppose that
u = c∇s+ + ũ ∈ Xout

N (ε) is such that
ˆ

Ω
µ−1curlu · curlv dx− ω2

 
Ω
εu · v dx = 0, ∀v ∈ Xout

N (ε).
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Taking the imaginary part of the previous identity for v = u, we get

=m
(  

Ω
εu · u dx

)
= 0.

On the other hand, by (27), we have
 

Ω
εu · u dx =

ˆ
Ω
ε|ũ|2 dx+ |c|2

ˆ
Ω

div(ε∇s+) s+ dx,

so that
|c|2=m

( ˆ
Ω

div(ε∇s+) s+ dx

)
= 0.

The result of the proposition is then a consequence of Lemma C.1 in Appendix where it is proved
that

=m
( ˆ

Ω
div(ε∇s+) s+ dx

)
= η

ˆ
S2
ε|Φ|2ds,

and of the assumption (7).

Remark 3.8. As a consequence, from Lemma 3.1, we infer that elements of the kernel of Aout
N −

ω2Kout
N are in V0

−β(Ω) for all β satisfying (12).

3.5 Problem in the classical framework

In the previous paragraph, we have shown that the Maxwell’s problem (21) for the electric field
set in the non standard space Xout

N (ε), and so in Hout
N (curl ) according to Lemma 3.3, is well-

posed. Here, we wish to analyse the properties of the problem for the electric field set in the
classical space XN (ε) (which does not contain ∇s+). Since this space is a closed subspace of
Xout
N (ε), it inherits the main properties of the problem in Xout

N (ε) proved in the previous section.
More precisely, we deduce from Lemma 3.1 and Proposition 3.5 the following result.

Proposition 3.9. Under Assumptions 1 and 3, the embedding of XN (ε) in L2(Ω) is compact,
and ‖curl · ‖Ω is a norm in XN (ε) which is equivalent to the norm ‖ · ‖H(curl ).

Note that we recover classical properties similar to what is known for positive ε, or more generally
[9] for ε such that the operator Aε : H1

0(Ω)→ (H1
0(Ω))∗ defined by (3) is an isomorphism (which

allows for sign-changing ε). But we want to underline the fact that under Assumption 3, these
classical results could not be proved by using classical arguments. They require the introduction
of the bigger space Xout

N (ε), with the singular function ∇s+.
Let us now consider the problem

Find u ∈ XN (ε) such thatˆ
Ω
µ−1curlu · curlv dx− ω2

ˆ
Ω
εu · v dx = iω

ˆ
Ω
J · v dx, ∀v ∈ XN (ε). (37)

An important remark is that one cannot prove that problem (37) is equivalent to a similar problem
set in HN (curl ) (the analogue of Lemma 3.3). Again, the difficulty comes from the fact that Aε
is not an isomorphism, and the trouble would appear when solving (35). Therefore, a solution of
(37) is not in general a distributional solution of the equation

curl
(
µ−1curlu

)
− ω2εu = iωJ .

To go further in the analysis of (37), we recall that XN (ε) is a subspace of codimension one of
Xout
N (ε) (Lemma D.1 in Appendix). Let v0 be an element of Xout

N (ε) which does not belong to
XN (ε). Then we denote by `0 the continuous linear form on Xout

N (ε) such that:

∀v ∈ Xout
N (ε) v − `0(v)v0 ∈ XN (ε). (38)
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Let us now define the operators AN : XN (ε)→ (XN (ε))∗ and KN : XN (ε)→ (XN (ε))∗ by

〈ANu,v〉 =
ˆ

Ω
µ−1curlu · curlv dx, 〈KNu,v〉 =

ˆ
Ω
εu · v dx.

Proposition 3.10. Under Assumptions 1–3, the operator AN : XN (ε)→ (XN (ε))∗ is Fredholm
of index zero.

Proof. Let u ∈ XN (ε). By Proposition 3.4, for the operator T introduced in the corresponding
proof, one has:

‖u‖2XN (ε) = ‖curlu‖2Ω = 〈Aout
N u,Tu〉.

Then, using (38), we get:

‖u‖2XN (ε) = 〈ANu,Tu− `0(Tu)v0〉+ 〈Aout
N u, `0(Tu)v0〉,

which implies that
‖u‖XN (ε) ≤ C

(
‖ANu‖(XN (ε))∗ + |`0(Tu)|

)
.

The result of the proposition then follows from a classical adaptation of Peetre’s lemma (see for
example [48, Theorem 12.12]) together with the fact that AN is bounded and hermitian.

Combining the two previous propositions, we obtain the

Theorem 3.11. Under Assumptions 1–3, for all ω ∈ R, the operator AN − ω2KN : XN (ε) →
(XN (ε))∗ is Fredholm of index zero.

But as mentioned above, even if uniqueness holds and if Problem (37) is well-posed, it does not
provide a solution of Maxwell’s equations.

3.6 Expression of the singular coefficient

Under Assumptions 1–3, Theorem 3.6 guarantees that for all ω ∈ R the operator Aout
N − ω2Kout

N :
Xout
N (ε)→ (Xout

N (ε))∗ is Fredholm of index zero. Assuming that it is injective, the problem (21)
admits a unique solution u = cu∇s+ + ũ. The goal of this paragraph is to derive a formula
allowing one to compute cu without knowing u. Such kind of results are classical for scalar op-
erators (see e.g. [22], [32, Theorem 6.4.4], [18, 19, 2, 23, 49, 40]). They are used in particular for
numerical purposes. But curiously they do not seem to exist for Maxwell’s equations in 3D, not
even for classical situations with positive materials in non smooth domains. We emphasize that
the analysis we develop can be adapted to the latter case.

In order to establish the desired expression, for ω ∈ R, first we introduce the field wN ∈ Xout
N (ε)

such thatˆ
Ω
µ−1curlv · curlwN dx− ω2

 
Ω
εv ·wN dx =

ˆ
Ω
εṽ · ∇s+ dx, ∀v ∈ Xout

N (ε). (39)

Note that Problem (39) is well-posed when Aout
N −ω2Kout

N is an isomorphism. Indeed, using (28),
one can check that it involves the operator (Aout

N −ω2Kout
N )∗, that is the adjoint of Aout

N −ω2Kout
N .

Moreover v 7→
´

Ω εṽ · ∇s+ dx is a linear form over Xout
N (ε).

Theorem 3.12. Assume that ω ∈ R, Assumptions 1–3 are valid and Aout
N − ω2Kout

N : Xout
N (ε)→

(Xout
N (ε))∗ is injective. Then the solution u = cu∇s+ + ũ of the electric problem (21) is such that

cu = iω

ˆ
Ω
J ·wN dx

/ ˆ
Ω

div(ε∇s+) s+ dx. (40)

Here wN is the function which solves (39).
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Remark 3.13. Note that in practice wN can be computed once for all because it does not depend
on J . Then the value of cu can be determined very simply via Formula (40).

Proof. By definition of u, we have
ˆ

Ω
µ−1curlu · curlwN dx− ω2

 
Ω
εu ·wN dx = iω

ˆ
Ω
J ·wN dx.

On the other hand, from (39), there holds
ˆ

Ω
µ−1curlu · curlwN dx− ω2

 
Ω
εu ·wN dx =

ˆ
Ω
εũ · ∇s+ dx.

From these two relations as well as (25), we get

iω

ˆ
Ω
J ·wN dx =

ˆ
Ω
εũ · ∇s+ dx = cu

ˆ
Ω

div(ε∇s+) s+ dx.

But Lemma C.1 in Appendix guarantees that =m
´

Ω div(ε∇s+) s+ dx 6= 0. Therefore we find the
desired formula.

3.7 Limiting absorption principle

In §3.4, we have proved well-posedness of the problem for the electric field in the space Xout
N (ε).

