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A Kriging-NARX model for uncertainty quantification of

nonlinear stochastic dynamical systems in time domain

Biswarup Bhattacharyya1,

Eric Jacquelin2,

and Denis Brizard3

ABSTRACT1

A novel approach, referred to as sparse Kriging-NARX (KNARX), is proposed in the2

present paper for the uncertainty quantification of nonlinear stochastic dynamical systems.3

It combines the Nonlinear AutoRegressive with eXogenous (NARX) input model with the4

high fidelity surrogate model Kriging. The sparsity in the proposed approach is introduced in5

the NARX model by reducing the number of polynomial bases using the least angle regression6

(LARS) algorithm. Sparse KNARX captures the non-linearity of a problem by the NARX7

model, whereas the uncertain parameters are propagated using the Kriging surrogate model8

and, further, LARS makes the model efficient. The accuracy and the efficiency of the sparse9

KNARX is measured through uncertainty quantification applied to three nonlinear stochastic10

dynamical systems. The time dependent mean and standard deviation are predicted for all11

the numerical examples. Instantaneous stochastic response characteristics and maximum12

absolute response are also predicted. All the results are compared with the full scale MCS13

results and a mean error is calculated for all the numerical problems to measure the accuracy.14

All the results show excellent agreement with the MCS results in a very limited computational15

1Corresponding author, Ph.D. student, Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC
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cost. Along with this, the efficiency of the sparse KNARX is also measured by the CPU time16

and the required number of surrogate model evaluations. In all instances, sparse KNARX17

outperforms other state-of-the-art methods which justifies the applicability of this model for18

nonlinear stochastic dynamical systems.19

Keywords: NARX model, Kriging, Nonlinear stochastic dynamical system, LARS, Uncer-20

tainty quantification21

INTRODUCTION22

Uncertainty is an inherent property for any type of real world engineering problem which23

may arise due to material heterogeneity, variability in dimensions, external forces. It is24

evident from various studies (Grigoriu 1996; Lucor et al. 2004; Kundu and Adhikari 2014;25

Chakraborty and Chowdhury 2015; Mai and Sudret 2017) that these sources of uncertainties26

are always present in a dynamical system. Now, if the input quantities are uncertain, it is27

obvious that the response characteristics would also be uncertain. The propagation of those28

uncertain input parameters through a dynamical system and the prediction of uncertain29

response characteristics are the main objectives of this paper.30

The most used method for uncertainty quantification of any engineering problem is Monte31

Carlo simulation (MCS) (Sheppard 1969; Muscolino et al. 2003). Mostly, MCS is used to pre-32

dict the stochastic response characteristics for any type of problem and often result found by33

MCS is used as the principal result for any problem. However, the accuracy of MCS greatly34

depends on the number of simulations because MCS requires a large number of model evalu-35

ations to predict an accurate result for a complex engineering problem. Thus, for a nonlinear36

dynamical system, this method is highly time consuming and very much computationally37

expensive. To overcome the issues of MCS, several surrogate models have been developed38

by the researchers (Lucor and Karniadakis 2004; Lucor et al. 2004; Gerritsma et al. 2010;39

Kundu and Adhikari 2014; Luchtenburg et al. 2014; Mai and Sudret 2017) in the last few40

decades for stochastic dynamical systems. These surrogate models are the combination of41

MCS and some kind of polynomials which maintain a trade-off between efficiency and accu-42
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racy such that the stochastic response behavior can be predicted with higher accuracy and43

lower computational cost. In this regards, one class of surrogate model widely known as44

polynomial chaos expansion (PCE) (Xiu and Karniadakis 2002) has been used extensively in45

the last few decades for the uncertainty propagation in stochastic dynamical systems (Lucor46

et al. 2004; Wan and Karniadakis 2005; Kundu and Adhikari 2014; Jacquelin et al. 2015;47

Jacquelin et al. 2017; Ozen and Bal 2017).48

PCE was proposed only to propagate Gaussian input random variables in (Wiener 1938)49

which was further improved in (Xiu and Karniadakis 2002) to account the other types of50

random variables. This method is also known as generalized PCE (gPCE). Most of the51

methods developed till date have utilized gPCE as the basic tool for propagating uncertainties52

in the stochastic dynamical systems. Therefore, Wan and Karniadakis (Wan and Karniadakis53

2005) developed a multi-element gPCE to capture the non-linearity of the problem. This54

method decomposes the domain into multiple segments (when the variance of the stochastic55

response becomes too worse) such that the non-linearity and the probability density function56

(PDF) of the response can be captured efficiently. A similar method has been developed in57

(Gerritsma et al. 2010) and (Luchtenburg et al. 2014) using some different criteria. However,58

for a system of ordinary differential equations (ODE) having three random variables, it is59

shown in (Gerritsma et al. 2010) that PCE needs to be constructed at every time-step. On60

the other hand, a different type of development has been made in (Maitre et al. 2010) and61

(Mai and Sudret 2017) by rescaling the time domain which is often called time warping62

PCE. However, it can be seen clearly in (Mai and Sudret 2017) that the time warping63

PCE cannot predict the variance of the stochastic response properly in the later time for64

nonlinear dynamical system with a few random variables. In contrast, a surrogate model has65

been recently proposed (Spiridonakos and Chatzi 2015; Mai et al. 2016) by combining PCE66

and Nonlinear Auto-Regressive with eXogenous input (NARX) (Billings et al. 1989; Chen67

et al. 1990; Wei and Billings 2009; Billings 2013) model to account for the dynamic behavior68

and the non-linearity of the problem. In this method, the non-linearity of the problem is69
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taken care by the NARX model while the uncertain parameters of the dynamical system are70

propagated by PCE. However, the proposed model still uses high degree polynomials even71

for nonlinear single degree of freedom (SDOF) dynamical systems (Mai et al. 2016) which72

increases the computational cost drastically.73

Another class of surrogate model widely known as Gaussian process regression or, Kriging74

surrogate model (Krige 1951; Santner et al. 2003) has proved the efficiency in predicting75

the stochastic response characteristics for high-dimensional problems (Mukhopadhyay et al.76

2017; Bhattacharyya 2018). However, if one wants to predict the time-dependent stochastic77

response behavior of an uncertain dynamical system, a new Kriging model is required to fit78

for each time-instances and almost seems the limitation like MCS. It is also mentioned in79

(Chakraborty and Chowdhury 2015; Chatterjee and Chowdhury 2017) that for a non-linear80

dynamical systems, Kriging requires a large number of model evaluations. However, the81

efficiency in predicting the stochastic response behavior for the engineering system having82

spatial random parameters has been well established through several researches (Simpson83

et al. 2001; Tong et al. 2015; Sugai et al. 2015; Huang et al. 2016; Lu et al. 2018), but the use84

of Kriging surrogate model is still questionable for nonlinear stochastic dynamical systems.85

Therefore, several improvements have been made by the researchers (Kersaudy et al. 2015;86

Chakraborty and Chowdhury 2017; Bayarri et al. 2007; Chatterjee and Chowdhury 2018)87

to alleviate the issue of the curse of dimensionality and account for the non-linearity of88

the response behavior, but still these methods are suffering to describe the time dependent89

response behavior of random non-linear dynamical systems efficiently. To address this issue,90

a surrogate model is constructed in the present paper in a similar way to (Mai et al. 2016)91

by combining the NARX model with the Kriging surrogate model. Therefore, the issue92

of capturing the high order non-linearity of a stochastic dynamical system can be resolved93

by utilizing the NARX model and the uncertainties are propagated by the Kriging. Indeed,94

NARX model has been investigated by very few researchers in context of stochastic dynamical95

systems (Spiridonakos and Chatzi 2015; Mai et al. 2016; Worden et al. 2018) as compared96
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to system identification tool for deterministic nonlinear dynamical systems (Billings et al.97

