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1. Introduction

One considers a general cylinder Ω = Θ×(−∞,+∞), where Θc is characterized by {n > 0,M(s)+n~n(s)},
M(s) describes, for s ∈ [0, L], a closed convex curve, characterized by its curvilinear absciss s and the unit
outgoing normal vector ~n(s). The body Θ is constituted of a perfectly conducting core supplemented by a
layer of dielectric material {−l < n < 0}.

The problem of replacing the Helmholtz equation with coefficients ε, µ in this layer ((∆ + εµω2)u = 0)
and with the permittivity and permeability coefficients of the vacuum in Θc × (−∞,+∞) by the Helmholtz
equation (∆ + ε0µ0ω

2)u = 0 in Θc × (−∞,+∞) supplemented by a boundary condition on ∂Θc × (−∞,+∞)
is a very classical and useful idea. One is left to determining this boundary condition. This condition is
generally called the Dirichlet to Neumann operator on the boundary, and is frequently deduced through a
factorization of the Helmholtz operator.

Under the assumption =εµ < 0 and a rather sharp (and somewhat unphysical) assumption (H0) lω →
c0, 0 < c0 < +∞ when ω → +∞ (hence assuming that the size of the layer depends on the wavelength
of the wave), we derived the impedance boundary condition in [15], using microlocal analysis. Microlocal
analysis led to the exact behavior, in term of the size of the layer, in the high frequency regime, using a local
approximation of the surface, which enabled the author to obtain the diffracted wave. Theorem 1 p 1042
of [15] gives the leading order term of the impedance operator, which corresponds to the ’tangent plane
approximation’.

In the present paper, we deal with the two following cases (ε, µ do not depend on ω):

=εµ < 0, (1)

where the convention of sign comes from the time convention of a solution with eiωt,

εµ ∈ R∗+. (2)

We need, in each case, to adress a specific problem:
i) in the case εµ ∈ R∗+, we have to avoid resonances, id est cases where the problem

(∆ + εµω2)u = 0,C
u|n=−l = 0
u|n=0 = u0
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has no solution. Note that, as z ∈ (−∞,+∞), there is always continuous spectrum, hence one shall deal with
either a fixed arbitrary of kz, Fourier variable in z or consider a finite periodic cylinder where z ∈ (−∞,+∞)
is replaced with z ∈ [0, L] with periodic boundary conditions in z

ii) in the case εµ < R+ there is no, in general, nontrivial solutions in S′(R3) solutions of (∆+εµω2)u = 0,
hence the use of Fourier transform should not be possible. However, a variational result yields for the
Dirichlet problem a unique solution in H1(Ω), hence Fourier analysis of this unique solution is possible.

Recall that, in [15], we introduced the metric g(x, η) induced by the Euclidean metric on the boundary
∂Ω, and obtained that there exists an operator (the Dirichlet to Neumann operator) such that ∂nu|n=0 =

Op(D)(u|n=0). Denote by

ν(x, η) =

√
εµ − g11(x)η1

2 − 2g12(x)η1η2 − g22(x)η2
2,=ν < 0. (3)

The principal symbol ofD is

ω
ν(x, η)

tan lων(x, η)
.

Notice that the limit, whenωl→ +∞, of this principal symbol, under the assumption (1), is iω
√
εµ − g11(x)η1

2 − 2g12(x)η1η2 − g22(x)η2
2,

thanks to the relation tan lω
√
εµ − g11(x)η1

2 − 2g12(x)η1η2 − g22(x)η2
2 → −i, exponentially.

We are interested in this paper on the behavior of the lower order term of the impedance operator (in the
scalar case) for measuring the effect of the curvature of the body in the high frequency regime, that is the
leading order term of r, which is of order 0 in ω.

We restrict ourselves to an infinite cylinder or ellipse, for which one does not have, in the case εµ ∈ R∗+,
any solution of the problem (see Lemma 1) in this Introduction for an explanation), for reasons that are
explained later. We can also consider a cylinder of finite length Θ× [0, L] with periodic boundary conditions
in z for which kz ∈

2π
L Z.

Using the ideas developed in the thesis of P. Payen, along with classical formulae stated by B. Stupfel
[28] (formulae that go back to Etienne [10] (1961) or Bates [2] (1975)), where, for a cylinder, the solution is
expressed in terms of Bessel functions (hence taking into account the polar coordinates system), we derive
here, using Fourier modes in the θ variable (with θ denoting the Euler angle, see [3] for example), a more
complete version of the Calderòn operator and in particular prove estimates on the modes and provide an
asymptotic analysis of the Dirichlet to Neumann operator (treating most of the time the scalar Helmholtz
case).

The main feature of this paper is to consider, in the case of cylindrical coordinates, kz and p
R as high

frequency variables, and to consider as well the case where the waves are evanescent, meaning that we
consider the division in elliptic, hyperbolic, and glancing regions for the high frequency Helmholtz opera-
tor.

In this Introduction, we recall the classical case of a plane layer B = R2 × [−l, 0] to outline the main
features of the cases we shall look at. We will construct uniquely the solution of a boundary problem in this
layer, and use this solution to derive a relation between u and ∂x3u on x3 = 0. The first notion is the notion
of resonances.

Lemma 1. 1. The resonances of −∆ in B are the values of ω such that there exists (k1, k2, n) ∈ R2 × N∗
such that ω2εµ = k2

1 + k2
2 + n2π2

l2 . There are no resonances if and only if εµ < R∗+.
2. If one replaces B by its finite counterpart [0, L1] × [0, L2] × [−l, 0], and if one assumes εµ ∈ R∗+, then

the resonances are the values of (n1, n2) such that ω2εµ = n2
1

4π2

L2
1

+ n2
2

4π2

L2
2

+ n2π2

l2 .
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Note that there is no resonance when εµ < R. Note also that there is no trivial solution in L2(R3) of
(∆ + εµω2)u = 0, as well as in S′(R3) in this case. Indeed, if u were a solution in S′(R3), one would have

(εµω2 − k2
1 − k2

2 −
π2n2

l2
)û = 0

hence û = 0 thanks to (εµω2 − k2
1 − k2

2 −
π2n2

l2 )−1 ∈ C∞(R2).
It is also classical that 0 is the unique solution of

(∆ + ω2εµ)u = 0,C, u|Γ− = 0, u|Γ+
,

thanks to the variational formulation

{∀v ∈ H1(C), a(u, v) = 0} ⇒ u = 0, (4)

the sesquilinear form considered being

a(u, v) = i=εµ
∫
C

uv̄dx +

∫
C

(<εµuv̄ − ∇u∇v̄)dx

and one applies

Lemma 2. The sesquilinear form a is coercive on H1(C).

The proof of this Lemma can be found in Sebelin et al [24] for example, it is nevertheless classical,
using the inequality

|a(u, u)| ≥

√
(<(εµω2))2 +

1
2

(=(εµω2))2 −

√
(<(εµω2))4 +

1
4

(=(εµω2))4||u||2H1(C).

Introduce some notations now. For all (k1, k2) ∈ R2, denote by

k⊥ =

√
ω2εµ − k2

1 − k2
2,=k⊥ < 0. (5)

One checks, in the case =εµ < independent on ω, that there exists α0 > 0 such that

∀(k1, k2) ∈ R2,=k⊥ ≤ −ωα0. (6)

One notices as well that the case k2
1 + k2

2 > <εµω
2 is covered in this expression. Note that in this case,

k⊥ = a∗(k1, k2) + ib∗(k1, k2), where 2a∗b∗ = =εµω2, and 0 < a∗(k1, k2) = ( 1
2 (|εµω2 − k2

1 − k2
2 |

2 +<εµω2 −

k2
1 − k2

2))
1
2 , a∗ goes to 0 when k2

1 + k2
2 → +∞ and b∗ = O(

√
k2

1 + k2
2).

In the case εµ ∈ R∗+, we adopt the same notation for the equivalent following quantity:

k⊥ =

√
ω2εµ − k2

1 − k2
2, ω

2εµ − k2
1 − k2

2 ≥ 0, i
√

k2
1 + k2

2 − ω
2εµ, k2

1 + k2
2 − ω

2εµ > 0,

but, evidently, (6) is not true anymore.

Lemma 3. 1. Assume εµ ∈ R∗+. Provided that ω2εµ is not a resonance of −∆ on B, for all u0 ∈ H
1
2 (R2),

there exists a unique solution in B of 
(∆ + ω2εµ)u = 0
u(., .,−l) = 0
u(., ., 0) = u0.

(7)
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• The quantity ω2εµ is always an element of the spectrum of −∆ (continuous spectrum).

• However, fix (k1, k2) and consider now the ODE on [−l, 0]. Assume εµω2 − k2
1 − k2

2 > 0. Denote

by s0 = minn∈Z|
π
l

√
εµω2 − k2

1 − k2
2 − n|,

|û(k1, k2, x3)| ≤
1

sin πs0
.

This case (and similar cases) will be called throughout the paper the hyperbolic case. It is the
case where a wave can propagate inside the layer without attenuation.

• Similarly, if we fix (k1, k2) and if εµω2 − k2
1 − k2

2 < 0, |û(k1, k2, x3)| ≤ 1. This case can be called
the elliptic case (there is no k3 ∈ R such that εµω2 = k2

1 + k2
2 + k2

3 = 0.)

2. For εµ < R∗+, even though a general solution of (∆ + εµω2)u = 0 belonging to C2([−l, 0],S′(R2)) is
necessarily 0, there exists a ’suitable’ solution in H1(C), which has a partial Fourier transform û (it
is a consequence of Lemma 2). In addition, the Fourier transform satisfies the pointwise estimate:

|û(k1, k2, x3)| ≤
2

1 − e−lωα0
.

3. In both cases, and apart from resonances for εµ ∈ R∗+, there exists a linear operatorDT N, called the
Dirichlet to Neumann operator, such that

∂x3u(., ., 0) = C(u(., ., 0)).

It is given by

∂x3 û(k1, k2, 0) = ik⊥
1 + e−2ik⊥l

1 − e−2ik⊥l û(k1, k2, 0) = ik⊥
1 + e−2ia∗l+2b∗l

1 − e−2ia∗l+2b∗l
.

The Dirichlet to Neumann operator is characterized by the Fourier multiplier

k⊥
tan(k⊥l)

= l
cos k⊥l
sinc⊥ l

=
ik⊥

tanh(b∗ − ia∗)l
=

ib∗ − a∗
tanh(b∗ − ia∗)l

= (ib∗ − a∗)
cosh(b∗ − ia∗)l
sinh(b∗ − ia∗)l

, (8)

the latter equality being valid also for k⊥ = 0. Note that, when ω → +∞, the Fourier multiplier
satisfies

ik⊥
1 + e−2ik⊥l

1 − e−2ik⊥l = ik⊥(1 + O(e2l=k⊥)),

which remainder term is exponentially decaying in ω.
For u0 ∈ S(R2),

∂x3u(x1, x2, 0) =
1

(2π)2

∫ ∫
il

cos k⊥l
sinc k⊥l

û0(k1, k2)dk1dk2 =
1

(2π)2

∫ ∫
ik⊥

cos k⊥l
sin k⊥l

û0(k1, k2)dk1dk2.

4. If one considers the case of BL1,L2 = {(0 ≤ x ≤ L1, 0 ≤ y ≤ L2,−l ≤ z ≤ 0}, (k1, k2) ∈ 2π
L1
Z × 2π

L2
Z and

the previous results are true in the discrete Fourier operators set-up.

This result (proven in Annex 1), which is straightforward to obtain, gives the aim of the present papier.
It has been proven [5] that, outside resonances, the problem of inhomogeneous boundary conditions has

a unique solution. This defines the Calderòn operator. Our aim in this paper is to obtain, for εµ < R∗+, an
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estimate on the exact solutions in a layer which prove that these solutions are in S′(R2) × C2([−l, 0] and
deduce explicit versions of the Calderòn operator for more complicated geometries than the plane layer.
Section 3 solves explicitly the Dirichlet problem in the cylindrical and in the elliptical geometry. The study
of the solution and of the Dirichlet to Neumann operator for the cylindrical geometry, where the formal
solutions after separation of variables are known is also well known, is the aim of Sections 4 and 5 of this
paper. Section 6 gives the expression and the asymptotics of the Dirichlet to Neumann, in the case of two
elliptical cylinders: in one case, the Calderòn is a Fourier multiplier operator, diagonal on each Fourier
mode, while in the other case, it is a convolution Fourier operator. In Section 7, we study the asymptotics
of the Calderòn operator for one layer of dielectric material for the Maxwell equations.

Remark that, if Ω − C is not bounded and if εµ ∈ R∗+, the continuous spectrum of the operator prevents
the existence of the Calderòn operator. It is interesting to define a weaker form of the Calderòn analysis in
this case, which is done by considering the expressions for a Fourier mode kz.

The Helmholtz operator inside the layer1 is

1
1 + κ(s)n

∂

∂s
[

1
1 + κ(s)n

∂u
∂s

] +
1

1 + κ(s)n
∂

∂n
[(1 + κ(s)n)

∂u
∂n

] + (ω2εµ − k2
z )u = 0. (9)

This paper is organised as follows. Section 2 states general results already known on the Dirichlet to
Neumann operator, and states the main result, that is asymptotics of the Dirichlet to Neumann operator for
a circular ring and an elliptic ring, both in the case εµ ∈ R∗+, where one has to deal with resonances, and in
the case =εµ < 0, independent on ω.