But up to now, we have not explained why we select this framework. In particular, as mentioned
in §2.1, well-posedness also holds in Xin

N (ε) where Xin
N (ε) is defined as Xout

N (ε) with s+ replaced
by s− (see (8) for the definitions of s±). In general, the solution in Xin

N (ε) differs from the one
in Xout

N (ε). Therefore one can build infinitely many solutions of Maxwell’s problem as linear
interpolations of these two solutions. Then the question is: which solution is physically relevant?
Classically, the answer can be obtained thanks to the limiting absorption principle. The idea is
the following. In practice, the dielectric permittivity takes complex values, the imaginary part
being related to the dissipative phenomena in the materials. Set

εδ := ε+ iδ

where ε is defined as previously (see (2)) and δ > 0 (the sign of δ depends on the convention for the
time-harmonic dependence (in e−iωt here)). Due to the imaginary part of εδ which is uniformly
positive, one recovers some coercivity properties which allow one to prove well-posedness of the
corresponding problem for the electric field in the classical framework. The physically relevant
solution for the problem with the real-valued ε then should be the limit of the sequence of solutions
for the problems involving εδ when δ tends to zero. The goal of the present paragraph is to explain
how to show that this limit is the solution of the problem set in Xout

N (ε).

3.7.1 Limiting absorption principle for the scalar case

Our proof relies on a similar result for the 3D scalar problem which is the analogue of what has
been done in 2D in [9, Theorem 4.3]. Consider the problem

Find ϕδ ∈ H1
0(Ω) such that − div(εδ∇ϕδ) = f, (41)

where f ∈ (H1
0(Ω))∗. Since δ > 0, by the Lax-Milgram lemma, this problem is well-posed for all

f ∈ (H1
0(Ω))∗ and in particular for all f ∈ (V̊1

β(Ω))∗, β > 0. Our objective is to prove that ϕδ
converges when δ tends to zero to the unique solution of the problem

Find ϕ ∈ V̊out such that Aout
ε ϕ = f. (42)
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We expect a convergence in a space V̊1
β(Ω) with 0 < β < β0. We first need a decomposition of

ϕδ as a sum of a singular part and a regular part. Since problem (41) is strongly elliptic, one can
directly apply the theory presented in [32]. On the one hand, from the assumptions of Section 2,
one can verify that for δ small enough, there exists one and only one singular exponent λδ ∈ C
such that <e λδ ∈ (−1/2;−1/2 + β0 −

√
δ). We denote by sδ the corresponding singular function

such that
sδ(r, θ, ϕ) = rλ

δ Φδ(θ, φ).
Note that it satisfies div(εδ∇sδ) = 0 in K. As in (8) for s±, we set

sδ(x) = χ(r) r−1/2+iηδ Φδ(θ, φ), (43)
where ηδ ∈ C is the number such that λδ = −1/2 + iηδ. By applying [32, Theorem 5.4.1], we get
the following result.
Lemma 3.14. Let 0 < β < β0 and f ∈ (V̊1

β(Ω))∗. The solution ϕδ of (41) decomposes as

ϕδ = cδsδ + ϕ̃δ (44)
where cδ ∈ C and ϕ̃δ ∈ V̊1

−β(Ω).
Let us first study the limit of the singular function.
Lemma 3.15. For all β > 0, when δ tends to zero, the function sδ converges in V̊1

β(Ω) to s+

and not to s− (see the definitions in (8)).
Proof. The pair (Φδ, λδ) solves the spectral problem

Find (Φδ, λδ) ∈ H1(S2) \ {0} × C such thatˆ
S2
εδ∇SΦδ · ∇SΨ ds = λδ(λδ + 1)

ˆ
S2
εδΦδ Ψ ds, ∀Ψ ∈ H1(S2). (45)

Postulating the expansions Φδ = Φ0+δΦ′+. . . , λδ = λ0+δλ′+. . . in this problem and identifying
the terms in δ0, we get Φ0 = Φ and we find that λ0 = −1/2 + iη0 where η0 coincides with η or
−η (see an illustration with Figure 2). At order δ, we get the variational equalityˆ

S2
ε∇SΦ′ · ∇SΨ ds+ i

ˆ
S2
∇SΦ · ∇SΨ ds = λ0(λ0 + 1)

( ˆ
S2
εΦ′Ψ ds+ i

ˆ
S2

Φ Ψ ds

)
+λ′(2λ0 + 1)

ˆ
S2
εΦ Ψ ds, ∀Ψ ∈ H1(S2).

(46)

Taking Ψ = Φ in (46), using (6) and observing that λ0(λ0 + 1) = −η2 − 1/4, this impliesˆ
S2
|∇SΦ|2 + (η2 + 1/4)|Φ|2 ds = λ′2η0

ˆ
S2
ε|Φ|2 ds.

Thus λ′ is real. Since by definition of λδ, we have <e λδ > −1/2 for δ > 0, we infer that λ′ > 0.
As a consequence, we have

η0
ˆ
S2
ε|Φ|2 ds > 0

which according to the definition of η in (7) ensures that η0 = η. Therefore the pointwise limit
of sδ when δ tends to zero is indeed s+ and not s−. This is enough to conclude that sδ converges
to s+ in V̊1

β(Ω) for β > 0.

Then proceeding exactly as in the proof of [10, Theorem 4.3], one can establish the following
result.
Lemma 3.16. Let 0 < β < β0 and f ∈ (V̊1

β(Ω))∗. If Assumption 3 holds, then (ϕδ = cδ sδ + ϕ̃δ)
converges to ϕ = c s+ + ϕ̃ in V̊1

β(Ω) as δ tends to zero. Moreover, (cδ, ϕ̃δ) converges to (c, ϕ̃) in
C× V̊1

−β(Ω). In this statement, ϕδ (resp. ϕ) is the solution of (41) (resp. (42)).
Note that the results of Lemma 3.16 still hold if we replace f by a family of source terms
(f δ) ∈ (V̊1

β(Ω))∗ that converges to f in (V̊1
β(Ω))∗ when δ tends to zero.
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−λ0

λ0

<e λ

=mλ

−1/2

−λδ − 1 when δ → 0+

λδ when δ → 0+

δ λδ

0 −0.5− 0.965i

0.001 −0.498− 0.965i

0.01 −0.487− 0.965i

0.05 −0.436− 0.963i

0.1 −0.374− 0.958i

Figure 2: Behaviour of the eigenvalue λδ close to the line <e λ = −1/2 as the dissipation δ tends
to zero. Here the values have been obtained solving the problem (45) with a Finite Element
Method. We work in the conical tip defined via (5) with α = 2π/3 and κε = −1.9.

3.7.2 Limiting absorption principle for the electric problem

The problem

Find uδ ∈ XN (εδ) such that curlµ−1curluδ − ω2εδuδ = iωJ , (47)

with XN (εδ) = {E ∈ HN (curl ) | div(εδE) = 0}, is well-posed for all ω ∈ R and all δ > 0. This
result is classical when µ takes positive values while it can be shown by using [9] when µ changes
sign. We want to study the convergence of uδ when δ goes to zero. Let (δn) be a sequence of
positive numbers such that limn→+∞ δn = 0. To simplify, we denote the quantities with an index
n instead of δn (for example we write εn instead of εδn).

Lemma 3.17. Suppose that (un) is a sequence of elements of XN (εn) such that (curlun) is
bounded in L2(Ω). Then, under Assumption 3, for all β satisfying (12), for all n ∈ N, un admits
the decomposition un = cn∇sn + ũn with cn ∈ C and ũn ∈ V0

−β(Ω). Moreover, there exists a
subsequence such that (cn) converges to some c in C while (ũn) converges to some ũ in V0

−β(Ω).
Finally, the field u := c∇s+ + ũ belongs to Xout

N (ε).

