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Introduction

Today's latest large airliners in service, e.g., the A-380 and A-350, have over 6 millions of parts and have 150 000 design changes per year [START_REF] Ciampa | The agile paradigm : the next generation of collaborative mdo[END_REF]. They show both outstanding performance and a reduced environmental impact. This is the result of a continuous optimization of the air-frame design and a progressive mastering by engineers of the interactions between systems and disciplines on the same configuration [START_REF] Zhang | Contributions to Variable Fidelity MDO Framework for Collaborative and Integrated Aircraft Design[END_REF]. Aircraft design nowadays is a mature process based on an integrated approach, to handle the complexity of the product. However, given the level of maturity of the classical "tube and wing" configuration, evolving business models for developing new aircraft only by improving upon existing practices, has the consequence that engineers have small margins for improvements and future targets will be difficult to attain. Therefore, research centers and industry need to work together in the exploration of new integrated design concepts that can provide a disruptive approach and offer in this manner various possibilities for safer and greener vehicles. The current design of aircraft is an extremely interdisciplinary activity incorporating simultaneous consideration of complex, tightly coupled systems, functions and requirements. The design task is to achieve an optimal integration of all components into an efficient, robust and reliable aircraft with high performance that can be manufactured with low technical and financial risks, and has an affordable life-cycle cost.

To help achieve this goal, today's aeronautics market requires a manufacturer to develop more complex products by exploiting all opportunities provided, e.g., high fidelity multidisciplinary tools and frameworks and powerful High Performance Computing (HPC) capabilities [START_REF] Abbas-Bayoumi | An industrial view on numerical simulation for aircraft aerodynamic design[END_REF]. Over the past 25 years the aeronautical industry has been transforming its operations to what can be called a systemoriented approach, instead of a functional-oriented approach. The primary focus becomes one of integration of all disciplines. To help meet the challenge, the the core activities in the new paradigm, against the traditional analysis activities considered as "design-verification activities", now become to numerically "flighttest" a virtual aircraft with all its multi-disciplinary interactions in a computer environment as given by its different databases (aerodynamic, loads, stability and control) [START_REF] Ciampa | The agile paradigm : the next generation of collaborative mdo[END_REF][START_REF] Zhang | Contributions to Variable Fidelity MDO Framework for Collaborative and Integrated Aircraft Design[END_REF][START_REF] Abbas-Bayoumi | An industrial view on numerical simulation for aircraft aerodynamic design[END_REF]. This new development paradigm has been identified in the ACARE Strategic Research and Innovation Agenda (SRIA) [START_REF]The strategic research and innovation agenda (sria)[END_REF] as a major challenge to make the design of a complete virtual aircraft up to certification a reality. Several outstanding EU Framework RTD projects have addressed the notion of developing conceptual design methods with advanced close coupling of the aerodynamics, structures and flight control disciplines upon a series of evolutionary MDO systems. The FP6 STReP SimSAC (Simulating Aircraft Stability And Control Characteristics for Use in Conceptual Design) [START_REF]The simsac project homepage[END_REF][START_REF] Rizzi | CEASIOM Validation and Its Use in Design -Status of SimSAC Project[END_REF], VI-VACE, CRESCENDO [START_REF] Baalbergen | Collaborative Multi-Partner Modelling & Simulation Processes to Improve Aeronautical Product Design[END_REF][START_REF] Coleman | The Bahavioural Digital Aircraft Vision for Simulation and Collaborative Product Development[END_REF] and TOICA are some of those projects at both research and industry levels. Keep in mind, that current engineering analysis methods in designing complex systems rely very heavily on the knowledge and intuition of the individual designer. There still exist information gaps between the specialist component designs and the system level [START_REF] Zhang | Contributions to Variable Fidelity MDO Framework for Collaborative and Integrated Aircraft Design[END_REF]. The challenge is to bridge the gaps and mitigate their effects so that the design process becomes smoother and more efficient.

The way to solve this is to establish a robust, collaborative and integrated framework with all disciplines involved to carry out real MDO. Ciampa and

Nagel [START_REF] Ciampa | The agile paradigm : the next generation of collaborative mdo[END_REF] have identified that major obstacles in the current generation of MDO systems are related to the efforts required to setup complex collaborative frameworks. Up to 60 to 80% of the project time may be necessary to setup such a process. The 3rd generation MDO systems will rely on the integration of expertise in the collaborative optimization and knowledge formalization of processes and disciplinary domains. The EU funded H2020 research project AGILE, Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts [START_REF]AGILE EU project portal[END_REF] builds upon the projects mentioned above. It addresses the challenges by developing a next generation of aircraft MDO processes that target significant reduction in aircraft development costs and time to market. AGILE has formulated a novel design methodology, the so-called "AGILE Paradigm", which accelerates the deployment of collaborative, large-scale design and optimization frameworks.

The "AGILE Paradigm" emphasizes collaboration and integration by building a smooth design and analysis tool chain to carry out MDA (Multi-Disciplinary Analysis) processes. The MDA process shall includes:

(1) the collaboration and integration of the tools, data and outputs from different disciplines;

(2) the collaboration and integration of the analyses from one discipline from different tools of various fidelities. One major discipline -addressed in the paper -concerns the construction of the aerodynamic database for stability and control analysis.

Assessment of aircraft maneuverability and agility at the conceptual design stage brings great challenges in the design process regarding the stability and control analysis over the entire flight envelope. A large look-up table of forces and moments must be constructed by Computational Fluid Dynamics (CFD) while we have to address the computational cost. A useful look-up table for stability and control analysis, the so-called aerodynamic database, needs thousands of entries because of the high dimensionality of the parameter space.

"Brute-force" calculation would be far too costly. But there are ways to reduce the computational time. The first step is to use different CFD methods, from Large-Eddy Simulation via Reynolds-Averaged Navier-Stokes models, down to potential flow models, or even empirical methods from handbooks. Using the simplest method and geometry compatible with the level of accuracy required for each flight state can dramatically reduce the computational cost.

The whole spectrum of computational models is widely used in modern aerospace industry. In order not to lose too much accuracy while saving computational cost, the simplifying assumptions made to solve the standard Navier-Stokes equations should be acceptable for each single entry. For example, for low speed and non-accelerated small angle of attack flight, the in-compressible potential flow models can give acceptable predictions with significant time saving compared with Euler or RANS models.

