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WAVE EQUATION ON
GENERAL NONCOMPACT SYMMETRIC SPACES

JEAN-PHILIPPE ANKER & HONG-WEI ZHANG

Abstract. We establish sharp pointwise kernel estimates and dispersive prop-
erties for the wave equation on noncompact symmetric spaces of general rank.
This is achieved by combining the stationary phase method and the Hadamard
parametrix, and in particular, by introducing a subtle spectral decomposition,
which allows us to overcome a well-known difficulty in higher rank analysis,
namely the fact that the Plancherel density is not a differential symbol in gen-
eral. As consequences, we deduce the Strichartz inequality for a large family of
admissible pairs and prove global well-posedness results for the corresponding
semilinear equation with low regularity data as on hyperbolic spaces.
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1. Introduction

This paper is devoted to prove time sharp kernel estimates and dispersive prop-
erties for the wave equation on noncompact symmetric spaces of higher rank. As
consequences, we prove the Strichartz inequality and study their applications to
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associated semilinear Cauchy problems. Relevant theories are well established on
Euclidean spaces, see for instance [Kap94; LiSo95; GLS97; KeTa98; DGK01], and
the references therein.

Given the rich Euclidean results, several works have been made in other settings.
We are interested in Riemannian symmetric spaces of noncompact type, where rel-
evant questions are now well answered in rank one, see for instance [Fon97; Ion00;
Tat01; MeTa11; MeTa12; APV12; AnPi14] on hyperbolic spaces, and [APV15]
on Damek-Ricci spaces. A first study of the wave equation on general symmetric
spaces of higher rank was carried out in [Has11], where some non optimal esti-
mates were obtained under a strong smoothness assumption. Recently, time sharp
kernel estimates and dispersive properties have been proven in [Zha20] on noncom-
pact symmetric spaces G/K, with G complex. In this case, the Harish-Chandra
c-function and the spherical function have elementary expressions, which is not the
case in general.

In this paper, we establish pointwise wave kernel estimates and dispersive prop-
erties for the wave equation on general noncompact symmetric spaces, which are
sharp in time and which extend previous results obtained on real hyperbolic spaces
[APV12; AnPi14] to higher rank. The main challenge is that the Plancherel density
involved in the wave kernel is not a polynomial, nor even a differential symbol in
general. To bypass this problem, we consider barycentric decompositions of the
Weyl chambers into subcones and differentiate in each subcone along a well chosen
direction.

For suitable σ ∈ C, we consider the wave operator Wσ
t = (−∆)−

σ
2 eit

√
−∆ associ-

ated to the Laplace-Beltrami operator ∆ on a d-dimensional noncompact symmetric
space X = G/K. To avoid possible singularities (see Sect. 3.2), we consider actually
the analytic family of operators

W̃σ
t =

eσ
2

Γ(d+1
2 − σ)

(−∆)−
σ
2 eit

√
−∆ (1.1)

in the vertical strip 0 ≤ Reσ ≤ d+1
2 . Let us denote by ω̃σt its K-bi-invariant

convolution kernel. Our first main result is the following pointwise estimate, which
summarizes Theorem 3.3, Theorem 3.7 and Theorem 3.10 proved in Sect. 3.

Theorem 1.1 (Pointwise kernel estimates). Let d ≥ 3 and σ ∈ C with Reσ = d+1
2 .

There exist C > 0 and N ∈ N such that the following estimates hold for all t ∈ R∗
and x ∈ X:

|ω̃σt (x)| ≤ C(1 + |x+|)Ne−〈ρ,x
+〉

{
|t|− d−1

2 if 0 < |t| < 1,

|t|−D2 if |t| ≥ 1,

where x+ ∈ a+ denotes the radial component of x in the Cartan decomposition, and
D = `+ 2|Σ+

r | is the so-called dimension at infinity of X.

Remark 1.2. These kernel estimates are sharp in time and similar results hold
obviously in the easier case where Reσ > d+1

2 . The value of N will be specified in
Sect. 3. However, the polynomial (1+|x+|)N is not crucial for further computations
because of the exponential decay e−〈ρ,x

+〉.
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By interpolation arguments, we deduce our second main result.

Theorem 1.3 (Dispersive property). Assume that d ≥ 3, 2 < q, q̃ < +∞ and
σ ≥ (d + 1) max( 1

2 −
1
q ,

1
2 −

1
q̃ ). Then there exists a constant C > 0 such that

following dispersive estimates hold:

‖Wσ
t ‖Lq̃′ (X)→Lq(X) ≤ C

{
|t|−(d−1) max( 1

2−
1
q ,

1
2−

1
q̃ ) if 0 < |t| < 1,

|t|−D2 if |t| ≥ 1.

Remark 1.4. At the endpoint q = q̃ = 2, t 7→ eit
√
−∆ is a one-parameter group of

unitary operators on L2(X).

Remark 1.5. Theorem 1.1 and Theorem 1.3 generalize earlier results obtained
for real hyperbolic spaces [APV12; AnPi14] (which extend straightforwardly to all
noncompact symmetric spaces of rank one), or for noncompact symmetric spaces
G/K with G complex [Zha20]. Notice that D = 3 in rank one and that D = d if G
is complex.

Remark 1.6. For simplicity, we omit the 2-dimensional case where the small time
bounds in Theorem 1.1 and Theorem 1.3 involve an additional logarithmic factor,
see [AnPi14, Theorem 3.2 and 4.2]. Notice that d ≥ 4 in higher rank, see (2.1).

Let us sketch the proofs of our main results. We prove the dispersive properties
of W̃σ

t by using interpolation arguments based on pointwise estimates of ω̃σt , which
are sharp in time. By the way, let us point out that the kernel analysis carried out
on hyperbolic spaces [AnPi14] can not be extend straightforwardly in higher rank,
since the Plancherel density is not a differential symbol in general. Consider the
Poisson operator Pτ = e−τ

√
−∆, for all τ ∈ C with Re τ ≥ 0. Along the lines of

[Sch88; GiMe90; CGM02], we can write formally our wave operator (1.1) as

W̃σ
t =

eσ
2

Γ(d+1
2 − σ)

1

Γ(σ)

∫ +∞

0

ds sσ−1Ps−it.

Our analysis is focused on kernel estimates of the Poisson operator Ps−it where
s ∈ R+ and t ∈ R∗. We adopt different methods depending whether s, |t| and |x||t|
(x ∈ X) are small or large. Specifically,

• If s is bounded from above and |x||t| is sufficiently small with |t| large, we develop
an effective stationary phase method based on barycentric decompositions of
Weyl chambers described in Sect. 2.3. In each subdivision, the Plancherel density
becomes a differential symbol for a well chosen directional derivative, see Sect. 3.1.

• If s is bounded from above but |x||t| is large (with |t| small or large), we estimate the
kernel along the lines of [CGM01], where Cowling, Guilini and Meda have studied
the Poisson operator Pτ for τ ∈ C with Re τ ≥ 0. Unfortunately, their estimates
are not sharp when τ is large and nearly imaginary, which happens in our context
when s is small and |t| is large. To deal with this case, we resume and improve
slightly their method by writing down more explicitly the Hadamard parametrix
on noncompact symmetric spaces along the lines of [Bér77], see Sect. 3.2.

• If s is large, the kernel is estimated by using the standard stationary phase
method, which is similar to the rank one analysis, see Sect. 3.3.
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This paper is organized as follows. We recall spherical Fourier analysis on non-
compact symmetric spaces and introduce the barycentric decomposition of Weyl
chambers in Sect. 2. Next, we derive pointwise wave kernel estimates in Sect. 3.
By using interpolation arguments, we prove in Sect. 4 the dispersive property for
the wave operator. As consequences, we establish the Strichartz inequality for a
large family of admissible pairs and obtain well-posedness results for the associated
semilinear wave equation in Sect. 5. We give further results about the Klein-Gordon
equation in Sect. 6. Finally, we collect in the appendices some useful results: in
Appendix A, we study by the stationary phase method an oscillatory integral oc-
curring in the wave kernel analysis; next we describe in Appendix B the Hadamard
parametrix on noncompact symmetric spaces and consider its application to the
Poisson operator in Appendix C.

2. Preliminaries

In this section, we first review briefly spherical Fourier analysis on noncompact
symmetric spaces. Next we introduce a barycentric decomposition for Weyl cham-
bers, which will be crucial for the forthcoming kernel estimates.

2.1. Notations. We adopt the standard notation and refer to [Hel78; Hel00] for
more details. Let G be a semisimple Lie group, connected, noncompact, with fi-
nite center, and K be a maximal compact subgroup of G. The homogeneous space
X = G/K is a Riemannian symmetric space of noncompact type. Let g = k⊕ p be
the Cartan decomposition of the Lie algebra of G. There is a natural identification
between p and the tangent space of X at the origin. The Killing form of g induces
a K-invariant inner product on p, hence a G-invariant Riemannian metric on X.

Fix a maximal abelian subspace a in p. The rank of X is the dimension ` of a.
Let Σ ⊂ a be the root system of (g, a) and denote by W the Weyl group associated
to Σ. Once a positive Weyl chamber a+ ⊂ a has been selected, Σ+ (resp. Σ+

r or
Σ+
s ) denotes the corresponding set of positive roots (resp. positive reduced roots

or simple roots). Let d be the dimension of X and D be the dimension at infinity
of X:

d = `+
∑
α∈Σ+ mα and D = `+ 2|Σ+

r |, (2.1)

where mα is the dimension of the positive root subspace ga. Notice that one cannot
compare d and D without specifying the geometric structure of X. For example,
when G is complex, we have d = D; but when X has normal real form, we have
d = ` + |Σ+

r | which is strictly smaller than D. Since we focus on the higher rank
analysis, we may assume that d ≥ 3.

Let n be the nilpotent Lie subalgebra of g associated to Σ+ and let N = exp n
be the corresponding Lie subgroup of G. We have the decompositions{

G = N (exp a)K (Iwasawa),
G = K (exp a+)K (Cartan).

In the Cartan decomposition, the Haar measure on G writes∫
G

f(x)dx = const.

∫
K

dk1

∫
a+

dx+ δ(x+)

∫
K

dk2 f(k1(expx+)k2),
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with

δ(x+) =
∏
α∈Σ+

(
sinhα(x+)

)mα � { ∏
α∈Σ+

〈α, x+〉
1 + 〈α, x+〉

}mα
e〈2ρ,x

+〉 ∀x+ ∈ a+.

Here ρ ∈ a+ denotes the half sum of all positive roots α ∈ Σ+ counted with their
multiplicities mα:

ρ = 1
2

∑
α∈Σ+ mαα.

2.2. Spherical Fourier analysis on X. Let S(K\G/K) be the Schwartz space
of K-bi-invariant functions on G. The spherical Fourier transform H is defined by

Hf(λ) =

∫
G

dx ϕ−λ(x)f(x) ∀λ ∈ a, ∀ f ∈ S(K\G/K),

where ϕλ ∈ C∞(K\G/K) denotes the spherical function of index λ ∈ aC, which is
a smooth K-bi-invariant eigenfunction for all invariant differential operators on X,
in particular for the Laplace-Beltrami operator:

−∆ϕλ(x) =
(
|λ|2 + |ρ|2

)
ϕλ(x).

In the noncompact case, spherical functions have the integral representation

ϕλ(x) =

∫
K

dk e〈iλ+ρ,A(kx)〉 ∀λ ∈ aC, (2.2)

where A(kx) denotes the a-component in the Iwasawa decomposition of kx. It
satisfies the basic estimate

|ϕλ(x)| ≤ ϕ0(x) ∀λ ∈ a, ∀x ∈ G,

where

ϕ0(expx+) �
{ ∏
α∈Σ+

r

1 + 〈α, x+〉
}
e−〈ρ,x

+〉 ∀x+ ∈ a+.

Denote by S(a)W the subspace of W -invariant functions in the Schwartz space
S(a). Then H is an isomorphism between S(K\G/K) and S(a)W . The inverse
spherical Fourier transform is given by

f(x) = C0

∫
a

dλ |c(λ)|−2ϕλ(x)Hf(λ) ∀x ∈ G, ∀ f ∈ S(a)W ,

where C0 > 0 is a constant depending only on the geometric structure of X, and
which has been computed explicitly for instance in [AnJi99, Theorem 2.2.2]. By
using the Gindikin & Karpelevič formula of the Harish-Chandra c-function (see
[Hel00] or [GaVa88]), we can write the Plancherel density as

|c(λ)|−2 =
∏
α∈Σ+

r

|cα(〈α, λ〉)|−2, (2.3)

with

cα(v) =
Γ(
〈α,ρ〉
〈α,α〉+

1
2mα)

Γ(
〈α,ρ〉
〈α,α〉 )

Γ( 1
2
〈α,ρ〉
〈α,α〉+

1
4mα+ 1

2m2α)

Γ( 1
2
〈α,ρ〉
〈α,α〉+

1
4mα)

Γ(iv)

Γ(iv+ 1
2mα)

Γ( i2 v+ 1
4mα)

Γ( i2 v+ 1
4mα+ 1

2m2α)
.
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Since |cα|−2 is a homogeneous symbol on R of order mα +m2α for every α ∈ Σ+
r ,

then |c(λ)|−2 is a product of one-dimensional symbols, but not a symbol on a in
general. The Plancherel density satisfies

|c(λ)|−2 �
∏
α∈Σ+

r

〈α, λ〉2(1 + |〈α, λ〉|)mα+m2α−2 .