Proof. For all n ∈ N, we have un ∈ XN (εδ) ⊂ L2(Ω). Therefore, there exist ϕn ∈ H1
0(Ω) and

ψn ∈ XT (1), satisfying curlψn × ν = 0 on ∂Ω such that un = ∇ϕn + curlψn. Moreover, we
have the estimate

‖∆ψn‖Ω = ‖curlun‖Ω ≤ C.
As a consequence, Proposition A.2 guarantees that (curlψn) is a bounded sequence of V0

−β(Ω),
and Proposition A.3 ensures that there exists a subsequence such that (curlψn) converges in
V0
−β(Ω). Now from the fact that div(εnun) = 0, we obtain

div(εn∇ϕn) = −div(εncurlψn) ∈ (V̊1
β(Ω))∗.

By Lemmas 3.14 and 3.16, this implies that the function ϕn decomposes as ϕn = cnsn + ϕ̃n with
cn ∈ C and ϕ̃n ∈ V̊1

−β(Ω). Moreover, (cn) converges to c in C while (ϕ̃n) converges to ϕ̃ in V1
−β(Ω).

Summing up, we have that un = cn∇sn + ũn where ũn = ∇ϕ̃n + curlψn converges to ũ in
V0
−β(Ω). In particular, this implies that un converges to u = c∇s+ + ũ in V0

γ(Ω) for all γ > 0.
It remains to prove that u ∈ Xout

N (ε), which amounts to show that u satisfies (25). To proceed,
we take the limit as n→ +∞ in the identity

−cn
ˆ

Ω
div(εn∇sn)ϕdx+

ˆ
Ω
εnũn · ∇ϕdx = 0

which holds for all ϕ ∈ V̊1
β(Ω) because un ∈ XN (εn).
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Theorem 3.18. Let ω ∈ R. Suppose that Assumptions 1, 2 and 3 hold, and that u = 0 is the
only function of XN (ε) satisfying

curlµ−1curlu− ω2εu = 0. (48)

Then the sequence of solutions (uδ = cδ∇sδ+ũδ) of (47) converges, as δ tends to 0, to the unique
solution u = c∇s+ + ũ ∈ Xout

N (ε) of (21) in the following sense: (cδ) converges to c in C, (ũδ)
converges to ũ in V0

−β(Ω) and (curluδ) converges to curlu in L2(Ω).

Proof. Let (δn) be a sequence of positive numbers such that limn→+∞ δn = 0. Denote by un the
unique function of XN (εn) such that

curlµ−1curlun − ω2εnun = iωJ . (49)

Note that we set again εn instead of εδn . The proof is in two steps. First, we establish the desired
property by assuming that (‖curlun‖Ω) is bounded. Then we show that this hypothesis is indeed
satisfied.
First step. Assume that there is a constant C > 0 such that for all n ∈ N

‖curlun‖Ω ≤ C. (50)

By lemma 3.17, we can extract a subsequence from (un = cn∇sn + ũn) such that (cn) converges
to c in C, (ũn) converges to ũ in V0

−β(Ω), with u = ũ + c∇s+ ∈ Xout
N (ε). Besides, since for all

n ∈ N, curlun ∈ L2(Ω), there exist hn ∈ H1
#(Ω) and wn ∈ XN (1), such that

µ−1curlun = ∇hn + curlwn. (51)

Observing that (wn) is bounded in XN (1), from Lemma A.5, we deduce that it admits a
subsequence which converges in V0

−β(Ω). Multiplying (49) taken for two indices n and m by
(wn −wm), and integrating by parts, we obtain

ˆ
Ω
|curlwn − curlwm|2 dx = ω2

ˆ
Ω

(εnun − εmum) (wn −wm) dx.

This implies that (curlwn) converges in L2(Ω). Then, from (51), we deduce that

div (µ∇hn) = −div (µ curlwn) in Ω.

By Assumption 2, the operator Aµ : H1
#(Ω) → (H1

#(Ω))∗ is an isomorphism. Therefore (∇hn)
converges in L2(Ω). From (51), this shows that (curlun) converges to curlu in L2(Ω). Finally,
we know that un satisfiesˆ

Ω
µ−1curlun · curlv dx− ω2

ˆ
Ω
εnun · v dx = iω

ˆ
Ω
J · v dx

for all v ∈ V0
−β(Ω). Taking the limit, we get that u satisfies

ˆ
Ω
µ−1curlu · curlv dx− ω2

 
Ω
εu · v dx = iω

ˆ
Ω
J · v dx (52)

for all v ∈ V0
−β(Ω). Since in addition, u satisfies (25), (52) also holds for v = ∇s+ and we get

that u is the unique solution u of (21).
Second step. Now we prove that the assumption (50) is satisfied. Suppose by contradiction
that there exists a subsequence of (un) such that

‖curlun‖Ω → +∞
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and consider the sequence (vn) with for all n ∈ N, vn := un/‖curlun‖Ω. We have

vn ∈ XN (εn) and curlµ−1curlvn − ω2εnvn = iωJ/‖curlun‖Ω. (53)

Following the first step of the proof, we find that we can extract a subsequence from (vn) which
converges, in the sense given in the theorem, to the unique solution of the homogeneous problem
(21) with J = 0. But by Proposition 3.7, this solution also solves (48). As a consequence, it
is equal to zero. In particular, it implies that (curlvn) converges to zero in L2(Ω), which is
impossible since by construction, for all n ∈ N, we have ‖curlvn‖Ω = 1.

4 Analysis of the problem for the magnetic component

In this section, we turn our attention to the analysis of the Maxwell’s problem for the magnetic
component. Importantly, in the whole section, we suppose that β satisfies (12), that is 0 < β <
min(1/2, β0). Contrary to the analysis for the electric component, we define functional spaces
which depend on β:

Zout
T (µ) := {u ∈ L2(Ω) | curlu ∈ span(ε∇s+)⊕V0

−β(Ω), div(µu) = 0 in Ω, µu · ν = 0 on ∂Ω}

and for ξ ∈ L∞(Ω),

Z±βT (ξ) := {u ∈ L2(Ω) | curlu ∈ V0
±β(Ω), div (ξu) = 0 in Ω and ξu · ν = 0 on ∂Ω}.

Note that we have Z−βT (µ) ⊂ Zout
T (µ) ⊂ ZβT (µ). The conditions div(µu) = 0 in Ω and µu · ν = 0

on ∂Ω for the elements of these spaces boil down to imposeˆ
Ω
µu · ∇ϕdx = 0, ∀ϕ ∈ H1

#(Ω).

Remark 4.1. Observe that the elements of Zout
T (µ) are in L2(Ω) but have a singular curl. On

the other hand, the elements of Xout
N (ε) are singular but have a curl in L2(Ω). This is coherent

with the fact that for the situations we are considering in this work, the electric field is singular
while the magnetic field is not.

The analysis of the problem for the magnetic component leads to consider the formulation

Find u ∈ Zout
T (µ) such that 

Ω
ε−1curlu · curlv dx− ω2

ˆ
Ω
µu · v =

ˆ
Ω
ε−1J · curlv, ∀v ∈ ZβT (µ), (54)

where J ∈ V0
−β(Ω). Again, the first integral in the left-hand side of (54) is not a classical integral.

Similarly to definition (25), we set 
Ω
∇s+ · curlv dx := 0, ∀v ∈ ZβT (µ).

As a consequence, for u ∈ Zout
T (µ) such that curlu = cu ε∇s+ + ζu (we shall use this notation

throughout the section) and v ∈ ZβT (µ), there holds 
Ω
ε−1curlu · curlv dx =

ˆ
Ω
ε−1ζu · curlv dx. (55)

Note that for u, v in Zout
T (µ) such that curlu = cu ε∇s+ + ζu, curlv = cv ε∇s+ + ζv, we have 

Ω
ε−1curlu · curlv dx =

ˆ
Ω
ε−1ζu · (cv ε∇s+ + ζv) dx

=
ˆ

Ω
ε−1ζu · ζv dx− cv

ˆ
Ω

div(ζu) s+ dx

=
ˆ

Ω
ε−1ζu · ζv dx+ cucv

ˆ
Ω

div(ε∇s+) s+ dx.

(56)
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We denote by aT (·, ·) (resp. `T (·)) the sesquilinear form (resp. the antilinear form) appearing in
the left-hand side (resp. right-hand side) of (54).