Section 3 prepares the calculations by identifying Fourier modes (which will be defined precisely for the
elliptic ring and which are clear for the circular ring) and derive equations for the ’radial’ variable, which is
deduced from the definition of modes.

Section 4 shows that the exact solution of the Dirichlet problem for each mode belongs to L∞, hence
proving that the Fourier transform approach makes sense (because, as usual, one always assumes that the
solution has a Fourier transform in z and has (bounded) Fourier coefficients for the angular variable), indeed
we prove that the assumption of having the right to consider a Fourier transform and series indeed lead
to a function belonging to S ′. One also introduces in this Section the relevant asymptotics of the Bessel
functions for p, kz, ω large, which are precious tools detailed in Subsection 4.3.

Section 5 expresses and gives the asymptotics of the Dirichlet to Neumann operator for the case of a
cylindrical ring, and Section 6 does the same for the case of elliptic rings (with two different cases).

Finally, the asymptotics of the Calderon operator (which yields, in the case of Maxwell equations in
the cylindrical ring, the expression of ~n ∧ ~H in terms of ~Et on the outer boundary for ~Et satisfying the null
Dirichlet condition on the inner boundary, are derived in Section ??.

2. General results

Consider C a 2d bounded domain with a smooth boundary, and assume ∂C = Γ− ∪ Γ+, such that there
exists an ellipse E ⊂ R2 such that Γ− ⊂ E and Γ+ ⊂ Ec. An annulus, or a layer on a perfectly conducting
body of cylinder shape is a model for this. The following Theorem is classical:

Theorem 1. 1. There exists a sequence λn of eigenvalues of −∆ in H1
0(C) (this operator being denoted

by −∆D), each eigenvalue is of multiplicity 1, they are strictly positive and normalized eigenfunctions
form an orthonormal basis of L2(C).

1which is the operator acting on the components of the electromagnetic field for the harmonic Maxwell’s equations
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2. If k2 is not an eigenvalue of −∆D, the problem{
(∆ + k2)u = 0 in C
u = u0 on ∂C

(10)

has a unique solution through Fredholm alternative.
3. When εµ < R, and for ω ∈ R, the problem

(∆ + ω2εµ)u = 0 in C
u = 0 on Γ−
u = f on Γ+

has a unique solution in H1(C) and the operator f → ∂nu|Γ+
is called the Dirichlet to Neumann

operator.

The proof of this Theorem can be, in particular, found in Cessenat [5]. We do not reproduce this proof
here. Note only that it is a consequence of Lemma 2.

Another result we recall here is the following (proven in [15])

Theorem 2. Assume (H0). Let (η1, η2) be the cotangent coordinates near a point x0 of the boundary.
Under the quite restrictive condition ’ωl finite when ω→ +∞’, the principal symbol of the Dirichlet to

Neumann operator is

ω
ν(x, η)

tan lων(x, η)
.

where ν is given by (3).

One interprets in the case of a cylinder the previous result as

Remark 1. The principal part of the Dirichlet to Neumann operator reduces to i
√
εµω2 − k2

z −
p2

R2 in the
case of the cylinder in the hyperbolic regime. Its approximation by an operator of order 2 is ∂nu = [iω

√
εµ+

i
2ω
√
εµ

(∂2
z2 + 1

R2 ∂
2
θ2)]u, or the condition

∂t∂nu =
√
εµ∂2

t2u −
1

2
√
εµ

(∂2
z2 +

1
R2 ∂

2
θ2)u.

Our aim in this paper is to improve the general result obtained in [15] under the assumption ωl finite to
two particular geometries: the cylindrical layer and the elliptic layer, in order to obtain the two first terms
in ω of the expansion of the Dirichlet to Neumann symbol, in the Fourier-discrete Fourier space. Assume
that the dielectric constants satisfy =εµ < 0, independent on ω.

In the infinite cylindrical layer geometry (r0 ≤ r ≤ R), denote by kz the wave number in z, p the Fourier
mode. Assume in addition that the wave numbers kz

ω , p
ωR are bounded when ω → +∞ (high frequency

regime), and in addition<εµ − k2
z
ω2 −

p2

R2ω2 > 0 (hyperbolic regime). Define

k3 =

√
εµω2 − k2

z := a0 + ib0, a0 > 0, b0 < 0,∀kz ∈ IR, (11)

k⊥ =

√
εµω2 − k2

z −
p2

R2 ,=k⊥ < 0,∀p,∀kz ∈ IR. (12)

Denoting by an(k3ρ) and bn(k3ρ) the Floquet numbers of the Mathieu equation.
We have the Theorem (a more precise statement is given below)

7



Theorem 3. 1. In the case of the cylindrical layer, and under the conditions
• the dissipation condition =εµ < 0, independent of ω
• the hyperbolic hypothesis<εµω2 − k2

z −
p2

R2 > 0,

the leading order term in ω of the Dirichlet to Neumann operator is iω
√
εµ −

k2
z
ω2 −

p2

R2ω2 = ik⊥. The

symbol of the Dirichlet to Neumann operator is, up to lower order terms, ik⊥ − 1
2R

k2
3

k2
⊥

2. This result is also valid in the elliptic case<εµω2 − k2
z −

p2

R2 < 0, where one notes that

ik⊥ =

√
k2

z +
p2

R2 − εµω
2,

the choice of the square root is uniform in C − (−∞, 0).

and in the case of a elliptic layer, in the hyperbolic regime, =εµ < 0, independent on ω:

Theorem 4. In the infinite elliptical layer geometry (characterized by E = {(ρ cosh u cos v, sinh u sin v, z), u0 ≤

u ≤ u1, z ∈ R}), let an(
√
εµω2 − k2

zρ) be the n− th Floquet eigenvalue for the Mathieu equation (edge of the
n − th band of the spectrum).

Assume that there exists δ0 > 0 such that δ0 ≤ |
an(
√
εµω2−k2

z ρ)
ω2 | ≤ 1

δ0
bounded independently of ω,

<εµ −
k2

z
ω2 −

an(
√
εµω2−k2

z ρ)
ρ2ω2 > 0 (which means n of order ω).

Denote by gn the normalized eigenvector associated with the Floquet eigenvalue an(
√
εµω2 − k2

zρ).

1. The leading order term in ω of the Dirichlet to Neumann operator on the basis {gn} is

C0(v, kz, n) = iω

√
1
2 (εµω2 − k2

z )ρ2 cosh2 u1 −
an(
√
εµω2−k2

z ρ)
ω2√

cosh2 u1 cos2 v + sinh2 u2 sin2 v

and the term of order 0 is 0 (which means that the leading order term contains the contribution of the
radius of curvature at each point).

2. This Fourier multiplier is not independent on v, that is

U(v) =
∑

n

Ungn(v)⇒ C0(U) =
∑

n

C0(v, kz, n)Ungn(v).

It is a pseudodifferential operator in (v, n) and a Fourier multiplier in kz.

3. Exact resolution of the Calderòn problem for a ring and an elliptic ring using special functions

3.1. The case of the infinite cylindrical ring

The program of this section is to perform the following analysis:
After Fourier transform2 in z, θ, we obtain a formal solution u(r, θ, z) =

∑
p(αp(kz)Jp(k3r)+βp(kz)Yp(k3r))eipθ,

Jp,Yp being the classical Bessel functions, k3 is the square root of εµω2− k2
z . This sum has a meaning when

it is finite in p, but nothing is known about the behavior in kz.

2Note that it is a Fourier series in θ and a Fourier transform in z
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After using the Dirichlet boundary condition at r = r0, we obtain, still formally, all solutions of the
Helmholtz equation in the annulus which satisfy the Dirichlet boundary condition at r = r0. Its formal
expression is

∑
p ap(kz)up(r, kz)eipθ, up(R, kz) = 1.

Introduce the following Definition

Definition 1. If ν is real and λ > 0, the roots of Jν(z)Yν(λz) − Jν(z)Yν(λz) = 0 are real and simple. They are
denoted by the increasing sequence zn(ν, λ). It is stated in (9.5.27) of [1].

Similar to the result obtained in the Introduction, we have (the formulae here are classical, see Stupfel
[28] for example), but not the conditions on ω.

Lemma 4. Let εµ ∈ R+
∗ . The resonances of the operator −∆ are the values of ω such that there exists at

least a n, and a couple (p, kz) ∈ Z×R such that r2
0(εµω2−k2

z ) = zn(p, R
r0

), where zn(λ) is defined in Definition
1.

Every value of ω is a resonance in this case when kz ∈ R.
If kz is fixed, we have an infinite sequence of resonances of the operator −∆ + k2

z . If εµ < R, there are
no resonances.

If one restricts to the ’periodic cylinder’ {(r, θ, z), 0 ≤ r0, θ ∈ [0, 2π], z ∈ [0, L]} with periodicity con-
ditions in z, we have kz ∈

2π
L Z, hence a dispersion relation, in the case εµ ∈ R+, εµω2 =

zn
r2

0
+ ( 2π

L )2q2,

(n, q) ∈ N × Z.

add a proof and comments One has the following

Proposition 1. Provided that ω2εµ is not a resonance of −∆ + k2
z on C, for all u0 ∈ H

1
2 (S R) ' H

1
2 ([0, 2π])

there exists a unique solution in H1(C) of 
(∆ + ω2εµ)u = 0
u(r0, ., .) = 0
u(R, ., .) = u0.

(13)

It has a partial Fourier transform in z and Fourier coefficient in θ. This partial Fourier transform in z and
Fourier series in θ is

û(r, θ, kz) =
∑

p

ap(kz)
Jp(k3r)Yp(k3r0) − Yp(k3r)Jp(k3r0)
Jp(k3R)Yp(k3r0) − Yp(k3R)Jp(k3r0)

eipθ, (14)

where ap(kz) is the p−th Fourier coefficient of û0(kz, θ). As Jp(k3r)Yp(k3r0)−Yp(k3r)Jp(k3r0)
Jp(k3R)Yp(k3r0)−Yp(k3R)Jp(k3r0) satisfies the inequality

of Proposition 5, we check that (14) belongs to L∞ × L2 hence its inverse Fourier transform exists.

Analysis: After partial Fourier transform in x3, the equation reads

(∆ + k2
3)û = 0,

where we kept the notation ∆ for the Laplace operator in R2. The expansion û(r, θ) =
∑

ap(r)eipθ, where∑
|ap|

2 < +∞ (for example) yields the classical Bessel equation on ap:

1
r

d
dr

(r
dap

dr
) + (ω2εµ − k2

z −
p2

r2 )ap =
1
r

d
dr

(r
dap

dr
) + (k2

3 −
p2

r2 )ap = 0. (15)

9



This Bessel equation implies that there exists (αp, βp) depending on kz such that ap(r) = αpJp(k3r) +

βpH(2)
p (k3r). Note, as in the Introduction, that it is a necessary (but not necessary and sufficient condition)

as a general solution of the ODE.

Define the functions of r ∈ [r0,R]:

dp(k3r) := Jp(k3r0)Yp(k3r) − Yp(k3r0)Jp(k3r), ddp(k3r) := J′p(k3r0)Yp(k3r) − Y ′p(k3r0)Jp(k3r). (16)

The first one is a solution of the Bessel equation which vanishes at r = r0 and the second quantity is a
solution of the Bessel equation which derivative vanishes at r = r0. It is a pair of fundamental solutions of
the Bessel equation, under the condition:

J′p(k3r0)Yp(k3r0) − Y ′p(k3r0)Jp(k3r0) , 0. (17)

Remark that, if one picks any pair of independent solutions of the Bessel equations { fp, gp}, there ex-
ists a constant C( fp, gp) such that dp(k3r) = C( fp, gp)[ fp(k3r0)gp(k3r) − gp(k3r0) fp(k3r)] and ddp(k3r) =

C( fp, gp)[ f ′p(k3r0)gp(k3r) − g′p(k3r0) fp(k3r)]. Hence we can choose any pair of independent solutions in-
stead of Jp and of Yp for the representation of dp and ddp.

3.2. The exact representation of solutions of the Helmholtz equation for elliptic coordinates

In this Section, we rely on the classical approach using Mathieu and modified Mathieu functions. Math-
ieu functions are periodic functions which form a basis of L2([0, 2π]) and modified Mathieu functions are
the analogous of the Bessel and Hankel functions. B. Stupfel [28] already used such an approach to compute
a good estimate

The (transversal) change of variable in which the Laplacian operator is diagonal is

(x, y) = ρ(cosh u cos v, sinh u sin v).