1989; Wei and Billings 2009; Xie et al. 2009; Zhang and Li 2015).98

The rest of the paper is organized as follows. A brief description of Kriging and NARX99

model are given in section 2 and section 3 respectively. Section 4 introduces the proposed100

model along with an algorithm to implement it for dynamical systems. Further, the appli-101

cability of the proposed approach for dynamical systems is illustrated through three typical102

nonlinear stochastic dynamical systems in section 5 and section 6 describes the important103

conclusion drawn from the present study.104

KRIGING105

Kriging is a well established surrogate model technique which combines a regression106

function with a Gaussian process. Kriging was first introduced in geostatistics (Matheron107

1963) and afterwards it was used for the analysis of computer experiments (Sacks et al. 1989).108

One of the important characteristics of Kriging is that it predicts the quantity of interest in109

a finite region by an unbiased estimator. A brief description of Kriging is presented in this110

section.111

Construction of model112

Consider Ξ = {ξ1, ξ2, . . . , ξd} as the d-dimensional input random variables in the probabil-113

ity space P , where Ξ ∈ D ⊂ Rd. ForN number of sample points, Y = {y (Ξ1) , y (Ξ2) , . . . , y (ΞN)}T114

are the corresponding function evaluations. In Kriging, the performance function for a real-115

ization is given by:116

M (Ξ) = βTφ (Ξ) + Z (Ξ) (1)

In Equation 1, the first part of the expression βTφ (Ξ) represents the regression part of the117

model which can also be written as:118

βTφ (Ξ) =
P∑
i=1

βiφi (Ξ) (2)
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φi (Ξ) are the polynomial basis functions which are constructed with the normalized input119

variables and βi are the corresponding coefficients of the basis functions. P represents the120

total number of terms in the basis function which depends on the degree of the polynomial.121

According to the form of the polynomial, Kriging model has several variants in the literature122

(Mukhopadhyay et al. 2017). A universal Kriging model is utilized in the present work123

(Equation 2). The second part of Equation 1 defines the Gaussian process with mean zero124

and the process covariance is125

cov [Z (Ξi) , Z (Ξj)] = σ2
ZR (Ξi,Ξj) ; i, j = 1, 2, . . . , N (3)

where, Ξi and Ξj are two different sample points and σ2
Z is the process variance. R (Ξi,Ξj) is126

the auto-correlation function between two sample points. A variety of auto-correlation func-127

tions have been adopted by the researchers (Kaymaz 2005; Bhattacharyya 2018; Sacks et al.128

1989) such as linear, exponential or Gaussian. The mostly used Gaussian auto-correlation129

function is utilized in the present paper which is given by:130

R (Ξi,Ξj) =
d∏

k=1

exp
[
−θk(ξi,k − ξj,k)2

]
(4)

where θk is the hyper-parameter of the auto-correlation function. The Kriging model param-131

eters β and σZ , and the hyper-parameter θk can be determined by the maximum likelihood132

estimation (MLE) (Sacks et al. 1989). The procedure of computing the parameters is ex-133

plained in (Sacks et al. 1989; Santner et al. 2003; Kaymaz 2005).134

Prediction135

Consider any untried sample point for prediction Ξ0 ∈ Rd. The function value at the136

new sample Ξ0 is predicted by the best linear unbiased predictor (BLUP). The BLUP and137

the predicted variance are given by:138
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M̂ (Ξ0) = wT (Ξ0)Y (5)

= β̂Tφ (Ξ0) + rT (Ξ0) R−1
(
β̂Tφ (Ξ0)

)
(6)

σ2
M̂

(Ξ0) = σ̂2
Z

1−
[
φT (Ξ0) rT (Ξ0)

] 0 F T

F R


−1  φ (Ξ0)

r (Ξ0)


 (7)

where, r (Ξ0) = {R (Ξ0,Ξ1) ,R (Ξ0,Ξ2) , . . . ,R (Ξ0,ΞN)} is the correlation matrix between139

the new untried sample point and the initial samples, and F is the matrix of basis function140

at the initial sample points of dimension N × P . R is the correlation matrix for the initial141

samples. Further, the unknown parameters β̂ and σ2
Z are calculated as:142

β̂ =
(
F TR−1F

)−1
F TR−1Y (8)

σ̂2
Z =

1

N

(
Y − Fβ̂

)T
R−1

(
Y − Fβ̂

)
(9)

Once the unknown parameters using the Kriging model are estimated, the prediction of143

the response at the untried point can be made easily by utilizing Equation 6.144

NARX MODEL145

Overview of NARX model146

A brief overview of NARX model is presented in this section. The time dependent147

response characteristics of a dynamical system at current time instance can be predicted by148

the responses of some previous time instances and the excitation of some previous and current149

time instances through a suitable NARX model (Chen and Billings 1989; Billings 2013). If150

we consider a dynamical system having the time dependent excitation, then according to the151
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NARX model, the dynamical system can be expressed as:152

y (t) = F [z (t)] + ε (t) (10)

where, z (t) =
{
x (t) , x (t−∆t) , x (t− 2∆t) , . . . , x (t− nxm∆t) , y (t−∆t) , y (t− 2∆t) , . . . ,153

y (t− nym∆t)
}T

is the vector having all the lagged system excitation and response compo-154

nents which forms the time-dependent auto-regressive response model F [•]. ε (t) is the155

residual of the NARX model which is supposed to be a normally independent distributed156

(NID) process with zero mean and ∆t is the time-step chosen for the NARX model. nxm and157

nym are the maximum time lags for the excitation and the response quantity respectively. It158

is obvious that the underlying form of the function must be nonlinear to capture the strong159

non-linearity of a dynamical system. Consequently, different types of functions have been160

used by the researchers such as polynomial (Cantelmo and Piroddi 2010), wavelet (Billings161

and Wei 2005), sigmoid function (Sjöberg et al. 1995), RBF (Li et al. 2005) and neural net-162

work (Tsungnan Lin et al. 1996). Out of these, the effectiveness of polynomial function has163

already been proved in the literature (Leontaritis and Billings 1985; Cantelmo and Piroddi164

2010; Cheng et al. 2011). Therefore, a linear-in-parameter form of polynomial has been used165

in the present paper which is represented by166

F [z (t)] =
M∑
i=1

ϕiψi [z (t)] (11)

In the above equation, M is the total number of terms in the polynomial basis function,167

ψi [z (t)] are the polynomial basis functions and ϕi are the corresponding coefficients of the168

NARX model. The polynomial basis function for the NARX model is dependent on the169

time varying excitation and response. Consequently, the polynomial basis matrix and the170
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coefficient matrix for a particular sample point k are represented by:171

Ψk (t,Ξk) = {ψ1 [zk (t,Ξk)] , ψ2 [zk (t,Ξk)] , . . . , ψM [zk (t,Ξk)]}T ; Ψk ∈ RM×1 (12)

ϕk = {ϕ1, ϕ2, . . . , ϕM}; ϕk ∈ R1×M (13)

Now, if we discretize the total time T inNt number of time instances i.e. t ∈ {t1, t2, . . . , tNt},172

then for Nt number of time-steps, the polynomial basis function matrix can be given by173

Ψk ∈ RM×Nt .174

The procedure of choosing the type of polynomial for F [z (t)] and estimating the corre-175

sponding coefficients are described in the next section.176

Model formulation and parameter estimation of the NARX model177

The polynomial basis function for the NARX model can be formulated by two variables,178

i.e. the excitation and the response of the dynamical system, either as an independent179

variable basis function (Spiridonakos and Chatzi 2015) or as a composition of both variables180