{
|λ|D−` if |λ| ≤ 1,

|λ|d−` if |λ| ≥ 1,

together with all its derivatives.

2.3. Barycentric decomposition of theWeyl chamber. Let Σ+
s = {α1, . . . , α`}

be the set of positive simple roots, and let {Λ1, . . . ,Λ`} be the dual basis of a, which
is defined by

〈αj ,Λk〉 = δjk ∀ 1 ≤ j, k ≤ `. (2.4)

Notice that a+ = R+Λ1 + · · ·+ R+Λ` and recall that〈αj , αk〉 ≤ 0 ∀ 1 ≤ j 6= k ≤ `

〈Λj ,Λk〉 ≥ 0 ∀ 1 ≤ j, k ≤ `
(2.5)

(see [Hel78, Chap.VII, Lemmas 2.18 and 2.25], see also [Kor93, p.590]). Let B be
the convex hull of W.Λ1 t · · · tW.Λ`, and let S be its polyhedral boundary. Notice
that B ∩ a+ is the `-simplex with vertices 0,Λ1, . . . ,Λ`, and S ∩ a+ is the (`− 1)-
simplex with vertices Λ1, . . . ,Λ`. The following tiling is obtained by regrouping the
barycentric subdivisions of the simplices S ∩ w.a+:

S =
⋃
w∈W

⋃
1≤j≤`

w.Sj (2.6)

where

Sj = {λ ∈ S ∩ a+ | 〈αj , λ〉 = max
1≤j≤`

〈αk, λ〉}.

O

a+

α2

α1

Λ1

Λ2

S1

S2
B O

Λ2

Λ1

Λ3

B

S1

S2

S3

a+

Figure 1. Examples of barycentric subdivisions in A2 and in A3.
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Remark 2.1. Sj is the convex hull of the points

Λk1 + · · ·+ Λkr
r

where {Λk1 , . . . ,Λkr} runs through all subsets of {Λ1, . . . ,Λ`} containing Λj.

Lemma 2.2. Let w ∈W and 1 ≤ j ≤ l. Then
(i) a root α ∈ Σ is orthogonal to some vectors in the tile w.Sj if and only if α

is orthogonal to its vertex w.λj.

(ii) 〈w.Λj , λ〉 ≥ 1
` |Λj |

2 for every λ ∈ w.Sj.

Proof. (i) Let us show that 〈α,w.Λj〉 = 0 if there exists λ ∈ w.Sj such that
〈α, λ〉 = 0. By symmetry, we may assume that w = id and that α is a positive
root. On the one hand, since α is spanned by the positive simple roots α1, . . . , α`,
we have

α =
∑

1≤k≤`

〈α,Λk〉αk

with 〈α,Λk〉 ∈ N. On the other hand, since 〈α1, λ〉, . . . , 〈α`, λ〉 are the barycentric
coordinates of λ ∈ S ∩ a+, we have

λ =
∑

1≤k≤`

〈αk, λ〉Λk (2.7)

which is a convex combination. In particular, 〈αj , λ〉 > 0 for all λ ∈ Sj . Hence the
inner product

〈α, λ〉 =
∑

1≤k≤`

〈α,Λk〉︸ ︷︷ ︸
≥0

〈αk, λ〉︸ ︷︷ ︸
≥0

〈αk,Λk〉︸ ︷︷ ︸
=1

cannot vanish unless 〈α,Λj〉 = 0.

(ii) By symmetry, we may assume again that w = id. By taking the inner
product of Λj with (2.7), we obtain

〈Λj , λ〉 =
∑

1≤k≤`

〈Λj ,Λk〉〈αk, λ〉 = |Λj |2 〈αj , λ〉︸ ︷︷ ︸
≥ 1
`

+
∑
k 6=j

〈Λj ,Λk〉︸ ︷︷ ︸
≥0

〈αk, λ〉︸ ︷︷ ︸
≥0

≥ 1

`
|Λj |2,

according to the property (2.5), and the fact that 〈αj , λ〉 is the largest barycentric
coordinates for λ ∈ Sj . �

Now, consider the tiling of the unit sphere obtained by projecting (2.6):

S(a) =
⋃
w∈W

⋃
1≤j≤`

w.Sj

where Sj are the projections of the barycentric subdivisions Sj on the unit sphere.
We establish next a smooth version of the partition of unity∑

w∈W

∑
1≤j≤`

1w.Sj
(
λ
|λ|
)

= 1 a.e..
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O

Λ2

Λ1

Λ3

S1

S2

S3

S1

S2
S3

Figure 2. Example of the projection in A3

Let χ : R→ [0, 1] be a smooth cut-off function such that χ(r) = 1 when r ≥ 0 and
χ(r) = 0 when r ≤ −c1, where c1 > 0 will be specified in Remark 2.5. For every
w ∈W and 1 ≤ j ≤ `, we define

χ̃w.Sj (λ) =
∏

1≤k≤`,k 6=j

χ
( 〈w.αk, λ〉

|λ|

)
χ
( 〈w.αj , λ〉 − 〈w.αk, λ〉

|λ|

)
∀λ ∈ ar {0},

and

χ̃ =
∑
w∈W

∑
1≤j≤`

χ̃w.Sj ,

which satisfy the following properties.

Proposition 2.3. Let w ∈W and 1 ≤ j ≤ `. For all λ ∈ ar {0}, we have
(i) χ̃w.Sj (w.λ) = χ̃Sj (λ) and χ̃ is W -invariant.

(ii) χ̃w.Sj = 1 on w.Sj and χ̃ ≥ 1 on ar {0}.
(iii) χ̃w.Sj and χ̃ are homogeneous symbols of order 0.

Proof. (i) follows from immediately from the definitions. In order to prove (ii), we
may assume that w = id by symmetry. For all λ ∈ Sj , we have

〈αk, λ〉 ≥ 0 and 〈αj , λ〉 ≥ 〈αk, λ〉

for every 1 ≤ k ≤ ` with k 6= j, hence χ̃Sj (λ) = 1. We deduce straightforwardly
that χ̃ ≥ 1 on a r {0}. (iii) is obvious, since χ

( 〈w.αk,λ〉
|λ|

)
and χ

( 〈w.αj ,λ〉−〈w.αk,λ〉
|λ|

)
are homogeneous symbols of order 0 for all λ ∈ ar {0} and 1 ≤ k ≤ `. �

For every w ∈W and 1 ≤ j ≤ `, we set

χw.Sj =
χ̃w.Sj
χ̃

on a r {0}. It follows from Proposition 2.3 that χw.Sj (w.λ) = χSj (λ) and that
χw.Sj is a homogeneous symbol of order 0. In particular, we have∑

w∈W

∑
1≤j≤`

χw.Sj = 1 on ar {0}. (2.8)
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In addition, the vectors in the support of χw.Sj satisfy further properties, which
require some preliminaries.

Lemma 2.4. There exits c2 > 0 such that, if λ ∈ a satisfies

−c2|λ| ≤ 〈αk, λ〉 ≤ 〈αj , λ〉+ c2|λ| ∀ k ∈ {1, . . . , `}r {j},

for some 1 ≤ j ≤ `, then 〈αj , λ〉 ≥ c2|λ|.

Proof. By homogeneity, we may reduce to |λ| = 1. Since all norms are equivalent
on a, there exists c3 > 0 such that∑

1≤j≤`

|〈αk, λ〉| ≥ c3 ∀λ ∈ S(a). (2.9)

Set c2 = c3
2` . On the other hand, if

−c2 ≤ 〈αk, λ〉 ≤ 2c2 ∀ k ∈ {1, . . . , `}r {j},

then 〈αj , λ〉 ≥ 2c2. Otherwise,∑
1≤j≤`

|〈αk, λ〉| = |〈αj , λ〉|︸ ︷︷ ︸
<2c2

+
∑
k 6=j

|〈αk, λ〉|︸ ︷︷ ︸
≤2c2

< 2`c2 = c3,

which contradicts (2.9). On the other hand, if

2c2 ≤ 〈αk, λ〉 ≤ 〈αj , λ〉+ c2

for some k ∈ {1, . . . , `}r {j}, then 〈αj , λ〉 ≥ c2 is obvious. �

Remark 2.5. We clarify in this remark all constants appearing in this subsection.
Denote by L1 the highest root length and by L2 the sum of lengths of the dual basis

L1 = max
α∈Σ+

∑
1≤k≤`

〈α,Λk〉 and L2 =
∑

1≤k≤`

|Λk|.

In addition, we denote by M1 and M2 the shortest and the longest generators

M1 = min
1≤k≤`

|Λk| and M2 = max
1≤k≤`

|Λk|.

Then we choose c1 > 0 such that c1 < c2 min{ 1
L1
,
M2

1

M2L2
}, where c2 = c3

2` with
c3 defined in (2.9). Let c4 = c2 − L1c1 and c5 = M2

1 c2 −M2L2c1. Notice that
L1 ∈ N∗, c1 < c2, c4 > 0 and c5 > 0. All these constants depend only on the
geometric structure of the roots system corresponding to X.

The following result is an analog of Lemma 2.2 for the wider regions suppχω.Sj .

Proposition 2.6. Let w ∈W and 1 ≤ j ≤ `. Then
(i) a root α ∈ Σ satisfies either 〈α,w.λj〉 = 0 or

|〈α, λ〉| ≥ c4|λ| ∀λ ∈ suppχw.Sj , (2.10)

(ii) |〈w.Λj , λ〉| ≥ c5|λ| for every λ ∈ suppχw.Sj .

Proof. (i) By symmetry, we may assume that w = id and that α is a positive root.
Notice that 〈α,Λj〉 is a nonnegative integer, we suppose that 〈α,Λj〉 > 0 and let
us prove (2.10). As

−c1|λ| ≤ 〈αk, λ〉 ≤ 〈αj , λ〉+ c1|λ| ∀λ ∈ suppχSj , ∀ k ∈ {1, . . . , `}r {j},
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we have indeed

〈α, λ〉 =
∑

1≤k≤`

〈α,Λk〉〈αk, λ〉

= 〈α,Λj〉︸ ︷︷ ︸
≥1

〈αj , λ〉︸ ︷︷ ︸
≥c2|λ|

+
∑
k 6=j

〈α,Λk〉 〈αk, λ〉︸ ︷︷ ︸
≥−c1|λ|

≥ (c2 − L1c1)|λ| = c4|λ|,

according to Lemma 2.4 since c1 < c2.

(ii) By symmetry, we assume again w = id. By taking the inner product of Λj
with (2.7), we obtain, for every λ ∈ suppχSj ,

〈Λj , λ〉 =
∑

1≤k≤`

〈Λj ,Λk〉〈αk, λ〉

= |Λj |2︸ ︷︷ ︸
≥M2

1

〈αj , λ〉︸ ︷︷ ︸
≥c2|λ|

+
∑
k 6=j

〈Λj ,Λk〉︸ ︷︷ ︸
≤|Λj ||Λk|

〈αk, λ〉︸ ︷︷ ︸
≥−c1|λ|

≥ (M2
1 c2 −M2L2c1)|λ| = c5|λ|.

�

Remark 2.7. The partition of unity (2.8) plays an important role in the kernel
analysis carried out in Sect. 3. It allows us to overcome a well-known problem
in spherical Fourier analysis in higher rank, namely the fact that the Plancherel
density is not a symbol in general. This new tool should certainly help solving other
problems.

3. Pointwise estimates of the wave kernel

In this section, we derive pointwise estimates for the K-bi-invariant convolution
kernel ωσt of the operator Wσ

t = (−∆)−
σ
2 eit

√
−∆ on the symmetric space X:

Wσ
t f(x) = f ∗ ωσt (x) =

∫
G

dy ωσt (y−1x)f(y)

for suitable exponents σ ∈ C. By using the inverse formula of the spherical Fourier
transform, we have

ωσt (x) = C0

∫
a

dλ |c(λ)|−2ϕλ(x)(|λ|2 + |ρ|2)−
σ
2 eit
√
|λ|2+|ρ|2

Let us point out that the analysis of this oscillatory integral carried out on hyper-
bolic spaces or on symmetric spaces G/K with G complex (see [AnPi14; Zha20])
does not hold in general since the Plancherel density |c(λ)|−2 is no more a differ-
ential symbol. We write

ωσt (x) =
1

Γ(σ)

∫ +∞

0

ds sσ−1 C0

∫
a

dλ |c(λ)|−2ϕλ(x)e−(s−it)
√
|λ|2+|ρ|2︸ ︷︷ ︸

ps−it(x)

.

according to the formula

r−σ =
1

Γ(σ)

∫ +∞

0

ds

s
sσe−sr ∀ r > 0.
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Here ps−it is the K-bi-invariant convolution kernel of the Poisson operator Ps−it.
Let us split up ωσt (x) = ωσ,0t (x) + ωσ,∞t (x) with

ωσ,0t (x) =
1

Γ(σ)

∫ 1

0

ds sσps−it(x) and ωσ,∞t (x) =
1

Γ(σ)

∫ +∞

1

ds sσps−it(x).