The second step concerns all the data obtained by the different CFD methods over the entire flight envelope. In the database, dense low-cost and low-fidelity data indicating the trend must be fused with sparse high-cost and high-fidelity data correcting the low-fidelity data values [START_REF] Ghoreyshi | Accelerating the numerical generation of aerodynamic models for flight simulation[END_REF].

The multi-fidelity modeling method is a means to navigate the flight state parameter space and cover the entire flight envelope in an effective way. A procedure is devised to integrate the results from different simulation tools based on different methods and having different complexity levels. Building the multifidelity model involves two main steps:

1. Populate the aerodynamic database over the whole flight envelope by dense low-fidelity data samples;

2. Correct the data using sparse high-fidelity samples.

A method is developed for building a reliable aerodynamic database using low-fidelity data and with a minimum number of high-fidelity samples including automatically chosen new sample points. The term data fusion refers to integrating data from multiple data sources to combine them into a single, comprehensive model [START_REF] Haghighat | Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition[END_REF]. It is a useful technique in many fields. This paper addresses aero-data fusion by using the aerodynamic data-sets obtained from different sources (e.g. CFD tools) to produce an efficient and effective surrogate model with minimum computational cost. The following part of this section will show the tools and mechanisms to be used to establish the collaborative surrogate models within the AGILE framework.

Tools for establishing the collaborative workflow

This section introduces the collaboration tools that were developed and applied and that support the AGILE collaborative surrogate modelling.

Collaborative work language CPACS

During the collaborative and integrated design process, data need to be exchanged. Managing the interconnections is complex and prone to errors.

Adoption of a standardized, data-centric scheme for storage of all data improves consistency and reduces risks of misconceptions and errors in the process. It however requires an initial effort to make interfaces between analysis modules and the data archive. The CPACS (Common Parametric Aircraft Configuration Schema) [START_REF] Böhnke | Towards a collaborative and integrated set of open tools for aircraft design[END_REF][START_REF]CPACS -a common language for aircraft design[END_REF][START_REF] Nagel | Communication in aircraft design: Can we establish a common language?[END_REF] is widely used in the frame of AGILE.

CPACS is an XML-based representation of an aircraft design. In AGILE the aircraft design is contained in a single CPACS file. The analysis tools available from the various partners must read the input from the CPACS file and produce the output in the form of aggregating the data in the updated CPACS file. Making a tool available for sharing in AGILE requires wrapping the tool to map CPACS onto the tool's legacy input and output. The CPACS tools TIGL and TIXI [START_REF] Nagel | Communication in aircraft design: Can we establish a common language?[END_REF] support integration, use and inspection of CPACS information.

RCE

The RCE integration environment and workflow manager [START_REF] Seider | Open source software framework for applications in aeronautics and space[END_REF] implements the sequence of analysis modules and manages the local data exchange and translation as well as logging the process. RCE makes it easy to set up and run a local workflow also using modules in which the engineers are not disciplineexperts. Creating collaborative workflows as collections of local RCE workfows is done via Brics [START_REF] Baalbergen | Streamlining cross-organisation product design in aeronautics[END_REF], which allows to "call" a module or a tool (and so produce results) remotely on "the specialist" computer. The remote specialist receives a request for some calculation or analysis. The input is generally a CPACS file containing all the information required. The new data generated are added to the CPACS file and sent back to the requester.

Brics

The interconnection mechanism available in AGILE is Brics [START_REF] Ciampa | A collaborative architecture supporting agile design of complex aeronautics products[END_REF][START_REF] Baalbergen | Streamlining cross-organisation product design in aeronautics[END_REF], developed by NLR. Brics provides technology for interconnecting PIDO environments and for defining and streamlining workflows that cross organizational borders, while complying with the security constraints and dealing with the security measurements of the collaborating partners. Brics comprises protocols and middleware that facilitate remote execution of sub-processes from within a process, independent of the local PIDO environment (i.e., workflow manager) being used. Brics is based on a "single-task" protocol that arranges the execution and data flow between an orchestrating ("master") process in one organization and a remote ("slave") sub-process in another organization under control of a specialist who is notified to start the sub-processes. To cater for iterations, Brics supports the notion of a "multi-task" protocol, enabling a remote specialist to easily deal with series of similar sub-processes. Brics also supports easy experimentation with different set-ups of collaborative scenarios to support the Design Campaigns and configuration of services involved. Its nonintrusive character facilitates easy integration with existing COTS as well as in-house developed tools and solutions. It enables the AGILE partners to experience collaborative scenarios.

AGILE Collaborative Architecture (CA) steps

Ciampa et.al [START_REF] Ciampa | A collaborative architecture supporting agile design of complex aeronautics products[END_REF] reviewed the whole collaborative architecture used to support AGILE framework, which is also supporting the collaborative data fusion technology. The Collaborative Architecture deployment steps are as follows [START_REF] Ciampa | A collaborative architecture supporting agile design of complex aeronautics products[END_REF]:

1. CPACS compliance for all tools;

2. Process integration by RCE;

3. Provide accessibility by Brics.

All the tools used in CA must be made CPACS compatible, in other words, the integration framework (RCE) must support different fidelity tools per discipline and tools for different disciplines. Zhang [START_REF] Zhang | Aircraft geometry and meshing with common language schema cpacs for variable-fidelity mdo applications[END_REF] shows the study of CPACS compliance for the variable fidelity aerodynamic tools, with one of the applications being data fusion. Within AGILE frameworks CPACS is used as common data format for tools interaction. Usually the workflow (including tools operated by different specialists) is integrated into some workflow environment, such as RCE, with tools callable using Brics.

Figure 1 shows the Brics application from a client workflow and a server workflow, to enable a specialist to respond to a request to run the "tool", and to accomplish remote tool execution. The (input) CPACS file is downloaded (from a server of e.g., a customer) using Brics, and it is sent to the "Tool" operated by a local specialist. After execution, the (output) CPACS file is sent back and uploaded (to the customer who calls for this service) using Brics. Since the data fusion service involves many tools those are not operated by a single site, the communication between the tools is made by Brics calls as illustrated in Fig. 1. The numbered arrows indicated the actions. First, the input files for the remote service are uploaded to the central data server in a neutral domain [START_REF] Ciampa | The agile paradigm : the next generation of collaborative mdo[END_REF]. Next, the remote specialist gets notified (2), who in response may start the service (3). The service first retrieves the input files from the data server (4), runs the tool that implements the service (5), and uploads the output files to the data server [START_REF] Rizzi | CEASIOM Validation and Its Use in Design -Status of SimSAC Project[END_REF]. Finally, the output files are downloaded to the client's side [START_REF] Baalbergen | Collaborative Multi-Partner Modelling & Simulation Processes to Improve Aeronautical Product Design[END_REF], and the client workflow continues. For proof of concept, partners in AGILE have formed teams to apply data fusion as part of RCE workflows via Brics, which will provide data fusion solutions for the whole AGILE MDA system. More details about the AGILE collaborative approach can be found in [START_REF] Ciampa | A collaborative architecture supporting agile design of complex aeronautics products[END_REF][START_REF] Moerland | Collaborative architecture supporting the next generation of MDO within the AGILE paradigm[END_REF][START_REF] Van Gent | Knowledge architecture supporting the next generation of mdo in the AGILE paradigm[END_REF]. 