(Mai et al. 2016) with certain maximum degree of the polynomial basis. For a nonlinear181

system, it is always important to use the interaction terms (Billings 2013). Hence, a similar182

kind of polynomial basis function has been adopted in the present paper. Another important183

issue with the polynomial basis function is the selection of the maximum time lags nxm and184

nym for the excitation and the response respectively. The maximum time lags are selected185

according to (Spiridonakos and Chatzi 2015; Mai et al. 2016) in the present paper, which186

are two-times the number of DOF of the system.187

On the other hand, the computation of the NARX coefficients is one of the challenging188

tasks in the construction of the NARX model. The coefficients of the NARX model can be189

computed easily by ordinary least square method (for the k-th sample point). However, it190

has been found often in the literature (Blatman and Sudret 2011; Spiridonakos and Chatzi191
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2015) that all the terms in the polynomial basis do not get involved in predicting the response192

characteristics of the system, and reducing the degree of the polynomial may reduce the ac-193

curacy of prediction. Thus, it is important to capture the important terms in the polynomial194

basis function which are solely responsible for the response behavior of a system. Recently,195

the important NARX basis terms were identified using genetic algorithm in (Spiridonakos196

and Chatzi 2015). However, due to the form of NARX model, the important terms can also197

be identified with the popularly used regularized least square method, least angle regression198

(LARS) (Efron et al. 2004). Consequently, LARS is used in the present paper for selecting199

the important terms in the polynomial basis.200

Sparse NARX model201

The sparse NARX model is selected in a similar way to (Mai et al. 2016) in the present202

paper. At first, it is required to select the samples exhibiting high non-linearity. The203

responses having highly non-linear behavior can be selected by the measurement of non-204

linearity of the response (Spiridonakos and Chatzi 2015) or, specifying some threshold value205

for the response series (Mai et al. 2016). In the present paper, a combination of both206

the mentioned methods (Spiridonakos and Chatzi 2015; Mai et al. 2016) has been utilized.207

Firstly, the response versus restoring force is plotted arbitrarily without performing any208

simulations (keeping other parameters constant at their mean values). The intensity of209

the response is increased upto a certain limit till the nonlinear behavior is noticed in the210

force-displacement relationship. From the restoring force curve, the threshold value for a211

response series can be selected easily by observing the starting point of the non-linearity of212

the response series. Imposing the threshold value would reduce the number of samples to213

N1 < N . Now, for each of the N1 samples (e.g. for the k-th sample), a full NARX model is214

formulated as follows:215

y (t,Ξk) = ϕkΨk (Ξk) (14)
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where, Ψk is the matrix having all the M terms of the NARX model polynomial basis for216

all the time-steps with dimension M ×Nt which is formulated by the current and previous217

excitation, and previous responses. y (t,Ξk) is the response series for the k-th sample point.218

At this step, the coefficient vector ϕk is the unknown.219

Remark 1: One should discretize the total time T with a suitable time-step ∆t (small220

enough to capture the dynamics correctly). Besides, the time-step plays a vital role in case of221

NARX model. In the present paper, we have used the same time-step for the time integration222

and the construction of the NARX model.223

The LARS algorithm is then employed to select the important terms for each of the N1224

full NARX models.225

Remark 2: It is evident that N1 different NARX models are found at this step. The226

most important terms for all the NARX models are found using LARS algorithm. However,227

it may happen that more than one NARX model contains similar terms in the polynomial228

basis matrix. Therefore, only the N2 different NARX models are selected at this step.229

The unique NARX models are selected from the N1 number of NARX models which230

may further reduce the number of NARX models to N2 ≤ N1. Hence, for each of the N2231

sparse NARX models, the coefficients of all the N initial samples are computed by ordinary232

least square. The response series of the initial N samples are then re-constructed using233

the coefficients and the selected polynomial bases, and the error for each sample point is234

predicted as follows:235

εk =

Nt∑
i=1

[y (ti,Ξk)− ŷ (ti,Ξk)]
2

Nt∑
i=1

[y (ti,Ξk)− ȳ (Ξk)]
2

(15)

where, ȳ (Ξk) is the time average mean of the k-th response series which is given by:236

ȳ (Ξk) =
1

Nt

Nt∑
i=1

y (ti,Ξk) (16)
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The mean predicted error for all the sample points by a particular sparse NARX model237

out of N2 sparse NARX models is given by:238

ε̄ =
1

N

N∑
k=1

εk (17)

The finally selected sparse NARX model is the one having the predicted mean error for239

N sample points lower than some threshold value. In the present paper, the threshold value240

of the mean error is imposed as 1× 10−3 for all the examples.241

Remark 3: It is of utter importance to mention that if the predicted mean errors for242

two different NARX model are found same (or, lower than the threshold value) then the243

sparse NARX model having less number of terms in the polynomial basis is selected as the244

final sparse NARX model.245

KRIGING-NARX MODEL246

Consider a dynamical system having some uncertain input parameters Ξ = {ξ1, ξ2, . . . , ξd},247

then the time dependent response of the system can be represented by a NARX model as:248

y (t,Ξk) =
M∑
i=1

ϕi(Ξk)ψi [zk (t)]; k = 1, 2, . . . , N (18)

It is observed from Equation 18 that the coefficients of the NARX model are dependent249

on the sample points which does not make the model stochastic in nature. To get the250

independent coefficients of the NARX model, the NARX coefficients are represented by the251

Kriging surrogate model as given in Equation 1:252

ϕi(Ξ) = βTi φ (Ξ) + Zi (Ξ) ; i = 1, 2, . . . ,M (19)

Further, the model is constructed by the Kriging surrogate model as discussed in section 2.253
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Therefore, the full KNARX model is expressed as:254

y(t,Ξ) =
M∑
i=1

(
βTi φ (Ξ) + Zi (Ξ)

)
ψi [z (t)] (20)

The coefficient of the regression part, βT and the Gaussian process part Z (Ξ) are depen-255

dent on the number of terms in the NARX model, whereas the polynomial basis function256

of the Kriging model for all the NARX coefficients remain the same as the basis is purely257

dependent on the uncertain input parameters.258

Remark 4: It should be noted that the Kriging model should be calibrated M times (M259

is the total number of terms for a full NARX model) because the coefficients of the NARX260

model for N samples corresponding to a polynomial basis act as the single response quantity261

for the Kriging model.262

The response quantity of a dynamical system at some untried sample points Ξ0 can be263

predicted by BLUP as mentioned in Equation 6 in accordance with the full NARX model in264

an auto-regressive manner.265

ŷ (t,Ξ0) =
M∑
i=1

[
β̂Ti φ (Ξ0) + rT (Ξ0)R

−1
(
β̂Ti φ (Ξ0)

)]
ψi [z (t)] (21)

Equation 21 helps in predicting the time dependent response characteristics of a dynam-266

ical system at large number of sample points having d dimensional random input variables.267

It is evident from Remark 4 that the computational cost increases with the increase of num-268

ber of terms in the NARX polynomial basis. For that reason, the sparse NARX model as269

discussed in section 3 is used in accordance with the Kriging surrogate model in the present270

paper. Consequently, the number of terms for the NARX model is decreased to M1 < M271

which ultimately reduces the number of Kriging model calibration (M1) and computational272

cost. The algorithm for constructing the sparse KNARX model is provided in Table 1.273

NUMERICAL APPLICATIONS274

The sparse KNARX model as described in the previous section has been utilized for275
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uncertainty quantification of three typical nonlinear stochastic dynamical systems. For each276

of the examples, the accuracy of the method is measured using the predicted mean error277

as given in Equation 17 (Mai et al. 2016) (taking MCS as the reference) and the value of278

the coefficient of correlation R2. Uncertainty quantification for all the problems is made279

by predicting the time dependent mean and standard deviation of the responses. Further,280

the PDFs of the responses are also predicted at some time instances. The computational281

efficiency is measured through the computational cost (CPU time), the number of surrogate282

model calibration and the number of initial sample points N . The first problem is also solved283

by the Kriging model to measure the efficiency and the accuracy of the sparse KNARX model284

over the Kriging. For the first two examples, the sparse KNARX predicted results are also285

compared with the recently proposed sparse PCE-NARX surrogate model (Mai et al. 2016).286