We shall see in Sect. 3.2 that the kernel ωσ,0t (x) has a logarithmic singularity on
the sphere |x| = t when σ = d+1

2 . To bypass this problem, we consider the analytic
family of operators

W̃σ,0
t =

eσ
2

Γ(d+1
2 − σ)Γ(σ)︸ ︷︷ ︸
Cσ,d

∫ 1

0

ds sσ−1Ps−it (3.1)

in the vertical strip 0 ≤ Reσ ≤ d+1
2 and the corresponding kernels

ω̃σ,0t (x) = Cσ,d

∫ 1

0

ds sσ−1ps−it(x) ∀x ∈ X.

Notice that the Gamma function Γ(d+1
2 − σ) allows us to deal with the boundary

point σ = d+1
2 , while the exponential function ensures boundedness at infinity in

the vertical strip. More precisely, by using the inequality

|Γ(z)| ≥ Γ(Re z)
(

cosh(π Im z)
)− 1

2 ∀ z ∈ C with Re z ≥ 1
2

(see for instance [DLMF, Eq. 5.6.7]), we can estimate

|Cσ,d| . |σ| |σ − d+1
2 | e

π | Imσ|−(Imσ)2

(3.2)

for all σ ∈ C with 0 ≤ Reσ ≤ d+1
2 .

We divide the argument into three parts depending whether |t| and |x||t| are small

or large. When |t| is large but |x||t| is sufficiently small, we estimate ω̃σ,0t in The-
orem 3.3 by combining the method of stationary phase with our barycentric de-
composition of Weyl chambers; when |x||t| is large, we estimate ω̃σ,0t in Theorem 3.7
by using the Hadamard parametrix along the lines of [CGM01]; ωσ,∞t (x) is easily
handled by a standard stationary phase argument, see Theorem 3.10.

3.1. Estimates of ω̃σ,0t (x) when |t| is large and |x|
|t| is sufficiently small.

According to the integral expression (2.2) of the spherical functions, we write

ω̃σ,0t (x) = Cσ,d C0

∫
K

dk e〈ρ,A(kx)〉
∫ 1

0

ds sσ−1I(s, t, x),

where

I(s, t, x) =

∫
a

dλ |c(λ)|−2e−s
√
|λ|2+|ρ|2eitψt(λ)

is an oscillatory integral with phase

ψt(λ) =
√
|λ|2 + |ρ|2 + 〈A(kx)

t , λ〉. (3.3)

Let us split up

I(s, t, x) = I−(s, t, x) + I+(s, t, x) =

∫
a

dλ χρ0(λ) · · · +

∫
a

dλ χρ∞(λ) · · ·
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by using smooth radial cut-off functions χρ0 and χρ∞ = 1− χρ0, where χ
ρ
0(λ) equals

1 when |λ| ≤ |ρ| and vanishes if |λ| ≥ 2|ρ|. Then we have the following estimates
for I− and I−∞.

Proposition 3.1. There exists 0 < CΣ ≤ 1
2 such that the following estimates hold

when 0 < s < 1, |t| ≥ 1 and |x||t| ≤ CΣ:

|I−(s, t, x)| . |t|−D2 (1 + |x|)
D−`

2 , (3.4)

and

|I+(s, t, x)| . |t|−N , (3.5)

for every N ∈ N.

Remark 3.2. CΣ is a small constant depending only on the geometric structure
of the root system Σ, which will be specified later in the proof of (3.5). Notice that
the upper bounds (3.4) of I− and (3.5) of I+ hold uniformly in s ∈ (0, 1).

Proof of the estimate (3.4). Recall that

I−(s, t, x) =

∫
a

dλ a0(s, λ)eitψt(λ)

is an oscillatory integral with amplitude

a0(s, λ) = χρ0(λ)|c(λ)|−2e−s
√
|λ|2+|ρ|2

and phase ψt(λ) which is defined by (3.3). The amplitude a0(s, λ) is compactly
supported for |λ| ≤ 2|ρ|, and the phase ψt has, in the support of χρ0, a single
nondegenerate critical point λ0 which is given by

(|λ0|2 + |ρ|2)−
1
2λ0 = −At (3.6)

where A = A(kx), and which satisfies

|λ0| = |ρ| |A||t| (1−
|A|2
t2 )−

1
2 ≤ |ρ| |x|t (1− |x|

2

t2 )−
1
2 < |ρ|√

3
, (3.7)

as |A| ≤ |x| and |x|t ≤ CΣ < 1
2 . We conclude by resuming straightforwardly the

computations carried out in the proof of [Zha20, Theorem 3.1]. For the sake of
completeness and for the reader’s convenience, we include a detailed study of the
oscillatory integral I− in Appendix A (see Lemma A.1). �

Let us turn to the oscillatory integral

I+(s, t, x) =

∫
a

dλ χρ∞(λ)|c(λ)|−2e−s
√
|λ|2+|ρ|2eitψt(λ),

which vanishes unless |λ| > |ρ|. According to (3.7), ψt has no critical point in the
support of χρ∞. In rank one or in higher rank with G complex, one can handle this
integral by performing several integrations by parts. This approach fails in general
since the Plancherel density |c(λ)|−2 is not a differential symbol. To get around this
problem, we split up the Weyl chamber according to the barycentric decomposition
carried out in Sect. 2.3, and perform integrations by parts based along a well chosen
directional derivative in each component.
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Proof of the estimate (3.5). According to the partition of unity (2.8), we split up

I+(s, t, x) =
∑
w∈W

∑
1≤j≤`

Iw.Sj (iτ, x)

with τ = s− it, and we estimate

Iw.Sj (iτ, x) =

∫
a

dλχw.Sj (λ)χρ∞(λ) |c(λ)|−2 e−τψiτ (λ) (3.8)

by performing integrations by parts based on

e−τψiτ (λ) = − 1
τ

1
∂w.Λjψiτ (λ) ∂w.Λje

−τψiτ (λ). (3.9)

Notice that

∂w.Λjψiτ (λ) = 〈w.Λj , λ√
|λ|2+|ρ|2

− iA(kx)
τ 〉

is a symbol of order 0, which satisfies in addition

|∂w.Λjψiτ (λ)| ≥ |〈w.Λj ,λ〉|√
|λ|2+|ρ|2

−
∣∣〈w.Λj , A(kx)

τ 〉
∣∣

≥ c5
|λ|√
|λ|2+|ρ|2

− |Λj | |A(kx)|
|τ | ≥ c5√

2
−M2

|x|
|t|

on (suppχw.Sj )∩ (suppχρ∞) according to Proposition (2.6), where the constants c5
and M2 are specified in Remark 2.5. By choosing CΣ = min{ c5

2M2
, 1

2} , we obtain

|∂w.Λjψiτ (λ)| ≥
√

2−1
2 c5 > 0.

Let us return to (3.8), which becomes

Iw.Sj (iτ, x) = τ−N
∫
a

dλ e−τψiτ (λ)

×
{
∂w.Λj ◦ 1

∂w.Λjψiτ (λ)

}N{
χw.Sj (λ)χρ∞(λ)|c(λ)|−2

}
,

after N integrations by parts based on (3.9). If some derivatives hit χρ∞(λ), the
above integral is reduced to the spherical shell |λ| � |ρ| and thus converges. Assume
that no derivative is applied to χρ∞(λ) and that

• N1 derivatives are applied to the factors 1
∂w.Λjψiτ (λ) ,

• N2 derivatives are applied to χw.Sj (λ),

• N3 derivatives are applied to |c(λ)|−2,

with N = N1 + N2 + N3. The contribution of the first item is O(|λ|−N1), as
∂w.Λjψiτ (λ) is a symbol or order 0, which stays away from 0. Similarly, the contri-
bution of the second item is O(|λ|−N2), as χw.Sj (λ) is a symbol of order 0 according
to Proposition 2.3. As far as the third item is concerned, the derivatives (∂w.Λj )

N3

are applied to the various factors in (2.3). According to Proposition 2.6, for ev-
ery λ in the support of χw.Sj , any root α ∈ Σ satisfies either 〈α,w.Λj〉 = 0 or
|〈α, λ〉| & |λ|. On the one hand, if 〈α,w.Λj〉 = 0, all derivatives

(∂w.Λj )
Nα |cα(〈α, λ〉)|−2 ∀Nα ∈ N∗
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vanish. On the other hand, if 〈α,w.Λj〉 6= 0, we use the fact that |cα|−2 is a symbol
on R of order mα +m2α, together with (2.10), in order to estimate∣∣(∂w.Λj )Nα |cα(〈α, λ〉)|−2

∣∣ . |〈α, λ〉|mα+m2α−Nα � |λ|mα+m2α−Nα ∀Nα ∈ N∗

for λ ∈ (suppχw.Sj ) ∩ (suppχρ∞). Hence

(∂w.Λj )
N3 |c(λ)|−2 = O(|λ|d−`−N3) ∀λ ∈ (suppχw.Sj ) ∩ (suppχρ∞).

In conclusion,

|Iw.Sj (iτ, x)| . |τ |−N
∫
a

dλ |λ|d−`−N1−N2−N3 . |t|−N

provided that N > d, and consequently

I+(s, t, x) = O(|t|−N ).

�

We deduce from (3.4) and (3.5) that, for all 0 < s < 1, |t| ≥ 1 and |x||t| ≤ CΣ,

|I(s, t, x)| . |t|−D2 (1 + |x|)
D−`

2 (3.10)

uniformly in s. Notice that
∂

∂s
I(s, t, x) = −

∫
a

dλ |c(λ)|−2
√
|λ|2 + |ρ|2 e−s

√
|λ|2+|ρ|2 eitψt(λ)

has the same phase as I(s, t, x). Hence the estimate (3.10) holds for ∂
∂sI(s, t, x) by

similar computations. Since∫ 1

0

ds sσ−1I(s, t, x) =
[

1
σ s

σ I(s, t, x)
]1
0
− 1

σ

∫ 1

0

ds sσ ∂
∂s I(s, t, x),

we deduce that ∣∣∣Cσ,d ∫ 1

0

ds sσ−1I(s, t, x)
∣∣∣ . |t|−D2 (1 + |x|)

D−`
2

according to (3.2). Then we obtain the following kernel estimate of ω̃σ,0t .

Theorem 3.3. There exists 0 < CΣ ≤ 1
2 such that the following estimate holds,

when |t| ≥ 1 and |x||t| ≤ CΣ, uniformly in the vertical strip 0 ≤ Reσ ≤ d+1
2 :

|ω̃σ,0t (x)| . |t|−D2 (1 + |x|)
D−`

2 ϕ0(x). (3.11)

3.2. Estimates of ω̃σ,0t (x) in the remaining range. Recall that τ = s− it with
t ∈ R∗ and s ∈ (0, 1) throughout this subsection. We are looking for pointwise
estimates of

ω̃σ,0t (x) = Cσ,d

∫ 1

0

ds sσ−1 C0

∫
a

dλ |c(λ)|−2ϕλ(x)

p̃τ (λ)︷ ︸︸ ︷
e−τ
√
|λ|2+|ρ|2︸ ︷︷ ︸

pτ (x)

∀x ∈ X,

where pτ (x) is the Poisson kernel and p̃τ (λ) denotes its spherical Fourier transform.
This subsection focuses on pointwise estimates of pτ along the lines of [CGM01,
pp.1054-1063].
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Remark 3.4. Notice that the Gaussian factor ensures the convergence of the inte-
gral defining pτ , but yields a large negative power s−d. Then ω̃σ,0t converges under
the strong smoothness assumption Reσ ≥ d. We will sharpen it to Reσ = d+1

2 .
Notice that the stationary phase method carried out in the previous subsection fails
since the critical point can be very large when |x||t| is not bounded from above.

As in [CGM01], let us denote by pRτ (v) = τ
π(τ2+v2) the Poisson kernel on R. We

may write

p̃τ (λ) = e−τ
√
|λ|2+|ρ|2 =

∫
R
dv pRτ (v) cos(v

√
|λ|2 + |ρ|2) ∀λ ∈ a.

Consider a smooth even cut-off function χ : R → [0, 1], which is supported in
[−
√

2,
√

2], and equals 1 on [−1, 1]. Denote by χT = χ( ·2T ) with T =
√

2 (uni-
formly in t) when |t| ≤ 1 or T =

√
2|t| when |t| ≥ 1. Then χT is supported in

[−2
√

2T, 2
√

2T ] ⊂ (−3T, 3T ). We denote by aτ and bτ the K-bi-invariant kernels
of operators

Aτ =

∫ +∞

∞
dv χT (v) pRτ (v) cos(v

√
−∆)

and

Bτ =

∫ ∞
−∞

dv {1− χT (v)} pRτ (v) cos(v
√
−∆).