Remark 4.2. Note that in (54), the solution and the test functions do not belong to the same
space. This is different from the formulation (21) for the electric field but seems necessary in the
analysis below to obtain a well-posed problem (in particular to prove Proposition 4.7). Note also
that even if the functional framework depends on β, the solution will not if J is regular enough
(see the explanations in Remark 4.11).

4.1 Equivalent formulation

Define the spaces

Hβ(curl ) := {u ∈ L2(Ω) | curlu ∈ V0
β(Ω)}

Hout(curl ) := {u ∈ L2(Ω) | curlu ∈ span(ε∇s+)⊕V0
−β(Ω)}.

Lemma 4.3. Under Assumptions 1–2, the field u is a solution of (54) if and only if it solves the
problem

Find u ∈ Hout(curl ) such that
aT (u,v) = `T (v), ∀v ∈ Hβ(curl ).

(57)

Proof. If u satisfies (57), then taking v = ∇ϕ with ϕ ∈ H1
#(Ω) in (57), we get that u ∈ Zout

T (µ).
This proves that u solves (54).

Assume now that u is a solution of (54). Let v be an element of Hβ(curl ). Introduce ϕ ∈ H1
#(Ω)

the function such thatˆ
Ω
µ∇ϕ · ∇ϕ′ dx =

ˆ
Ω
µv · ∇ϕ′ dx, ∀ϕ′ ∈ H1

#(Ω).

The field v̂ := v − ∇ϕ belongs to ZβT (µ). Moreover, there holds curl v̂ = curlv and since for
u ∈ Zout

T (µ), we have ˆ
Ω
µu · ∇ϕdx = 0, ∀ϕ ∈ H1

#(Ω),

we deduce that aT (u,v) = aT (u, v̂) = `T (v̂) = `T (v).

4.2 Norms in Z±βT (µ) and Zout
T (µ)

We endow the space ZβT (µ) with the norm

‖u‖ZβT (µ) = (‖u‖2Ω + ‖curlu‖2V0
β(Ω))

1/2,

so that it is a Banach space.

Lemma 4.4. Under Assumptions 1–2, there is a constant C > 0 such that for all u ∈ ZβT (µ),
we have

‖u‖Ω ≤ C ‖curlu‖V0
β(Ω).

As a consequence, the norm ‖ · ‖ZβT (µ) is equivalent to the norm ‖curl · ‖V0
β(Ω) in ZβT (µ).

Remark 4.5. The result of Lemma 4.4 holds for all β such that 0 ≤ β < 1/2 and not only for
0 < β < min(1/2, β0).
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Proof. Let u be an element of ZβT (µ). Since u belongs to L2(Ω), according to the item v) of
Proposition A.1, there are ϕ ∈ H1

#(Ω) and ψ ∈ XN (1) such that

u = ∇ϕ+ curlψ. (58)

Lemma A.5 guarantees that ψ ∈ V0
−β(Ω) with the estimate

‖ψ‖V0
−β(Ω) ≤ C ‖curlψ‖Ω. (59)

Multiplying the equation curl curlψ = curlu in Ω by ψ and integrating by parts, we get

‖curlψ‖2Ω ≤ ‖curlu‖V0
β(Ω)‖ψ‖V0

−β(Ω). (60)

Gathering (59) and (60) leads to

‖curlψ‖Ω ≤ C ‖curlu‖V0
β(Ω). (61)

On the other hand, using that
ˆ

Ω
µu · ∇ϕ′ dx = 0, ∀ϕ′ ∈ H1

#(Ω)

and that Aµ : H1
#(Ω) → (H1

#(Ω))∗ is an isomorphism, we deduce that ‖∇ϕ‖Ω ≤ C ‖curlψ‖Ω.
Using this estimate and (61) in the decomposition (58), finally we obtain the desired result.

If u ∈ Zout
T (µ), we have curlu = cu ε∇s+ + ζu with cu ∈ C and ζu ∈ V0

−β(Ω). We endow the
space Zout

T (µ) with the norm

‖u‖Zout
T (µ) = (‖u‖2Ω + |cu|2 + ‖ζu‖2V0

−β(Ω))
1/2,

so that it is a Banach space.

Lemma 4.6. Under Assumptions 1–3, there is C > 0 such that for all u ∈ Zout
T (µ), we have

‖u‖Ω + |cu| ≤ C ‖ζu‖V0
−β(Ω). (62)

As a consequence, the norm ‖u‖Zout
T (µ) is equivalent to the norm ‖ζu‖V0

−β(Ω) for u ∈ Zout
T (µ).

Proof. Let u be an element of Zout
T (µ). Since Zout

T (µ) ⊂ ZβT (µ), Lemma 4.4 provides the estimate

‖u‖Ω ≤ C ‖curlu‖V0
β(Ω) ≤ C (|cu|+ ‖ζu‖V0

−β(Ω)). (63)

On the other hand, taking the divergence of curlu = cu ε∇s+ + ζu, we obtain cu div(ε∇s+) =
−div ζu. Using the fact that Aout

ε : V̊out → (V̊1
β(Ω))∗ is an isomorphism, we get

|cu| ≤ C ‖div ζu‖(V̊1
β

(Ω))∗ ≤ C ‖ζu‖V0
−β(Ω).

Using this inequality in (63) leads to (62).
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4.3 Main analysis for the magnetic field

Define the continuous operators Aout
T : Zout

T (µ) → (ZβT (µ))∗ and Kout
T : Zout

T (µ) → (ZβT (µ))∗ such
that for all u ∈ Zout

T (µ), v ∈ ZβT (µ),

〈Aout
T u,v〉 =

 
Ω
ε−1curlu · curlv dx, 〈Kout

T u,v〉 =
ˆ

Ω
µu · v dx. (64)

With this notation, we have 〈(Aout
T − ω2Kout

T )u,v〉 = aT (u,v).

Proposition 4.7. Under Assumptions 1–3, the operator Aout
T : Zout

T (µ) → (ZβT (µ))∗ is an iso-
morphism.

Proof. We have

〈Aout
T u,v〉 =

ˆ
Ω
ε−1ζu · curlv dx, ∀u ∈ Zout

T (µ), ∀v ∈ ZβT (µ).

Let us construct a continuous operator T : ZβT (µ)→ Zout
T (µ) such that

〈Aout
T Tu,v〉 =

ˆ
Ω
r2βcurlu · curlv dx, ∀u, v ∈ ZβT (µ). (65)

Let u be an element of ZβT (µ). Then the field r2βε curlu belongs to V0
−β(Ω). Since Aout

ε :
V̊out → (V̊1

β(Ω))∗ is an isomorphism, there is a unique ϕ = α s+ + ϕ̃ ∈ V̊out such that Aout
ε ϕ =

−div(r2βε curlu). Observing that w := r2βcurlu − ∇ϕ ∈ V0
β(Ω) is such that divw = 0 in Ω,

according to the result of Proposition B.2, we know that there is a unique ψ ∈ ZβT (1) such that

curlψ = ε (r2βcurlu−∇ϕ).

At this stage, we emphasize that in general ∇ϕ ∈ V0
β(Ω) \ L2(Ω). This is the reason why we are

obliged to establish Proposition B.2. Since ψ is in L2(Ω), when Aµ : H1
#(Ω) → (H1

#(Ω))∗ is an
isomorphism, there is a unique φ ∈ H1

#(Ω) such that
ˆ

Ω
µ∇φ · ∇φ′ dx =

ˆ
Ω
µψ · ∇φ′ dx, ∀φ′ ∈ H1

#(Ω).

Finally, we set Tu = ψ − ∇φ. It can be easily checked that this defines a continuous operator
T : ZβT (µ)→ Zout

T (µ). Moreover we have

curlTu = α ε∇s+ + ζTu with ζTu = ε (r2βcurlu−∇ϕ̃).