It is well known that a suitable sample point (often known as experimental design point)287

generation strategy is required to use for the generation of initial samples in step 2 of Table 1.288

Consequently, one of the most widely used sampling strategies, Latin hypercube sampling289

(LHS) (Mai et al. 2016; Chatterjee and Chowdhury 2017) has been utilized for the initial N290

number of sample points generation.291

Duffing oscillator292

A non-linear duffing oscillator is considered as the first example for the illustration of the293

proposed model. The governing differential equations of the duffing oscillator are given by:294

ÿ (t) + 2ζωẏ (t) + ω2
[
y (t) + εy3 (t)

]
= x (t) (22)

x (t) = A sin (ωxt) (23)

In Equation 22, ω represents the natural frequency considering the undamped linear struc-295

ture (ε = 0, ζ = 0), ζ is the damping ratio and ε controls the non-linearity of the system.296

x (t) denotes the excitation part of the dynamical system which is considered sinusoidal in297
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this case (see Equation 23). The initial conditions are y (0) = 0 and ẏ (0) = 0. The numer-298

ical integration has been performed for T = 30 s with a time-step of ∆t = 0.01 s through299

MATLAB solver ode45. All the parameters of the duffing oscillator are considered uncertain300

(i.e. Ξ = {ω, ζ, ε, A, ωx}) (Mai 2016). The distribution types along with the parameters of301

the distribution are listed in Table 2.302

Time dependent stochastic displacement of the duffing oscillator is predicted by MCS,303

Kriging, sparse PCE-NARX (Mai et al. 2016) and sparse KNARX model. MCS has been304

performed with 3 × 104 sample points and N = 50 samples have been generated by LHS305

for the prediction of the stochastic response behavior using Kriging. The Kriging model306

has been calibrated for each time-step (i.e. 3001 times). The step by step procedure of307

constructing the sparse KNARX model (according to Table 1) is described below:308

1. For the duffing oscillator, d = 5 (see Table 2).309

2. The sparse KNARX model is constructed using N = 25 LHS points.310

3. For the construction of the sparse KNARX and the sparse PCE-NARX model, it is311

important to specify the threshold value for capturing the nonlinear response series312

according to step 3 of Table 1. Full NARX models are to be constructed on those313

samples which satisfy the criterion of threshold value. For that reason, the displacement314

y (t) versus restoring force fs = ω2 [y (t) + εy3 (t)] has been plotted in Figure 1 (keeping315

other parameters constant at their mean values). From Figure 1, it is clear that the316

displacement behaves almost linearly for y (t) ∈ [−0.045 m, 0.045 m] and beyond this317

region, the displacement is highly nonlinear. Consequently, to capture the highly318

nonlinear response series, the threshold value for the nonlinear displacement is set as319

max (|y (t)|) > 0.045 m. Thus, only those samples will be picked for the construction320

of NARX model which falls beyond the region y (t) ∈ [−0.045 m, 0.045 m].321

4. The displacement series are then obtained at the initial N = 25 samples. Out of all322

the response series, the displacement versus restoring force for two different samples323
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(13-th and 25-th sample point) are plotted in Figure 2. It is clearly seen that the 13-th324

sample point exhibits higher order non-linearity than the 25-th sample point. It should325

be noted that the region of displacement value is almost restricted in [−0.02 m, 0.02 m]326

for the 25-th sample point which is far less than the specified threshold value. On327

the other hand, the displacement intensities are far beyond the threshold value and328

behaves nonlinearly for the 13-th sample point.329

5. After imposing the above-specified threshold criterion, onlyN1 = 2 samples are selected330

as the highly nonlinear response series. Thus, only 2 full NARX models are required331

for the duffing oscillator using the sparse KNARX model (N = 25). The basis function332

for the full NARX model is chosen as:333

ψi [z (t)] = xli (t− nxi∆t) ymi (t− nyi∆t) (24)

where, x and y are the excitation and the response of the duffing oscillator respectively.334

6. The maximum time lags for the excitation and the response are taken as nxm = 2 and335

nym = 2 respectively due to 1-DOF system. nx ∈ {0, 1, 2} and ny ∈ {1, 2} represent336

all the time lags for the excitation and the response respectively. l ∈ {0, 1} and337

m ∈ {0, 1, 2, 3} are the degrees for the excitation and the response respectively, with a338

maximum degree of the polynomial 3 (i.e. li +mi ≤ 3), due to the cubic non-linearity339

of the system. A total 22 number of terms have been obtained in the polynomial340

basis matrix utilizing all the above-mentioned criterion which depicts M = 22 and341

i = 1, 2, . . . ,M in Equation 24.342

7. Therefore, 2 full NARX models are constructed using the basis function as given in343

Equation 24, and they have 22 terms in the NARX polynomial basis matrix.344

8. The sparse NARX models are then constructed using the LARS algorithm by selecting345

the most important terms in the bases for both the full NARX models.346
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9. The sparse NARX models are then retained which have unique set of polynomial bases347

and for the duffing oscillator, both the sparse NARX models are found unique. The348

polynomials selected by the LARS algorithm for both the NARX models are listed in349

Table 3.350

10. The coefficients for all the 25 samples are obtained with the ordinary least square for351

both the sparse NARX model. For this step, explicitly N × N2 number of ordinary352

least squares is performed.353

11. Then, the response series are reconstructed again in a recursive manner using the354

coefficients and the polynomial bases.355

12. ε̄ is then computed by both the sparse NARX models for the N samples.356

13. ε̄ for both the sparse NARX models is found below the threshold value. Hence, the357

Model 2 of Table 3 is chosen as the best sparse NARX model (according to Remark 3)358

and the predicted mean error for the N = 25 samples is found as ε̄ = 1.68× 10−7.359

14. The coefficient vector ϕi (Ξ) ∈ RN×1; i = 1, . . . , 8 corresponding to each of the polyno-360

mials are uncertain. These 8 coefficient vectors are considered as the uncertain response361

quantities for the Kriging model. Hence, the unknown parameters of the Kriging model362

β̂, σ̂2
Z and θk are computed by the MLE for all the 8 NARX coefficients separately.363

Consequently, 8 Kriging models are calibrated for converting the model stochastic.364

15. The same 3×104 MCS samples are used here for the prediction by the surrogate model.365

16. The 8 NARX coefficient vectors for the 3 × 104 samples are then predicted using the366

8 calibrated Kriging models by BLUP.367

17. Further, the predicted coefficients and the selected polynomials are used to predict the368

response series auto-regressively for the 3× 104 MCS samples.369
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The same N = 25 LHS samples are also utilized for uncertainty quantification using370

the sparse PCE-NARX (Mai et al. 2016) model. Here, the sparse adaptive PCE model371

is constructed using the UQLab module (Marelli and Sudret 2018). All the parameters372

of the sparse PCE model are taken similar to (Mai et al. 2016) for the present com-373

putation. Therefore, the maximum interaction is chosen as 2 and the q-norm is taken374

as 1 with the degree of the polynomials varying between 1 and 20 (Marelli and Sudret375

2018; Mai et al. 2016). However, the predicted response is not converged using the sparse376

PCE-NARX model with the same number of samples. For that reason, the number of377

samples for the sparse PCE-NARX model is increased to N = 35 and the time depen-378

dent responses are predicted with the sparse PCE-NARX model. Here, the final sparse379

NARX model is found having M1 = 9 terms in the NARX polynomial basis which are380 {
y (t−∆t) , y (t− 2∆t) , y2 (t−∆t) , y3 (t−∆t) , y3 (t− 2∆t) , x (t) , x (t− 2∆t) , x (t) y (t−∆t) ,381

x (t− 2∆t) y2 (t− 2∆t)
}

.382

To reduce further the computational cost, another study has been performed using less383

number of initial samples with N = 21 (for sparse KNARX). In this case, 3 samples are384

retained initially based on the criterion of threshold value of the response series and the 3385

full NARX models are formulated using the basis function as mentioned in Equation 24.386