Then pτ = aτ + bτ and aτ is supported in a ball of radius 3T in X by finite prop-
agation speed. bτ is easily estimated by straightforward computations, see Propo-
sition 3.6. In order to analyze aτ , we will expand cos(v

√
−∆) by using Hadamard

parametrix.

Let {Rz+ | z ∈ C} be the analytic family of Riesz distributions on R defined by

Rz+(r) =

Γ(z)−1rz−1 if r > 0,

0 if r ≤ 0,

for Re z > 0. The K-bi-invariant convolution kernel Φv of the operator cos(v
√
−∆)

has the asymptotic expansion

Φv(expH) = J(H)−
1
2

[d/2]∑
k=0

4−k |v|Uk(H)R
k− d−1

2
+ (v2 − |H|2) + EΦ(v,H) (3.12)

where

J(H) =
∏
α∈Σ+

( sinh〈α,H〉
〈α,H〉

)mα
denotes the Jacobian of the exponential map from p equipped with Lebesgue mea-
sure to X equipped with Riemannian measure. Moreover, the coefficients satisfy

∇npUk = O(1) (3.13)

for every k, n ∈ N, and the remainder is estimated as

|EΦ(v,H)| . (1 + v)3( d2 +1)e−〈ρ,H〉. (3.14)
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The Hadamard parametrix has been described and applied in various settings, see
for instance [Bér77; Hor94; CGM01]. For the reader’s convenience, we give in
Appendix B some details about this construction in the particular case of non-
compact symmetric spaces. By resuming the proof of Lemma 3.3 in [CGM01] (see
Appendix C for details), we deduce the following expansion of the K-bi-invariant
convolution kernel aτ of the operator Aτ :

aτ (expH) =
τ

π
J(H)−

1
2

[d/2]∑
k=0

4−k Uk(H) Γ
(
d+1

2 − k
)

(|H|2 + τ2)k−
d+1

2 + E(τ,H)

(3.15)

where

|E(τ,H)| . |T |3( d2 +1) (log T − log s) e−〈ρ,H〉 ∀H ∈ a+. (3.16)

Remark 3.5. As a consequence, we may deduce that

|aτ (expH)| . s−
d+1

2 e−〈ρ,H〉

|t|
− d−1

2 if |t| is small,

|t|3( d2 +1) log |t| if |t| is large,

for all H ∈ a+. However, we cannot apply straightforwardly such estimates to
study the kernel ωσt , since it kills the imaginary part of σ and yields a logarithmic
singularity on the sphere |x| = t when σ ∈ C with Reσ = d+1

2 .

The following proposition concerning the estimate of bτ will be proved by straight-
forward computations.

Proposition 3.6. Let N > d be an even integer. Then

|bτ (x)| . (1 + |t|)−N ϕ0(x) (3.17)

for every x ∈ X and for every τ = s− it with s ∈ (0, 1] and t ∈ R∗.

Proof. Let is study

Bτ (λ) =
2τ

π

∫ +∞

0

dv {1− χT (v)} 1

τ2 + v2
cos(v

√
|λ|2 + |ρ|2),

which vanishes unless v > 2T . By performing N integrations by parts based on

cos(v
√
|λ|2 + |ρ|2) = − 1

|λ|2 + |ρ|2
∂2

∂v2
cos(v

√
|λ|2 + |ρ|2),

we obtain

Bτ (λ) =
2τ

π
(−1)−

N
2 (|λ|2 + |ρ|2)−

N
2

∫ +∞

0

dv cos(v
√
|λ|2 + |ρ|2)

(
∂
∂v )N ( 1−χT (v)

τ2+v2

)
.

Since v > 2T , we have |τ2 + v2| & v2 uniformly in τ = s− it. Hence

Bτ (λ) . |τ | (|λ|2 + |ρ|2)−
N
2

∫ +∞

2T

dv v−2−N . |T |−N (|λ|2 + |ρ|2)−
N
2 .
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By the inverse formula of the spherical Fourier transform, we deduce

|bτ (x)| =
∣∣∣ ∫

a

dλ |c(λ)|−2 ϕλ(x)Bτ (λ)
∣∣∣

. |T |−N ϕ0(x)

∫
a

dλ |c(λ)|−2 (|λ|2 + |ρ|2)−
N
2

where the last integral converges provided that N > d. �

According to the asymptotic expansion (3.15) of aτ and to the estimate (3.17)
of bτ , we establish the pointwise estimates of ω̃σ,0t in the case where |x||t| is bounded
from below.

Theorem 3.7. Let σ ∈ C with Reσ = d+1
2 . The following estimates hold for all

t ∈ R∗ and x ∈ X.
(i) If 0 < |t| < 1, then

|ω̃σ,0t (x)| . |t|−
d−1

2 (1 + |x+|)
max{d,D}−`

2 e−〈ρ,x
+〉.

(ii) If |t| ≥ 1 and |x||t| > CΣ, then

|ω̃σ,0t (x)| . |t|−N1 (1 + |x+|)N2 e−〈ρ,x
+〉,

for every N1 ∈ N and N2 ≥ N1 + 2(d+ 1) + max{d,D}−`
2 .

Proof. Recall that we are looking for a pointwise estimate of the kernel

ω̃σ,0t (x) = Cσ,d

∫ 1

0

ds sσ−1 pτ (x),

where τ = s−it with s ∈ (0, 1) and t ∈ R∗. According to the Cartan decomposition,
for every x ∈ X, there exist k1, k2 ∈ K and x+ ∈ a+ such that x = k1(expx+)k2.
Then

pτ (x) = aτ (expx+) + bτ (expx+)

by the K-bi-invariance. According to the expansion (3.15), we split up

ω̃σ,0t (x) = I1(t, x+) + I2(t, x+) + I3(t, x+)

=
1

π
J(x+)−1/2

[d/2]∑
k=0

4−k Uk(x+) Γ
(
d+1

2 − k
)
I1,k(t, x+)

+ Cσ,d

∫ 1

0

ds sσ−1E(τ, x+) + Cσ,d

∫ 1

0

ds sσ−1bτ (expx+)

where

I1,k(t, x+) = Cσ,d

∫ 1

0

ds sσ−1 τ(|x+|2 + τ2)k−
d+1

2

satisfies

|I1,k(t, x+)| . 1 + |t|−
d−1

2

according to next lemma. Hence

I1(t, x+) . (
√
|t|+ |t|−

d−1
2 ) J(x+)−1/2 ∀ t ∈ R∗. (3.18)
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The last two terms I2(t, x+) and I3(t, x+) are easily handled: on the one hand, we
have

|I2(t, x+)| .
∫ 1

0

ds sReσ−1 |E(τ, x+)| . (1 + |t|)3( d2 +1) log (2 + |t|) e−〈ρ,x
+〉,

(3.19)

according to (3.16); on the other hand, (3.17) yields

|I3(t, x+)| .
∫ 1

0

ds sReσ−1 |bτ (expx+)| . (1 + |t|)−N ϕ0(expx+) (3.20)

for all σ ∈ C with Reσ = d+1
2 . By summing up the estimates (3.18), (3.19) and

(3.20), we deduce, on the one hand,

|ω̃σ,0t (x)| . |t|−
d−1

2 (1 + |x+|)
max{d,D}−`

2 e−〈ρ,x
+〉

if |t| < 1, and on the other hand,

|ω̃σ,0t (x)| . |t|3( d2 +1) log (2 + |t|) (1 + |x+|)
max{d,D}−`

2 e−〈ρ,x
+〉

if |t| ≥ 1. Since |x||t| is bounded from below, we obtain finally

|ω̃σ,0t (x)| . |t|−N1 (1 + |x+|)N2 e−〈ρ,x
+〉 ∀ |t| ≥ 1

for every N1 ∈ N and N2 ≥ N1 + 2(d+ 1) + max{d,D}−`
2 . �

Remark 3.8. Notice that the above method works only in small time, or in large
time under the assumption that |x||t| is bounded from below. The large polynomial
growth in |x+| appearing in the estimate is not crucial for further computations
because of the exponential decay e−〈ρ,x

+〉.

Lemma 3.9. For every integer 0 ≤ k < d+1
2 , the integral

I1,k(t, x+) = Cσ,d

∫ 1

0

ds sσ−1 τ(|x+|2 + τ2)k−
d+1

2

satisfies

|I1,k(t, x+)| . 1 + |t|k−
d−1

2 ∀ t ∈ R∗, ∀x ∈ a+

uniformly in σ ∈ C with Reσ = d+1
2 .

Proof. Since τ = s− it, we write I1,k(t, x+) = P1 + P2 with

P1 = Cσ,d

∫ 1

0

ds sσ (s2 + |x+|2 − t2 − 2sti)k−
d+1

2

and

P2 = Cσ,d (−it)
∫ 1

0

ds sσ−1 (s2 + |x+|2 − t2 − 2sti)k−
d+1

2 .

Notice that
∣∣s2 + |x+|2 − t2 − 2sti

∣∣ =
√
s4 + 2s2(|x+|2 + t2) + (|x+|2 − t2)2, then
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∣∣s2 + |x+|2 − t2 − 2sti
∣∣ ≥


s2 (3.21)

s|t| (3.22)∣∣|x+|2 − t2
∣∣ (3.23)

P1 is easily estimated. By using (3.22), we obtain first

|P1| . |t|k−
d+1

2

∫ 1

0

ds sk ≤ |t|k−
d+1

2 ∀ t ∈ R∗.

By using in addition (3.21), we obtain next, for |t| < 1,

|P1| . |t|k−
d+1

2

∫ |t|
0

ds sk +

∫ 1

|t|
ds s2k− d+1

2 . 1 + |t|2k−
d−1

2

We deduce that

|P1| .

1 + |t|2k− d−1
2 if |t| < 1,

|t|k− d+1
2 if |t| ≥ 1.

(3.24)

Let us turn to P2. Consider first the easy case where 1 ≤ k < d+1
2 . By using

(3.22) again, we get

|P2| . |t| · |t|k−
d+1

2

∫ 1

0

ds sReσ−1+k− d+1
2 . |t|k−

d−1
2 (3.25)

for all σ ∈ C with Reσ = d+1
2 . In order to estimate P2 in the remaining case where

k = 0, we write

P2 = Cσ,d (−it)
∫ 1

0

ds si Imσ−1
(

s
s2+|x+|2−t2−2sti

) d+1
2 .

By performing an integration by parts, P2 becomes the sum of P−2 and P+
2 where

P−2 =
[Cσ,d

Imσ (−it) sImσ
(

s
s2+|x+|2−t2−2sti

) d+1
2
]1
0

and

P+
2 =

Cσ,d
Imσ (it)

∫ 1

0

ds sImσ ∂
∂s

{(
s

s2+|x+|2−t2−2sti

) d+1
2
}
.

By using (3.2) together with (3.21) in small time and (3.22) in large time, we obtain

|P−2 | .

1 if |t| < 1,

|t|− d−1
2 if |t| ≥ 1.

(3.26)

Since

∂
∂s

{(
s

s2+|x+|2−t2−2sti

) d+1
2
}

= d+1
2

(
s

s2+|x+|2−t2−2sti

) d−1
2︸ ︷︷ ︸

O(|t|−
d−1

2 )

|x+|2−t2−s2
(s2+|x+|2−t2−2sti)2 ,
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we have

|P+
2 | . |t|−

d−1
2 |t|

∫ 1

0

ds

∣∣|x+|2−t2−s2
∣∣∣∣s2+|x+|2−t2−2sti
∣∣2︸ ︷︷ ︸

Q

. (3.27)

It remains for us to estimate Q, which is bounded by the sum of

Q1 = |t|
∫ 1

0

ds s2∣∣s2+|x+|2−t2−2sti
∣∣2 and Q2 = |t|

∫ 1

0

ds

∣∣|x+|2−t2
∣∣∣∣s2+|x+|2−t2−2sti
∣∣2 .

Q1 is estimated as P1. According to (3.22) and (3.21), we have

Q1 .

|t|
∫ 1

0
ds |t|−2 = |t|−1 ≤ 1 if |t| ≥ 1,

|t|
∫ |t|

0
ds |t|−2 + |t|

∫ 1

|t| ds s
−2 ≤ 2 if |t| < 1.

Let us finally estimate Q2. On the one hand, if
∣∣|x+|2 − t2

∣∣ ≥ |t|, by using (3.23),
we get

|Q2| . |t|
∫ 1

0

ds
∣∣|x+|2 − t2

∣∣−1
. 1.