If one wants to use this on the ellipse Ω = {(x, y), x2

a2 +
y2

b2 < 1} of constants a, b, a > b, one defines
ρ =

√
a2 − b2 and u0 such that tanh u0 = b

a . The open set Ω is characterized by {(u, v), ( cosh u
cosh u0

)2 cos2 v +

( sinh u
sinh u0

)2 sin2 v ≤ 1, }, its boundary being ∂Ω = {u = u0, v ∈ (0, 2π]}.
All solutions of (∆ + ω2εµ)u = 0 are linear combinations of solutions of the form

u(x, y, z) = F(u)G(v)φ(z),

where φ satisfies φ′′(z) + cφ(z) = 0 and F and G are solutions of

F′′(u) + (
ω2εµ − c

2
ρ2 cosh 2u − a)F = 0, (18)

G′′(v) + (a −
ω2εµ − c

2
ρ2 cos 2v)G = 0, (19)

thanks to the transformation of the Helmholtz equation into

[
∂2

∂z2 +
2

ρ2(cosh 2u − cos 2v)
(
∂2

∂u2 +
∂2

∂v2 ) + εµω2]u = 0.

10



The natural choice in our analysis is to consider c = k2
z . Let U(x, y) = F(u)G(v). For all (a, k3ρ), there

exists (through Floquet theory, as mentionned in [1], 20.3.1) ν(a, k3ρ) such that g±(v) = e±iν(a,k3ρ)Pa,k3ρ(±v)
is a pair of independent solutions of (19), where Pa,k3ρ are periodic functions.

Let an(k3ρ) and bn(k3ρ) be the unique solutions, respectively, of ν(a, k3ρ) = n and ν(a, k3ρ) = −n.

Lemma 5. The eigenvalues of the Mathieu operator − d2

dv2 +
k2

3ρ
2

2 cos 2v on L2([0, 2π]), with Bloch bound-
ary conditions, are an(k3ρ), bn(k3ρ), and the associated eigenfunctions, with a suitable normalization are
denoted by cen(v, k3ρ) and sen(v, k3ρ).

The notation recalling that each of which is closely related to the cosine and sine (namely for k3ρ = 0,
an(0) = bn(0) = n2 and cen(v) = cos nv, sen(v) = sin nv).

Let cn(k3ρ) = an(k3ρ) for n ≥ 1, cn(k3ρ) = b−n(k3ρ) for n ≤ −1.

Lemma 6. The equation (18)

F′′ − (cn(k3ρ) −
k2

3ρ
2

2
cosh 2u)F = 0

has a pair of canonical solutions, even and odd respectively, denoted by Ck3ρ
|n| , S

k3ρ
|n| . where n positive stands

for cn(k3ρ) = an(k3ρ) and n ≥ 1, cn(k3ρ) = bn(k3ρ) and n ≤ −1.

Lemma 7. The periodic in v solutions of the Helmholtz equations (∆ + k2
3)U = 0 in C2(E(A, B)) are

Un(x, y) = (ACk3ρ
|n| + BS k3ρ

|n| )(u)gn(v), n ∈ Z.

All the items of these Lemma are well known through [1] or through [8].

3.3. Estimates of the quantities an(k3ρ) and bn(k3ρ) for n large in the high frequency regime.
Let us begin with the case εµ ∈ R.

Proposition 2. For =εµ = 0, impose δ0 > 0 small enough.

1. For n such that the n−th Floquet band of the Mathieu equation is contained in [− εµ−η
2

2 ρ2,−
εµ−η2

2 ρ +

δ0],

an(k3ρ) ' (2n + 1)
√
εµω2 − k2

z .

2. For n such that the n−th Floquet band of the Mathieu equation is in [− εµ−η
2

2 ρ2 + δ0,
εµ−η2

2 ρ− δ0] (that
is not in the bottom of the well but still in the image of the potential), there exists b(n) solution of (21)
such that an(k3ρ), bn(k3ρ) satisfy both:
an(k3ρ) ' h−1b(n).

3. For n such that the n−th Floquet band of the Mathieu equation is contained in [ εµ−η
2

2 ρ2 + δ0,+∞),
there exists N(n) ≥ 1 such that

an(k3ρ) ' (N(n))2.

Proof. Note first that h−2an(k3ρ) and h−2bn(k3ρ) are the edges of each band, and that an(k3ρ) − bn(k3ρ) is
exponentially small for h small or n large.

It is straightforward in this case to write (19), for c = k2
z = ω2η2 and h = ω−1 as

−h2G′′(v) +
εµ − η2

2
ρ2 cos 2vG = h2aG.

11



The potential V(v) =
εµ−η2

2 ρ2 cos 2v is a periodic potential, of minimum − εµ−η
2

2 ρ2, of maximum εµ−η2

2 ρ2.
The Floquet theory predicts that three regimes are available for the bands

1. E in the neighborhood of the minimum − εµ−η
2

2 ρ2 (where results of Harrel [13] are of use, and mostly
the results of Keller and Weinstein [14]),

2. E is in the neighborhood of εµ−η2

2 ρ2 (where results of Marz [18] study the precise behavior of the
bands)

3. E >
εµ−η2

2 ρ2, where one can use the methods and WKB expansions (see Grigis and Sjostrand [11] for
details)

We concentrate first on the elliptic case E >
εµ−η2

2 ρ2.
In what we call here the hyperbolic case, we may apply the results of Exercises 12.1 and 12.2 of Chapter

12 of [11], where all values of E greater than the maximum of the potential, called EN , are given by the
solution of the Bohr-Sommerfeld quantization condition, for N ≥ 1:∫ π

0

√
E −

εµ − η2

2
ρ2 cos 2vdv + h2d(E, h) = πhN (20)

where d(E, h) is constructed through the formal WKB solution a(v, h)eih−1φ(v), φ(v) =
∫ π

0

√
E − εµ−η2

2 ρ2 cos 2v′dv′,
a(v + π, h) = eihd(E,h)a(v, h). Details are given in Section 3.4. The label N does not correspond to the label
n: we have N = n − ]{n, [En

min, E
n
max] ⊂ [− εµ−η

2

2 ρ2,
εµ−η2

2 ρ2]}, assuming that no band contains the maximum

of the potential (hence n ≥ ]{n, [En
min, E

n
max] ⊂ [− εµ−η

2

2 ρ2,
εµ−η2

2 ρ2]} + 1.
It is then reasonable to assert that, for n large, π

√
EN(n) is well approximated by πhN(n), leading to

EN ' h2(N(n))2, hence aN(k3ρ) ' (N(n))2 as in the case of the Fourier equation −h2u′′ = Eu. It is then
meaningful to consider the high frequency regime to be the regime when N(n)h is bounded. Note that, in
this approximation, ρ

√
εµ − η2 does not appear anymore at the first order.

The extension to =εµ , 0 is straightforward; the definition of the quantity d(E, h) does not change (it
belongs to C). The Bohr-Sommerfeld quantization condition is (20) with E ∈ C.

In the case E +
εµ−η2

2 ρ2 ∈ [0, δ0], the results of Harrel [13] yield a behavior for an(k3ρ) of the form
ω

√
εµ − η2ρ(n + 1

2 )π (the value of the second derivative of the potential at its minimum point being 2(εµ −
η2)ρ2), and the choice n = h−1δρ yields as well the same estimate for h small enough. More precisely, for
all δ0 <

εµ−η2

2 , the inequality E <
εµ−η2

2 ρ2 implies

εµ − η2 − 2Eρ2 > 0,

and this is called the hyperbolic region, while the case E ' εµ−η2

2 ρ2 is the case described by Marz, and can
be called the glancing region.

The precise description is made in Keller and Weinstein’s work [14].
Let n be the label of a band included in [− εµ−η

2

2 ,
εµ−η2

2 ]. For all K and for all δ small enough, there exists
h∗ such that, for h < h∗, if

Khδ−1 ≤ n ≤
1
πh

∫ π

0

√
εµ − η2

2
(1 − cos 2v)dv =

1
πh

∫ π

0

√
εµ − η2

2
(1 − cos 2v)dv =

2
πh
ρ

√
εµ − η2,

then there exists b(n), given by (21)

E+
n , E

−
n+1 ' b(n)h−1 ∓ 2(−1)nδn

12



where δn is exponential in e−h−1
, estimated by a turning point analysis, the turning points 0 < vn

0 < vn
1 < π

being the solutions of

ρ2 εµ − η
2

2
(cos 2vn

j + 1) = b(n),
∫ vn

0+π

vn
1

√
b(n) −

εµ − η2

2
ρ2(cos 2v + 1)dv = (n +

1
2

)hπ. (21)

while b(n) is exponentially close to E+
n .

An important remark is that we have the Weyl’s law. It reads

Proposition 3. The number of eigenvalues of H = −h2 d2

dv2 + V(v), with boundary conditions ψ(−π2 ) = ψ(π2 ),
ψ′(−π2 ) = ψ′(π2 ), which are smaller than E is given by the estimate

N(E) '
1

2πh

∫ ∫
ξ2+V(v)<E

dvdξ.

In particular, the number of eigenvalues which are smaller than the maximum of the potential is

N(E) '
1

2πh

∫ ∫
ξ2<Vmax−V(v)

dvdξ.

For V(v) =
εµ−η2

2 ρ2 cos 2v, it is thus

N(E) '
2
πh
ρ

√
εµ − η2.

Let us consider now the case εµ < R. Recall that we assumed k2
z < <εµω

2 and ω large.
In a first part of this Section, we derive results for =εµ = 0, which is a more familiar case for the Floquet

theory and the band structure of the spectrum of a periodic operator, where the bands are more conveniently
defined for E ∈ IR. Indeed, it is known from Reed and Simon [23] that the spectrum of −h2D2 + V is a band
spectrum ∪i[Ei

min, E
i
max] included in (minV,+∞). The edges of the bands are the solutions of the Floquet

problems (see a description in [4] of the classical results)

(−h2D2 + V − E)ψ = 0 on (−π2 ,
π
2 ), ψ(−π2 ) = ψ(π2 ), ψ′(−π2 ) = ψ′(π2 )

(−h2D2 + V − E)ψ = 0 on (−π2 ,
π
2 ), ψ(−π2 ) = −ψ(π2 ), ψ′(−π2 ) = −ψ′(π2 ).

(22)

Definition 2. Consider the ellipse characterized by (ρ, u0) such that a = ρ cosh u0, b = ρ sinh u0.
We say that the n−th Floquet mode of the associated Mathieu equation is in the elliptic regime when

<an(k3ρ) > <εµω
2−k2

z
2 ρ2 cosh 2u0.

We say that the n−th Floquet mode of the associated Mathieu equation is in the hyperbolic regime when

<an(k3ρ) < <εµω
2−k2

z
2 ρ2 cosh 2u0.

In the case of complex coefficients, recall first that the problem (∆ + ω2εµ)u = 0 has no solution in
S′(Rd), hence we cannot get estimates which ensure that a generic solution has a Fourier transform. One
can observe this in Section 4.3, where the modulus of one of the solutions is exponentially growing in p or
in kz. Hence we could have difficulties with a symbol and Fourier integral analysis, which requires using
Fourier modes. Two options are at our disposal:

• use analytic symbols, where a Gaussian growth is, for example, allowed (see Sjostrand [27])
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• use the limiting absorption principe, id est we shall say that the point considered in the symplectic
coordinates on the boundary u = u0: (v0, z0, n, kz) is in the elliptic (respectively hyperbolic) regime if

the limit of the symbol an(k3ρ)− εµω
2−k2

z
2 ρ2 cosh 2u0 when=εµ→ 0 is in the (real) elliptic (respectively

hyperbolic) regime.

When =εµ , 0, the Floquet problems (22) still have solutions E, which are complex now (as well as
the equation (20) is a complex equation), which defines as well an(k3ρ), bn(k3ρ) ∈ C. We shall thus say that

<an(k3ρ) > ρ2<εµω
2 − k2

z

2
cosh 2u0 (23)

defines the elliptic region and, in addition, nh is bounded below in this case for h → 0+, and for all n
satisfying the inequality (23), an(k3ρ)h2 is of order n2π2ρ2 εµ−η2

2 .
In a similar way, we shall say that

<an(k3ρ) < ρ2<εµω
2 − k2

z

2
cosh 2u0 (24)

defines the hyperbolic region (by inspection of the modified Mathieu equation), along also nh bounded
when h→ 0+. We add the assumption nh bounded below to avoid the case of a fixed number of modes.

In this case, it is observed that, though we cannot define the minimum value of εµω2−k2
z

2 ρ2 cos 2v (it is a
complex function), the minimum value of cos 2v is −1 for v = π

2 , one has the estimate, for v close to π
2

εµω2 − k2
z

2
ρ2 cos 2v = −

εµω2 − k2
z

2
ρ2 + (εµω2 − k2

z )ρ2(v −
π

2
)2 + O((v −

π

2
)4),

hence eigenvalues close to

Ẽn = −
εµω2 − k2

z

2
ρ2 +

√
εµω2 − k2

zρ
2(2n + 1).

3.4. Eigenvalues of the Mathieu equation (Grigis-Sjostrand)

One consider the Mathieu equation

−G′′(v) + (
1
2

(εµω2 − k2
z ) cos 2v − a)G = 0,

where a must be identified so that we get a periodic solution (of period π or 2π?). When ω2ρ2 is small,
a ' n2. But this is not the case here. When a is close to the minimum of this function one uses Harrell. In
the general case, assume hω = 1. The equation writes

PhG := −h2G′′ +
1
2

(εµ − η2) cos 2vG = ah2C.