Surrogate Model Repository

Many surrogate models of various types have been created in the AGILE project, e.g. to support reuse of knowledge and models, efficient optimization and partner collaboration. The question then arises how to manage, share and deploy these models which must be applied with care. Bounds on the allowed input space for the surrogate model need to be clearly specified, e.g. to avoid extrapolation. Furthermore the prediction accuracy of the outputs must be specified, so that the user has a clearer idea of its applicability, quality and limitations. To address these aspects a specific Surrogate Model Repository (SMR) has been developed as part of the AGILE Development Framework.

The SMR is a central broker for registration, storage, deployment and usage of surrogate models so that these may be shared and reused in collaborations in a managed way. SMR development details can be found in [START_REF] Moerland | Collaborative architecture supporting the next generation of MDO within the AGILE paradigm[END_REF][START_REF] Baalbergen | Methods supporting the efficient collaborative design of future aircraft[END_REF].

With respect to the sharing of surrogate models two cases have been considered in the frame of AGILE and are supported by the SMR.

• Full share: Share all of the compiled binary code of a surrogate model (SM)

to support its use by others. In this case the complete SM implementation, e.g., an executable program such as Mixture of Experts (MOE) is uploaded to the SMR with meta-information describing its usage. The SM may be used by downloading its code and running it.

• Partial share: Share only the usage of a SM, others may use the SM 'as a service' while the code remains at the owner's or developer's site. In this case only the meta-information of the SM is uploaded to the repository.

The SMR provides a user interface to directly use this SM by calling the remote service.

In addition to the sharing capabilities, the SMR can export a neutral XML format (i.e., CMDOWS [START_REF] Van Gent | Knowledge architecture supporting the next generation of mdo in the AGILE paradigm[END_REF]) that supports usage of the SM as part of a workflow system without further intervention of the SMR. As such the SMR can interface to other components in the AGILE Development Framework. An illustration of this export facility is described in [START_REF] De Wit | Aircraft rudder optimization -a multi-level and knowledgeenabled approach[END_REF]. The SMR may also function as broker with respect to the creation of surrogate models. The user of the SMR may indicate that a specific surrogate model instead of a high-fidelity model must be used within an analysis. If the desired surrogate model does not exist already, the SMR initiates a surrogate model creation process behind the scenes. The role of the SMR both for sharing and for triggering the creation of surrogate models is depicted in Fig. 2. Section 6.2.2 will describe an example of surrogate model deployment through the SMR, using a surrogate model that was developed with the data fusion service. A partial share is applied: the SM is provided "as a service". This process can be semi-automatic, which is depicted in Figure 3, and facilitated by Brics, a common building block for the realization of collaborative workflows and part of the AGILE development framework [START_REF] Moerland | Collaborative architecture supporting the next generation of MDO within the AGILE paradigm[END_REF]. Figure 3: Depiction of the "under the hood" process for an "as a service" calculation.

Review of the Aero Data Fusion Applications

Using CFD frameworks for aero-table generation and model assessment is not new. In this section the authors will review the work have been done be-310 fore through a number of EU projects for aero-table generation using surrogate models, or aero-data fusion. The similarities and differences compared with the current work (within AGILE framework) will also be discussed.

Zhang [START_REF] Zhang | Variable fidelity methods and surrogate modeling of critical loads on x-31 aircraft[END_REF] presented a method for efficient creation of the aerodynamic database for the X- 

where the aerodynamic variables are α the angle of attack, β the sideslip angle, optimal training set, as described in [START_REF] Lefebvre | Methodological enhancements in MDO process investigated in the AGILE European project[END_REF].

Alt
Evaluation of a surrogate model requires the input x and the corresponding results of the training, e.g. a set of polynomial coefficients, or a look-up table

with the whole flight envelope (flight states, or x), processed in to the function g:

ŷ(x) = g(x, D) (2) 
It is assumed that the evaluation will be made for many (thousands) values of 

x
D k+1 = M (D k , {x, y} k ) (3) 
For the new D, another algorithm S suggests new samples for testing the accuracy requirements:

{x} k+1 = S(D k+1 ). ( 4 
)
Both the M and S algorithms make frequent use of g.

A typical RSM kit contains computer codes for an RSM evaluator g, data fuser algorithm M and sampling algorithm S, plus a proviso (see Section 5.1) to evaluate f . A developed instance, the data fusion process, which is ready to run, and improved on further, will contain g, M , S and the data set D. Fig. 4 shows an example of a module-independent data fusion workflow exchanging data using Brics. It should be noted that exchanging D for each call is impractical in general, due to the size of D. Therefore, in the standard use cases, D is built on one partner's network/machine, and then made available. The f -samples however can easily be exchanged using Brics since the large discretization and solution files (CFD mesh, finite element mesh for CSM) are usually only stored locally. However, for the purpose of tracking possible bugs, etc., the parameters used in mesh generation and simulation should be accessible also "after the fact" to the network. S may involve some proprietary tools which raises IP and access issues, and as D embodies information about a design, it also has distribution and access restrictions. Within AGILE a specific Surrogate Model Repository (SMR) was developed that deals with theses issues, see [START_REF] Baalbergen | Methods supporting the efficient collaborative design of future aircraft[END_REF] and Section 2.2.

Surrogate models description

There are various ways to build surrogate models, the popular ones are for example, polynomial interpolations, the Radial Basis Function (RBF) and Kriging interpolation. In this section it describes two of the mostly used surrogate models in AGILE. Note that, in AGILE framework, the various surrogate models are free to choose to build the CA as long as they follow the steps described in Section 2.1.4.