On the other hand, if
∣∣|x+|2 − t2

∣∣ ≤ |t|, we have Q2 = O(1) since∣∣∣|t|∫
0≤s≤ ||x

+|2−t2|
|t|

ds

∣∣|x+|2−t2
∣∣∣∣s2+|x+|2−t2−2sti
∣∣2 ∣∣∣ . |t|∫

0≤s≤ ||x
+|2−t2|
|t|

ds
∣∣|x+|2 − t2

∣∣−1 ≤ 1

according to (3.23), and∣∣∣|t|∫
||x+|2−t2|

|t| ≤s≤1

ds

∣∣|x+|2−t2
∣∣∣∣s2+|x+|2−t2−2sti
∣∣2 ∣∣∣ . ||x+|2−t2|

|t|

∫
||x+|2−t2|

|t| ≤s≤1

ds s−2 ≤ 2

according to (3.22). HenceQ = O(1) and we deduce from (3.27) that |P+
2 | . |t|−

d−1
2

for all t ∈ R∗. By combining with (3.26) and (3.25), we obtain

|P2| . |t|k−
d−1

2 ∀ t ∈ R∗.

Together with (3.24), this concludes the proof. �

3.3. Estimates of ωσ,∞t . We establish in this last subsection the pointwise esti-
mates of ωσ,∞t . Recall that

ωσ,∞t (x) =
1

Γ(σ)

∫ +∞

1

ds sσ−1 ps−it(x) ∀x ∈ X, ∀ t ∈ R∗.

According to the integral expression (2.2) of the spherical function, we may write

ωσ,∞t (x) =
C0

Γ(σ)

∫
K

dk e〈ρ,A(kx)〉
∫ +∞

1

ds sσ−1 I(s, t, x),

where, let us recall,

I(s, t, x) =

∫
a

dλ |c(λ)|−2 e−s
√
|λ|2+|ρ|2 eitψt(λ).

We have considered this oscillatory integral in the case where s ∈ (0, 1).For s ≥ 1,
the factor e−s

√
|λ|2+|ρ|2 plays an important role. On the one hand, for λ close to
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the critical point of ψt(λ), this Gaussian produces an exponential decay in s, which
ensures the convergence of the integral over s ∈ (1,+∞). For λ away from the
critical point, it produces an exponential decay in |λ|, which ensures the convergence
of the integral over λ ∈ a. Let us elaborate.

Theorem 3.10. The following estimate holds, uniformly in the strip 0 ≤ Reσ ≤
d+1

2 , for all t ∈ R∗ and x ∈ X:

|ωσ,∞t (x)| . ϕ0(x). (3.28)

Moreover, if |t| ≥ 1,

|ωσ,∞t (x)| . |t|−D2 (1 + |x|)D2 ϕ0(x). (3.29)

Proof. The global estimate (3.28) is obtained by a straightforward computation.
On the one hand,∫

|λ|≤1

dλ |c(λ)|−2 e−s
√
|λ|2+|ρ|2 ≤ e−s|ρ|

∫
|λ|≤1

dλ |λ|D−`︸ ︷︷ ︸
<+∞

.

On the other hand,∫
|λ|≥1

dλ |c(λ)|−2 e−s
√
|λ|2+|ρ|2 ≤ e− s2 |ρ|

∫
|λ|≥1

dλ |λ|d−` e− s2 |λ|︸ ︷︷ ︸
<+∞

.

Hence

|ωσ,∞t (x)| . ϕ0(x)

∫ +∞

1

ds sReσ−1 e−
s
2 |ρ|︸ ︷︷ ︸

<+∞

. (3.30)

The estimate (3.29) follows from (3.28) if |x||t| is bounded from below. Let us prove

it if |x||t| is bounded from above, let say by 1
2 . We study the oscillatory integral I

along the lines of Sect. 3.1. Let split up again

I(s, t, x) = I−(s, t, x) + I+(s, t, x) =

∫
a

dλχρ0(λ) · · · +

∫
a

dλχρ∞(λ) · · ·

according to cut-off functions χρ0 and χρ∞ = 1 − χρ0, which have been defined in
Sect. 3.1. Recall that χρ0(λ) = 1 when |λ| ≤ |ρ| and vanishes if |λ| ≥ 2|ρ|.

On the one hand, I− is estimated by studying the oscillatory integral

I−(s, t, x) =

∫
a

dλ χρ0(λ) |c(λ)|−2 e−s
√
|λ|2+|ρ|2︸ ︷︷ ︸

a0(s,λ)

eitψt(λ)

where the amplitude a0 is compactly supported for |λ| ≤ 2|ρ|, and in this range,
the phase ψt, defined by (3.3), has a single critical point, which is nondegenerate
and small if |x||t| ≤

1
2 . According to Lemma A.1, we obtain

|I−(s, t, x)| . |t|−D2 (1 + |x|)
D−`

2 e−
|ρ|
2 s. (3.31)
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On the other hand,

I+(s, t, x) =

∫
a

dλχρ∞(λ) |c(λ)|−2 e−s
√
|λ|2+|ρ|2 eitψt(λ)

is easily estimated with no barycentric decomposition. Let

ψ̃∞(λ) = |λ|2√
|λ|2+|ρ|2

+ 〈A(kx)
t , λ〉 ∀λ ∈ suppχρ∞.

Then ψ̃∞ is a symbol of order 1, and satisfies

|ψ̃∞(λ)| = |λ|2√
|λ|2 + |ρ|2︸ ︷︷ ︸
≥ |λ|√

2

− 〈λ0, λ〉√
|λ0|2 + |ρ|2︸ ︷︷ ︸
≤ |λ|√

3

≥ ( 1√
2
− 1√

3
)|ρ| > 0

on suppχρ∞ according to (3.6) and (3.7). By performing N integrations by parts
based on

eitψt(λ) = 1
it ψ̃∞(λ)−1

∑`
j=1 λj

∂
∂λj

eitψt(λ),

we write

I+
∞(s, t, x) = (it)−N∫

a

dλ eitψt(λ)
{
−
∑`
j=1

∂
∂λj
◦ λj

ψ̃∞(λ)

}N{
χρ∞(λ) |c(λ)|−2 e−s

√
|λ|2+|ρ|2}.

If some derivatives hit χρ∞(λ), the range of the above integral is reduced to a
spherical shell where |λ| � |ρ|, and

I+(s, t, x) � |t|−Ne−s|ρ|.

Assume next that no derivative is applied to χρ∞ and

• N1 derivatives are applied to the factors λj/ψ̃∞(λ), which are inhomogeneous
symbols of order 0, producing contributions which are O(|λ|−N1),

• N2 derivatives are applied to the factor |c(λ)|−2 which is not a symbol in general,
producing a contribution which is O(|λ|d−`),

• N3 derivatives are applied to the factor e−s
√
|λ|2+|ρ|2 , producing a contribution

which is O(sN3e−s
√
|λ|2+|ρ|2),

with N1 +N2 +N3 = N . Then we get the upper bound

|t|−N sN3

∫
|λ|>|ρ|

dλ |λ|d−`−N1 e−s
√
|λ|2+|ρ|2 ,

which yields

|I+(s, t, x)| . |t|−N sN e− s2 |ρ|
∫
|λ|>|ρ|

dλ |λ|d−` e− s2 |λ|︸ ︷︷ ︸
<+∞

.

Together with (3.31), we obtain

|I(s, t, x)| . |t|−D2 (1 + |x|)
D−`

2 sNe−
s
2 |ρ|.
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for all s ≥ 1 and for N ≥ D
2 . We deduce

|ωσ,∞t (x)| . |t|−D2 (1 + |x|)
D−`

2 ϕ0(x)

∫ +∞

1

ds sReσ−1+N e−
|ρ|
2 s︸ ︷︷ ︸

<+∞

for all x ∈ X and |t| ≥ 1. �

4. Dispersive estimates

In this section, we prove our second main result about the Lq
′ → Lq estimates for

the operator Wσ
t = (−∆)−

σ
2 eit

√
−∆. We introduce the following criterion based on

the Kunze-Stein phenomenon, which is crucial for the proof of dispersive estimates.

Lemma 4.1. Let κ be a reasonable K-bi-invariant function on G. Then

‖· ∗ κ‖Lq′ (X)→Lq(X) ≤
{∫

G

dxϕ0(x) |κ(x)|
q
2

} 2
q

for every q ∈ [2,+∞). In the limit case q =∞,

‖· ∗ κ‖L1(X)→L∞(X) = supx∈G |κ(x)|.

Remark 4.2. This lemma has been proved in several contexts. For q = 2, it is the
so-called Herz’s criterion, see for instance [Cow97]. For q > 2, the proof carried
out on Damek-Ricci spaces [APV11, Theorem 4.2] is adapted straightforwardly in
the higher rank case.

Theorem 4.3 (Small time dispersive estimate). Let d ≥ 3 and 0 < |t| < 1. Then

‖(−∆)−
σ
2 eit

√
−∆‖Lq′ (X)→Lq(X) . |t|

−(d−1)( 1
2−

1
q )

for all 2 < q < +∞ and σ ≥ (d+ 1)( 1
2 −

1
q ).

Proof. We divide the proof into two parts, corresponding to the kernel decompo-
sition ωσt = ωσ,0t + ωσ,∞t . According to Lemma 4.1 and to the pointwise estimate
Theorem 3.10, we obtain on one hand

‖· ∗ ωσ,∞t ‖Lq′ (X)→Lq(X) ≤
{∫

G

dxϕ0(x) |ωσ,∞t (x)|
q
2

} 2
q

.
{∫

a+

dx+ |ϕ0(x+)|
q
2 +1 δ(x+)

} 2
q

.
{∫

a+

dx+ (1 + |x+|)
D−`

2 ( q2 +1) e−( q2−1)〈ρ,x+〉
} 2
q

< +∞

for all q > 2. On the other hand, we use an analytic interpolation between L2 → L2

and L1 → L∞ estimates for the family of operators W̃σ,0
t defined by (3.1) in the

vertical strip 0 ≤ Reσ ≤ d+1
2 . When Reσ = 0, the spectral theorem yields

‖W̃σ,0
t ‖L2(X)→L2(X) = ‖eit

√
−∆‖L2(X)→L2(X) = 1

for all t ∈ R∗. According to Theorem 3.7, when Reσ = d+1
2 ,

‖W̃σ,0
t ‖L1(X)→L∞(X) . ‖ω̃σ,0t ‖L∞(X) . |t|−

d−1
2 .
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By Stein’s interpolation theorem applied to the analytic family of operators W̃σ,0
t ,

we conclude for σ = (d+ 1)( 1
2 −

1
q ) that

‖Wσ
t ‖Lq′ (X)→Lq(X) . |t|

−(d−1)( 1
2−

1
q ),

for all 0 < |t| < 1 and 2 < q < +∞. �

Theorem 4.4 (Large time dispersive estimate). Assume that |t| ≥ 1, 2 < q < +∞
and σ ≥ (d+ 1)( 1

2 −
1
q ). Then

‖(−∆)−
σ
2 eit

√
−∆‖Lq′ (X)→Lq(X) . |t|

−D2 .

Proof. We divide the proof into three parts, corresponding to the kernel decompo-
sition

ωσt = 1B(0,CΣ|t|) ω
σ,0
t + 1X\B(0,CΣ|t|)ω

σ,0
t + ωσ,∞t

where the constant CΣ has been specified in the proof of Theorem 3.3. The first
and the last terms are estimated by straightforward computations. By combining
Lemma 4.1 with the pointwise kernel estimates in Theorem 3.3 and Theorem 3.10,
we obtain

‖· ∗ {1B(0,CΣ|t|) ω
σ,0
t }‖Lq′ (X)→Lq(X)

.
{∫

G

dxϕ0(x) |1B(0,CΣ|t|)(x)ωσ,0t (x)|
q
2

} 2
q

. |t|−D2
{∫
|x+|<CΣ|t|

dx+ (1 + |x+|)
D−`

2 (q+1) e−( q2−1)〈ρ,x+〉
} 2
q

︸ ︷︷ ︸
<+∞

and

‖· ∗ ωσ,∞t ‖Lq′ (X)→Lq(X)

.
{∫

G

dxϕ0(x) |ωσ,∞t (x)|
q
2

} 2
q

. |t|−D2
{∫

a+

dx+ (1 + |x+|)
D−`

2 +(D− `2 ) q2 e−( q2−1)〈ρ,x+〉
} 2
q

︸ ︷︷ ︸
<+∞

.

Here q ≤ 2 <∞ and the above estimates are uniform in the strip 0 ≤ Reσ ≤ d+1
2 .

As far as the middle term is concerned, we use again the analytic interpolation
for the family of operators associated with the convolution kernel 1X\B(0,CΣ|t|) ω̃

σ,0
t .

On the one hand, if Reσ = 0, then

‖· ∗ 1X\B(0,CΣ|t|) ω̃
σ,0
t ‖L2(X)→L2(X)

≤ ‖· ∗ ω̃σ,0t ‖L2(X)→L2(X) + ‖· ∗ 1B(0,CΣ|t|) ω̃
σ,0
t ‖L2(X)→L2(X) . 1.