We use the procedure described by Grigis and Sjostrand ([11], chapter 15). Assume that E > 1
2 |εµω

2 −

k2
z |. Consider the eikonal equation

(φ′v)2 +
1
2

(εµ − η2) cos 2v − E = 0,
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that is φ(v) =
∫ v

0

√
E − 1

2 (εµ − η2) cos 2sds, with the canonical choice of the determination of the root. It is
then classical to deduce a sequence a j(v, E) such that a WKB solution is

(
∑

a j(v, E)h j)ei φ(v)
h , a0(v, E) = (

√
E −

1
2

(εµ − η2) cos 2v)−
1
4 .

One observes that there exists c(E, h) and thus d(E, h) such that

a(v + π, E, h) = c(E, h)a(v, E, h), c(E, h) = eihd(E,h)

where c and d have expansions in h, c(E, 0) = 1. If one denotes, for h small enough, the unique solution
Ep(h) of ∫ π

0

√
E −

1
2

(εµ − η2) cos 2sds + h2d(E, h) = πph, (25)

then for all N there exists hN such that for 0 < h < hN , the interval (Ep(h)−hN , Ep(h) + hN) contains at least
two eigenvalues of the operator Ph, denoted by eap(h), ebp(h).

It is then a consequence of this result that ap(k3ρ) = ω2eap(h), bp(k3ρ) = ebp(h)ω2, which is to be used
in the Modified Mathieu equation.

3.5. Precise approximations of the eigenvalues

This Section is a remark, allowing us to have a very precise estimate of eigenvalues, using the special
functions, namely the Elliptic integrals (as in [8], [1]). It is based on the observation that∫ π

0

√
E − 1

2 (εµ − η2)ρ2 cos 2sds =
∫ π

2
− π2

√
E + 1

2 (εµ − η2)ρ2 − (εµ − η2)ρ2 sin2 sds

= 2
√

E + 1
2 (εµ − η2)ρ2

∫ π
2

0

√
1 − k2 sin2 sds,

with k2 = ρ2 εµ−η2

E+ 1
2 (εµ−η2)

hence

∫ π

0

√
E −

1
2

(εµ − η2)ρ2 cos 2sds = 2

√
E +

1
2

(εµ − η2)ρ2E(
π

2
, k) (26)

as well as, for v0, v1 solving b − εµ−η2

2 ρ2(cos 2v − 1) = 0 that is 0 < v0 < v1 = π − v0 such that

∫ v0+π

v1

√
b −

εµ − η2

2
ρ2(cos 2v − 1)dv =

∫ v0+π

v1

√
b − (εµ − η2)ρ2 cos2 vdv = 2

√
b
∫ v+

0

√
1 −

sin2 v

sin2 v+

dv,

that is ∫ v0+π

v1

√
b −

εµ − η2

2
ρ2(cos 2v − 1)dv = 2

√
bE(v+,

1
sin v+

), sin v+ =
b

ρ2(εµ − η2)
. (27)

2

√
E +

1
2

(εµ − η2)ρ2E(
π

2
, k) = πNh, 2

√
bE(v+,

1
sin v+

) = (n +
1
2

)πh

Note that such relations extends to the complex plane, hence defining the eigenvalues even when εµ < R.
The equations we have to solve are
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4. Analysis of the asymptotic regimes for cylindrical coordinates and proof of an estimate on the
solution

In this Section, we derive estimates, both in the case =εµ < 0 (where existence and uniqueness result of
a solution in H1 of the Dirichlet problem in the layer is proven using a variational formulation) and in the
case εµ ∈ R+, where one needs to avoid the resonances. The first subsection is devoted to the case εµ ∈ R+,
where we can rely on a classical analysis of second order ODEs.

4.1. Rigorous estimates of the solution for εµ ∈ R+

In this Section, we treat the two following cases:

q(r) := −k2
z −

p2 − 1
4

r2 + εµω2 > 0, r ∈ [r0,R] (28)

k(r) := k2
z +

p2 − 1
4

r2 − εµω2 > 0, r ∈ [r0,R], (29)

The function r
1
2 Jp(k3r) satisfies the Whittaker equation

w′′ = (k2
z +

p2 − 1
4

r2 − εµω2)w. (30)

Let w be the unique solution of (30) satisfying w(r0) = 0 and w′(r0) = 1. Define θ(r) such that (ρ, θ) is the
unique solution of (32) with ρ(r0) = 1, θ(r0) = 0. We prove

Proposition 4. For (p, kz) satisfying (29), 0 ≤ dp(k3r)
dp(k3R) ≤ 1 for all r ∈ [r0,R].

For (p, kz) satisfying (28),

|
dp(k3r)
dp(k3R)

| ≤
C

| sin θ(R)|
.

We consider in all what follows a solution w of (30) satisfying w(r0) = 0. In both cases (kz, p satisfying

(29) or (28)) the function dp(k3r)
dp(k3R) is equal, when defined, to

√
R
r

w(r)
w(R) , even when k3 = i|k3|.

When kz, p satisfies (29), one has

Lemma 8. Let w be the unique solution of (30) in the case (29) satisfying w(r0) = 0,w′(r0) = 1.
For all r ∈ [r0,R]

w(r) ≤
sinh

√
max[r0,R]k(r − r0)√

max[r0,R]k
,w′(r) ≤ cosh

√
max[r0,R]k(r − r0).

In addition, for all r ∈ [r0,R], the unique solution of (30) in the case (29) satisfying w(r0) = 0,w(R) = 1 is
strictly increasing, hence w(r) ≤ 1 for all r ∈ [r0,R].

Proof. We first check that, in the case (29), there exists a neighborhood of r0 such that w(r) > 0 for r > r0,
hence w′′(r) > 0 when w′ is increasing, hence for r ≥ r0, w′(r) ≥ 1 hence w(r) ≥ r − r0.

Assume now that there exists r∗ > r0 such that w(r∗) = 0, and denote by the same symbol the smallest
value of this r∗. There exists at least one point r1 in [r0, r∗] where w′(r1) = 0. If r1 is the smallest greater than
r0, w′ is positive on [r0,R1] hence w is increasing hence w′′ is positive hence w′ is increasing: contradiction.
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Finally, there is no point greater that r0 for which w is zero. This proves that w is strictly positive. From
w′w” = k(r)ww′, one deduces after integration 1

2 ((w′(r))2 − 1) ≤ 1
2 max(k(r))(w(r))2.

Introducing w(r) = α sinh φ(r), one checks that, after the choice α2max[r0,R](k(r)) = 1, that (φ′)2 ≤

max(k(r))[r0,R], φ(r0) = 0 hence the estimate on φ(r) and the inequalities of Lemma 8.

Lemma 9. Let w be a solution of (30) in the case (28) satisfying w(r0) = 0. One has the inequality:

(w′(r))2 + q(r)(w(r))2 ≤
q(r)
q(R)

((w′(R))2 + q(R)(w(R))2).

Proof. One checks that

d
dr

[(w′(r))2 + q(r)(w(r))2] = 2w′(r)(w′′(r) + q(r)w(r)) + q′(r)(w(r))2 = q′(r)(w(r))2 =
q′(r)
q(r)

(q(r)(w(r))2),

hence, thanks to q′

q > 0,

d
dr

[(w′(r))2 + q(r)(w(r))2] ≤
q′(r)
q(r)

[(w′(r))2 + q(r)(w(r))2],

from which one deduces d
dr ( (w′(r))2+q(r)(w(r))2

q(r) ) ≤ 0 hence the inequality of Lemma 9.

In addition, if one introduces ρ(r) sin θ(r) = w(r), ρ(r) cos θ(r) =
w′(r)√
εµω2−k2

z
, ρ(r) > 0, one shows that

θ′ > 0, and one deduces

Lemma 10. 1. The resonances are the solutions of sin(θ(R)) = 0. If ω is large, given, the number of
points of resonances in [r0,R] is O(ω).

2. If ω is not a resonance, ρ(R) =
w(R)

sin(θ(R)) is well defined.

Proof. The second item is a La Pallice’s statement, to acknowledge that the problem has a unique solution.
This holds as well as the first part of the first item, because there is no solution of (30) satisfying w(r0) = 0
and w(R) = 1 when sin(θ(R)) = 0.

The second part of the first item comes from the fact that there exists δ0 > 0 such that θ′(r) ≥ δ0ω,
hence θ(r) ≥ δ0ω(r − r0). Hence, as there exists O(ω) points such that δ0ω(r − r0) = nπ, the same result
holds for θ (see Coddington-Levinson [7] Th. 1.1 Chap. 8).

Of course we have the exact (but useless) form of the Dirichlet to Neumann operator in the hyperbolic
regime for the mode p:

d
dr

(
d′p(k3r)

dp(k3R)
)|r=R = k3

d′p(k3R)

dp(k3R)
= ω

√
εµ − η2 cos θ(R)

sin θ(R)
. (31)

One deduces that

Lemma 11. If ω is not a resonance and if w solution of (30) satisfies w(r0) = 0, w(R) = 1

∀r ∈ [r0,R], (w(r))2 +
(w′(r))2

q(r)
≤ (w(R))2 +

(w′(R))2

q(R)
≤ 1 +

εµω2 − k2
z

q(R)
cos(θ(R))
sin(θ(R))

hence w is uniformly bounded on [r0,R].
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This is a consequence of the system that ρ, θ satisfies (recall kz = ωη):
ρ′

ρ (r) = sin θ cos θ
ω
√
εµ−η2

( p2− 1
4

r2 )

θ′(r) = ω
√
εµ − η2[cos2 θ +

q(r)
ω2εµ−k2

z
sin2 θ].

(32)

Observe that we can deduce a name for each of the regimes described in (29) or (28) thanks to the
estimates on the solution. The regime (28) leads to an oscillating solution ρ(r) sin(θ(r)), hence one calls
this regime the hyperbolic regime. The regime (29) yields exponentially growing and decaying solutions,
which renders the name elliptic regime soundful. This will be detailed in Subsection 4.4.

From these two items, one gets Proposition 4. It is a consequence of the two following items:

• In the elliptic case, there exists a unique solution of (30) such that w(r0) = 0 and w(R) = 1. It is
uniformly bounded by 1 on [r0,R].

• In the hyperbolic case, consider the unique solution of (32) such that ρ(r0) = 1 and θ(r0) = 0. The
resonances are the values ofω such that there exists a (r, n) such that θ(r) = nπ. Ifω is not a resonance,
then there exists a unique solution of (30) such that w(r0) = 0, w(R) = 1. This solution satisfies thus

|w(r)| ≤
C

| sin θ(R)|
.

Proposition 4 implies that is in C1([r0,R], L∞(IR ×N)) hence w ∈ C1([r0,R],S′ × l∞) hence it is the Fourier
transform in θ, z of an element of w ∈ C1([r0,R],S′(IR × [0, 2π]).

When (p, kz) neither satisfies (29) or (28), that is

−k2
z −

p2 − 1
4

R2 + εµω2 > 0 > −k2
z −

p2 − 1
4

r2
0

+ εµω2,

denote by re the unique point such that k(re) = 0. Let w∗ such that w∗(re) > 0, (w∗)′(re) ≥ 0, w∗ is strictly
increasing on [re,R], and the estimate reads w∗(re) ≤ w∗(r) ≤ w∗(R) for all r ∈ [re,R]. One then checks that
one is in the case (28) on [r0, re]. Let w∗ satisfying w∗(re) = 0, then w∗(r)

(w∗)′(re) is also strictly increasing on
[re,R]. Altogether, for w satisfying w(r0) = 0,w′(r0) = 0 we are in one of the two cases, and one can solve
readily w(R) = 1.

Lemma 12. There is no resonance for this point, and, in addition, we have an uniform bound of the unique
solution w of the Whittaker equation (30) on [r0,R].

Proof. The proof is identical to the proof of Lemma 20.

The next section uses the asymptotic expansions of the Bessel functions to obtain estimates of the
quantities introduced in the present section and deduce the Dirichlet to Neumann operator, as well as the
conditions for resonances.

The second subsection deals with the case εµ complex, where the analysis of the complex system of
ODEs is not straightforward.
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4.2. Estimates on dp(k3r)
dp(k3R) using asymptotic results on the Bessel functions.

The aim of this subsection is to prove the fundamental result

Proposition 5. Assume =εµ < 0, independent on ω. There exists a constant K such that

∀r ∈ [r0,R],∀(kz, p) ∈ R × N, |
dp(k3r)
dp(k3R)

| ≤ K.

The proof of this Proposition is the aim of subsection 4.5 and one uses the known behavior of the Bessel
functions to derive an result identical to (3), thanks to precise estimates on Bessel functions. The precise
estimates are listed in Section 4.3, in five cases.

4.3. Bessel functions toolbox

In this subsection, we describe the representations of the Bessel functions that will be used in this paper.
We concentrate mainly on Jp + iYp = H(1)

p and Jp − iYp = H(2)
p . The variables z, β, a are defined in (44). We

have the representations:

1. In the case of p fixed and of the argument of the Bessel functions large, let χp(Z) = Z − ( 1
2 p +

1
4π). There exists four functions P∗,Q∗,R∗, S ∗, where one gets estimates of remainder terms in the
asymptotic expansions, such that

H(1)
p (Z) =

2
πZ

[P∗(p,Z) + iQ∗(p,Z)]eiχp(Z), (H(1)
p )′(Z) =

2
πZ

[iR∗(p,Z) − S ∗(p,Z)]eiχp(Z), (33)

and the conjugate solution which is H(2)
p . We have in addition

P∗(p,Z) = 1+O(Z−2), 8ZQ∗(p,Z) = 4p2−1+O(Z−2),R∗(p,Z) = 1+O(Z−2), 8ZS ∗(p,Z) = 4p2+3+O(Z−2).