Kriging and co-kriging

Kriging is a method for scattered data interpolation which sees the data to be predicted as a stationary stochastic field with correction of the predictions depending only on their relative location. The co-kriging process provides a technology for the multi-fidelity results where a great quantity of low-fidelity data is coupled with a small amount of high-fidelity data to enhance the accuracy of a surrogate model. The approximation is obtained by updating the correlation ψ and the correlation matrix Ψ to the co-variance c and co-variance matrix C between the low (cheap) and high-fidelity (expensive) observations. The cokriging estimation ŷ at x * is:

ŷco (x * ) = F(β, x * ) + c T C -1 (y -F) ( 5 
)
Where F is the mean value obtained by the regression model predicted in the same pattern as kriging, by considering both lo-fi and hi-fi samples. If the prediction is made at the ith high-fidelity points, and the lo-fi data have m c design sites, then c is the m c + ith column of C. Equation ( 5) is an interpolator of the hi-fi data just like ordinary kriging, but the lo-fi data will regress in a well defined sense unless it coincides with the expensive observations y e . Details about kriging, co-kriging and Gaussian Process can be found in [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF][START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF].

Mixture of experts

The Mixture of Experts (MOE) is a technique which combines local surrogate models in order to approximate heterogeneous functions (flat and steep regions, first and zero order discontinuities) dividing the problem space into homogeneous regions. In the context of this paper, the mixture of experts techniques is used to mix multi-fidelity models as co-kriging. The main idea of mixture of experts is to provide a clustering of the training basis into regions where the function to be approximated is expected to be continuous or at least more simple. In this specific case, the local experts ŷk dedicated to each cluster k, which are the co-kriging models defined in Eq. ( 5). As explained in [START_REF] Bettebghor | Surrogate modeling approximation using a mixture of experts based on EM joint estimation[END_REF][START_REF] Liem | Surrogate models and mixtures of experts in aerodynamic performance prediction for mission analysis[END_REF],

the Gaussian mixture model provides a way to create a global model and predict its value at a new point x new of the design space as a recombination of the local models:

ŷ(x new ) = K k=1 P(κ = k|x = x new ) ŷk (x new ) (6) 
In this equation ( 6), K is the number of clusters, P(κ = k|x = x * ) denoted by gating network, is the probability to lie in cluster k knowing that x = x new and ŷk is the local expert built on cluster k. The number of clusters K is chosen automatically to minimize the generalization error on a validation data set [START_REF] Bartoli | Improvement of efficient global optimization with mixture of experts: methodology developments and preliminary results in aircraft wing design[END_REF].

MOE has been made available to AGILE partners for different applications as a remote service [START_REF] Zhang | Disciplinary data fusion for multi-fidelity aerodynamic application[END_REF][START_REF] Lefebvre | Overview of mdo enhancement in AGILE project: a clustered and surrogate-based mda use case[END_REF]. MOE has also been wrapped using the Brics connection protocols to enable the transfer of models (constructed on data provided by the user) and not only the results of the evaluation of the models.

Data Fusion within the collaborative MDA Chain

As described at the beginning of the paper, in overall MDO, some tools may need large amounts of data, for instance, the flight simulation tool used for Stability and Control (S&C) analysis needs a complete aerodynamic-database as its input. Some entries in the database can be computed by high-fidelity analysis modules, but not all of them, therefore we need data fusion between various fidelity levels. The fused database, thereafter, will be delivered to the e.g. flight simulation tool.

The data fusion used for AGILE project is implemented as a process, and it calls for other tools to run the process. The whole fusion procedure is iterative.

This section shows how the surrogate-based data fusion is implemented in the MDA chain, and how deployment and application of the surrogate model is facilitated by the Surrogate Model Repository.

Figure 5 shows how the datafusion workflow is executed, the three modules (described later in the paragraph) can be execute at different locations by specialists. This workflow is implemented with RCE which allows to use the Brics plug-in to share information between the main computer and specialist's computer, in the way as Fig. 1 describes.

The data fusion package includes the development/delivery of: (1) the surrogate model builder/fuser M and model evaluator g; (2) the sampling module S;

(3) the samples computation module f (aerodynamic module); (4) the graphic feedback module.

This package can be used for fusing computed tables of forces and moments for the purpose of aero-dataset construction. Namely, it can be used for fusing the aerodynamic coefficients data from different tools (sources) and fidelities, and storing the surrogate models. • Aerodynamic Module: In this module the new samples are computed by aerodynamic tools. In this paper, the L1 aerodynamic data are provided by Tornado, which is a Vortex Lattice Method code [START_REF] Melin | Using Internet Interactions in Developing Vortex Lattice Software for Conceptual Design[END_REF]; L2 aerodynamic data are provided by SU2 tool [START_REF] Economon | SU2: An open-source suite for multiphysics simulation and design[END_REF] which is a computational fluid dynamics simulation software. Both of the tools are operated by different specialists at different sites. Other aerodynamic tools can be integrated into this MDA chain by modifying their API to the data fusion package, through the 3 steps described in Section 2.1.4.

Design of Experiments

This section discusses the issues about the design of experiments, including the sampling algorithm and the design domain validity used in the collaborative data fusion described ini Section 4.3.

Smart Sampling Algorithm

The "smart sampling" is employed to determine new sampling locations and to choose the tools (variable fidelity). The smart sampling scheme uses a mixture of sampling methods with the stopping criteria by examining the MSE or the RMSE (Root Mean Square Error). The sampling identifies a number of sampling locations. The response at the sampling points can be evaluated in parallel, with a constraint to ensure that the sample locations found having a significant distance between each other to avoid overemphasis of the interpolation on a small portion of the predicted function. Due to the inherent nature of the sampling algorithm S (shown in Fig. 6), it is strongly coupled with the RSM evaluator g, namely, kriging or co-kriging surrogate models.

Figure 6 shows the workflow of the smart sampling technology. For each iteration, the new samples (low-fidelity, or lo-fi & high-fidelity, or hi-fi) are merged so that the surrogate model is updated and the RMSE is computed and compared with the defined tolerance, or tol, chosen by the user. If the stopping criteria are met, the iteration ends. Otherwise new samples are suggested according to the listed methods in Fig. 6 and described in the following. The new suggested samples will be computed by the corresponding tools and will be added to the samples to update the surrogate model. The computational tool fidelity is also suggested.

The methods used to suggest new samples are described below, and the rules If the function value is bigger or smaller than all the others in the sphere, the point is marked as local maximum or minimum respectively [START_REF] Pronzato | Minimax and maximin space-filling designs: some properties and methods for construction[END_REF]. The "MaxMin" method can at a time recommend n-set of samples (defined by user). The new samples shall be computed by L1 tool (lo-fi) by default if tool fidelity is not specified.