Further, the sparse NARX models are found by applying the LARS algorithm and all the387

three models are found as the unique sparse NARX models. Therefore, the coefficients for388

the N = 21 samples are found by the ordinary least square method and then, all the 21389

response series are reconstructed using the coefficients of the sparse NARX models. The390

finally selected sparse NARX model is the Model 1 of Table 3 and the predicted mean error391

of the selected sparse NARX model is found as ε̄ = 1.80× 10−7 for the 21 samples. Further,392

the coefficients corresponding to the sparse NARX polynomial bases are modelled using the393

Kriging surrogate model. On the contrary, the sparse PCE-NARX model is not able to394

predict the response with less samples.395

The time varying stochastic response characteristics are predicted by the time dependent396
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mean and standard deviation which are plotted in Figure 3. The figure clearly depicts the397

efficiency (initial number of sample points N) and the accuracy of the sparse KNARX model398

over the Kriging model. The sprase KNARX has predicted better results with fewer number399

of model evaluations (N = 21) and the sparse PCE-NARX model is incapable to predict a400

result even using N = 25 samples. To illustrate the accuracy of the sparse KNARX, the401

instantaneous response characteristics are also plotted. The scatter diagrams and the PDFs402

of the predicted response are plotted in Figure 4 at three different time instance (10 s, 20 s403

and 30 s). The accuracy metrics of the instantaneous response characteristics are listed in404

Table 4, they clearly suggest that the sparse KNARX is highly efficient as compared to the405

Kriging model. The accuracy of the sparse KNARX model is also comparatively higher using406

less model evaluations than the sparse PCE-NARX model.407

The stochastic absolute maximum displacement max (|y (t)|), plotted in Figure 5, ulti-408

mately measures the safety corridor for the dynamical system. It is seen clearly that the409

sparse KNARX outperforms the Kriging and the sparse PCE-NARX with very less num-410

ber of sample points in predicting the PDF of max (|y (t)|), and the accuracy of the sparse411

KNARX is given by the R2 value in Table 5 which is very close to 1.0 by N = 25.412

Further, the accuracy of the overall model is computed by the mean error (Equation 17)413

for the predicted responses and the error for the predicted max (|y (t)|). The efficiency of414

the sparse KNARX has already been shown by the initial number of sample points. An415

accurate result is predicted by the sparse KNARX even with much less number of model416

evaluations (N = 21) as compared to the other methods. The efficiency of the sparse417

KNARX is also measured by the number of surrogate model calibrations (nK) for a method418

and by the CPU time. All the accuracy and the efficiency measurement metrics are reported419

in Table 5. Table 5 is suggesting that the sparse KNARX model outperforms the Kriging420

and the sparse PCE-NARX in accuracy and efficiency. It is noticeable that the CPU time421

is lower with higher value of N for the sparse KNARX model due to less number of Kriging422

model calibration.423
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Bouc-Wen oscillator424

A non-linear Bouc-Wen oscillator (Bouc 1967; Wen 1976) is investigated in this example.425

The governing differential equation for the Bouc-Wen oscillator is given by:426

ÿ (t) + 2ζωẏ (t) + ω2 [ρy (t) + (1− ρ)w (t)] = −A sin (ωxt)

ẇ (t) = γẏ (t)− α |ẏ (t)| |w (t)|n−1w (t)− βẏ (t) |w (t)|n
(25)

where, ζ and ω are the damping ratio and the natural frequency of the oscillator respectively.427

ρ = 0, γ = 1, β = 0 and n = 1 are considered for this problem. The excitation of the oscillator428

is considered as x (t) = A sin (ωxt) and w (t) is the hysteric displacement as given in (Wen429

1976). The initial conditions at rest are y (0) = 0, ẏ (0) = 0 and w (0) = 0. Similar to430

(Mai and Sudret 2017), 5 uncertain parameters are considered for the oscillator, which are431

Ξ = {ζ, ω, α,A, ωx}. The type of distributions for all the uncertain parameters are given in432

Table 6.433

The stochastic response is calculated for the oscillator in the time domain t ∈ [0 s, 30 s]434

with a time-step of ∆t = 0.005 s. As it has already been illustrated through the previous435

example, Kriging is unable to predict the stochastic response behavior for the non-linear436

stochastic duffing oscillator even with higher samples than the sparse KNARX. Therefore,437

Kriging has not been utilized from now onward. Similar to the previous example, the sparse438

KNARX model has been constructed with two different sizes of sample points N = 40 and439

N = 10. A different type of basis function has been considered for the Bouc-Wen oscillator440

according to (Mai et al. 2016), which is given by:441

ψi [z (t)] =
{
xli(t− nxi∆t) |ẏ (t−∆t)|mi , ẏli(t− nyi∆t) |ẏ (t−∆t)|mi

}
(26)

In Equation 26, the basis function relies on the excitation and the velocity of the oscillator.442

Thus, the velocity is computed by the sparse KNARX model and further, the displacement of443

the system is obtained through numerical integration by utilizing the MATLAB solver ode45.444

Due to the hysteric displacement component, the bases are computed by two expressions as445
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given in Equation 26 which has already been considered in (Mai et al. 2016). l ∈ {0, 1}446

and m ∈ {0, 1} are considered for the oscillator as single degree is noticed for the excitation447

and the velocity in Equation 25. nxm = nym = 4 is considered as the problem can be448

appraised as 2-DOF system due to an extra hysteric displacement part i.e. nx ∈ {0, . . . , 4}449

and ny ∈ {1, . . . , 4}. A total 21 number of terms are found in the full NARX polynomial450

basis matrix by utilizing Equation 26 and imposing all the mentioned conditions.451

A threshold similar to the previous example was employed to detect the highly non-452

linear samples. The threshold value for the response of the Bouc-Wen oscillator is cho-453

sen as max (|ẏ (t)|) > 0.3 m s−1. The threshold value reduces the number of samples from454

N = 40 to N1 = 3 which means only 3 full NARX models are required. Thus, 3 full455

NARX models are formulated utilizing the basis function of Equation 26 and further the456

LARS algorithm has been employed to make the full NARX models sparse. All the three457

sparse NARX models are found unique in this step. Therefore, the coefficients for all the 40458

initial samples are computed by the ordinary least square method for the 3 sparse NARX459

models and the mean errors (Equation 17) are predicted by computing the time series in a460

recursive manner. The finally selected sparse NARX model produces a mean error of ε̄ =461

1.10×10−5 for the 40 samples and contains 8 terms in the polynomial basis matrix which are462 {
|ẏ (t−∆t)| , x (t) , x (t− 4∆t) , x (t− 4∆t) |ẏ (t−∆t)| , ẏ (t−∆t) , ẏ (t− 4∆t) , ẏ (t−∆t) |ẏ (t−∆t)| ,463

ẏ (t− 4∆t) |ẏ (t−∆t)|
}

.464

A similar procedure is adopted by substantially reducing the initial number of sample465

points to N = 10. 4 samples are found mostly non-linear based on the previous threshold466

value. Out of the 4 full NARX models, 2 are found as unique sparse NARX models after467

applying the LARS for detecting the most important terms. Therefore, one sparse NARX468

model is selected based on the predicted mean error from both sparse NARX models. The469

final sparse NARX model is found to have the same terms in the polynomial basis as the470

previous one with N = 40.471

The stochastic responses are also predicted here by the sparse PCE-NARX model (Mai472
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et al. 2016) (the sparse PCE model is constructed here with the same conditions as the473

previous example). However, the sparse PCE-NARX is unable to predict the stochastic474

response behavior with N = 40 number of model evaluations for the Bouc-Wen oscillator.475