On the other hand, if Reσ = d+1
2 , we deduce from Theorem 3.7 that

‖· ∗ 1X\B(0,CΣ|t|) ω̃
σ,0
t ‖L1(X)→L∞(X) = sup

x∈X
|1X\B(0,CΣ|t|)(x) ω̃σ,0t (x)| . |t|−N
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for any N ∈ N. By using Stein’s interpolation theorem between above L2 → L2

and L1 → L∞ estimates, we obtain

‖· ∗ 1X\B(0,CΣ|t|)ω
σ,0
t ‖Lq′ (X)→Lq(X) . |t|

−N ,

for all |t| ≥ 1, 2 < q < +∞ and for any N ∈ N. This concludes the proof. �

Remark 4.5. The standard TT ∗ method used to prove the Strichartz inequality
breaks down in the critical case. In order to take care of these endpoints, we need
the dyadic decomposition method carried out in [KeTa98] and the following stronger
dispersive property, which is obtained by interpolation arguments.

Corollary 4.6. Let d ≥ 3, 2 < q, q̃ < +∞ and σ ≥ (d+1) max( 1
2−

1
q ,

1
2−

1
q̃ ). Then

there exists a constant C > 0 such that the following dispersive estimates hold:

‖(−∆)−
σ
2 eit

√
−∆‖Lq̃′ (X)→Lq(X) ≤ C

|t|
−(d−1) max( 1

2−
1
q ,

1
2−

1
q̃ ) if 0 < |t| < 1,

|t|−D2 if |t| ≥ 1.

5. Strichartz inequality and applications

In this section, we use the dispersive properties proved in the previous section
to establish the Strichartz inequality. This inequality serves as a tool for finding
minimal regularity conditions on the initial data ensuring well-posedness of related
semilinear wave equations. Such results were previously known to hold for real
hyperbolic spaces [AnPi14] (actually for all noncompact symmetric spaces of rank
one) and for noncompact symmetric spaces G/K with G complex [Zha20]. For
simplicity, we may assume that ` ≥ 2 throughout this section, thus d ≥ 4.

Let σ ∈ R and 1 < q < ∞. Recall that the Sobolev space Hσ,q(X) is the image
of Lq(X) under the operator (−∆)−

σ
2 , equipped with the norm

‖f‖Hσ,q(X) = ‖(−∆)
σ
2 f‖Lq(X).

If σ = N is a nonnegative integer, then Hσ,q(X) coincides with the classical Sobolev
space

WN,q(X) = {f ∈ Lq(X) | ∇jf ∈ Lq(X)∀ 1 ≤ j ≤ N},
defined by means of covariant derivatives. We refer to [Tri92] for more details about
function spaces on Riemannian manifolds. Let us state the Strichartz inequality
and some applications. The proofs are adapted straightforwardly from [APV12;
AnPi14] and are therefore omitted.

5.1. Strichartz inequality. We study the linear inhomogeneous wave equation
on X ∂

2
t u(t, x)−∆u(t, x) = F (t, x),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x)
(5.1)

whose solution is given by Duhamel’s formula:

u(t, x) = (cos t
√
−∆)f(x) + sin t

√
−∆√
−∆

g(x) +

∫ t

0

ds sin(t−s)
√
−∆√

−∆
F (s, x).
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Recall that a couple (p, q) is called admissible if ( 1
p ,

1
q ) belongs to the triangle{(

1
p ,

1
q

)
∈
(

0, 1
2

]
×
(

0, 1
2

) ∣∣∣ 1
p ≥

d−1
2

(
1
2 −

1
q

)}⋃{(
0, 1

2

)}
.

1
p

1
q

1
2
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Figure 3. Admissibility in dimension d ≥ 4.

Theorem 5.1. Let (p, q) and (p̃, q̃) be two admissible couples, and let

σ ≥ d+1
2

(
1
2 −

1
q

)
and σ̃ ≥ d+1

2

(
1
2 −

1
q̃

)
.

Then all solutions u to the Cauchy problem (5.1) satisfy the following Strichartz
inequality:

‖∇R×Xu‖Lp(I;H−σ,q(X)) . ‖f‖H1(X) + ‖g‖L2(X) + ‖F‖Lp̃′ (I;Hσ̃,q̃′ (X)). (5.2)

Remark 5.2. As have already been observed on hyperbolic spaces, the admissible
set for X is much larger than the admissible set for Rd, which corresponds only to
the lower edge of the triangle. This is due to large scale dispersive effects in negative
curvature.

The admissible range in (5.2) can be widened by using the Sobolev embedding
theorem.

Corollary 5.3. Assume that (p, q) and (p̃, q̃) are two couples corresponding to the
square [

0, 1
2

]
×
(

0, 1
2

)⋃{(
0, 1

2

)}
,

Let σ, σ̃ ∈ R such that σ ≥ σ(p, q), where

σ(p, q) = d+1
2

(
1
2 −

1
q

)
+ max

{
0, d−1

2

(
1
2 −

1
q

)
− 1

p

}
,

and similarly σ̃ ≥ σ(p̃, q̃). Then the Strichartz inequality (5.2) holds for all solutions
to the Cauchy problem (5.1).
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Figure 4. Extended admissibility in dimension d ≥ 4.

5.2. Global well-posedness in Lp(R, Lq(X)). By combining the classical fixed
point scheme with the previous Strichartz inequalities, one obtains the global well-
posedness for the semilinear equation∂

2
t u(t, x)−∆u(t, x) = F (u(t, x)),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x).
(5.3)

on X with small initial data f and g and power-like nonlinearities F satisfying

|F (u)| . |u|γ and |F (u)− F (v)| . (|u|γ−1 + |v|γ−1)|u− v|

where γ > 1. Let γc = 1 + 4
d−1 be the conformal power. The global existence

of solutions to the semilinear wave equation (5.3) on Rd is related to the Strauss
conjecture: the critical power γ0, i.e., the infimum of all γ ∈ (1, γc] such that
(5.3) has global solutions for small initial data, is the positive root of the quadratic
equation

(d− 1)γ2
0 − (d+ 1)γ0 − 2 = 0 (d ≥ 2).

In other words,

γ0 = 1
2 + 1

d−1 +
√

( 1
2 + 1

d−1 )2 + 2
d−1 > 1.

We refer to [Joh79; Kat80; Stra81; GLS97; Tat01] and the references therein for
more details about the Strauss conjecture in the Euclidean setting. In negative
curvature, the global existence for small initial data has been proved, for any
γ ∈ (1, γc], on real hyperbolic spaces of dimension d = 3 [MeTa11; MeTa12] and
then of any dimension d ≥ 2 [AnPi14]. In other words, there is no phenomenon
analogous to Strauss conjecture on such spaces. Similar results were extended later
to Damek-Ricci spaces, which contain all noncompact symmetric spaces of rank
one [APV15], and have been established recently on simply connected complete
Riemannian manifolds with strictly negative sectional curvature [SSW19], and on
non-trapping asymptotically hyperbolic manifolds [SSWZ19]. Next theorem shows
that the same phenomenon holds on general noncompact symmetric spaces. More
precisely, we prove that the semilinear wave equation (5.3) on X is globally well-
posed.
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To state the following theorem, we need to introduce some notation. Consider
the following powers

γ1 =1 +
3

d
γ2 = 1 +

2
d−1

2 + 2
d−1

γ3 =

1 + 4
d−2 if d ≤ 5,

d−1
2 + 3

d+1 −
√

(d−3
2 + 3

d+1 )2 − 4d−1
d+1 if d ≥ 6,

and the following curves

σ1(γ) =
d+ 1

4
− (d+ 1)(d+ 5)

8d

1

γ − d+1
2d

,

σ2(γ) =
d+ 1

4
− 1

γ − 1
, σ3(γ) =

d

2
− 2

γ − 1
.

Theorem 5.4. The semilinear Cauchy problem (5.3) is globally well-posed for small
initial data in Hσ,2(X)×Hσ−1,2(X) provided that

σ > 0 if 1 < γ ≤ γ1,

σ ≥ σ1(γ) if γ1 < γ ≤ γ2,

σ ≥ σ2(γ) if γ2 ≤ γ ≤ γc,

σ ≥ σ3(γ) if γc ≤ γ ≤ γ3.

More precisely, in each case, there exists 2 ≤ p, q < ∞ such that for any small
initial data (f, g) in Hσ,2(X)×Hσ−1,2(X), the Cauchy problem (5.3) has a unique
solution in the Banach space

C(R;Hσ,2(X)) ∩ C1(R;Hσ−1,2(X)) ∩ Lp(R;Lq(X)).

6. Further results for Klein-Gordon equations

The kernel estimates and dispersive estimates proved above for the wave equation
still hold if we replace the operator (−∆)−

σ
2 eit

√
−∆ by D−σeitD, where

D =
√
−∆− |ρ|2 + κ2 with κ > 0.

Then, for every admissible couple (p, q), the operator

Tf(t, x) = D
−σ2
x eitDxf(x)

is again bounded from L2(X) to Lp(R;Lq(X)), and its adjoint

T∗F (x) =

∫ +∞

−∞
dsD

−σ2
x e−isDx F (s, x)

from Lp
′
(R;Lq

′
(X)) to L2(X). While L2 Sobolev spaces may be defined in terms of

D, we need the operator

D̃ =
√
−∆− |ρ|2 + κ̃2 with κ̃ ≥ |ρ|,
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in order to define Lq Sobolev spaces when q gets large. As D̃−
σ
2 ◦Dσ

2 is a topological
automorphism of L2(X), the operator

T̃f(t, x) = D̃
−σ2
x eitDxf(x)

is also bounded from L2(X) to Lp(R;Lq(X)), and its adjoint

T̃∗F (x) =

∫ +∞

−∞
ds D̃

−σ2
x e−isDx F (s, x)

from Lp
′
(R;Lq

′
(X)) to L2(X), hence

T̃T̃∗F (t, x) =

∫ +∞

−∞
ds D̃−σx ei(t−s)Dx F (s, x)

from Lp
′
(R;Lq

′
(X)) to Lp̃(R;Lq̃(X)) for all admissible couples (p, q) and (p̃, q̃). We

deduce that Theorem 5.1 and Corollary 5.3 still hold for solutions to the inhomo-
geneous Klein-Gordon equation∂

2
t u(t, x) + D2 u(t, x) = F (t, x),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x),

and that the corresponding semilinear equation is globally well-posed with low
regularity data, see Theorem 5.4.

Appendix A. Oscillatory integral on a

In this appendix, we prove the following lemma which is used in the proofs of
Theorem 3.3 and Theorem 3.10. Recall that A = A(kx) is the a-component of
kx ∈ X in the Iwasawa decomposition, and that CΣ ∈ (0, 1

2 ] is a fixed constant.

Lemma A.1. Let s ∈ R+ and |t| ≥ 1. Consider the oscillatory integral

I−(s, t, x) =

∫
a

dλ a0(s, λ) eitψt(λ)

where the phase is given by

ψt(λ) =
√
|λ|2 + |ρ|2 + 〈At , λ〉

and the amplitude

a0(s, λ) = χρ0(λ) |c(λ)|−2 e−s
√
|λ|2+|ρ|2

vanishes unless |λ| ≤ 2|ρ|. Then, for all x ∈ X such that |x||t| ≤ CΣ,

|I−(s, t, x)| . |t|−D2 (1 + |x|)
D−`

2 e−
|ρ|
2 s.

Remark A.2. The proof of this lemma is similar to the proof of [Zha20, Theorem
3.1.(ii)], except that our amplitude involves the general Plancherel density and in
addition a Gaussian factor depending on s.