3. MaxHessian: finds/computes the maximum curvature of the surrogate model and the new samples will be added there. The new samples shall be computed by L1 tool (lo-fi) by default. Computation details can be found in Appendix in [START_REF] Zhang | Disciplinary data fusion for multi-fidelity aerodynamic application[END_REF]. This method only becomes active if MaxMin fails.

4. EIF : finds the Expected Improvement Function (EIF) location [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF] and the new samples will be added there only when the MaxMin and Max-Hessian fail to add the effective samples, i.e., the new samples suggested by previous methods are already or very close to the existing samples via a distance criterion threshold chosen by the user. The new samples shall be computed by L1 tool (lo-fi) by default.

5. MaxLoc: finds the maximum RMSE locations and new samples will be added there. This method is used only when the maximum RMSE is not significantly improved compared with previous iterations:

RMSE(k + 1) > ν • RMSE(k) ( 7 
)
where 0 < ν < 1 is the improvement factor chosen by the user, thus the sampling method shall be "switched" to MaxLoc.

As stated above, except Borders, the new samples suggested by all other methods will be computed by L1 tools (lo-fi) by default. There is a hierarchy of models and the highest fidelity one is considered as the truth, i.e., we have no error estimate between the highest fidelity models and the "reality". We wish to use lower fidelity (lo-fi) models where they give results close to the hi-fi models, so first use lo-fi until error estimate satisfies lo-fi criterion. Then hi-fi points are filled in until the error estimate between response surface and hi-fi is small enough (i.e., fulfills the hi-fi criterion). Note that this may "waste" lo-fi calculations in regions where lo-fi is bad so hi-fi is necessary.

The hierarchical sequence of choosing samples is based on an investigation and combination of methods stated in [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF][START_REF] Da Ronch | Adaptive design of experiments for efficient and accurate estimation of aerodynamic loads[END_REF][START_REF] Pronzato | Minimax and maximin space-filling designs: some properties and methods for construction[END_REF], the goal being to improve the surrogates using minimum number of samples, i.e., minimum computing efforts. First check the borders to avoid extrapolation, then enrich the surrogate models by infilling the points suggested by MaxMin and MaxHessian, which allows the predicted models quickly converge upon an maximum/minimum value, or a peak/dip of the true function [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF][START_REF] Pronzato | Minimax and maximin space-filling designs: some properties and methods for construction[END_REF]. This is particularly useful when the model to be predicted is highly non-linear, such as C L , C m aero coefficient curves especially for transonic flight conditions. If the above two methods fail, which means the search only finds a local optimum, or does not even find a local minimum/maximum (for example, the large portions of the surrogate function landscape are flat), the surrogate model does not approximate the whole function well, a sampling strategy that can search away from the current minimum and explore other regions is required. The EIF is error based exploration which is suitable for the situation stated above. In many situations, the EIF function would give the same recommended sampling locations as the Max/Min and MaxHessian. However, the EIF may be not so efficient when the prediction "thinks" that the function is very smooth [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF] that EIF function diminishes to a very small value, with a very small estimated error RMSE. The small error leads to an overemphasis on exploitation of the prediction and the sampling approach falls into the trap because the unknown Kriging model based parameters is assumed to be estimated correctly. MaxLoc is used to improve the surrogates at the locations with the largest MSE values if the maximum RMSE is not significantly improved by Find EIF. The source fidelity for the samples also needs to be upgraded accordingly. The infilling samples suggested by maximum MSE locations tends to make a uniform distribution over the design domain, which may "waste" samples. The ideal scenario is to find the best fitted model as quickly as possible, that the sample points get "clustered" at the non-linear parts, and get "scattered" at the linear parts.

It shall be possible to choose freely between source tools with different fidelity levels. The criteria for going to the next fidelity level and to switch method are:

• If the new suggested samples are already in the hi-fi sampled domain, switch to the next method level. For example, if the MaxMin suggests a new sample that is already in the hi-fi sampled domain, we then use the MaxHessian.

• If the new suggested samples are already in the lo-fi sampled domain but not in the hi-fi sampled domain, upgrade the fidelity.

• If a low fidelity tool fulfills the lo-fi accuracy criteria, for example, if the maximum RMSE is small enough, go to the next fidelity level, namely, L k "upgrades" to L k+1 , where k is the current fidelity level.

• Another indication is that the maximum RMSE is not significantly improved compared with the previous iteration as described with Eq. ( 7).

This means either the methods shall be "switched" or the fidelity shall be improved.

This "smart" sampling algorithm needs now to be associated with a rescaling of the design domain in order to ensure that points are added throughout the domain.

Domain Validity Issues

The problem of fusing the aerodynamic characteristics, it relates the flight envelope identification, or the identification of the domain validity of the surrogate models. Usually, the DOE techniques are designed to work on rectangular (cubic for 3D) domains. Moreover, the inherent characteristics of the CPACS file definition only supports the uniform distribution of the samples. Therefore, the initial samples, are computed with regular sampling. However, the physical flight envelope is just part of the "CPACS envelope" [START_REF] Zhang | Disciplinary data fusion for multi-fidelity aerodynamic application[END_REF]. For instance, the test case which will be used in this paper, the AGILE reference aircraft, as a conventional transport airliner, its physical flight envelope, will not cover, the high angles of attack at high Mach numbers. The parameter space should be chosen as the physical flight envelope, otherwise the sampling rules will fail and the new suggested samples will always locate around the edges of the (rectangular) domains since they are highly non-linear (but not realistic). This section will spell out how to cope with the domain validity issues.

In this paper, the physical domain is defined by the flight mechanics specialist co-author, as the dashed line bounds shown in the Fig. 7a for a two-dimensional parameter space. The sample points on the physical domain will be re-scaled to fit the new domain within the interval [-1,1] in both dimensions, see Fig. 7b.

All samples which are left out of the physical domain will be excluded. During the surrogate modeling process, the design domain will firstly be re-scaled and exclude the parameter space which are left out of the physical domain, before building a surrogate model and iterate the sampling procedures. This will provide a better "coverage" of the area of the domains that are typically difficult to model (extreme flight conditions). The test case aircraft configuration is the AGILE reference aircraft, a regional jet-liner, which was analyzed and simulated using the AGILE MDA sys-tem, without experimental data being available. This aircraft does not correspond to an existing one, but it is in the range of an Airbus 320 or Boeing 737.