For that reason, the number of model evaluations is increased to N = 50 and the stochastic476

responses are predicted with the same M1 = 8 terms in the sparse NARX model as in the477

sparse KNARX model with N = 40.478

This study aims at quantifying the uncertainty associated with the response quantity.479

The uncertain response characteristics are predicted for the displacement and the velocity480

of the Bouc-Wen oscillator. The time dependent mean and the standard deviation of y (t)481

and ẏ (t) are shown in Figure 6 and Figure 7 respectively. The figures show that both the482

statistical moments predicted by the sparse KNARX are following the MCS results with483

utmost accuracy. However, the accuracies of the statistical moments are deteriorating from484

the initial time-steps using the sparse PCE-NARX model even with more samples. The485

scatter diagrams and the PDFs at three different time instances (10 s, 20 s and 30 s) are also486

plotted in Figure 8 and Figure 9 for the displacement and the velocity respectively. It is487

seen from all the figures that the sparse KNARX performs well in all instances with very few488

samples. The error metrics for all the instantaneous displacements and velocities are given489

in Table 7. An excellent accuracy in terms of error (ε) and R2 value is noticed for all the490

time instances by the sparse KNARX model.491

For the prediction of the safety corridor under uncertainty, the scatter plots and the PDFs492

of the maximum absolute displacement and velocity are plotted in Figure 10 and Figure 11493

respectively. The worst prediction is noticed for the PDFs by the sparse PCE-NARX model,494

whereas an excellent accuracy is observed in both the cases for the predicted maximum re-495

sponses by the sparse KNARX model. These plots, which represent the uncertain maximum496

response behavior, can be utilized to measure the safety margin of the system.497

To observe the accuracy of the surrogate models, the mean of the displacement and498

the velocity are plotted in state space by the MCS, the sparse PCE-NARX and the sparse499
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KNARX in Figure 12. It is evident from the figure that the accuracy in predicting the state500

space behavior of the response is greatly achieved even using much less number of samples501

(N = 10) by the sparse KNARX model whereas the sparse PCE-NARX predicted result is502

the worst even with more samples. Similar to the previous example, the accuracy and the effi-503

ciency measurement metrics are given in Table 8. The table is showing clearly that the sparse504

KNARX has predicted results with higher accuracy by minimum computational cost. The505

efficiency of the proposed sparse KNARX method is also observed over the recently proposed506

method time warping PCE (Mai and Sudret 2017) which required N = 100 (>> N = 10)507

samples to predict the stochastic response behavior for the same example.508

A 2-DOF dynamical system509

Finally, a 2-DOF dynamical system (Mai et al. 2016) has been considered for the appli-510

cability of the proposed sparse KNARX model. The dynamical system is shown in Figure 13511

and the governing differential equation of the problem is:512

msÿ1 (t) = −ks[y1 (t)− y2 (t)]3 − c [ẏ1 (t)− ẏ2 (t)]

muÿ2 (t) = ks[y1 (t)− y2 (t)]3 + c [ẏ1 (t)− ẏ2 (t)] + ku [x (t)− y2 (t)]
(27)

where ms is the sprung mass which is connected with the mass mu by a non-linear spring513

with stiffness ks and a damper with damping coefficient c. ku is a linear spring attached to514

the ground having a sinusoidal displacement function x (t) = A sin (ωxt).515

Similar to (Mai et al. 2016), all the parameters of the system are considered uncertain516

i.e. Ξ = {ks, ku,ms,mu, c, A, ωx}. The mean and the standard deviation of all the uncertain517

parameters are given in Table 9.518

The main aim of this example is to predict the uncertain response y1 (t) of mass ms which519

is attached with the non-linear spring. This system has been solved by the sparse KNARX520

model with two different number of sample points (N = 50 and N = 20). As it has already521

been seen from the previous two examples that the sparse PCE-NARX model is unable to522

predict the stochastic response behavior of the dynamical systems properly, the sparse PCE-523
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NARX model is not utilized for this problem. It should be noted that the problem has been524

solved in the time domain t ∈ [0 s, 30 s] with a time-step of ∆t = 0.01 s by ode45. The initial525

conditions for the system at rest (t = 0 s) are given by:526

y1 (0) = 0

ẏ1 (0) = 0

y2 (0) = 0

ẏ2 (0) = 0

(28)

For the construction of the NARX model, the NARX basis function is chosen similar to527

the first example. The NARX basis function for this problem is given by:528

ψi [z (t)] = xli (t− nxi∆t) y
mi
1 (t− nyi∆t) (29)

In Equation 29, l ∈ {0, 1} and m ∈ {0, 1, 2, 3} with li +mi ≤ 3 are chosen due to cubic non-529

linearity of the system. nx ∈ {0, 1, . . . , 4}, ny ∈ {1, . . . , 4} are chosen because the system530

is having 2-DOF. The full NARX model is constructed with this NARX basis function531

which has M = 58 terms. Initially, after investigating the response versus restoring force,532

a threshold criterion of responses has been decided as max (|y1 (t)|) > 1.2 m which reduces533

the number of samples to N1 = 10. Consequently, only 10 number of full NARX models534

are constructed by using the basis function as mentioned in Equation 29. The sparsity is535

introduced in this step by using the LARS algorithm on the 10 full NARX models to get536

the unique sparse NARX models which further reduces the number of unique sparse NARX537

models to N2 = 5. Thus, 5 unique sparse models are used to get the coefficients of the sparse538

NARX models by ordinary least square for N = 50 samples. Finally, the mean error for each539

of the sparse NARX models is computed using Equation 17 and the finally selected sparse540

NARX model has mean error of ε̄ = 2.95× 10−4 with 5 terms in the NARX polynomial out541

of 58 which are {y1 (t−∆t) , y1 (t− 4∆t) , y31 (t−∆t) , x (t− 4∆t) , x (t− 4∆t) y21 (t− 4∆t)}.542

Therefore, only 5 number of Kriging models are required to calibrate for converting the sparse543
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NARX model stochastic which is highly efficient.544

The same example has also been solved by reducing the initial number of sample points545

with N = 20. For this case, initially, 3 samples are selected as the measure of non-linearity546

and 3 full NARX models are constructed using the basis function as mentioned in Equa-547

tion 29. Further, all the 3 NARX models are found unique sparse NARX model utilizing548

the LARS. The predicted mean error for the 20 samples using the finally selected sparse549

NARX model was ε̄ = 1.85 × 10−6 with 5 terms in the polynomial. Here, the 5 terms550

are {y1 (t−∆t) , y1 (t− 4∆t) , x (t) , x (t− 4∆t) , x (t− 4∆t) y21 (t− 4∆t)}. The same num-551

ber of Kriging models are calibrated as the previous case to make the sparse NARX model552

stochastic.553

The time dependent mean and standard deviation of the displacement (y1) and velocity554

(ẏ1) are predicted for this problem. The velocities are predicted by numerical differentiation555

using the Newton’s central difference scheme. The time dependent statistical characteristics556

of displacement and velocity are plotted in Figure 14 and Figure 15 respectively. It is evident557

from both the figures that the sparse KNARX performs very well even with very few sample558

points.559

Similar to the previous examples, the instantaneous predicted displacements by the sparse560

KNARX are compared with the MCS results at three different time instances. The instan-561

taneous scatter plots and the PDFs are plotted in Figure 16. The error of the predicted562

responses at instantaneous time instances along with the R2 values are given in Table 10.563

The error for a particular time instance
(
εy(t)

)
is computed using Equation 15. The results564

show a high accuracy of the sparse KNARX in predicting the instantaneous response char-565

acteristics. The accuracy and the efficiency are also noticed for the sparse KNARX at 30 s566