Proof. By symmetry, we may assume that t ≥ 1. Recall that the critical point λ0

of the phase ψ is given by

(|λ0|2 + |ρ|2)−
1
2λ0 = −At (A.1)
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and satisfies

|λ0| = |ρ| |A||t| (1−
|A|2
t2 )−

1
2 ≤ |ρ| |x|t (1− |x|

2

t2 )−
1
2 < |ρ|√

3
, (A.2)

as |A| ≤ |x| and |x|t ≤
1
2 . Denote by

B(λ0, η) = {λ ∈ a | |λ− λ0| ≤ η}

the ball in a centered at λ0, where the radius η will be specified later. Notice that
|λ| < |ρ|+ η for all λ ∈ B(λ0, η). Let Pλ be the projection onto the vector spanned
by λ
|λ| . Then |λ|

2Pλ = λ⊗ λ and the Hessian matrix of ψt is given by

Hessψt(λ) = (|λ|2 + |ρ|2)−
1
2 I` − (|λ|2 + |ρ|2)−

3
2 λ⊗ λ

= (|λ|2 + |ρ|2)−
3
2 {|ρ|2Pλ + (|λ|2 + |ρ|2)(I` − Pλ)}

= (|λ|2 + |ρ|2)−
3
2


|ρ|2 0

0 (|λ|2 + |ρ|2)I`−1


which is a positive definite symmetric matrix. Hence λ0 is a nondegenerate critical
point. Since ∇aψt(λ0) = 0, we write

ψt(λ)− ψt(λ0) = (λ− λ0)T
{∫ 1

0

ds (1− s) Hessψt
(
λ0 + s(λ− λ0)

)
︸ ︷︷ ︸

M(λ)

}
(λ− λ0),

where M(λ) belongs, for every λ ∈ B(λ0, η), to a compact subset of the set of
positive definite symmetric matrices. We introduce a new variable µ =M(λ)

1
2 (λ−

λ0), then |µ|2 = ψt(λ) − ψt(λ0) and µ = 0 if and only if λ = λ0. There exist
0 < η̃1 ≤ η̃2 such that µ ∈ B(0, η̃1) implies λ ∈ B(λ0, η), and λ ∈ B(λ0, η) implies
µ ∈ B(0, η̃2). Notice that for every k ∈ N, there exists Ck > 0 such that

|∇kaM(λ)
1
2 | ≤ Ck ∀λ ∈ B(λ0, η). (A.3)

Denote by j(λ) the Jacobian matrix such that dµ = det[ j(λ) ]dλ, then we can
choose η > 0 small enough such that

det[ j(λ) ] >
1

2
det[M(λ)

1
2 ] ∀λ ∈ B(λ0, η). (A.4)

Now, we split up

I−(s, t, x) = I−0 (s, t, x) + I−∞(s, t, x)

=

∫
a

dλχη0(λ) a0(s, λ) eitψt(λ) +

∫
a

dλχη∞(λ) a0(s, λ) eitψt(λ)

where χη0 : a→ [0, 1] is a smooth cut-off function which vanishes unless |λ−λ0| ≤ η
2 ,

χη0(λ) = 1 if |λ− λ0| ≤ η
4 , and χ

η
∞ = 1− χη0 .
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Estimate of I−0 . We estimate I−0 by using the stationary phase analysis described
in [Ste93, Chap.VIII 2.3]. Notice that suppχη0 ⊂ B(λ0, η). By substituting ψt(λ) =
|µ|2 + ψt(λ0), we get

I−0 (s, t, x) = eitψt(λ0)

∫
a

dµ ã(s, λ(µ)) eit|µ|
2

where the amplitude

ã(s, λ(µ)) = χη0(λ(µ))χρ0(λ(µ)) |c(λ(µ))|−2 e−s
√
|λ(µ)|2+|ρ|2 det[ j(λ(µ)) ]−1 (A.5)

is smooth and compactly supported in B(0, η̃2). We deduce, from (A.3) and (A.4)
that ã(s, λ(µ)) is bounded, together with all its derivatives. Let χη̃2

∈ C∞c (a) be a
bump function such that χη̃2

= 1 on B(0, η̃2). Then

I−0 (s, t, x) = eitψt(λ0)

∫
a

dµχη̃2
(µ) eit|µ|

2

e−|µ|
2

{e|µ|
2

ã(s, λ(µ))}.

LetM = [D2 ]+1 be the smallest integer> D
2 , the coefficients of the Taylor expansion

e|µ|
2

ã(s, λ(µ)) =
∑
|k|≤2M

ck µ
k +R2M (µ)

at the origin satisfy

|ck| . |c(λ0)|−2 (1 + s)k e−s
√
|λ0|2+|ρ|2 . ( |x|t )D−` (1 + s)k e−|ρ|s, (A.6)

according to (A.2), and the remainder satisfies

|∇na R2M (µ)| . |µ|2M+1−n (1 + s)2M+1+n e−|ρ|s ∀ 0 ≤ n ≤ 2M + 1. (A.7)

By substituting this expansion in the above integral, I−0 (s, t, x) is the sum of fol-
lowing three terms:

I1 =
∑
|k|≤2M

ck

∫
a

dµµk eit|µ|
2

e−|µ|
2

I2 =

∫
a

dµχη̃2
(µ)R2M (µ) eit|µ|

2

e−|µ|
2

,

and

I3 =
∑
|k|≤2M

ck

∫
a

dµ {χη̃2
(µ)− 1}µk eit|µ|

2

e−|µ|
2

.

To estimate I1, we write

I1 =
∑
|k|≤2M

ck
∏̀
j=1

∫ +∞

−∞
dµj e

itµ2
j e−µ

2
j µ

kj
j

where ∫ +∞

−∞
dµj e

−(1−it)µ2
j µ

kj
j = 0

if kj is odd, while∫ +∞

−∞
dµj e

−(1−it)µ2
j µ

kj
j = 2 (1− it)−

kj+1

2

∫ +∞

0

dzj e
−z2

j z
kj
j
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by a change of contour if kj is even. We deduce from (A.6)

|I1| . t−
`
2 ( |x|t )D−` (1 + s)2M e−|ρ|s . t−

D
2 |x|−D−`2 e−

|ρ|
2 s

since |x|t ≤ CΣ. Next, we perform M integrations by parts based on

eit|µ|
2

= − i
2t

∑`
j=1

µj
|µ|2

∂
∂µj

eit|µ|
2

(A.8)

and obtain

|I2| . t−M (1 + s)3M+1 e−|ρ|s . t−M e−
|ρ|
2 s

according to (A.7). Finally, as µ 7→ µk e−|µ|
2

(χ̃(µ)− 1) is exponentially decreasing
and vanishes near the origin, we perform N ≥ D

2 integrations by parts based on
(A.8) again and obtain

|I3| . t−N (1 + s)2M e−
|ρ|
2 s.

By summing up the estimates of I1, I2 and I3, we deduce that

|I−0 (s, t, x)| . t−D2 (1 + |x|)
D−`

2 (1 + s)2d+3 e−|ρ|s . t−
D
2 (1 + |x|)

D−`
2 e−

|ρ|
2 s.
(A.9)

Estimate of I−∞. Since the phase ψt has a unique critical point λ0 which is defined
by (A.1) and satisfies (A.2), then for all λ ∈ suppχη∞, we have ∇aψt(λ) 6= 0. In
order to get large time decay, we estimate

I−∞(s, t, x) =

∫
a

dλχη∞(λ) a0(s, λ) eitψt(λ)

by using several integrations by parts based on

eitψt(λ) = 1
it ψ̃0(λ)−1

∑`
j=1

( λj√
|λ|2+|ρ|2

+
Aj
t

)
∂
∂λj

eitψt(λ),

where

ψ̃0(λ) =
∣∣ λ√
|λ|2+|ρ|2

+ A
t

∣∣2
is a smooth function, which is bounded from below on the compact set (suppχη∞)∩
(suppχρ0), uniformly in A

t . After performingN such integrations by parts, I−∞(s, t, x)
becomes

const. (it)−N∫
a

dλ eitψt(λ)
{
−
∑̀
j=1

∂

∂λj
◦
[
ψ̃0(λ)−1

( λj√
|λ|2+|ρ|2

+
Aj
t

)]}N{
χη∞(λ) a0(s, λ)

}
where the last integral is bounded from above by (1 + s)N e−|ρ|s . e−

|ρ|
2 s. Hence

|I−∞(s, t, x)| . t−N e−
|ρ|
2 s (A.10)

for every N ∈ N. By combining (A.9) and (A.10), we conclude that

|I−(s, t, x)| . t−D2 (1 + |x|)
D−`

2 e−
|ρ|
2 s.

�
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Appendix B. Hadamard parametrix on symmetric spaces

Let Φv be the K-bi-invariant convolution kernel of the operator cos(v
√
−∆)

whose spherical Fourier transform is given by Φ̃v(λ) = cos(v
√
|λ|2 + |ρ|2). Then

Φv(x) solves the following Cauchy problem∂
2
v U(v, x)−∆x U(v, x) = 0,

U(0, x) = δ0(x), ∂v|v=0U(v, x) = 0.

We are looking for the asymptotic expansion of the kernel Φv. Recall that J denotes
the Jacobian of the exponential map from p equipped with Lebesgue measure to X
equipped with Riemannian measure. It satisfies

J(H)−
1
2 =

∏
α∈Σ+

( 〈α,H〉
sinh〈α,H〉

)mα
2 �

{ ∏
α∈Σ+

(1 + 〈α,H〉)
mα
2

}
e−〈ρ,H〉 ∀H ∈ a+.

Let f be a K-bi-invariant function on G, then f is also AdK-invariant on p
and W -invariant on a. Recall that ∆p and ∆a denote the usual Laplacian on the
Euclidean spaces p and a ⊂ p. The radial part of the Laplacian ∆ on X is defined
by

∆radf(H) = ∆af(H) +
∑
α∈Σ+

mα coth〈α,H〉∂αf(H) ∀H ∈ a+,

and that of ∆p is given by

∆rad
p f(H) = ∆af(H) +

∑
α∈Σ+

mα〈α,H〉−1∂αf(H) ∀H ∈ a+,

see [Hel00, Propositions 3.9 and 3.11]. The following proposition provides a rela-
tion between ∆rad and ∆rad

p , it allows us to simplify the computations about the
parametrix.

Proposition B.1. Let f ∈ C∞(a) be a W -invariant function. Then[
J(H)

1
2 ◦∆rad ◦ J(H)−

1
2

]
f(H) =

[
∆rad

p + ω(H)
]
f(H) ∀H ∈ a,

where

ω(H) =
∑
α∈Σ+

mα

2

(mα

2
− 1
)
|α|2

{ 1

〈α,H〉
− 1

sinh2〈α,H〉

}

+
∑
α∈Σ+

s.t. 2α∈Σ+

mαm2α

2
|α|2

(mα

2
− 1
)
|α|2

{ 1

〈α,H〉
− 1

sinh2〈α,H〉

}
− |ρ|2

is a smooth W -invariant function, which is uniformly bounded together with all its
derivatives.

Proof. Notice that[
J(H)

1
2 ◦∆rad ◦ J(H)−

1
2

]
f(H)

=J(H)
1
2

(
∆radJ−

1
2

)
(H)f(H) + ∆radf(H) + 2J(H)

1
2

(
∇aJ

− 1
2

)
(H) · ∇af(H)︸ ︷︷ ︸

∆rad
p f(H)

,
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since

J(H)
1
2

(
∇aJ

− 1
2

)
(H) =

∑
α∈Σ+

mα

2

{ 1

〈α,H〉
− coth〈α,H〉

}
α.

We deduce from the next lemma that

J(H)
1
2

(
∆radJ−

1
2

)
(H) = ω(H) ∀H ∈ a,

and this concludes the proof. �

Lemma B.2 (Cancellations lemma). The following equations hold for all H ∈ a:∑
α,β∈Σ+, Rα6=Rβ

mαmβ
〈α, β〉

〈α,H〉〈β,H〉
= 0

∑
α,β∈Σ+, Rα6=Rβ

mαmβ〈α, β〉
(

coth〈α,H〉 coth〈β,H〉 − 1
)

= 0

Proof. See [HaSt03, Appendix] for a detailed proof of this "folkloric" result. �

Recall that {Rz+ | z ∈ C} denotes the analytic family of Riesz distributions on R
defined by

Rz+(r) =

Γ(z)−1rz−1 if r > 0,

0 if r ≤ 0.

Consider the asymptotic expansion

Φv(expH) = J(H)−
1
2

+∞∑
k=0

4−k |v|Uk(H)R
k− d−1

2
+ (v2 − |H|2) (B.1)

where U0 is a constant such that U0 J(H)−
1
2 |v|R−

d−1
2

+ (v2−|H|2)→ δ0(H) as v → 0
and Uk ∈ C∞(p) are smooth AdK-invariant functions. By expanding

0 = J(H)
1
2

[
∂2
v −∆rad]Φv(expH)

=

+∞∑
k=0

4−k
[
∂2
v −∆rad

p − ω(H)
]{
|v|Uk(H)R

k− d−1
2

+ (v2 − |H|2)
}
,

we deduce [
(k + 1) + ∂H

]
Uk+1(H) =

[
∆rad

p + ω(H)
]
Uk(H), (B.2)

for every k ∈ N. In other words,

Uk+1(H) =

∫ 1

0

ds sk
[
∆rad

p + ω(sH)
]
Uk(sH). (B.3)

As ω and all its derivatives are uniformly bounded, we obtain

∇npUk = O(1) (B.4)

for any k, n ∈ N.
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Next, by resuming the proof of [Bér77, Proposition 27] with our asymptotic
expansion (B.1), we deduce that the remainder of the truncated expansion

Φv(expH) = J(H)−
1
2

N∑
k=0

4−k |v|Uk(H)R
k− d−1

2
+ (v2 − |H|2) + EN (v, expH) (B.5)

is a solution to the inhomogeneous Cauchy problem
[
∂2
v −∆rad

]
EN (v, expH) = J(H)−

1
2 ŨN (v,H),

limv→0EN (v, expH) = 0, limv→0
∂EN
∂v (v, expH) = 0,

where ŨN (v,H) = −4−N |v|UN (H)R
N− d−1

2
+ (v2 − |H|2). Hence, by Duhamel’s

formula

EN (v, expH) =

∫ v

0

du
sin(v−u)

√
−∆rad√

−∆rad
{J(H)−

1
2 ŨN (u,H)}.