This one was used already in [4] and one notices that all the constants in O(z−2) depend on p. More
precisely, the expansion of P in inverse powers of Z is

∑
j≥0 Z−2 ja j(p), where a j(p) is a polynomial

of degree 2 j.

2. In the hyperbolic case<εµω2 − k2
z −

p2

r2 > 0, let Ψ(p, β) = p(tan β− β). From [1], (9.3.15) to (9.3.19),
there exists four functions L,M,N,O depending on p and β such that

Jp(
p

cos β
)+iYp(

p
cos β

) =

√
2

πp tan β
(L−iM)eiΨ, J′p(

p
cos β

)+iY ′p(
p

cos β
) = i

√
sin 2β
πp

(N+iO)eiΨ, (34)

where L,N, pM, pO have an asymptotic expansion in inverse powers of p2 when p large, and L(p, β) =

1 + O(p−2), N(p, β) = 1 + O(p−2), pM(p, β) = a(β) + O(p−1), pO(p, β) = b(β) + O(p−1), where
a(β) = 1

8 tan β + 5
24 tan3 β

, b(β) = 3
8 tan β + 7

24 tan3 β
.

3. In the elliptic case, namely<εµω2 − k2
z −

p2

r2 < 0, we use 10.20 in [8]. Note that z and ζ introduced
in (44) can be extended to z ∈ C. There exists A, B,C,D, continuous functions on ζ, depending on p,
such that H(1)

p (pz) ' 2e−
iπ
3 ( ζ

1−z2 )
1
4 [p−

1
3 Ai(e

2iπ
3 p

2
3 ζ)A(ζ, p) − p−

5
3 e

2iπ
3 Ai′(e

2iπ
3 p

2
3 ζ)ζ−

1
2 B(ζ, p)]

(H(1)
p )′(pz) ' 4e−

2iπ
3

z ( 1−z2

ζ )
1
4 [−p−

4
3 e−

2iπ
3 Ai(e

2iπ
3 p

2
3 ζ)ζ

1
2 C(ζ, p) + p−

2
3 Ai′(e

2iπ
3 p

2
3 ζ)D(ζ, p)],

(35)
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where

A(ζ, p) =

+∞∑
k=0

Ak(ζ)
p2k ,

and similar uniform expansions for B,C,D (the notations for B and C are slightly different to the ones
appearing in10.20 in [8], A0(ζ) = D0(ζ) = v0, B0(ζ) = C0(ζ) = u0).

First notice that a(p, ζ) =
Ai(p

2
3 ζ)

Bi(p
2
3 ζ)

is exponentially small as ω → +∞ when <ζ
3
2 > 0 and that

b(p, ζ) =
Bi(p

2
3 ζ)

Ai(p
2
3 ζ)

is exponentially small as ω→ +∞ when<ζ
3
2 < 0.

Introduce
k±(p, ζ) = −ζ−

1
2 p−

4
3 e±2i π3

Ai′

Ai
(e±

2
3 iπp

2
3 ζ)

B(ζ, p)
A(ζ, p)

,

τ±(p, ζ) = −ζ
1
2 p−

2
3 e∓2i π3

Ai
Ai′

(e±
2
3 iπp

2
3 ζ)

C(ζ, p)
D(ζ, p)

,

which both satisfy uniformly k± = O(p−1), τ± = O(p−1). More precisely one has

k±(p, ζ) = −p−1 u0

v0
(1 + O(p−1)), τ±(ζ, p) = −p−1 u0

v0
(1 + O(p−1)).

Estimates (35) yield

H(1)
p (pz) = 2e−i π3 p−

1
3 (

ζ

1 − z2 )
1
4 Ai(e

2iπ
3 p

2
3 ζ)A(p, ζ)[1 + k+(p, ζ)],

and a similar estimate on H(2)
p (pz).

We also observe that

Ai(e
2iπ
3 p

2
3 ζ) =

1
2

ei π3 Bi(p
2
3 ζ)(−i + a(ζ)) =

1
2

ei π3 Ai(p
2
3 ζ)(1 − ib(ζ)), (36)

from which one deduces the behavior of H( j)
p (pz) according to the sign of<ζ

3
2 :

H(1)
p (pz) = ( ζ

1−z2 )
1
4 p−

1
3 A(ζ, p)(1 + k+(p, ζ)]Bi(p

2
3 ζ)(−i + a(ζ))

= ( ζ

1−z2 )
1
4 p−

1
3 A(ζ, p)(1 + k+(p, ζ))Ai(p

2
3 ζ)(1 − ib(ζ)),

(37)

not writing the similar estimate on H(2)
p (pz) (one needs to replace k+ by k−, and all the conjugate

coefficients), stressing the role of the sign of <ζ
3
2 : the equivalent of H(1)

p (pz) for <ζ
3
2 > 0 is

−i( ζ

1−z2 )
1
4 p−

1
3 A(ζ, p)Bi(p

2
3 ζ) and is ( ζ

1−z2 )
1
4 p−

1
3 A(ζ, p)Ai(p

2
3 ζ) for<ζ

3
2 < 0.

Introducing also ã(ζ) =
Ai′(p

2
3 ζ)

Bi′(p
2
3 ζ)

, b̃(ζ) =
Bi′(p

2
3 ζ)

Ai′(p
2
3 ζ)

, one gets

(H(1)
p )′(pz) = 2e−

2iπ
3

z ( 1−z2

ζ )
1
4 p−

2
3 D(ζ, p)(1 + τ+(p, ζ)]Bi′(p

2
3 ζ)(−i + ã(ζ))

= 2e−
2iπ
3

z ( 1−z2

ζ )
1
4 p−

2
3 D(ζ, p)(1 + τ+(p, ζ)]Ai′(p

2
3 ζ)(1 − ib̃(ζ)),

(38)

It will be useful as well to obtain the following equalities on Yp(pz) and Jp(pz), using (10.20.4) and
(10.20.5) of [8] and the expressions (different from the definitions mentioned) A(ζ, p) = v0 + O(p−2),
B(ζ, p) = u0 + O(p−2), C(ζ, p) = v0 + O(p−2), D(ζ, p) = u0 + O(p−2), u0 = v0 = 1:
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Jp(pz) = ( 4ζ
1−z2 )

1
4 p−

1
3 [A(ζ, p)Ai(p

2
3 ζ) − p−

4
3 ζ−

1
2 B(ζ, p)Ai′(p

2
3 ζ)]

= ( 4ζ
1−z2 )

1
4 p−

1
3 A(ζ, p)(1 + k(p, ζ))Ai(p

2
3 ζ)

Yp(pz) = −( 4ζ
1−z2 )

1
4 p−

1
3 [A(ζ, p)Bi(p

2
3 ζ) − p−

4
3 ζ−

1
2 B(ζ, p)Bi′(p

2
3 ζ)]

= −( 4ζ
1−z2 )

1
4 p−

1
3 A(ζ, p)(1 + k̃(p, ζ))Bi(p

2
3 ζ)

J′p(pz) = −2
z ( 1−z2

4ζ )
1
4 p−

2
3 [D(ζ, p)Ai′(p

2
3 ζ) − p−

2
3 ζ

1
2 C(ζ, p)Ai(p

2
3 ζ)]

= −2
z ( 1−z2

4ζ )
1
4 p−

2
3 D(ζ, p)(1 + τ(p, ζ))Ai′(p

2
3 ζ)

Y ′p(pz) = 2
z ( 1−z2

4ζ )
1
4 p−

2
3 [D(ζ, p)Bi′(p

2
3 ζ) − p−

2
3 ζ

1
2 C(ζ, p)Bi(p

2
3 ζ)]

= 2
z ( 1−z2

4ζ )
1
4 p−

2
3 D(ζ, p)(1 + τ̃(p, ζ))Bi′(p

2
3 ζ),

(39)

where this equality defines k, k̃, τ, τ̃ satisfy k(ζ, p) = p−1 +O(p−2), k̃(ζ, p) = −p−1 +O(p−2), τ(p, ζ)) =

p−1 + O(p−2), τ̃(p, ζ)) = −p−1 + O(p−2), in order to deal with the totally elliptic case. We have

Lemma 13. Let δ∗ > 0 be arbitrary. For all ζ, |ζ | ≥ 1 and |arg(ζ)| ≤ π − δ∗

• The function Ai(p
2
3 ζ)(p

2
3 ζ)

1
4 e

2
3 pζ

3
2 is bounded uniformly,

• The function Bi(p
2
3 ζ)(p

2
3 ζ)

1
4 e−

2
3 pζ

3
2 is bounded uniformly,

• The function (p
2
3 ζ)

1
2 Ai

Ai′ (p
2
3 ζ) is bounded uniformly,

• The function (p
2
3 ζ)

1
2 Bi

Bi′ (p
2
3 ζ) is bounded uniformly.

All these quantities have an uniform expansion in powers in (p
2
3 ζ)−

3
2 .

All these terms have a finite limit p→ +∞.

4. In the glancing case (namely<εµω2 − k2
z −

p2

r2 ' 0), there exists four functions P,Q,R, S depending
on a, p, defined in 10.19.9 of [8] such that

P(a, p) =

+∞∑
k=0

Pk(a)

p
2k
3

and similar equalities for Q,R, S such that one has the following equalities (and the conjugate ones),
recalling Ai(−X) − iBi(−X) = 1

2 e−i π3 Ai(e−i π3 X) and Ai′(−X) − iBi′(−X) = 1
2 ei π3 Ai′(e−i π3 X):

H(1)
p (p + ap

1
3 ) = 2

1
3

p
1
3

(Ai − iBi)(−2
1
3 a)P + 2

2
3

p (Ai′ − iBi′)(−2
1
3 a)Q

= 2
4
3

p
1
3

e−i π3 Ai(e−i π3 2
1
3 a)P + 2

5
3

p ei π3 Ai′(e−i π3 2
1
3 a)Q

(H(1)
p )′(p + ap

1
3 ) = − 2

1
3

p
2
3

(Ai′(−2
1
3 a) − iBi′(−2

1
3 a))R + 2

1
3

p
4
3

(Ai(−2
1
3 a) − iBi(−2

1
3 a))S

= − 2
5
3

p
2
3

ei π3 Ai′(e−i π3 2
1
3 a)R + 2

1
3

p
4
3

e−i π3 Ai(e−i π3 2
1
3 a)S .

(40)

One has the following asymptotic estimates on P,Q,R, S :

P = 1 −
a

5p
2
3

+ O(p−
4
3 ),Q =

3
10

a2 + O(p−
2
3 ),R = 1 −

4a

5p
2
3

+ O(p−
4
3 ), S =

3
5

a2 −
1
5

+ O(p−
2
3 ).
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The first case, which is the most classical one, will nevertheless be of less use than the others in this
analysis. It is the case of a fixed p and of k3r large. It relies on the equalities (33), which yield:

dp(k3r)
dp(k3R)

=
R
r

e−ik3(R−r) e−2ik3(r−r0)(P∗ − iQ∗)(k3r0)(P∗ + iQ∗)(k3r) − (P∗ + iQ∗)(k3r0)(P∗ − iQ∗)(k3r)
e−2ik3(R−r0)(P∗ − iQ∗)(k3r0)(P∗ + iQ∗)(k3R) − (P∗ + iQ∗)(k3r0)(P∗ − iQ∗)(k3R)

.

As =k3 < 0, one has |e−2ik3(R−r0)| = e2=k3(R−r0) ≤ 1 and |e−2ik3(r−r0)| ≤ 1, along with |e−ik3(R−r)| ≤ 1. Hence
there exists C(p) such that, for ω ≥ 1

|
dp(k3r)
dp(k3R)

| ≤ C(p),∀kz,∀r ∈ [r0,R].

This bound is not uniform in p, hence this result shall only be able to control
∑P

p=0 ap(kz)eipθ in kz in order
to perform an inverse Fourier transform, but cannot be used to obtain a behavior in (p; kz) for the regularity
when (p, kz)→ +∞.

We need, for dealing with (p, kz), to consider p AND kz large. In classical situations, this corresponds
to what can be called the high frequency regime, where both kz and p

r are of order of magnitude ω. It is
however necessary to have estimates for all (kz, p) ∈ R × N,

We rely on the following definition, based on<εµω2 − k2
z −

p2

R2 > <εµω
2 − k2

z −
p2

r2
0

for all (p, kz), under
the condition

<εµω2 > k2
z : (41)

Definition 3. One has the following classification on (p, kz) (it is a classification on the wave vector or dual
vector)

1. One is in the totally elliptic region when 0 > <εµω2 − k2
z −

p2

R2 .

2. One is in the mixed-elliptic-hyperbolic region when<εµω2 − k2
z −

p2

R2 > 0 > <εµω2 − k2
z −

p2

r2
0

.

3. One is in the totally hyperbolic region when<εµω2 − k2
z −

p2

r2
0
> 0.