The reference aircraft is defined in CPACS [START_REF]CPACS -a common language for aircraft design[END_REF] format.

Some previous numerical simulations have been performed for this aircraft to test the data fusion tool [START_REF] Zhang | Disciplinary data fusion for multi-fidelity aerodynamic application[END_REF], however the primary control surfaces were not modeled. In the test case of this paper, the aerodynamic coefficients and derivatives for the longitudinal analysis are computed by L1 and L2 tools, including the elevator deflections. Those computational results are fused as an aerodynamic-database for the longitudinal flight simulation using the flight simulator PHALANX, which will be described in the last part of this section.

The L1 aerodynamic tool used for the data fusion workflow is the Vortex Lattice Method (VLM) code Tornado [START_REF] Melin | Using Internet Interactions in Developing Vortex Lattice Software for Conceptual Design[END_REF], which solves the linearized equations integrated onto RCE and are callable using Brics. Details can be found in [START_REF] Zhang | Aircraft geometry and meshing with common language schema cpacs for variable-fidelity mdo applications[END_REF].

As stated in Section 5.2, the initial DOEs from the CPACS files are uniformly distributed, then the valid domain is selected according to the physical flight envelope. Figure 8 spells out the initial DOEs defined in the CPACS files by regular sampling, which consist of two sets of data from both the low-fidelity (L1) and the high-fidelity (L2) tools. The low-fidelity data are symmetrically distributed in the range of angle of attack [-5, 5], and sparser at higher angle of attack. This is because the L1 solver is based on linearized equations and its prediction is questionable at higher angles of attack where nonlinear aerodynamic is dominant, so that the L1 sample locations at high angles of attack are trivial. The parameter space is three-dimensional: the angle of attack α, Mach number and the elevator deflection δ. The flight altitude is fixed at 10km and the sideslip angle is 0 degree. Again, the initial DOEs which are defined/stored in the CPACS files exceed the bounds of the design domain, which means some of the computations (data) are "wasted" and will be ignored in the future fusion process. The CPACS file of the AGILE reference aircraft is converted into another type of XML definition geometry to be opened with the mesh generator software sumo [START_REF] Tomac | From Geometry to CFD Grids: An Automated Approach for Conceptual Design[END_REF]. A surface mesh is created automatically by sumo and it calls TetGen [START_REF] Si | TetGen: a Quality Tetrahedral Mesh Generator and 3D Delaunay Triangulator[END_REF] to create an unstructured Euler mesh. The mesh used for this study has been chosen following a mesh sensitivity analysis performed in [START_REF] Jungo | Benchmarkig new CEASIOM with CPACS adoption for aerodynamic analysis and flight simulation[END_REF]. It is an unstructured mesh with 5.9 million tetrahedrons, see Fig. 9a.

In order to compute the elevator deflections, the SU2 built-in mesh deformation function SU2 DEF is used to deform the mesh around the elevator locations on the horizontal tail. A Free-form deformation (FFD) [START_REF] Sederberg | Free-Form Deformation of Solid Geometric Models[END_REF] box is defined at the elevator locations. With the hinge line location specified, the mesh in the FFD box can be deformed around the hinge line within a certain angle. To avoid high aspect ratio cells (or even negative volume) usually small deflection angle is preferred. According to authors experience, with a deflection angle less than 8 degrees the deformed mesh can give well-converged solutions. In this paper we limit the deflection angle within 4 degrees for high speed flight at the high altitude. Tornado usually takes less than 1 minute to make one single VLM analysis on a modern laptop, and the Euler solver takes around 4 minutes on a 32cores work station for the reference aircraft. The computational cost ratio is at least 128 (provided that the SU2 parallel computing speed-up is linear). In this test case, L1 solver is chosen as low-fidelity data source and L2 solver is chosen as high-fidelity data source, so that the low-fidelity samples are very cheap to generate. Even the "expensive" samples are fast to obtain because of the relatively coarse mesh. The reason why the cheap samples are not generated at all locations before co-Kriging begins is, there are not always tools to provide cheap samples as fast as the L1 tool (e.g. Tornado). For example, in the study of surrogate model generation for aero-data and aero-loads of X-31 aircraft [START_REF] Zhang | Variable fidelity methods and surrogate modeling of critical loads on x-31 aircraft[END_REF],

the cheap samples are provided by the Euler solver (L2) and the expensive samples are provided by the RANS solver (L3) on the very fine grids, with computational time substantially increased. Similar case was also found in [START_REF] Ghoreyshi | Automated cfd analysis for the investigation of flight handling qualities[END_REF].

In these situations, it is not possible to generate even the low-fidelity samples at all locations in the design domain, because the computation cost for the low-fidelity samples is still not cheap. The generation of surrogate models also includes to populate the aerodynamic database over the whole flight envelope by the relatively "dense" low-fidelity data samples, as stated in Section 1. The method and technology described in this paper show a generic way of data fusion including sampling strategies, with the goal of data fusion by surrogate modeling with minimum computational efforts keeping in mind.

The Performance, Handling Qualities and Loads Analysis Toolbox (PHA-LANX) is a selective fidelity flight mechanics modelling and analysis tool. It is specifically designed to be used in a multidisciplinary design optimization framework [START_REF] Pfeiffer | Implementation of a heterogeneous, variable-fidelity framework for flight mechanics analysis in preliminary aircraft design[END_REF] and to support the analysis of future novel aircraft designs [START_REF] Voskuijl | Flight mechanics modelling of the Prandtl plane for conceptual and preliminary design[END_REF][START_REF] Voskuijl | Controllability of blended wing body aircraft[END_REF].

PHALANX has the capability to automatically construct and analyze aircraft models within an MDO environment [START_REF] Fengnian | Automated Generation of Multiphysics Simulation Models to Support Multidisciplinary Design Optimization[END_REF][START_REF] Foeken | Knowledge-Based Simulation Model Generation for Control Law Design Applied to a Quadrotor UAV[END_REF]. This makes it possible to analyze the flight mechanics of many different variants of novel aircraft and configurations without a user in the loop. The aircraft models are nonlinear simulation models which serve as virtual flight test vehicles. An extensive analysis suite is available to evaluate aircraft performance characteristics, to perform handling assessments and to simulate loads resulting from both intentional manoeuvres and atmospheric conditions.

Results

The section shows the results obtained from the collaborative aerodynamic data fusion framework, including the fused aerodynamic coefficients, and flying qualities prediction from the fused data, and the application of SMR. The aerodynamics are modelled using a database in the form of look-up tables.