According to next lemma and by L2 conservation, we have

|EN (v, expH)| . e−〈ρ,H〉 ‖EN (v, ·)‖H2σ+1(X)

. e−〈ρ,H〉
∫ v

0

du ‖ŨN (u, ·)J− 1
2 ‖H2σ(X)

provided that 2σ + 1 > d
2 , and

‖ŨN (u, ·)J− 1
2 ‖2H2σ(X) = ‖∆σ{ŨN (u, ·)J− 1

2 }‖2L2(X)

= const.

∫
p

dX
∣∣J(X)

1
2 (∆rad)σ{J(X)−

1
2 ŨN (u,X)}

∣∣2
= const. u2

∫
p

dX
∣∣[∆rad

p + ω(X)]σ(ŨN (u,X))
∣∣2

. u2
2σ∑
j=0

∫
{X∈p | |X|<u}

dX
∣∣∇jp(u2 − |X|2)N−

d+1
2

∣∣2
. (1 + u)4N−d,

since ω and UN , together with all their derivatives are uniformly bounded. Here
we assume N > d+1

2 + 2σ to avoid possible singularities on the sphere |X| = u. We
may set 2σ =

[
d
2

]
and N > d. Finally, we obtain

|EN (v, expH)| . e−〈ρ,H〉
∫ v

0

du (1 + u)2N− d2 . (1 + v)2N− d2 +1e−〈ρ,H〉.

Lemma B.3 (Sobolev embedding theorem for K-bi-invariant functions on X). Let
σ > d

2 be an integer. Then

|f(expH)| . e−〈ρ,H〉‖f‖Hσ(X) ∀H ∈ a+

for all K-bi-invariant functions f ∈ Hσ(X).

Proof. See [Ank92, Lemma 2.3]. �
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Notice that, for all N > d
2 , we have∣∣∣J(H)−

1
2

N∑
k=[d/2]+1

4−k |v|Uk(H)R
k− d−1

2
+ (v2 − |H|2)

∣∣∣ . (1 + v)2N− d+`
2 e−〈ρ,H〉.

Then we deduce the following corollary.

Corollary B.4. The K-bi-invariant convolution kernel Φv has the asymptotic ex-
pansion

Φv(expH) = J(H)−
1
2

[d/2]∑
k=0

4−k |v|Uk(H)R
k− d−1

2
+ (v2 − |H|2) + EΦ(v,H), (B.6)

where the remainder satisfies

|EΦ(v,H)| . (1 + v)3( d2 +1)e−〈ρ,H〉 ∀H ∈ a+. (B.7)

Appendix C. Asymptotic expansion of the Poisson kernel

The Hadamard parametrix described above provides an asymptotic development
of the kernel of the truncated Poisson operator

Aτ =

∫ +∞

−∞
dv χT (v)pRτ (v) cos (v

√
−∆).

Here τ = s− it with s ∈ (0, 1] and t ∈ R∗,

T =


√

2 if 0 < |t| ≤ 1,
√

2|t| if |t| ≥ 1,

χ : R → [0, 1] is a smooth even cut-off function such that χ = 1 on [−1, 1]

and suppχ ⊂ [−2
√

2, 2
√

2], χT (v) = χ( v
2T ) is supported in [−2

√
2T, 2

√
2T ] ⊂

(−3T, 3T ), and pRτ (v) = 1
π

τ
τ2+v2 is the Poisson kernel on R (with complex time τ).

Notice that |τ | ≤ T . By resuming and improving slightly [CGM01, Lemma 3.3], we
deduce the following parametrix for the kernel of Aτ .

Proposition C.1. The kernel aτ of the operator Aτ is a smooth K-bi-invariant
function on G, which is supported in the ball of radius 3T in X. Moreover

aτ (expH) =
τ

π
J(H)−

1
2

[d/2]∑
k=0

4−k Uk(H) Γ
(d+ 1

2
− k
)

(|H|2 + τ2)
d+1

2 −k + E(τ,H)

(C.1)

where the remainder satisfies

|E(τ,H)| . |T |3( d2 +1) (log T − log s) e−〈ρ,H〉 ∀H ∈ a+. (C.2)

Here the coefficients Uk are the same as in Corollary B.4 and are uniformly bounded.

Remark C.2. The proof of Proposition C.1 is similar to the proof of Lemma 3.3
in [CGM01]. Notice that the latter statement contains a minor error in the Gamma
factor and that our estimates contain an additional exponential decay, which is cru-
cial for the dispersive estimates.
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Let us state and reprove some technical results borrowed from [CGM01].

Lemma C.3. Let n ≥ 1 and γ ∈ R+. Then

|z|2γ−n
∫ 3T

0

dr rn−1|r2 + z2|−γ �



( |z|Re z )γ−1 if γ > 1 and n < 2γ,

( T|z| )
n−2 + log( |z|Re z ) if γ = 1 and n > 2,

1 + log( T
Re z ) if γ = 1 and n = 2,

1 + log( |z|Re z ) if γ = 1 and n < 2.

(C.3)

for every z ∈ C such that Re z > 0 and |z| ≤ T .

Proof. Write z = |z|eiθ in polar coordinates, with θ ∈ [−π2 ,
π
2 ]. By performing the

change of variables r = |z|w, the left hand side of (C.3) becomes

I =

∫ 3T
|z|

0

dw wn−1|w2 + ei2θ|−γ .

Notice that 3T
|z| > 2 and that

|w2 − 1| ≤ |w2 + ei2θ| ≤ |w2 + 1|. (C.4)

Let us split up I = I0 + I1 + T∞ according to∫ 3T
|z|

0

dw =

∫ 1
2

0

dw +

∫ 2

1
2

dw +

∫ 3T
|z|

2

dw.

The first and the last integrals are easily estimated. According (C.4),
3
4 ≤ |w

2 + ei2θ| ≤ 5
4 if 0 < w ≤ 1

2 ,

3
4w

2 ≤ |w2 + ei2θ| ≤ 5
4w

2 if w ≥ 2,

we deduce

I0 =

∫ 1
2

0

dw wn−1 � 1 (C.5)

and

I∞ =

∫ 3T
|z|

2

dw wn−2γ−1 �


1 if n < 2γ,

1 + log T
|z| if n = 2γ,

( T|z| )
n−2γ if n > 2γ.

(C.6)

Let us turn to the remaining integral, where 1
2 ≤ w ≤ 2. In this case we use the

following improvement of (C.4):

|w2 + ei2θ|2 = w2 + 1 + 2w2 cos 2θ = (w2 − 1)2 + 4w2 cos2 θ �
(
w − 1

w

)2
+ cos2 θ.
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By performing the change of variables u = w− 1
w and noticing that du

dw = 1+ 1
w2 � 1,

we get

I1 �
∫ 3

2

− 3
2

du (u2 + cos2 θ)−
γ
2 �

∫ 3
2

0

du (u+ cos θ)−γ

�


(cos θ)−γ−1 if γ > 1,

1− log(cos θ) if γ = 1,

1 if γ < 1.

(C.7)

In conclusion, (C.3) is obtained by combining (C.5), (C.6) and (C.7). �

Lemma C.4. Let z ∈ C with Re z > 0 and u ∈ R. Then∫ +∞

0

d(w2) R1−ε
+ (w2 − u2)

1

π

τ

w2 + z2
=


1
π

z
u2+z2 if ε = 1,

1√
π

z√
u2+z2

if ε = 1
2 .

(C.8)

Proof. The case ε = 1 follows immediately from the fact the distribution R0
+ is

equal to the Dirac measure at the origin. In the case ε = 1
2 , the formula is proved

first for z > 0 and then extended straightforwardly by analytic continuation to all
z ∈ C with Re z > 0. Specifically, the left hand side of (C.8) becomes

π−
3
2

∫ +∞

0

d(w2)

w

z

w2 + u2 + z2
= 2π−

3
2

∫ +∞

0

dr

r2 + 1︸ ︷︷ ︸
1√
π

z√
u2 + z2

after performing the change of variables w =
√
u2 + z2r. �

Proof of Proposition C.1. According to the asymptotic expansion (B.6), we write

aτ (expH) = J(H)−
1
2

[d/2]∑
k=0

4−k Uk(H) Ik(τ,H) + E(τ,H)

with

Ik(τ,H) =

∫ +∞

0

d(v2) pRτ (v)R
k− d−1

2
+ (v2 − |H|2)

and

E(τ,H)

= J(H)−
1
2

[d/2]∑
k=0

4−k Uk(H)

∫ +∞

0

d(v2) {χT (v)− 1} pRτ (v)R
k− d−1

2
+ (v2 − |H|2)

+ 2

∫ +∞

0

dv χT (v) pRτ (v)EΦ(v,H)

Let ε = 1 if d is even and ε = 1
2 if d odd. Then

Ik(τ,H) =
(
− ∂

∂(|H|2)

)[ d2 ]−k ∫ +∞
0

d(v2) pRτ (v)R1−ε
+ (v2 − |H|2)
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where ∫ +∞

0

d(v2) pRτ (v)R1−ε
+ (v2 − |H|2) =


1
π

τ
|H|2+τ2 if ε = 1,

1√
π

τ√
|H|2+τ2

if ε = 1
2 ,

according to (C.8). Then we obtain

Ik(τ,H) =
τ

π
Γ( d+1

2 −k)

(|H|2+τ2)
d+1

2
−k
.

Next, we estimate the remainder E(τ,H) whose second part is easily handled. By
using (B.7), we have

|E2(τ,H)| ≤ 2

∫ +∞

0

dv χT (v) |pRτ (v)| |EΦ(v,H)|

. e−〈ρ,H〉
∫ 3T

0

dv
|τ |

|v2 + τ2|
(1 + v3( d2 +1)).

where

|τ |
∫ 3T

0

dv |v2 + τ2|−1 . 1 + log |τ |
Re τ

and

|τ |
∫ 3T

0

dv |v2 + τ2|−1 v3( d2 +1) . |τ |3( d2 +1)
{(

T
|τ |
) 3d+1

2 + log |τ |
Re τ

}
according to the formulas in (C.3). We deduce

|E2(τ,H)| . T 3( d2 +1)(log T − log s)e−〈ρ,H〉. (C.9)

It remains to estimate

E1(τ,H)

= J(H)−
1
2

[d/2]∑
k=0

4−k Uk(H)

∫ +∞

0

d(v2) {χT (v)− 1}pRτ (v)R
k− d−1

2
+ (v2 − |H|2)︸ ︷︷ ︸

Ĩk(τ,H)

.

By repeating the previous calculations for Ik,

Ĩ(τ,H) =
τ

π

(
− ∂

∂(|H|2)

)[ d2 ]−k

∫ +∞

0

d(v2) {χT (
√
v2 + |H|2)− 1} 1

v2 + |H|2 + τ2
R1−ε

+ (v2).

Let’s first consider the case where ε = 1, i.e., d is odd. Then

Ĩk(τ,H)

=
τ

π

(
− ∂

∂(|H|2)

) d−1
2 −k

{(
χT (|H|)− 1

)
1

|H|2+τ2

}
=
τ

π

∑
j+j′= d−1

2 −k

( d−1
2 −k)!

j!j′!

(
− ∂

∂(|H|2)

)j(
χT (|H|)− 1

) (
− ∂

∂(|H|2)

)j′ 1
|H|2+τ2 .
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On the one hand, the expression
(
− ∂
∂(|H|2)

)j(
χT (|H|)−1

)
vanishes when |H| ≤ 2T .

In addition, it is O(T−2j). On the other hand,(
− ∂

∂(|H|2)

)j′ 1
|H|2+τ2 = j′!

(|H|2+τ2)j′+1 = O(T−2j′−2)

when |H| ≥ 2T . We deduce that

|Ĩk(τ,H)| = O(T 2k−d).

Let’s then consider the case where ε = 1
2 , i.e., d is even. Then

Ĩk(τ,H) =
2τ

π

∑
j+j′= d

2−k

( d2−k)!

j!

∫ +∞

0

dv
(
− ∂

∂(|H|2)

)j{χT (
√
v2 + |H|2)− 1} (v2 + |H|2 + τ2)−j

′−1.

Again, the expression
(
− ∂
∂(|H|2)

)j{χT (
√
v2 + |H|2)−1} is O(T−2j), which vanishes

when v2 + |H|2 ≤ 4T 2, as well as v2 + |H|2 ≥ 9T 2 if j > 0. It follows that the
integral above is O(T 2k−d−1) if j > 0, and that it is estimated by∫

v2+|H|2≥4T 2

dv
∣∣v2 + |H|2 + τ2

∣∣k− d2−1
.
∫
v+|H|≥2T

dv (v + |H|)2k−d−2

�T 2k−d−1

if j = 0. In any case, we obtain

|Ĩk(τ,H)| . T 2k−d . 1

and therefore

|E1(τ,H)| . J(H)−
1
2

since the coefficients Uk are bounded. By combining with (C.9), we conclude that

|E(τ,H)| . |E1(τ,H)|+ |E1(τ,H)| . T 3( d2 +1) (log T − log s) e−〈ρ,H〉

for all H ∈ a+. �
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