(N = 50, εy1(t) = 2.3 × 10−3) as compared to the recently proposed sparse PCE-NARX567

model (N = 100, εy1(t) = 4.21 × 10−3) (Mai et al. 2016). The accuracy of the stochastic568

response behavior has also been checked by plotting the absolute maximum displacement569

and the velocity in Figure 17 and Figure 18 respectively. A very accurate result is noticed570
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using sample points N = 50.571

The mean state space behavior of the predicted responses are also plotted in Figure 19.572

It is noticeable that the mean state space behavior is predicted well even with low number of573

sample points (N = 20) by the sparse KNARX. The global mean error of the predicted time574

series is measured by using Equation 17. Along with this, the accuracy in predicting the575

maximum absolute displacement using different sample points are calculated using Equa-576

tion 15 and R2 value. All these results along with the efficiency measurement metrics of the577

proposed sparse KNARX are listed in Table 11. Here, the efficiency of the sparse KNARX578

model has not been emphasized by the number of surrogate model calibration (nK), instead579

it is greatly affected by the initial number of model evaluations (N). All the results show580

sparse KNARX perform very well in all instances.581

CONCLUSION582

A novel method has been proposed in the present paper for uncertainty propagation583

and quantification of nonlinear stochastic dynamical systems in the time domain. The well584

known NARX model (a nonlinear system identification technique) has been coupled with585

Kriging (a high fidelity surrogate model) to propose the method referred as KNARX. Further,586

the sparsity in the NARX model has been introduced by utilizing the LARS algorithm to587

formulate the sparse KNARX model.588

The proposed sparse KNARX model has been used for uncertainty quantification on three589

typical nonlinear stochastic dynamical systems: a 1-DOF duffing oscillator, a Bouc-Wen590

oscillator and a 2-DOF dynamical system. Time dependent mean and standard deviation591

are predicted for all the examples. Along with this, PDFs are plotted for instantaneous592

response characteristics at some time instances and for maximum absolute response. All593

the results have been compared with full scale MCS. The first example is also solved with594

Kriging, whereas the first two examples are computed by the sparse PCE-NARX model (Mai595

et al. 2016). The accuracy has been measured by a global mean error of the predicted model596

whereas the efficiency has been measured by number of initial sample points, number of597
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surrogate model evaluations and CPU time. The results for the first example have shown598

that sparse KNARX outperforms Kriging in all cases even with a very limited number of599

initial samples. Consequently, Kriging has not been utilized for the last two examples. On600

the other hand, the sparse PCE-NARX model predicted acceptable results by using a higher601

number of sample points than the sparse KNARX for the first two examples. Along with602

this, the efficiency of the sparse KNARX model is higher as compared to the sparse PCE-603

NARX model considering the CPU time. All the results predicted by the sparse KNARX are604

in excellent agreement with the full scale MCS results in all instances. The introduction of605

sparsity has reduced substantially the number of Kriging model evaluations which ultimately606

enhanced the efficiency of the sparse KNARX model. All the examples have also been solved607

by reducing number of model evaluations to check the accuracy of the fitted model with less608

sample points. All the results have been predicted very close to the MCS results even with609

very few model evaluations for all the examples. This study suggests that reducing the610

number of model evaluation does not affect the accuracy too much due to the fact that the611

major non-linearity of the system has been captured by the sparse NARX model.612

In conclusion, the proposed sparse KNARX outperforms the state-of-the-art methods613

(Mai and Sudret 2017; Mai et al. 2016) in predicting the time dependent stochastic response614

characteristics for nonlinear dynamical systems. The accuracy and the efficiency of the615

proposed method has also been illustrated through several examples. The proposed sparse616

KNARX model is limited to use for the nonlinear dynamical systems having parametric617

uncertainties only. Therefore, this model is not useful for the dynamical systems with white618

noise excitation for the prediction of time dependent statistical responses.619

DATA AVAILABILITY620

Some or all data, models, or code generated or used during the study are available from621

the corresponding author by request.622

• NARX model623
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TABLE 1: Algorithm for the sparse KNARX model

1. Declare the d number of uncertain variables with the type of distribution.
2. Generate N number of sample points for the uncertain variables.
3. Draw the restoring force versus response curve to decide the threshold value for capturing
nonlinear response series.
4. Get the response of the dynamical system upto time T for each of the N samples.
5. Select the samples and the response series having high order non-linearity using some
threshold (according to step 3) on the response series. This step selectsN1 samples (N1 < N).
6. Decide the maximum time lags nxm and nym for the excitation and response quantity,
respectively. Decide the type of NARX polynomial basis function along with the maximum
degrees also.
7. For each of the N1 samples, build the NARX model (see Equation 10 and 11) which has
M number of terms.
8. Select the most important terms for each of the N1 NARX models using LARS (Efron
et al. 2004).
9. Select the N2 different sparse NARX models (see Remark 2) having similar terms in the
NARX polynomial basis (N2 ≤ N1).
10. Perform ordinary least square on N samples for the N2 sparse NARX models to get the
NARX coefficients of all the response series.
11. Reconstruct the N response series using the coefficients computed in step 10 by all the
N2 sparse NARX models.
12. Predict the mean error ε̄ for all theN2 number of sparse NARX models using Equation 17.
13. Select the most appropriate sparse NARX model having ε̄ lower than some threshold
value (1× 10−3 in the present paper) and less number of terms (M1) in the polynomial.
14. Calibrate M1 < M number of Kriging models using the NARX coefficients as the re-
sponse parameter and the sample points generated in step 2 as the uncertain input quantities.
15. Generate a large number of new untried samples for the prediction.
16. Predict the NARX coefficients for the untried samples using Kriging models generated
in step 14.
17. Predict the response series, in a auto-regressive way (see Equation 21), at the untried
samples generated in step 15 using the coefficients of step 16 and the M1 number of NARX
polynomial bases selected in step 13.
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TABLE 2: Uncertain parameters for the duffing oscillator

Variable Distribution type Mean Standard deviation Unit
ω Uniform 2π π√

3
rad s−1

ζ Uniform 0.03 0.015√
3

−
ε Uniform 100 10√

3
−

A Normal 0.6 0.06 N
ωx Normal 1 0.1 rad s−1
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TABLE 3: The polynomials selected by the LARS algorithm for the duffing oscillator

Model 1 (M1 = 9) Model 2 (M1 = 8)
x (t) x (t)

x (t− 2∆t) x (t− 2∆t)
y (t−∆t) y (t−∆t)
y (t− 2∆t) y (t− 2∆t)
y2 (t−∆t) y2 (t−∆t)
y3 (t−∆t) y3 (t−∆t)
y3 (t− 2∆t) y3 (t− 2∆t)

x (t− 2∆t) y2 (t− 2∆t) x (t− 2∆t) y2 (t− 2∆t)
x (t− 2∆t) y (t− 2∆t)
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TABLE 4: Accuracy of the surrogate models in predicting instantaneous response charac-
teristics for the duffing oscillator

Method N Time instance εy(t) R2

Kriging 50

t = 10 s

337.8× 10−3 0.6622
Sparse PCE-NARX 35 9.6× 10−3 0.9904

Sparse KNARX 21 8.8× 10−3 0.9912
Sparse KNARX 25 4.6× 10−3 0.9954

Kriging 50

t = 20 s

926.9× 10−3 0.0731
Sparse PCE-NARX 35 4.4× 10−3 0.9956

Sparse KNARX 21 5.4× 10−3 0.9946
Sparse KNARX 25 3.1× 10−3 0.9969

Kriging 50

t = 30 s

1701.1× 10−3 −
Sparse PCE-NARX 35 2.3× 10−3 0.9977

Sparse KNARX 21 3.0× 10−3 0.9970
Sparse KNARX 25 2.0× 10−3 0.9980
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TABLE 5: Comparison of accuracy and efficiency of the surrogate models for the duffing
oscillator