Fused Aerodynamic Characteristics

These tables are a function of angle of attack, pitch rate and elevator deflection. Figure 14a shows the angle of attack and elevator deflection in trimmed flight for the whole range of Mach numbers at 10 km altitude. One can clearly see that the elevator deflection results start to deviate at higher Mach numbers. This is caused by the differences in the static moment coefficient between the two databases. The required lift coefficient is relatively small and for the this range of lift coefficients, the fused database and L1 database give similar predictions for the angle of attack. As a consequence, the control authority of the elevator at high speed flight is better predicted by the fused database. Table 2 shows the characteristics of the Short Period mode and Phugoid The short period depends to a large extent on the dynamic derivative M q , which is identical for both databases since they are produced by L1 tools for both. The small differences of the results are due to the differences between the static lift coefficient and the static moment coefficient. 

Conclusion and Perspectives

The paper has presented a collaborative and surrogate-based data fusion technology for generating the aerodynamic database for the handling qualities analysis. This data fusion technology is implemented in a collaborative MDA worflow, utilizing the existing tools within AGILE, establishing an iterative and collaborative, distributed process. The surrogate models which are built from the data fusion service can be stored and deployed for reuse with the Surrogate Model Repository (SMR). An example was given for running a surrogate model "as-a-service" through the SMR. A regional jet defined within AGILE project as a reference aircraft is used as the test case for the data fusion tool. A full spreadsheet of aerodynamic data computed either with different levels of fidelity or with only a low-fidelity tool has been derived using the data fusion package. It has been shown that the quality of the flight performance simulation was significantly improved especially for the transonic region in which the low fidelity aerodynamic method is not reliable. The test case shows that by using a surrogate model based data fusion technique, the fidelity of the analysis data can be significantly improved with minimal computation effort.

The data fusion process, integrated in the AGILE collaborative MDA chain with different tools or modules interconnected via Brics and RCE, can be used as a well-established and ready-to-use service to be applied to any other aircraft for generation of aerodynamic databases and flying qualities analyses, in order to reduce the computational time and increase the overall prediction accuracy.
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Figure 1 :

 1 Figure 1: Schematic overview of Brics application in AGILE from within a client workflow and a server workflow, to accomplish remote tool execution [20].

Figure 2 :

 2 Figure 2: The Surrogate Model Repository as library for sharing surrogate models and as broker for creating surrogate models on demand.

  the flight altitude and the Mach number. The data set is denoted by D. Surrogate modeling has two distinct steps, first the training to produce the g-function, and second, the use of the generated g-function. The data set D is the training set. In this paper y represents the computations of forces, moments, structural deformations and stresses, etc., associated with a particular flight state of a defined aircraft configuration which is the x. Evaluation of y requires at least a flow solution, and possibly a complete aero-servo-elastic simulation. The training should produce a RSM with maximal accuracy and minimal cost is required for producing the training set. This is done by the choice of f (multifidelity modeling characterized by fidelity level, L0-L3) and by the choice of a training set. Much effort has been devoted to algorithms for the choice of an

  for a single D. The training, including the choice of the training set, is an iterative process. In a single iteration k, an algorithm M increments/fuses the training set with a set {x, y} k and updates D:

Figure 4 :

 4 Figure 4: Workflow for data fusion in the MDA chain, interchangeable modules exchanging data using Brics.

Figure 5

 5 Figure 5 spells out the data fusion service in the MDA chain. It has three core modules shown below, the graphic feedback module can be used separately and is not included in the MDA chain.

Figure 5 :

 5 Figure 5: Data fusion service in the MDA chain with 3 stages.

Figure 6 : 2 .

 62 Figure 6: The "smart sampling" technology workflow.

  (a) The physical domain.(b) The scaled domain.

Figure 7 : 6 . 1 .

 761 Figure 7: The initial samples of the domain for the Test Case and its transformation, at altitude 10 km.

  and considers the flow compressibility by taking the Prandtl-Glaurent rule [? ]. The L2 aerodynamic tool used is the open-source code SU2 developed by the Stanford University, which is a fluid dynamics solver for solving the incompressible/compressible and inviscid/viscous flows. In this paper the SU2 is used as L2 level, namely, as an Euler equation solver for solving the inviscid compressible flows. Both of L1 and L2 tools have been fully adapted to the CPACS format,

Figure 8 :

 8 Figure 8: Initial DOE defined in the CPACS files. Black dot: low-fidelity data; blue cross: high-fidelity data.

( a )

 a The volume mesh of the test case. (b) The Cp contour from Euler solutions.

Figure 9 :

 9 Figure 9: (a) The unstructured volume mesh with 5.9 million cells of the test case configuration, created by sumo [48] and TetGen [49]; (b) the Cp contour of the horizontal tail of the test case aircraft from Euler solutions computed by SU2, Mach=0.78, α = 0 • with elevator deflection δ = 4 • . The elevator deflection is modeled by deforming the mesh defining by FFD.

Figure 10 shows

 10 Figure 10 shows the fused C L , C D and C m aero-coefficient results of the AG-ILE reference aircraft model from the both fidelities with the elevator deflection δ = 0 • over the flight envelope. The dot sign (•) represents the lo-fi samples and the cross sign (×) represents the hi-fi samples. Figures 10a, 10c and 10eshow the response surfaces from the surrogate models as well as the sampled data over the flight envelope in the three-dimensional space. Figure10b, 10dand 10f represent the two-dimensional cuts for Mach number 0.5 (black), 0.8 (blue) and 0.9 (red) from the response surfaces, and their corresponding sampled data. Note that for M = 0.8 there are no hi-fi samples computed, instead there are hi-fi samples computed at M = 0.78, which are shown and marked in the figures.Figures 10a and 10bshow the surrogate models (response surfaces) for C L . The co-kriging predicts the non-linear behaviors at higher angles of attack, as the hi-fi samples indicate. Figures 10c and 10d show the prediction for C D . The surrogate model predicts higher drag than the lo-fi samples show, since they cannot predict wave drag. It is a promising sign that the surrogate model picks up the compressible phenomena from the hi-fi samples. The surrogate model for C m is shown in Figs 10e and 10f. Note again that the surrogate model predicts the non-linear trends at high AoA, as expected. The coarse hi-fi samples correct the response surfaces significantly. The co-kriging predicts 238 × 2 cases in the physical domain which are selected from a rectangular domain with 324 × 2 cases with α from -5 degrees to 12.5 degrees, and Mach from 0.5 to 0.9 for elevator deflection δ = 0 • . The full surrogate prediction has 238 × 3 cases with elevator deflection from -3 degrees to +3 degrees. The computation time of the surrogate model is ≈ 0.05 seconds on a desktop computer with four CPUs. The surrogate model is reliable with max(RMSE) = 0.048 < 5%. The final DOEs for building the surrogate models have been shown in Fig. 11, with 22 × 3 hi-fi samples and 35 × 3 lo-fi samples