As a consequence, indeed we have identity (65). From Lemma 4.4, we deduce that Aout
T T :

ZβT (µ) → (ZβT (µ))∗ is an isomorphism, and so that Aout
T is onto. It remains to show that Aout

T is
injective.

If u ∈ Zout
T (µ) is in the kernel of Aout

T , we have 〈Aout
T u,v〉 = 0 for all v ∈ ZβT (µ). In partic-

ular from (56), we can write

〈Aout
T u,u〉 =

ˆ
Ω
ε−1|ζu|2 dx+ |cu|2

ˆ
Ω

div(ε∇s+)s+ dx = 0.

Taking the imaginary part of the above identity, we obtain cu = 0 (see the details in the
proof of Proposition 4.10). We deduce that u belongs to Z−βT (µ) and from (56), we infer that
〈Aout

T u,Tu〉 = 〈Aout
T Tu,u〉. This gives

0 =
ˆ

Ω
r2β|curlu|2 dx = 0

and shows that u = 0.
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Proposition 4.8. Under Assumptions 1–3, the embedding of the space Zout
T (µ) in L2(Ω) is com-

pact. As a consequence, the operator Kout
T : Zout

T (µ)→ (ZβT (µ))∗ defined in (64) is compact.

Proof. Let (un) be a sequence of elements of Zout
T (µ) which is bounded. For all n ∈ N, we

have curlun = cunε∇s+ + ζun . By definition of the norm of Zout
T (µ), the sequence (cun) is

bounded in C. Let w be an element of Zout
T (µ) such that cw = 1 (if such w did not exist,

then we would have Zout
T (µ) = Z−βT (µ) ⊂ XT (µ) and the proof would be even simpler). The

sequence (un − cunw) is bounded in XT (µ). Since this space is compactly embedded in L2(Ω)
when Aµ : H1

#(Ω)→ (H1
#(Ω))∗ is an isomorphism (see [9, Theorem 5.3]), we infer we can extract

from (un − cunw) a subsequence which converges in L2(Ω). Since clearly we can also extract a
subsequence of (cun) which converges in C, this shows that we can extract from (un) a subsequence
which converges in L2(Ω). This shows that the embedding of Zout

T (µ) in L2(Ω) is compact.
Now observing that for all u ∈ Zout

T (µ), we have

‖Kout
T u‖(ZβT (µ))∗ ≤ C ‖u‖Ω,

we deduce that Kout
T : Zout

T (µ)→ (ZβT (µ))∗ is a compact operator.

We can now state the main theorem of the analysis of the problem for the magnetic field.

Theorem 4.9. Under Assumptions 1–3, for all ω ∈ R the operator Aout
T − ω2Kout

T : Zout
T (µ) →

(ZβT (µ))∗ is Fredholm of index zero.

Proof. Since Kout
T : Zout

T (µ) → (ZβT (µ))∗ is compact (Proposition 4.8) and Aout
T : Zout

T (µ) →
(ZβT (µ))∗ is an isomorphism (Proposition 4.7), Aout

T − ω2Kout
T : Zout

N → (ZβT (µ))∗ is Fredholm of
index zero.

Finally we establish a result similar to Proposition 3.7 by using the formulation for the magnetic
field.

Proposition 4.10. Under Assumptions 1 and 3, if u ∈ Zout
T (µ) is a solution of (54) for J = 0,

then u ∈ Z−γT (µ) ⊂ XT (µ) for all γ satisfying (12).

Proof. Assume that u ∈ Zout
T (µ) satisfies

 
Ω
ε−1curlu · curlv dx− ω2

ˆ
Ω
µu · v = 0, ∀v ∈ ZβT (µ).

Taking the imaginary part of this identity for v = u, since ω is real, we get

=m
( 

Ω
ε−1curlu · curlu dx

)
= 0.

If curlu = cu ε∇s+ + ζu with cu ∈ C and ζu ∈ V0
−β(Ω), according to (56), this can be written

as
|cu|2=m

(ˆ
Ω

div(ε∇s+) s+ dx

)
= 0.

Then one concludes as in the proof of Proposition 3.7 that cu = 0, so that curlu ∈ V0
−β(Ω).

Therefore we have ε−1curlu ∈ XN (ε) ⊂ Xout
N (ε). From Lemma 3.1, we deduce that ε−1curlu ∈

V0
−γ(Ω) for all γ satisfying (12). This shows that u ∈ Z−γT (µ) for all γ satisfying (12).

Remark 4.11. Assume that J ∈ V0
−γ(Ω) for all γ satisfying (12). Assume also that zero is

the only solution of (54) with J = 0 for a certain β0 satisfying (12). Then Theorem 4.9 and
Proposition 4.10 guarantee that (54) is well-posed for all γ satisfying (12). Moreover Proposition
4.10 allows one to show that all the solutions of (54) for γ satisfying (12) coincide.
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4.4 Analysis in the classical framework

In the previous paragraph, we proved that the formulation (54) for the magnetic field with a
solution in Zout

T (µ) and test functions in ZβT (µ) is well-posed. Here, we study the properties of
the problem for the magnetic field set in the classical space XT (µ). More precisely, we consider
the problem

Find u ∈ XT (µ) such thatˆ
Ω
ε−1curlu · curlv dx− ω2

ˆ
Ω
µu · v =

ˆ
Ω
ε−1J · curlv, ∀v ∈ XT (µ). (66)

Working as in the proof of Lemma 4.3, one shows that under Assumptions 1, 2, the field u is a
solution of (66) if and only if it solves the problem

Find u ∈ H(curl ) such thatˆ
Ω
ε−1curlu · curlv dx− ω2

ˆ
Ω
µu · v =

ˆ
Ω
ε−1J · curlv, ∀v ∈ H(curl ). (67)

Define the continuous operators AT : XT (µ)→ (XT (µ))∗ and KT : XT (µ)→ (XT (µ))∗ such that
for all u ∈ XT (µ), v ∈ XT (µ),

〈ATu,v〉 =
ˆ

Ω
ε−1curlu · curlv dx, 〈KTu,v〉 =

ˆ
Ω
µu · v dx.

As for AN and KN , we emphasize that these are the classical operators which appear in the
analysis of the magnetic field, for example when ε and µ are positive in Ω.

Proposition 4.12. Under Assumptions 1–3, for all ω ∈ C the operator AT − ω2KT : XT (µ) →
(XT (µ))∗ is not Fredholm.

Proof. From [9, Theorem 5.3 and Corollary 5.4], we know that under the Assumptions 1, 2, the
embedding of XT (µ) in L2(Ω) is compact. This allows us to prove that KT : XT (µ)→ (XT (µ))∗ is
a compact operator. Therefore, it suffices to show that AT : XT (µ)→ (XT (µ))∗ is not Fredholm.
Let us work by contraction assuming that AT is Fredholm. Since this operator is self-adjoint (it
is symmetric and bounded), necessarily it is of index zero.

? If AT is injective, then it is an isomorphism. Let us show that in this case, Aε : H1
0(Ω) →

(H1
0(Ω))∗ is an isomorphism (which is not the case by assumption). To proceed, we construct a

continuous operator T : H1
0(Ω)→ H1

0(Ω) such that

〈Aεϕ, Tϕ′〉 =
ˆ

Ω
ε∇ϕ · ∇(Tϕ′) dx =

ˆ
Ω
∇ϕ · ∇ϕ′ dx, ∀ϕ,ϕ′ ∈ H1

0(Ω). (68)

When AT is an isomorphism, for any ϕ′ ∈ H1
0(Ω), there is a unique ψ ∈ XT (µ) such that

ˆ
Ω
ε−1curlψ · curlψ′ dx =

ˆ
Ω
ε−1∇ϕ′ · curlψ′ dx, ∀ψ′ ∈ XT (µ).

Using item iii) of Proposition A.1, one can show that there is a unique Tϕ′ ∈ H1
0(Ω) such that

∇(Tϕ′) = ε−1(∇ϕ′ − curlψ).