In cases 2 and 3, one has

k2
z +

p2

R2 ≤ Cω2. (42)

One denotes by k⊥, =k⊥ < 0 (as in the plane layer)

k⊥ =

√
εµω2 − k2

z −
p2

R2 (43)

An explanation of the names of the zones is provided below in Section 4.4. Note for the moment that
we adopted a classification similar to what is deduced from the behavior outlined in Proposition 4 using
inequalities (29) or (28).

Let us prove (42).
In the case ’mixed elliptic hyperbolic’, it is enough to choose C = <εµ.
In the case ’totally hyperbolic’, one has

22



k2
z +

p2

r2
0

< k2
z +
<εµω2 − k2

z

r2
0

R2 ≤ <εµ
R2

r2
0

ω2,

hence C = <εµR2

r2
0

is possible. We will thus introduce the following variables, which replace the variable r

in the asymptotic analysis in (ω, kz, p):

k2
z +

p2

r2 > <εµω
2 : z =

k3r
p , ζ = ( 3

2

∫ 1
z

√
1−t2
t dt)

2
3 ,

∫ 1
z

√
1−t2
t dt = ln 1+

√
1−z2

z −
√

1 − z2

k2
z +

p2

r2 < <εµω
2 : p

cos β = k3r, sin β =

√
εµω2−k2

z−
p2

r2

k3
,< sin β > 0

k2
z +

p2

r2 ' <εµω
2 : k3r = p + ap

1
3 .

(44)

Remark 2. In the hyperbolic, mixed, or elliptic regimes, β, z, ζ, when introduced, have a finite limit when
ω → +∞. In the glancing regime and =εµ independent on ω, a = O(ω

2
3 ) and we are not in the range of

application of this regime. If =εµ = σ
iω , we are in the range a = O(ω

1
6 ) for<εµ − k2

z
ω2 −

p2

r2ω2 = 0.

Remark 3. For <εµω2 − k2
z −

p2

r2 ≥ 0, introduce a0 and b0 such that k3 = a0 + ib0, α0(r) and β0(r) such
that k3 sin β = α0(r) + iβ0(r), and a(r) and b(r) such that sin β = a(r) + ib(r).

For<εµω2 − k2
z −

p2

r2 ≤ 0, introduce p(r), q(r) such that pζ
1
2

dζ
dr = −(p(r) + iq(r)).

They are uniquely determined through b0 < 0, α0(r) > 0 (condition crucial for the analysis, coming
from the assumption sin β > 0 when εµ ∈ IR (see [8])) and p(r) > 0 (choice of the determination of the
square root as indicated in [8]), and one has

β0(r) =
p2=εµω2

r2|k3|4rα0(r)
< 0, q(r) = −

=εµω2

2p(r)
> 0.

Proof. Let <εµω2 − k2
z −

p2

r2 > 0. One has k2
3 sin2 β = k2

3 − k2
3 cos2 β = k2

3 −
p2

r2 = k2
⊥. Moreover sin2 β =

1 − p2

r2k2
3

= 1 −
p2k̄2

3
r2 |k3 |4

, from which one deduces (imaginary part)

2a(r)b(r) =
2a0b0 p2

r2|k3|4
.

As 2a0b0 = =εµω2 < 0, one has a(r)b(r) < 0 hence b(r) < 0. Observe then that =k3 sin β = b0a(r) + a0b(r),
which yields β0 = =k3 sin β < 0.

Let <εµω2 − k2
z −

p2

r2 < 0. From pz = k3r, and 2
3ζ

3
2 =

∫ 1
z

√
1−t2
t dt, one deduces ζ

1
2

dζ
dr = −

√
1−z2

z
dζ
dr =

−
√

1−z2

z
k3
p .

One deduces (observe that one uses λ
√

e =
√
λ2e for all λ > 0)

pζ
1
2

dζ
dr

= −p

√
1 −

k2
3r2

p2

k3r
p

k3

p
= −p

√
1 −

k2
3r2

p2

r
= −

√
p2

r2 − k2
3 = −

√
p2

r2 + k2
z − εµω2.

Hence 2p(s)q(s) = −=εµω2, which gives the second result.
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Let re > 0 solve

<εµω2 − k2
z −

p2

r2 = 0, (45)

id est re =

√
<εµω2−k2

z
p R. Fixing η =

kz
ω and q =

p
ωR (dimensionless numbers), we observe

re =

√
<εµ − η2

q
R.

Lemma 14. 1. The identity holds true

iΨ(re) = −
2
3

pζ
3
2 (re).

2. We have< 2
3 pζ

3
2 (re) < 0.

3. <iΨ(β(r)) > 0 for all r > re, and is an increasing function on r > re,

4. There exists r− < re such that< 2
3 pζ

3
2
e =

∫ re

r−
p(s)ds for r < r−, and< 2

3ζ
3
2 > 0 for r > r−, and it is a

decreasing function of r.

Remark that the point r = re is the only point where the limit of Φ and the limit of ζ can be computed
simultaneously according to our definitions.

Proof. Let ψ(r) = Ψ(β(r)). One has ψ′(r) =
dβ
dr Ψ′(β(r)) =

dβ
dr p tan2 β(r). Using − sin β(r) dβ

dr = −
k3
pr2 , one

gets
ψ′(r) = k3 sin β(r) = α(r) + iβ(r).

Let g(r) = 2
3 pζ

3
2 (z(r)). One already obtained

g′(r) = −(p(r) + iq(r)).

• For all r such that <εµω2 − k2
z −

p2

r2 ≥ 0, α2(r) − β2(r) = <εµω2 − k2
z −

p2

r2 , 2αβ = =εµω2, α > 0,
β < 0.
• For all r such that<εµω2−k2

z −
p2

r2 ≤ 0, p2(r)−q2(r) =
p2

r2 +k2
z −<εµω

2, 2pq = −=εµω2, p > 0, q > 0.
One deduces α2 − β2 = q2 − p2, αβ = −pq.

One checks that α2(re) = q2(re), β2(re) = q2(re), 2α(re)β(re) = −2p(re)q(re), hence, using the sign
conditions, α(re) = q(re), β(re) = −p(re) and i(α(re) + iβ(re)) = p(re) + iq(re).

The function Ψ satisfies Ψ(0) = 0, hence the complex continuation of ψ satisfies ψ(r∗) = 0 for r∗ ∈ C
such that β(r∗) = α(r∗) = 0, that is r∗ given by k3r∗ = p. One deduces iψ(re) =

∫ re

r∗
(−β(s) + iα(s))ds.

Similarly, the function ζ satisfies 2
3 pζ

3
2 (1) = 0, hence g(r) := 2

3 pζ
3
2 (z(r)) satisfies g(r∗) = 0 (point such that

z = 1 id est p = k3r∗ as well). The equality obtained above shows g(re) = −
∫ re

r∗
(p(s) + iq(s))ds. Using the

identity p(s) = −β(s), q(s) = α(s), one obtains

g(re) = −iψ(re).

This summarizes as the first item of Lemma 14.
For the second item, introduce α =

−=εµω2
√
<εµω2−k2

z
> 0. From 2

3ζ
3
2
e =

∫ 1
ze

√
1−t2
t dt =

∫ 1
√

1−iα

√
1−t2
t dt, and

denoting by iu = 1 − t2, id est dt = − idu
2t , one obtains

2
3
ζ

3
2
e = i

3
2

∫ α

0

√
u

2(1 − iu)
du = i

3
2

∫ α

0

√
u(1 + iu)

2(1 + u2)
du = i

3
2

∫ α

0

√
u

2(1 + u2)
du + i

5
2

∫ α

0

u
√

u
2(1 + u2)

du
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where i
3
2 and i

5
2 are both of negative real part, hence the inequality.

For the expressions of α(r) and β(r), one has

α2(r) − β2(r) =
p2

r2
e
−

p2

r2 , α
2(r) + β2(r) = |i=εµω2 +

p2

r2
e
−

p2

r2 |

which extends the expression of α(r), β(r) for r < re, and one observes that, extending also the same
expression for p(r) and q(r), i(α(r) + iβ(r)) = p(r) + iq(r). We may thus notice that one could formally
deduce the identity iΨ(β(r)) = −2

3 pζ
3
2 (z(r)) for all r, by extending the equalities defining p, q, α, β.

The third item uses<iΨ(r) = <iΨ(re) −
∫ r

re
β(s)ds, with β < 0, r > re and<iΨ(re) > 0, which implies

that, for all r > re,<iΨ(r) ≥ <iΨ(re) > 0 .

For the last item, use< 2
3 pζ

3
2 (z(r)) = < 2

3 pζ
3
2
e −

∫ r
re

p(s)ds = < 2
3 pζ

3
2
e +

∫ re

r p(s)ds. As there exists δ0 > 0

such that δ0 ≤ sp(s) ≤ 2δ0 for s large enough,
∫ re

r p(s)ds→ +∞ when r → 0+, there is a unique solution to

< 2
3 pζ

3
2
e +

∫ re

r p(s)ds = 0, that one calls r−. As< 2
3<ζ

3
2 is strictly decreasing, < 2

3<ζ
3
2 > 0 for r < r− and

< 2
3<ζ

3
2 < 0 for r > r−.

Remark 4. We could also have deduced the equalities above, using the fact that ζ(z) is solution of the ODE

ζ(
dζ
dz

)2 =
1 − z2

z2 ,

which transforms, with z =
k3r
p , into

pζ(
dζ
dr

)2 =
p2

r2 + k2
z − εµω

2 = (p(r) + iq(r))2.

It is useful to introduce and recall the following notations:

k3 =

√
εµω2 − k2

z , k⊥ =

√
εµω2 − k2

z −
p2

R2 , kl =
p
R
, cos β∗ =

kl

k3
, sin β∗ =

k⊥
k3
, tan β∗ =

k⊥
kl
. (46)

4.4. Eikonal equations.

We rely on the previous asymptotics of the Bessel and Hankel functions in the case where there exists
K > 0 such that k2

z +
p2

r2 ≤ Kω2. It is always the case, as it was noticed, when one is in the hyperbolic, top
glancing, bottom glancing, and mixed hyperbolic elliptic regimes on [r0,R], and we enforce it additionally
when p2

R2 + k2
z > <εµω

2. This is called the asymptotic regime3. The PDO that one considers is

r−1∂r(r∂r) + ∂2
z2 + r−2∂2

θ2 + ω2εµ.

After a change of unknown of the form v = r
1
2 u and a change of notation r = R + n, it writes, in the high-

frequency regime, as the action of the operator ∂2
n2 + R(n, i−1ω−1∂z, i−1∂θ) (kz as the dual variable of z and p

as the (discrete) dual variable of θ):

3We avoid the case where kz, p grow more than ω
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R(n, kz, p) = εµω2 − k2
z −

p2 − 1
4

(n + R)2 .

The eikonal equation associated with this PDE is thus

(∂rΦ)2 + (R + n)−2(∂θΦ)2 + εµω2 − k2
z = 0. (47)

In the classical analysis of operators of the form ∂2
n2 + R(n, x, i−1∂x), in the case εµ ∈ R∗+ for which

the principal symbol is real, the elliptic region is characterized as the set of points (x0, ξ0) ∈ T ∗∂Ω for
which R(0, x0, ξ0) < 0. In the case of the Helmholtz equation in cylindrical coordinates, we observe that,
considering p as the discrete Fourier variable in θ (equivalent to p

R Fourier variable for the curvilinear absciss

s = Rθ), this corresponds, when εµ ∈ R∗+, to εµω2 − k2
z −

p2

R2 < 0. In a similar fashion, the hyperbolic region

is characterized by εµω2 − k2
z −

p2

R2 > 0, and the glancing region is characterized by εµω2 − k2
z −

p2

R2 = 0. In

the latter case, as ∂nR(0, kz, p) =
2p2

R3 > 0, we fall in the category of strictly diffractive points (which is not
suprising, because this corresponds to the model problem of the strictly diffractive analysis).

Even though the classical decomposition of the space of (kz, p) into elliptic, hyperbolic, and glancing
region respectively for R(0, kz, p) < 0, R(0, kz, p) > 0 and R(0, kz, p) = 0, where n = 0 is equivalent to r = R
is valid for a real principal symbol, we shall use the same terminology4, by convention, in the case εµ < R
is replaced by<(εµ):

• Elliptic regime: k2
z +

p2

R2 > <εµω
2

• Hyperbolic regime: k2
z +

p2

R2 ≤ <εµω
2

The glancing region is not of use here because the distance of k2
z +

p2

R2 to εµω2 is always of order ω2 at least.
We have:
• Elliptic region: <k3R

p < 1. One has thus to study asymptotics of H( j)
p (pz), where z is defined in (44).

We use the estimates (37) of Section 4.3. The asymptotic solutions use the Airy functions Ai(e±
2iπ
3 p

2
3 ζ),

associated with the phase

G(θ, r) = pθ ± i
2
3

pζ
3
2 ,

where ζ is defined in (44).

• Hyperbolic region: we consider β defined in (44).
We deduce from the asymptotic expansion of the Hankel functions an equivalent for the Dirichlet to

Neumann operator is a consequence of the analysis of H(1)
p (k3r) when p and k3 are of the same order.

Following Abramovitz and Stegun [1], one has the following phase for the Bessel functions (estimates (34)
of Section 4.3)

Ψ(p, β) = p(tan β − β).

and the total phase is
Φ(θ, r) = Ψ(p, β) + pθ.