Accuracy Efficiency
Method ε̄ εmax(|y(t)|) R2

max(|y(t)|) nK CPU time

Kriging (N = 50) 1.4971 2100.7× 10−3 − 3001 530.95 s
Sparse PCE-NARX (N = 35) 1.1× 10−3 2.9× 10−3 0.9971 9 30.55 s

Sparse KNARX (N = 21) 1.2× 10−3 1.4× 10−3 0.9986 9 26.13 s
Sparse KNARX (N = 25) 5.89× 10−4 1.0× 10−3 0.9990 8 24.63 s

MCS − − − − 705.43 s
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TABLE 6: Uncertain parameters for the Bouc-Wen oscillator

Variable Distribution type Mean Standard deviation Unit
ζ Uniform 0.02 0.002 −
ω Uniform 2π 0.2π rad s−1

α Uniform 50 5 −
A Uniform 1 0.1 N
ωx Uniform π 0.1π rad s−1

40



TABLE 7: Accuracy of the surrogate models in predicting the instantaneous response char-
acteristics for the Bouc-Wen oscillator

Displacement Velocity
Method N Time instance ε R2 ε R2

Sparse PCE-NARX 50
t = 10 s

660.0× 10−3 0.3370 44.0× 10−3 0.9557
Sparse KNARX 10 6.8× 10−3 0.9932 0.9× 10−3 0.9991
Sparse KNARX 40 3.8× 10−3 0.9962 0.5× 10−3 0.9995

Sparse PCE-NARX 50
t = 20 s

880.0× 10−3 0.1224 48.0× 10−3 0.9519
Sparse KNARX 10 8.6× 10−3 0.9914 1.0× 10−3 0.9990
Sparse KNARX 40 5.6× 10−3 0.9944 0.5× 10−3 0.9995

Sparse PCE-NARX 50
t = 30 s

1140.0× 10−3 − 50.0× 10−3 0.9503
Sparse KNARX 10 10.8× 10−3 0.9892 1.1× 10−3 0.9989
Sparse KNARX 40 7.8× 10−3 0.9922 0.5× 10−3 0.9995
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TABLE 8: Accuracy and efficiency of the surrogate models in computing ẏ (t) for the Bouc-
Wen oscillator

Accuracy Efficiency
Method ε̄ εmax(|y(t)|) R2

max(|y(t)|) nK CPU time

Sparse PCE-NARX (N = 50) 9.3× 10−2 2.6× 10−1 0.7414 8 27.40 s
Sparse KNARX (N = 10) 1.9× 10−3 4.6× 10−3 0.9954 8 19.12 s
Sparse KNARX (N = 40) 8.0× 10−4 1.9× 10−3 0.9981 8 21.72 s

MCS − − − − 1223.17 s
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TABLE 9: Uncertain parameters for the 2-DOF dynamical system

Variable Distribution type Mean Standard deviation Unit
ks Normal 2000 200 N/m3

ku Normal 2000 200 N m−1

ms Normal 20 2 kg
mu Normal 40 4 kg
c Normal 600 60 N s m−1

A Uniform 0.1 0.01√
3

m

ωx Uniform 2π 0.2π√
3

rad s−1
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TABLE 10: Accuracy of sparse KNARX in predicting instantaneous response characteristics
for the 2-DOF dynamical system

N Time instance εy1(t) R2

20
t = 10 s

11.6× 10−3 0.9884
50 1.1× 10−3 0.9989
20

t = 20 s
16.2× 10−3 0.9838

50 1.9× 10−3 0.9981
20

t = 30 s
16.2× 10−3 0.9838

50 2.3× 10−3 0.9977
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TABLE 11: Accuracy and efficiency of sparse KNARX in computing y1 (t) for the 2-DOF
dynamical system

Accuracy Efficiency
Method ε̄ εmax(|y1(t)|) R2

max(|y1(t)|) nK CPU time

Sparse KNARX (N = 20) 8.9× 10−3 15.4× 10−3 0.9846 5 7.76 s
Sparse KNARX (N = 50) 1.2× 10−3 1.7× 10−3 0.9983 5 22.62 s

MCS − − − − 466.34 s
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FIG. 1: Displacement versus restoring force plot for the duffing oscillator
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FIG. 2: Displacement versus restoring force plots of two different realizations for the duffing
oscillator; (a) 13-th sample, (b) 25-th sample
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FIG. 3: Statistical response characteristics of the duffing oscillator; (a) Mean, (b) Standard
deviation
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FIG. 4: Comparison of instantaneous response characteristics for the duffing oscillator at
different time instances; (a) Scatter plot at t = 10 s, (b) PDF at t = 10 s, (c) Scatter plot at
t = 20 s, (d) PDF at t = 20 s, (e) Scatter plot at t = 30 s, (f) PDF at t = 30 s
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FIG. 5: Comparison of predicted max (|y (t)|) for the duffing oscillator; (a) Scatter plot, (b)
PDF
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FIG. 6: Statistical response characteristics for the displacement of the Bouc-Wen oscillator;
(a) Mean, (b) Standard deviation
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FIG. 7: Statistical response characteristics for the velocity of the Bouc-Wen oscillator; (a)
Mean, (b) Standard deviation
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FIG. 8: Prediction of instantaneous displacement characteristics for the Bouc-Wen oscillator
at different time instances; (a) Scatter plot at t = 10 s, (b) PDF at t = 10 s, (c) Scatter plot
at t = 20 s, (d) PDF at t = 20 s, (e) Scatter plot at t = 30 s, (f) PDF at t = 30 s
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FIG. 9: Prediction of instantaneous velocity characteristics for the Bouc-Wen oscillator at
different time instances; (a) Scatter plot at t = 10 s, (b) PDF at t = 10 s, (c) Scatter plot at
t = 20 s, (d) PDF at t = 20 s, (e) Scatter plot at t = 30 s, (f) PDF at t = 30 s
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FIG. 10: Comparison of predicted max (|y (t)|) for the Bouc-Wen oscillator; (a) Scatter plot,
(b) PDF
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FIG. 11: Comparison of predicted max (|ẏ (t)|) for Bouc-Wen oscillator; (a) Scatter plot, (b)
PDF
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FIG. 12: Mean trajectory of y (t) and ẏ (t) for the Bouc-Wen oscillator; (a) MCS, (b) Sparse
PCE-NARX (N = 50), (c) Sparse KNARX (N = 10), (d) Sparse KNARX (N = 40)
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FIG. 13: A 2-DOF dynamical system

60



0 5 10 15 20 25 30

Time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

M
ea

n 
of

 y
1

MCS (N=1 104)
Sparse KNARX (N=20)
Sparse KNARX (N=50)

(a)

0 5 10 15 20 25 30

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 y

1

MCS (N=1 104)
Sparse KNARX (N=20)
Sparse KNARX (N=50)

(b)

FIG. 14: Statistical response characteristics for displacement (y1 (t)) of the 2-DOF dynamical
system; (a) Mean, (b) Standard deviation
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FIG. 15: Statistical response characteristics for velocity (ẏ1 (t)) of the 2-DOF dynamical
system; (a) Mean, (b) Standard deviation
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FIG. 16: Prediction of instantaneous displacement characteristics for 2-DOF dynamical
system at different time instances; (a) Scatter plot at t = 10 s, (b) PDF at t = 10 s, (c)
Scatter plot at t = 20 s, (d) PDF at t = 20 s, (e) Scatter plot at t = 30 s, (f) PDF at t = 30 s
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FIG. 17: Comparison of predicted max (|y1 (t)|) for the 2-DOF dynamical system; (a) Scatter
plot, (b) PDF
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FIG. 18: Comparison of predicted max (|ẏ1 (t)|) for the 2-DOF dynamical system; (a) Scatter
plot, (b) PDF
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FIG. 19: Mean trajectory of y1 (t) and ẏ1 (t) for the 2-DOF dynamical system; (a) MCS, (b)
Sparse KNARX (N = 20), (c) Sparse KNARX (N = 50)
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