This defines our operator T : H1
0(Ω)→ H1

0(Ω) and one can verify that it is continuous. Moreover,
integrating by parts, we indeed get (68) which guarantees, according to the Lax-Milgram theo-
rem, that Aε : H1

0(Ω)→ H1
0(Ω) is an isomorphism.

? If AT is not injective, it has a kernel of finite dimensionN ≥ 1 which coincides with span(λ1, . . . ,λN ),
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where λ1, . . . ,λN ∈ XT (µ) are linearly independent functions such that (curlλi, curlλj)Ω = δij
(the Kronecker symbol). Introduce the space

X̃T (µ) := {u ∈ XT (µ) | (curlu, curlλi)Ω = 0, i = 1, . . . N}.

as well as the operator ÃT : X̃T (µ)→ X̃T (µ) such that

〈ÃTu,v〉 =
ˆ

Ω
ε−1curlu · curlv dx, ∀u,v ∈ X̃T (µ).

Then ÃT is an isomorphism. Let us construct a new operator T : H1
0(Ω) → H1

0(Ω) to have
something looking like (68). For a given ϕ′ ∈ H1

0(Ω), introduce ψ ∈ X̃T (µ) the function such that

ˆ
Ω
ε−1curlψ · curlψ′ dx =

ˆ
Ω

(ε−1∇ϕ′ −
N∑
i=1

αicurlλi) · curlψ′ dx, ∀ψ′ ∈ X̃T (µ), (69)

where for i = 1, . . . , N , we have set αi :=
´

Ω ε
−1∇ϕ′ ·curlλi dx. Observing that (69) is also valid

for ψ′ = λi, i = 1, . . . , N , we infer that there holds
ˆ

Ω
ε−1curlψ · curlψ′ dx =

ˆ
Ω

(ε−1∇ϕ′ −
N∑
i=1

αicurlλi) · curlψ′ dx, ∀ψ′ ∈ XT (µ).

Using again item iii) of Proposition A.1, we deduce that there is a unique Tϕ′ ∈ H1
0(Ω) such that

∇(Tϕ′) = ε−1(∇ϕ′ − curlψ)−
N∑
i=1

αicurlλi.

This defines the new continuous operator T : H1
0(Ω)→ H1

0(Ω). Then one finds

〈Aεϕ, Tϕ′〉 =
ˆ

Ω
ε∇ϕ · ∇(Tϕ′) dx =

ˆ
Ω
∇ϕ · ∇ϕ′ dx−

N∑
i=1

αi

ˆ
Ω
ε∇ϕ · curlλi dx, ∀ϕ,ϕ′ ∈ H1

0(Ω).

This shows that T is a left parametrix for the self adjoint operator Aε. Therefore, Aε : H1
0(Ω)→

H1
0(Ω) is Fredholm of index zero. Note that then, one can verify that dim ker Aε = dim ker AT .

And more precisely, we have ker Aε = span(γ1, . . . , γN ) where γi ∈ H1
0(Ω) is the function such

that
∇γi = ε−1curlλi

(existence and uniqueness of γi is again a consequence of item iii) of Proposition A.1). But by
assumption, Aε is not a Fredholm operator. This ends the proof by contradiction.

Remark 4.13. In the article [9], it is proved that if Aε : H1
0(Ω) → H1

0(Ω) is an isomorphism
(resp. a Fredholm operator of index zero), then AT : XT (1)→ (XT (1))∗ is an isomorphism (resp.
a Fredholm operator of index zero). Here we have established the converse statement.

Remark 4.14. We emphasize that the problems (37) for the electric field and (66) for the mag-
netic in the usual spaces XN (ε) and XT (µ) have different properties. Problem (37) is well-posed
but is not equivalent to the corresponding problem in HN (curl ), so that its solution in general is
not a distributional solution of Maxwell’s equations. On the contrary, problem (66) is equivalent
to problem (67) in H(curl ) but it is not well-posed.
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4.5 Expression of the singular coefficient

Under Assumptions 1–3, Theorem 4.9 guarantees that for all ω ∈ R the operator Aout
T − ω2Kout

T :
Zout
T (µ) → (ZβT (µ))∗ is Fredholm of index zero. Assuming that it is injective, the problem (54)

admits a unique solution u with curlu = cu ε∇s+ + ζu. As in §3.6, the goal of this paragraph
is to derive a formula for the coefficient cu which does not require to know u.

For ω ∈ R, introduce the field wT ∈ ZβT (µ) such that
ˆ

Ω
ε−1ζv · curlwT dx− ω2

ˆ
Ω
µv ·wT dx =

ˆ
Ω
ζv · ∇s+ dx, ∀v ∈ Zout

T (µ). (70)

Note that wT is well-defined because (Aout
T − ω2Kout

T )∗ : ZβT (µ)→ (Zout
T (µ))∗ is an isomorphism.

Theorem 4.15. Assume that ω ∈ R, Assumptions 1–3 are valid and Aout
T − ω2Kout

T : Zout
T (µ)→

(ZβT (µ))∗ is injective. Let u denote the solution of the magnetic problem (54). Then the coefficient
cu in the decomposition curlu = cu ε∇s+ + ζu is given by the formula

cu = iω

ˆ
Ω
ε−1J · curlwT dx

/ ˆ
Ω

div(ε∇s+) s+ dx. (71)

Here wT is the function which solves (70).

Proof. By definition of u, we have
ˆ

Ω
ε−1ζu · curlwT dx− ω2

ˆ
Ω
µu ·wT dx = iω

ˆ
Ω
ε−1J · curlwT dx.

On the other hand, from (70), we can write
ˆ

Ω
ε−1ζu · curlwT dx− ω2

ˆ
Ω
µu ·wT dx =

ˆ
Ω
ζu · ∇s+ dx.

From these two relations, using (56), we deduce that

iω

ˆ
Ω
ε−1J · curlwT dx =

ˆ
Ω
ζu · ∇s+ dx = cu

ˆ
Ω

div(ε∇s+) s+ dx.

This gives (71).

5 Conclusion

In this work, we studied the Maxwell’s equations in presence of hypersingularities for the scalar
problem involving ε. We considered both the problem for the electric field and for the magnetic
field. Quite naturally, in order to obtain a framework where well-posedness holds, it is necessary
to modify the spaces in different ways. More precisely, we changed the condition on the field
itself for the electric problem and on the curl of the field for the magnetic problem. A noteworthy
difference in the analysis of the two problems is that for the electric field, we are led to work in
a Hilbertian framework, whereas for the magnetic field we have not been able to do so.

Of course, we could have assumed that the scalar problem involving ε is well-posed in H1
0(Ω)

and that hypersingularities exist for the problem in µ. This would have been similar mathemat-
ically. Physically, however, this situation seems to be a bit less relevant because it is harder to
produce negative µ without dissipation. We assumed that the domain Ω is simply connected and
that ∂Ω is connected. When these assumptions are not met, it is necessary to adapt the analysis
(see §8.2 of [9] for the study in the case where the scalar problems are well-posed in the usual H1
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framework). This has to be done. Moreover, for the conical tip, at least numerically, one finds
that several singularities can exist (see the calculations in [28]). In this case, the analysis should
follow the same lines but this has to be written. On the other hand, in this work, we focused our
attention on a situation where the interface between the positive and the negative material has
a conical tip. It would be interesting to study a setting where there is a wedge instead. In this
case, roughly speaking, one should deal with a continuum of singularities. We have to mention
that the analysis of the scalar problems for a wedge of negative material in the non standard
framework has not been done. Finally, considering a conical tip with both critical ε and µ is a
direction that we are investigating.