Figure 10 :

 10 Figure 10: The co-kriging surrogate model results of AGILE reference aircraft for C L , C D and Cm, with elevator deflection δ = 0 deg. Notations: dot: lo-fi samples; cross: hi-fi samples; line: the response surfaces. Figures (a), (c) and (e): the response surfaces and sampled data over the flight envelope.Figure (b), (d) and (f): the cuts for Mach number 0.5 (black), 0.8(blue) and 0.9 (red) from the response surfaces, and their corresponding sampled data.

Figure 11 :

 11 Figure 11: Final DOEs for building the surrogate models, viewed in a 2D space.

Figure 13 :

 13 Figure 13: SMR user interface for the "as a service" calculations with the surrogate model

  The propulsion system (thrust and fuel consumption) is modelled based on engine performance maps which are a function of Mach number, altitude and throttle setting. The resulting nonlinear simulation model is used to assess the trim condition (e.g. the prediction of flight envelope limits and power required as function of Mach number) and a handling qualities assessment. The analysis results for various flight conditions and aircraft configurations are written in the CPACS file.

Figure 14b shows the

  Figure 14b shows the throttle setting in trimmed flight as a function of Mach number. The fused data shows a shape which is to be expected. The L1 results are completely wrong at high Mach numbers since it is rather obvious that Tornado cannot predict C D properly at high Mach numbers due to the presence of the wave drag.

( a )

 a Angle of Attack and elevator deflection. (b) The throttle setting.

Figure 14 :

 14 Figure 14: Angle of attack, elevator deflection and the throttle setting between the L1 data and the fused data in the horizontal trimmed flight at 10 km altitude, as a function of Mach number.

Figure 15 :

 15 Figure 15: A step input on the elevator and its dynamic motion for a single Mach number M=0.7.
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Table 1 :

 1 31 experimental aircraft, from low fidelity (Euler) and high Projects4. Data Fusion Through Collaborative Surrogates4.1. Surrogate models overviewA surrogate model is a cheap-to-evaluate function ŷ = g(x) approximation to the exact but expensive-to-evaluate function y = f (x). Another name is Response Surface Model (RSM). A used-to-be-well-known example is the table of logarithms which reduces arduous exact manual calculation to much quicker approximate calculations by repeated table lookup, interpolation, and addition.In this paper data fusion means the integration of results from different simulation models into a single surrogate model. In AGILE the surrogate models are constructed by different methods provided by partners. In the context of this paper the RSM function is specified as:[force and moment coefficients] = RSM(α, β, Alt, M ach, ..., D)

	for aerodynamic moments, forces and span loads, with a "decision support sys-
	tem" based on the root mean squared error (RMSE) and expected improvement
	function (EIF). Proper Orthogonal Decomposition for data reduction is used to
	predict aero-loads. This work was done within FP7 project ALEF, Aerodynamic
	Loads Estimation at Extremes of the Flight Envelope [25].
	Da Ronch et al. [26] have constructed the aero-table used for flight dynamics
	by kriging-based surrogate model based on CFD computations. The aerody-
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fidelity (RANS) CFD sources. The challenge is to make reasonable predictions at extremes of the flight envelope. A co-Kriging interpolation model is used namic models are of various fidelities from semi-empirical prediction method to CFD by different solvers. The sampling space is enriched by iterative sampling based on the root mean squared error (RMSE) and expected improvement function (EIF) which is discussed as the "fill-in strategy" in

[START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF]

. Five test cases are shown for aero-table generation and the flight handling qualities analysis. The work provides a quite complete reference for the aero-table generation technology by data fusion of various fidelity aerodynamics. However, the aerodynamic models with different levels of fidelities are prone to data-loss by communicating with different tools/solvers. Ghoeryshi et al.

[START_REF] Ghoreyshi | Automated cfd analysis for the investigation of flight handling qualities[END_REF] 

solved this mis-matching by addressing the geometry and mesh treatment using a high level conceptual aircraft description, i.e., a socalled XML-aircraft description used in software CEASIOM (the Computerized Environment for Aircraft Synthesis and Integrated Optimization Methods)

[START_REF] Rizzi | CEASIOM Validation and Its Use in Design -Status of SimSAC Project[END_REF][START_REF] Kaenel | CEASIOM: simulating stability & control with CFD/CSM in aircraft conceptual design[END_REF]

. Kriging was used to construct all of the aero-table entries and co-kriging was used to update the aero-table with additional samples calculated. The sampling method used is to identify non-linearities in the force and moment tables. The flight handling qualities are thus predicted and analyzed by the Simulation and Dynamic Stability Analyser (SDSA)

[START_REF]Sdsa: Simulation and dynamic stability analyser[END_REF]

. and the Stability and Control Unmanned Combat Air Vehicle

[START_REF] Vallespin | Computational fluid dynamics framework for aerodynamic model assessment[END_REF]

. For each case, a tabular aerodynamic model is constructed based on CFD predictions nd a kriging interpolator to populate the tables, with validation against wind tunnel experiments and flight test measurements.

Da Ronch et al

[START_REF] Da Ronch | Adaptive design of experiments for efficient and accurate estimation of aerodynamic loads[END_REF] 

have investigated the methodology for aero-loads generation by surrogates and applied to the Transonic Cruiser aircraft (TCR). The basic rule is to predict an effective model with minimum number of samples (namely, minimum computing time). Kriging is used to predict the surrogate model. Two design of exmperiments strategies were investigated. The first one is a traditional Latin Hypercube approach, and the second strategy is the adaptive design of experiments (ADOE) technique. The result shows that ADOE provides better predictions especially for complex and non-linear engineering phenomena, such as pitch moment coefficient and aerodynamics at transonic speeds. The ADOE approach is adapted into the the DOE technology for the current work, details can be seen in Section 5.

Table 2 :

 2 The characteristics of short period and phugoid modes comparison between L1 and the fused data for Mach =0.7 at altitude 10 km.
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