4we can use a limiting absorption principle with =εµ→ 0−
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Lemma 15. For each (kz, p), define re such that<εµω2 − k2
z =

p2

r2
e

.

1. For r > re, use (34). The phase Φ : (θ, r)→ Ψ(p, β) + pθ is a solution of the eikonal equation

(∂rΦ(r, θ))2 + (
∂θΦ(r, θ)

r
)2 = k2

3 = ω2εµ − k2
z .

2. For r < re, use (37). The phase G : (θ, r)→ pθ − − 2
3ζ

3
2 is solution of the eikonal equation as well:

(∂rG(r, θ))2 + (
∂θG(r, θ)

r
)2 = k2

3 = ω2εµ − k2
z .

3. For r ' re, use (40). The phase h : (θ, r)→ pθ ± 2
3 (2

1
3 a)

3
2 , with k3r = p + ap

1
3 solves as well

(∂rh)2 +
1
r2 (∂θh)2 = ω2εµ − k2

z .

Proof. Consider
Φ(r, θ) = p(θ + tan β − β), cos β =

p
k3r

.

One has
∂rΦ = p∂rβ tan2 β, ∂θΦ = p.

Using k3r =
p

cos β , ∂r f = 1
r tan β∂β f , hence

(∂rΦ(r, θ))2 + (
∂θΦ(r, θ)

r
)2 = k2

3.

This is the eikonal equation associated with the PDE. In the case of r = R + n (where the description
corresponds to a circle of radius R and n is the algebraic distance to the circle), one finds

(∂nφ(n, θ))2 = k2
3 −

p2

(n + R)2 .

The first eikonal equation is obtained.
Consider now G. One notices

∂rG = ±ip∂r(
2
3
ζ

3
2 ), ∂θG = p

Using p∂r = k3∂z and the expression of 2
3ζ

3
2 , one obtains

∂rG = ±ik3

√
1 − z2

z
.

One then obtains

(∂rG)2 + r−2(∂θG)2 = −k2
3

1 − z2

z2 +
p2

r2 = k2
3 +

p2

r2 − k2
3

p2

k2
3r2

= k2
3.

This phase also solves the eikonal equation.

We will continue this section by using the classification of Definition 3. One needs to observe the
following thing
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Remark 5. The Dirichlet to Neumann operator uses the asymptotics of the Hankel functions at r = r0 and
at r = R and of the derivatives of the Hankel functions at r = R. This means that it uses the same phase
function at the numerator and at the denominator, denoted by l(r0,R, kz, p, ω), <l(r0,R, kz, p, ω) > 0 and
the exact DTN for the mode p is of the form

n+el − n−e−l

d+el − d−e−l =
n+ − n−e−2l

d+ − d−e−2l .

we will thus only take care of the coefficients n±, d± in the analysis.

4.5. Estimates on the solution
We have the estimate

Proposition 6. Assume that there exists C constant such that p2

r2
0

+ k2
z ≤ Cω2. For all M large enough, there

exists a constant D such that, for all ω ≥ M, for all p, kz, for all r ∈ [r0,R]

|
dp(k3r)
dp(k3R)

| ≤ D.

Our aim is to obtain the estimate of Proposition 6. We will use the following equalities of the toolbox:

1. In the hyperbolic case, we use (34) of Section 4.3,
2. In the elliptic case, we use (37) of Section 4.3,
3. In the mixed-elliptic-hyperbolic case, for all r ∈ [r0,R], we use (37) for the behavior at r0, (34) for

the behavior at R.

This proposition 6 is detailed above, so that we can see the different cases that are involved here. We
state two detailed results.

Proposition 7. • For all (p, kz) satisfying<εµω2 − k2
z −

p2

r2
0
> 0 we are in the totally hyperbolic region.

There exists a constant D0 > 0 such that

|
dp(k3r)
dp(k3R)

| ≤ D0e=(Ψ∗−Ψ(β(r))) ≤ D0. (48)

• For all (p, kz) such that

<εµω2 − k2
z −

p2

R2 < 0 < <εµω2 − k2
z −

p2

r2
0

assume that re does not depend on ω. One is in the mixed elliptic-hyperbolic region.

? For r+ < r0 < r < re, there exists a constant K such that

|
Jp(k3r)Yp(k3r0) − Yp(k3r)Jp(k3r0)
Jp(k3R)Yp(k3r0) − Yp(k3R)Jp(k3r0)

| ≤= Ke
4
3 p<ζ

3
2

0 −<( 2
3 pζ

3
2 +iΨ∗) ≤ K. (49)

? For r0 < r < r+, there exists a constant K0 such that

|
Jp(k3r)Yp(k3r0) − Yp(k3r)Jp(k3r0)
Jp(k3R)Yp(k3r0) − Yp(k3R)Jp(k3r0)

| ≤ G0e
2
3 p<(ζ

3
2 −ζ

3
2

0 ) ≤ K0e−<( 2
3 pζ

3
2 +iΨ∗) ≤ K0. (50)

One notes that, as |k2
3r2 − p2| ≥ |=εµ|ω2, one is never in the glancing case.
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Proof. We consider the totally hyperbolic regime. Recall that <i(Ψ(β(r)) − Ψ(β0)) > 0 because <iΨ is
increasing. For notational simplicity, we write Ψ0 instead of Ψ(p, β(r0)) = Ψ(p, β0), L0,M0, L,M, L∗,M∗
instead of, respectively, L(p, β0),M(p, β0) and so on.

Jp(k3r)Yp(k3r0) − Yp(k3r)Jp(k3r0)
Jp(k3R)Yp(k3r0) − Yp(k3R)Jp(k3r0)

= ei(Ψ(β(r))−Ψ∗) (L0 − iM0)(L + iM) − (L0 + iM0)(L − iM)e2i(Ψ0−Ψ(β(r)))

(L0 − iM0)(L∗ + iM∗) − (L0 + iM0)(L∗ − iM∗)e2i(Ψ0−Ψ∗)
,

As |e2i(Ψ0−Ψ∗)| ≤ 1, |e2i(Ψ0−Ψ(β(r)))| ≤ 1, using precise uniform bounds on L and M, one checks that there
exists a constant D0 > 0, independent on p; kz, such that

|
Jp(k3r)Yp(k3r0) − Yp(k3r)Jp(k3r0)
Jp(k3R)Yp(k3r0) − Yp(k3R)Jp(k3r0)

| ≤ D0e=(Ψ∗−Ψ(β)) ≤ D0.

As kz and p
r are controlled byω, we get an uniform control of β, β0, β∗ hence of L,M and other quantities

above.
Let us look now at the elliptic-hyperbolic case.
For r0 < r < re, it is natural to use the previous result (because we use the elliptic representation at r0

and at r). Assume that r0 > r− first. Note that<(iΨ∗ + 2
3 pζ

3
2 ) > 0 and recall that<ζ

3
2
0 < 0.

Jp(pz0)Yp(pz) − Jp(pz)Yp(pz0)

Jp(pz0)Yp( p
cos β∗

) − Jp( p
cos β∗

)Yp(pz0)
=

e
2
3 p(ζ

3
2

0 −ζ
3
2 )

eiΨ∗− 2
3 pζ

3
2

0

Jp(pz0)e
2
3 pζ

3
2

0 Yp(pz)e−
2
3 pζ

3
2 e−

4
3 p<(ζ

3
2

0 −ζ
3
2 ) − Jp(pz)e

2
3 pζ

3
2 Yp(pz0)e−

2
3 pζ

3
2

0

Jp(pz0)e
2
3 pζ

3
2

0 Yp( p
cos β∗

)e−iΨ∗ − Jp( p
cos β∗

)e−iΨ∗[Yp(pz0)e−
2
3 pζ

3
2

0 ]e
4
3 pζ

3
2

0

Using Jp(pz0)e
2
3 pζ

3
2

0 , Yp(pz)e−
2
3 pζ

3
2 , Jp(pz)e

2
3 pζ

3
2 , Yp(pz0)e−

2
3 pζ

3
2

0 bounded, |e
4
3 pζ

3
2

0 | < 1, |e−
4
3 p<(ζ

3
2

0 −ζ
3
2 )| < 1,

one gets, with the equality√
πp tan β∗

2
Jp(

p
cos β∗

) =
1
2

[(L−iM)eiΨ∗+(L+iM)e−iΨ∗],

√
πp tan β∗

2
Yp(

p
cos β∗

) =
1
2i

[(L−iM)eiΨ∗−(L+iM)e−iΨ∗],

(51)

|
dp(k3r)
dp(k3R)

| ≤ K|e
2
3 p(ζ

3
2

0 −ζ
3
2 )−iΨ∗+ 2

3 ζ
3
2

0 | = Ke
4
3 p<ζ

3
2

0 −<( 2
3 pζ

3
2 +iΨ∗) ≤ K.

Assume now r0 < r < r−,

Jp(pz0)Yp(pz) − Jp(pz)Yp(pz0)

Jp(pz0)Yp( p
cos β∗

) − Jp( p
cos β∗

)Yp(pz0)
=

e
2
3 p(ζ

3
2

0 −ζ
3
2 )

eiΨ∗+ 2
3 pζ

3
2

0

Jp(pz0)e
2
3 pζ

3
2

0 Yp(pz)e−
2
3 pζ

3
2 e−

4
3 p<(ζ

3
2

0 −ζ
3
2 ) − Jp(pz)e

2
3 pζ

3
2 Yp(pz0)e−

2
3 pζ

3
2

0

Jp(pz0)e
2
3 pζ

3
2

0 −
4
3 pζ

3
2

0 Yp( p
cos β∗

)e−iΨ∗ − Jp( p
cos β∗

)e−iΨ∗Yp(pz0)e−
2
3 pζ

3
2

0

.

Use again the estimate (51), the inequality< 2
3ζ

3
2
0 > 0 (because r0 < r+),<(ζ

3
2
0 − ζ

3
2 ) > 0, we obtain

|
dp(k3r)
dp(k3R)

| ≤ K0|e−
2
3 pζ

3
2 −iΨ∗ | = Ke−<( 2

3 pζ
3
2 +iΨ∗) ≤ K.
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Proposition 8 deals with the totally elliptic case (that is k2
z +

p2

R2 > <εµω
2). It enables to treat the case

where
k2

z +
p2

R2

ω2 → +∞ when ω→ +∞.

Proposition 8. Let<εµω2 − k2
z > 0. For all (p, kz) satisfying k2

z +
p2

r2
0
≤ Cω2 and<εµω2 − k2

z −
p2

R2 < 0. We

say we are in the totally elliptic region.
Let r0 < r ≤ R. There exists a constant K0 such that one has, for ω large enough

|
Jp(k3r)Yp(k3r0) − Yp(k3r)Jp(k3r0)
Jp(k3R)Yp(k3r0) − Yp(k3R)Jp(k3r0)

| ≤ e−
2
3 p<(ζ

3
2 −ζ

3
2
∗ )K0 ≤ K0. (52)

More precisely, for any δ > 0 small enough, there exists ωδ such that there exists Kδ such that (52) is
uniformly true for all r ∈ [r0 + δ,R].

Proof. In the totally elliptic regime, introduce the notations z, z0, z∗ and ζ, ζ0, ζ∗ corresponding to pz = k3r,
pz0 = k3r0, pz∗ = k3R.

One notices that the functions H( j)
p (pz) contains e

2
3 pζ

3
2 as well as e−

2
3 pζ

3
2 , because it contains Ai(p

2
3 ζ) as

well as Bi(p
2
3 ζ). It is then more relevant to distinguish the role of Ai and Bi, and use the Bessel functions as

in (39)

dp(k3r)
dp(k3R)

=
Jp(pz)Yp(pz0) − Jp(pz0)Yp(pz)

Jp(pz∗)Yp(pz0) − Jp(pz0)Yp(pz∗)
=

Jp(pz)
Jp(pz∗)

1 − τ
1 − τ∗

,

where

τ =
Yp(pz)Jp(pz0)
Jp(pz)Yp(pz0)

, τ∗ =
Yp(pz∗)Jp(pz0)
Jp(pz∗)Yp(pz0)

.