A Vector potentials, part 1

Proposition A.1. Under Assumption 1, the following assertions hold.

i) According to [1, Theorem 3.12], if u ∈ L2(Ω) satisfies divu = 0 in Ω, then there exists a
unique ψ ∈ XT (1) such that u = curlψ.

ii) According to [1, Theorem 3.17]), if u ∈ L2(Ω) satisfies divu = 0 in Ω and u · ν = 0 on
∂Ω, then there exists a unique ψ ∈ XN (1) such that u = curlψ.

iii) If u ∈ L2(Ω) satisfies curlu = 0 in Ω and u × ν = 0 on ∂Ω, then there exists (see [35,
Theorem 3.41]) a unique p ∈ H1

0(Ω) such that u = ∇p.

iv) Every u ∈ L2(Ω) can be decomposed as follows ([35, Theorem 3.45])

u = ∇p+ curlψ,

with p ∈ H1
0(Ω) and ψ ∈ XT (1) which are uniquely defined.

v) Every u ∈ L2(Ω) can be decomposed as follows ([35, Remark 3.46])

u = ∇p+ curlψ,

with p ∈ H1
#(Ω) and ψ ∈ XN (1) which are uniquely defined.

Proposition A.2. Under Assumption 1, if ψ satisfies one of the following conditions
i) ψ ∈ XN (1) and ∆ψ ∈ L2(Ω),
ii) ψ ∈ XT (1), curlψ × ν = 0 on ∂Ω and ∆ψ ∈ L2(Ω),
then for all β < 1/2, we have curlψ ∈ V0

−β(Ω) and there is a constant C > 0 independent of ψ
such that

‖curlψ‖V0
−β(Ω) ≤ C ‖∆ψ‖Ω. (72)

Proof. It suffices to prove the result for β ∈ (0; 1/2). Let ψ ∈ XN (1)∪XT (1). Since curl curlψ =
−∆ψ, integrating by parts we get

‖curlψ‖2Ω = −
ˆ

Ω
∆ψ ·ψ dx.

Note that the boundary term vanishes because either ψ × ν = 0 or curlψ × ν = 0 on ∂Ω. This
furnishes the estimate

‖curlψ‖Ω ≤ C ‖∆ψ‖Ω. (73)

Now working with cut-off functions, we refine the estimate at the origin to get (72).
Let us consider a smooth cut-off function χ, compactly supported in Ω, equal to one in a
neighbourhood of O. To prove the proposition, it suffices in addition to (73) to prove that
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curl (χψ) ∈ V0
−β(Ω) together with the following estimate ‖curl (χψ)‖V0

−β(Ω) ≤ C ‖∆ψ‖Ω.
First of all, since curl (χψ) ∈ L2(Ω) and div(χψ) = ∇χ ·ψ ∈ L2(Ω), we know that χψi ∈ H1

0(Ω)
for i = 1, 2, 3 and we have

‖curl (χψ)‖2Ω + ‖div(χψ)‖2Ω =
3∑
i=1
‖∇(χψi)‖2Ω.

From the previous identity, (73) and Proposition 1.1, we deduce(
‖ψ‖2Ω +

3∑
i=1
‖∇(χψi)‖2Ω

)1/2

≤ C ‖∆ψ‖Ω. (74)

Note that, (74) is also valid if we replace χ by any other smooth function with compact support
in Ω. Now setting fi = ∆(χψi) for i = 1, 2, 3, we have

fi = χ∆ψi + 2∇χ · ∇ψi +ψi∆χ. (75)

By writing that ∇χ · ∇ψi = div(ψi∇χ) − ψi∆χ and replacing χ by ∂jχ in (74) for j = 1, 2, 3,
we deduce that for i = 1, 2, 3, fi belongs to L2(Ω) and satisfies

‖fi‖Ω ≤ C‖∆ψ‖Ω.

Note that since β ∈ (0; 1/2), we have V̊1
β(Ω) ⊂ V0

β−1 ⊂ L2(Ω) and so L2(Ω) ⊂ (V̊1
β(Ω))∗. Now

starting from the fact that χψi ∈ H1
0(Ω) in addition to ∆(χψi) = fi ∈ L2(Ω) ⊂ (V̊1

β(Ω))∗, by
applying Proposition 2.1, we deduce that χψi ∈ V̊1

−β(Ω) with the estimate

‖χψi‖V̊1
−β(Ω) ≤ C ‖fi‖(V̊1

β
(Ω))∗ ≤ C ‖fi‖Ω.

As a consequence, curl (χψ) ∈ V0
−β(Ω) and

‖curl (χψ)‖V0
−β(Ω) ≤ C

3∑
i=1
‖χψi‖V̊1

−β(Ω) ≤
3∑
i=1
‖fi‖Ω ≤ C‖∆ψ‖Ω,

which concludes the proof.

Proposition A.3. Under Assumption 1, the following assertions hold:
i) if (ψn) is a bounded sequence of elements of XN (1) such that (∆ψn) is bounded in L2(Ω),
then one can extract a subsequence such that (curlψn) converges in V0

−β(Ω) for all β ∈ (0; 1/2);
ii) if (ψn) is a bounded sequence of elements of XT (1) such that curlψn × ν = 0 on ∂Ω and
such that (∆ψn) is bounded in L2(Ω), then one can extract a subsequence such that (curlψn)
converges in V0

−β(Ω) for all β ∈ (0; 1/2).

Proof. Let us establish the first assertion, the proof of the second one being similar. Let (ψn)
be a bounded sequence of elements of XN (1) such that (∆ψn) is bounded in L2(Ω). Observing
that curl curlψn = −∆ψn, we deduce that (curlψn) is a bounded sequence of XT (1). Since
the spaces XN (1) and XT (1) are compactly embedded in L2(Ω) (see Proposition 1.1), one can
extract a subsequence such that both (ψn) and (curlψn) converge in L2(Ω).
Then, working as in the proof of Proposition A.2, we can show that for a smooth cut-off function
χ compactly supported in Ω and equal to one in a neighbourhood of O, the sequence (χψn) is
bounded in V2

γ(Ω) := (V2
γ(Ω))3 for all γ > 1/2. To obtain this result, we use in particular the fact

that if O ⊂ R3 is a smooth bounded domain such that O ∈ O, then ∆ : V2
γ(O)∩V̊1

γ−1(O)→ V0
γ(O)

is an isomorphism for all γ ∈ (1/2; 3/2) (see [34, §1.6.2]). Finally, to conclude to the result of the
proposition, we use the fact V2

γ(O) is compactly embedded in V1
γ′(O) a soon as γ − 1 < γ′ ([32,

Lemma 6.2.1]). This allows us to prove that for all β < 1/2, the subsequence (χψn) converges in
V1
−β(Ω), so that (curlψn) converges in V0

−β(Ω).
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The next two lemmas are results of additional regularity for the elements of classical Maxwell’s
spaces that are direct consequences of Propositions A.2 and A.3.

Lemma A.4. Under Assumption 1, for all β ∈ (0; 1/2), XT (1) is compactly embedded in V0
−β(Ω).

In particular, there is a constant C > 0 such that

‖u‖V0
−β(Ω) ≤ C ‖curlu‖Ω, ∀u ∈ XT (1). (76)

Proof. Let u be an element of XT (1). From the item ii) of Proposition A.1, we know that there
exists ψ ∈ XN (1) such that u = curlψ. Using that −∆ψ = curlu ∈ L2(Ω), from Proposition
A.2, we get that u ∈ V0

−β(Ω) together with the estimate

‖curlψ‖V0
−β(Ω) ≤ C ‖curlu‖Ω.

This gives (76). Now suppose that (un) is a bounded sequence of elements of XT (1). Then
there exists a bounded sequence (ψn) of elements of XN (1) such that un = curlψn. Since
(curlun = −∆ψn) is bounded in L2(Ω), the first item of Proposition A.3 implies that there is a
subsequence such that (un) converges in V0

−β(Ω).

Lemma A.5. Under Assumption 1, for all β ∈ (0; 1/2), XN (1) is compactly embedded in
V0
−β(Ω). In particular, there is a constant C > 0 such that

‖u‖V0
−β(Ω) ≤ C ‖curlu‖Ω, ∀u ∈ XN (1).

Proof. The proof is similar to the one of Lemma A.4.

B Vector potentials, part 2

First we establish an intermediate lemma which can be seen as a result of well-posedness for
Maxwell’s equations in weighted spaces with ε = µ = 1 in Ω. Define the continuous operator
BT : ZβT (1)→ (Z−βT (1))∗ such that for all ψ ∈ ZβT (1), ψ′ ∈ Z−βT (1),

〈BTψ,ψ′〉 =
ˆ

Ω
curlψ · curlψ′ dx.

Lemma B.1. Under Assumption 1, for 0 ≤ β < 1/2, the operator BT : ZβT (1) → (Z−βT (1))∗ is
an isomorphism.

Proof. Let ψ be an element of ZβT (1). According to Proposition 2.1, there is a unique ϕ ∈ V̊1
−β(Ω)

such that ˆ
Ω
∇ϕ · ∇ϕ′ dx =

ˆ
Ω
r2βcurlψ · ∇ϕ′ dx, ∀ϕ′ ∈ V̊1

β(Ω).

Then denote Tψ ∈ Z−βT (1) the function such that

curl (Tψ) = r2βcurlψ −∇ϕ.

Observe that Tψ is well-defined according to the item i) of Proposition A.1. This defines a
continuous operator T : ZβT (1)→ Z−βT (1). We have

〈BTψ,Tψ〉 =
ˆ

Ω
curlψ · curl (Tψ) dx = ‖rβcurlψ‖2Ω = ‖curlψ‖2V0

β(Ω).

Adapting the proof of Lemma 4.4, one can show that ‖curl · ‖V0
β(Ω) is a norm which is equivalent

to the natural norm of ZβT (1). Therefore, from the Lax-Milgram theorem, we infer that T∗BT is
an isomorphism which shows that BT is injective and that its image is closed in (Z−βT (1))∗. And
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from that, we deduce that BT is onto if and only if its adjoint is injective. The adjoint of BT is
the operator B∗T : Z−βT (1)→ (ZβT (1))∗ such that for all ψ ∈ Z−βT (1), ψ′ ∈ ZβT (1),

〈B∗Tψ,ψ′〉 =
ˆ

Ω
curlψ · curlψ′ dx. (77)

If B∗Tψ = 0, then taking ψ′ = ψ ∈ Z−βT (1) ⊂ ZβT (1) in (77), we obtain ‖curlψ‖Ω = 0. Since
Z−βT (1) ⊂ XT (1) and ‖curl · ‖Ω is a norm in XT (1) (Proposition 1.1), we deduce that ψ = 0.
This shows that B∗T is injective and that BT is an isomorphism.

Now we use the above lemma to prove the following result which is essential in the analysis of
the Problem (54) for the magnetic field. This is somehow an extension of the result of item i) of
Proposition A.1 for singular fields which are not in L2(Ω).

Proposition B.2. Under Assumption 1, for all 0 ≤ β < 1/2, if u ∈ V0
β(Ω) satisfies divu = 0

in Ω, then there exists a unique ψ ∈ ZβT (1) such that u = curlψ.

Proof. Let u ∈ V0
β(Ω) be such that divu = 0 in Ω. According to Lemma B.1, we know that

there is a unique ψ ∈ ZβT (1) such that
ˆ

Ω
curlψ · curlψ′ dx =

ˆ
Ω
u · curlψ′ dx, ∀ψ′ ∈ Z−βT (1).

Then we have ˆ
Ω

(u− curlψ) · curlψ′ dx = 0, ∀ψ′ ∈ Z−βT (1). (78)

Since u is divergence free in Ω, we also have
ˆ

Ω
(u− curlψ) · ∇p′ dx = 0, ∀p′ ∈ V̊1

−β(Ω). (79)

Now if v is an element of V0
−β(Ω) ⊂ L2(Ω), from item iv) of Proposition A.1, we know that there

holds the decomposition
v = ∇p′ + curlψ′, (80)

for some p′ ∈ H1
0(Ω) and some ψ′ ∈ XT (1). Taking the divergence in (80), we get

∆p′ = div v ∈ (V̊1
β(Ω))∗. (81)

From Proposition 2.1, since 0 ≤ β < 1/2, we know that (81) admits a solution in V̊1
−β(Ω) ⊂ H1

0(Ω).
Using uniqueness of the solution of (81) in H1

0(Ω), we obtain that p′ ∈ V̊1
−β(Ω). This implies that

curlψ′ = v −∇p′ ∈ V0
−β(Ω) and so ψ′ ∈ Z−βT (1). From (78) and (79), we infer that

ˆ
Ω

(u− curlψ) · v dx = 0, ∀v ∈ V0
−β(Ω).

This shows that u = curlψ. Finally, if ψ1, ψ2 are two elements of ZβT (1) such that u = curlψ1 =
curlψ2, then ψ1−ψ2 belongs to XT (1) and satisfies curl (ψ1−ψ2) = 0 in Ω. From Proposition
1.1, we deduce that ψ1 = ψ2.

C Energy flux of the singular function

Lemma C.1. With the notations of (4), we have

=m
( ˆ

Ω
div(ε∇s+) s+ dx

)
= η

ˆ
S2
ε|Φ|2ds.
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Proof. Set Ωτ := Ω\B(O, τ). Noticing that div(ε∇s+) vanishes in a neighbourhood of the origin,
we can writeˆ

Ω
div(ε∇s+) s+ dx = lim

τ→0

ˆ
Ωτ

div(ε∇s+) s+ dx

= lim
τ→0

(
−
ˆ

Ωτ
ε|∇s+|2dx−

ˆ
∂B(O,τ)

ε
∂s+

∂r
s+ds

)
.

Taking the imaginary part and observing that
ˆ
∂B(O,τ)

ε
∂s+

∂r
s+ds = −

(1
2 + iη

)ˆ
S2
ε|Φ|2ds,

the result follows.

D Dimension of Xout
N (ε)/XN(ε)

Lemma D.1. Under Assumptions 1–3, we have dim (Xout
N (ε)/XN (ε)) = 1.

Proof. If u1 = c1∇s+ + ũ1, u2 = c2∇s+ + ũ2 are two elements of Xout
N (ε), then c2u1 − c1u2 ∈

XN (ε), which shows that dim (Xout
N (ε)/XN (ε)) ≤ 1.

Now let us prove that dim (Xout
N (ε)/XN (ε)) ≥ 1. Introduce s̃ ∈ V̊out the function such that

Aout
ε s̃ = div(ε∇s−). Note that since div(ε∇s−) vanishes in a neighbourhood of the origin, it

belongs to (V̊1
γ(Ω))∗ for all γ ∈ R. Then set

s = s− + s̃. (82)

Observe that s ∈ V̊1
γ(Ω) for all γ > 0 and that div(ε∇s) = 0 in Ω \ {O} (s is a non zero element

of ker Aγε for all γ > 0). Let ũ ∈ (C∞0 (Ω \ {O}))3 be a field such that
´

Ω εũ · ∇s dx 6= 0. The
existence of such a ũ can be established thanks to the density of (C∞0 (Ω \ {O}))3 in L2(Ω),
considering for example an approximation of 1B∇s ∈ L2(Ω) where 1B is the indicator function
of a ball included in M. Introduce ζ = c s+ + ζ̃ ∈ V̊out, with c ∈ C, ζ̃ ∈ V̊1

−β(Ω), the function
such that Aout

ε ζ = −div(εũ). This is equivalent to have

−c
ˆ

Ω
div(ε∇s+)ϕ′ dx+

ˆ
Ω
ε∇ζ̃ · ∇ϕ′ dx =

ˆ
Ω
εũ · ∇ϕ′ dx, ∀ϕ′ ∈ V̊1

β(Ω).

Clearly ∇ζ − ũ = c∇s+ + (∇ζ̃ − ũ) is an element of Xout
N (ε). Moreover taking ϕ′ = s above, we

get
−c

ˆ
Ω

div(ε∇s+)s dx =
ˆ

Ω
εũ · ∇s dx 6= 0.

This shows that c 6= 0 and guarantees that dim (Xout
N (ε)/XN (ε)) ≥ 1.
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