We use (39) to deduce estimates for τ and τ∗. We then have to study estimates for Bi(p
2
3 ζ)Ai(p

2
3 ζ0)

Ai(p
2
3 ζ)Bi(p

2
3 ζ0)

. As the

classical estimates for the Airy functions ([8] 9.7(ii)) are valid uniformly in the sector |argz| ≤ π − δ∗, one
concludes that

Bi(p
2
3 ζ)e−

2
3 pζ

3
2 Ai(p

2
3 ζ0)e

2
3 pζ

3
2

0

Ai(p
2
3 ζ)e

2
3 pζ

3
2 Bi(p

2
3 ζ0)e−

2
3 pζ

3
2

0

is bounded, hence there exists M such that

|
Bi(p

2
3 ζ)e−

2
3 pζ

3
2 Ai(p

2
3 ζ0)e

2
3 pζ

3
2

0

Ai(p
2
3 ζ)e

2
3 pζ

3
2 Bi(p

2
3 ζ0)e−

2
3 pζ

3
2

0

| = |
Bi(p

2
3 ζ)Ai(p

2
3 ζ0)

Ai(p
2
3 ζ)Bi(p

2
3 ζ0)
||e−

4
3 p(ζ

3
2 −ζ

3
2

0 )| ≤ M

This shows that

|τ| ≤ Me−
4
3<(ζ

3
2

0 −ζ
3
2 ), |τ∗| ≤ Me−

4
3<(ζ

3
2

0 −ζ
3
2
∗ )

and one uses Me−
4
3<(ζ

3
2

0 −ζ
3
2
∗ ) < 1

2 and Me−
4
3<(ζ

3
2

0 −ζ
3
2 ) < 1

2 for r > r0 for large ω to conclude that there exists
K such that | 1−τ1−τ∗

| ≤ K for all r, r0 < r ≤ R fixed, which imply Proposition 8. The precise statement at the

end of this proposition comes from the fact that for all (p, kz) satisfying <εµω2 − k2
z −

p2

R2 < 0, p ≥ Cω ,
τ→ 0 exponentially in ω.
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Finally, we adress the case (which implies that k2
z grows when ω→ +∞):

k2
z ≥ <εµω

2. (53)

Proposition 9. There exists a constant E such that, for all r ∈ [r0,R], for all p, for all kz satisfying (53)

|
dp(k3r)
dp(k3R)

| ≤ E.

The proof of this proposition comes from the uniform representation of the Bessel functions for large
p, even for z such that the phase of z is in (−π + δ, π − δ). Indeed, if pz = k3r and if k2

3 = εµω2 − k2
z , z =

k3r
p

is of argument belonging to (−π2 , 0) because k2
3 has a negative real part and a negative imaginary part, hence

the argument of k2
3 is in (−π,−π2 ). One deduces that, on the line k3

r
p which is included in (−π2 , 0), ζ

3
2 is

increasing.
Hence one has

dp(k3r)
dp(k3R)

= e−
2
3 p(ζ

3
2 −ζ

3
2
∗ ) e

4
3 p(ζ

3
2

0 −ζ
3
2 )Jp(k3r)Yp(k3r0)e

2
3 p(ζ

3
2 −ζ

3
2

0 ) − Jp(k3r0)Yp(k3r)e
2
3 p(ζ

3
2

0 −ζ
3
2 )

e
4
3 p(ζ

3
2

0 −ζ
3
2
∗ )Jp(k3R)Yp(k3r0)e

2
3 p(ζ

3
2
∗ −ζ

3
2

0 ) − Jp(k3r0)Yp(k3R)e
2
3 p(ζ

3
2

0 −ζ
3
2
∗ )
.

One observes that pJp(k3r)Yp(k3r0)e
2
3 p(ζ

3
2 −ζ

3
2

0 ), pJp(k3r0)Yp(k3r)e
2
3 p(ζ

3
2

0 −ζ
3
2 ), pJp(k3R)Yp(k3r0)e

2
3 p(ζ

3
2
∗ −ζ

3
2

0 ), pJp(k3r0)Yp(k3R)e
2
3 p(ζ

3
2

0 −ζ
3
2
∗ )

are all bounded when p, kz is large (thanks to the coefficient p−
1
3 as coefficient in the asymptotic expansion

of Jp(pz) and the coefficient (p
2
3 )−

1
4 through the asymptotics of the Airy function). Using these estimates

one deduces that dp(k3r)
dp(k3R) is bounded, uniformly in ζ, ζ0, ζ∗, when p → +∞ and ω → +∞. This result still

holds when p is finite and ω tending to +∞ which imply kz → +∞. Proposition 9 is proven.
Proposition 6 is a consequence of Proposition 7 and Proposition 8. Proposition 5 is then a consequence

of Proposition 6 and of Proposition 9.

5. The Dirichlet to Neumann operator for the cylindrical ring

The first subsection is devoted to the result stated for the plane layer on the form and the regularity of
the Dirichlet to Neumann operator (which is an operator acting on functions on {x3 = 0}).

5.1. Proof of the result of the Introduction for the plane boundary

Lemma 16. The Dirichlet to Neumann multiplier is a Fourier multiplier from Hs(R2) to Hs−1(R2), in
particular for s = 1

2 whenever εµ < R∗+. It is not defined when εµ ∈ R∗+. However, if εµ ∈ R∗+, for each

(k1, k2) given, there exists a sequence (ωn(
√

k2
1 + k2

2))n of values of ω such that the Fourier multiplier is not
defined for ω belonging to this sequence. When ω does not belong to this sequence, the Fourier multiplier
is well defined.

Proof. Begin with the last item. In the case εµ ∈ R∗+, there exists at least (k1, k2) ∈ R2 such that εµω2 =

k2
1 + k2

2, hence there exists at least a resonance, hence no uniqueness of the solution. The Dirichlet to
Neumann multiplier is never defined as an operator on S′(R2). This is a consequence of the fact that the
domain is unbounded, hence continuous spectrum exist and, in particular, for all (k1, k2) there exists at
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least an associated point of the continuous spectrum. However, for (k1, k2) given, define ωn(
√

k2
1 + k2

2) =√
k2

1+k2
2+ π2n2

l2

εµ . These are values for which sin k⊥l = 0, hence non uniqueness of the solution. For a fixed
value of ω which is not in this list, there exists α1 such that | sin k⊥l| ≥ α1, which ensures the existence and
uniqueness of the solution of the ODE on [−l, 0].

Consider now εµ < R and assume u0 ∈ H
1
2 (R2) (that is (1 + k2

1 + k2
2)

1
4 û0(k1, k2) ∈ L2(R2)), introduce

U(k1, k2, x3) =
sin k⊥(x+l)

sin k⊥l û0(k1, k2). Estimate (76) shows that U ∈ L2(R2 × [−l, 0]), hence

u(x1, x2, x3) =
1

(2π)2

∫
R2

sin k⊥(x3 + l)
sin k⊥l

û0(k1, k2)eik1 x1+ik2 x2dk1dk2

is a function of L2(R2 × [−l, 0]). Its Fourier transform solves (75). Hence U is a L2 solution of
(∆ + ω2εµ)U = 0
U(−l) = 0
U(0) = u0.

It is straightforward to check that U ∈ H1(R2 × [−l, 0]).
The trace of the normal derivative is thus given through

∂x3 û(0, k1, k2) = k⊥
cos(k⊥l)
sin k⊥l

û0(k1, k2)

from which one deduces that ∂x3 û(0, k1, k2) = Ĉ(k1, k2)û0(k1, k2) and that |Ĉ| ≤ M
√

k2
1 + k2

2. One has thus

(1 + k2
1 + k2

2)−
1
4 ∂x3 û(0, k1, k2) ≤ M(1 + k2

1 + k2
2)

1
4 û0(k1, k2), hence Ĉ is a Fourier multiplier, and ∂x3u(., ., 0) =

Cu(., ., 0) where C goes from H
1
2 (R2) to H−

1
2 (R2).

5.2. The Dirichlet to Neumann operator for the cylindrical layer

Proposition 10. The Dirichlet to Neumann operator C is a Fourier multiplier, which expression is, for each
(p, kz) such that k3 , 0 and k3 is not a resonance of the problem

C(p, kz) = k3
H(2)

p (k3r0)(H(1)
p )′(k3R) − H(1)

p (k3r0)(H(2)
p )′(k3R)

H(2)
p (k3r0)H(1)

p (k3R) − H(1)
p (k3r0)H(2)

p (k3R)
.

In the case k3 = 0, one obtains, for τ = R
r0

C(p, kz) =
p
R
τp + τ−p

τp − τ−p .

Proof. Consider ap(kz) ∈ L2(IR). Thanks to Proposition 6, the formal solution (14) written in Proposition 1
satisfies

(kz, r)→ ap(kz)
H(2)

p (k3r0)H(1)
p (k3r) − H(1)

p (k3r0)H(2)
p (k3r)

H(2)
p (k3r0)H(1)

p (k3R) − H(1)
p (k3r0)H(2)

p (k3R)
∈ L2([r0,R] × IR)
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and if ap(kz) ∈ H1(IRkz) × h1([0, 2π]),

(kz, r, θ)→ ap(kz)
H(2)

p (k3r0)H(1)
p (k3r) − H(1)

p (k3r0)H(2)
p (k3r)

H(2)
p (k3r0)H(1)

p (k3R) − H(1)
p (k3r0)H(2)

p (k3R)
eipθ ∈ H1([r0,R] × [0, 2π] × IRkz).

The derivative in r is indeed in L2 thanks to |k3| ≤ |kz|, and one uses kz → k3ap(kz). Similarily, the
derivative in θ is in L2 thanks to pap(kz) ∈ l2. One can consider ∂ru(R, ., .), which is a Fourier multiplier
of the corresponding mode of u(R, ., .), which defines the Dirichlet to Neumann operator C from H1(S R) to
L2(S R).

This lemma complements the results of (13), (14) of [28] by characterizing the values where (16) is not
fulfilled as resonances of the problem, and by asserting estimates on the solution. Of course, one has also

C(p, kz) = k3
Yp(k3r0)J′p(k3R) − Jp(k3r0)Y ′p(k3R)

Yp(k3r0)Jp(k3R) − Jp(k3r0)Yp(k3R)
. (54)

Let us prove finally the result for k3 = 0 (that is ω2εµ − k2
z = 0). The Helmholtz equation reads, for

U(r, θ, z) = eikzz+ipθu(r)
1
r
∂r(r∂ru) −

p2

r2 u = 0.

Solutions of this ODE are u(r) = Arp + Br−p, hence the Dirichlet boundary condition at r = r0 yields
u(r) = a(rpr−p

0 − rp
0 r−p), hence at r = R one deduces u(R) = ap(Rpr−p

0 − rp
0 R−p) and ∂ru(R) = pap(Rp−1r−p

0 +

rp
0 R−p−1), from which one deduces the Dirichlet to Neumann operator as a Fourier multiplier

C(p, kz) = p
Rp−1r−p

0 + rp
0 R−p−1

Rpr−p
0 − rp

0 R−p
,

which rewrites, denoting by τ =
r1
r0

C(p, kz) =
p
R
τp + τ−p

τp − τ−p ,

and the Dirichlet to Neumann operator is the operator such that∑
p

apeipθ+i
√
εµωz → R−1

∑
p

pap
τp + τ−p

τp − τ−p eipθ+i
√
εµωz.

It is worth noticing that
∑
|p|a2

p < +∞ implies
∑

p,0 |p|−1(pap)2( τ
p+τ−p

τp−τ−p )2 < +∞ hence one checks this

expression sends h
1
2 ([0, 2π]) onto h−

1
2 ([0, 2π]).

5.3. Asymptotic estimates of the Dirichlet to Neumann operator for kz, p of order of magnitude ω for εµ ∈
R∗+ away from resonances

In this case, the use of the exact solutions is necessary, because the situation is different from the case
=εµ < 0 where, in the hyperbolic regime, it has been easy to choose the Fourier integral operator which is
exponentially growing in l in the region [0,R − r0] and the one which is exponentially decaying in l, and all
the calculations done in the previous Sections amount to choosing the leading order term in the layer. On
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the contrary, in the case εµ ∈ R, the two solutions which could be characterized as incoming and outgoing
are not easy to identify, the solution of the homogeneous Dirichlet problem is a linear combination of both.

We then use the asymptotic expansions in p, kz.
Let φ0, φ∗ the quantities tan β0 − β0, (resp. tan β∗ − β∗) depending only on η, θ and not on ω. Introduce

the solutions ωn(θ, η, r0,R) of

tan(θR(φ∗ − φ0)ω) = −
1

θRω
p(L0M∗ − L∗M0)

L0L∗ + M0M∗
. (55)

We prove

Proposition 11. There exists a constant c′ and a constant D such that, for all n, for all ω such that

|ω − ωn(θ, η, r0,R)| ≥
2c′

ωn(θ, η, r0,R)
,

one has

|C(p, kz)+ω

√
εµ − η2

tan(Ψ∗ − Ψ0)
+

√
εµ − η2 (b0 + d∗) sin2(Ψ∗ − Ψ0) − (c∗ − d0) cos2(Ψ∗ − Ψ0)

sin2(Ψ∗ − Ψ0)
| ≤

D

ω| sin3(Ψ∗ − Ψ0)|
.

Proof. The solutions are, thanks to Proposition 4, which shows that dp(k3r)
dp(k3R) is in C0([r0,R],S′), hence is the

Fourier transform of an element of C0([r0,R],S′), which yields to the representation:∑
apeipθ Jp(k3r)Yp(k3r0) − Yp(k3r)Jp(k3r0)

Jp(k3R)Yp(k3r0) − Yp(k3R)Jp(k3r0)
.

The existence and uniqueness of the solution of for a given p is given by the equality equivalent to the non
resonance condition of Lemma 11:

Jp(k3R)Yp(k3r0) − Yp(k3R)Jp(k3r0) = 0. (56)

Lemma 17. Let p
ωR = θ, η =

kz
ω independent onω and εµ−θ2−η2 > 0. There exists a sequenceωn(θ, η, r0,R)

such that (56) is equivalent to ’There exists a n such that ω = ωn(θ, η, r0,R)’.

Proof. Let us use, in the hyperbolic regime εµω2 − k2
z −

p2

r2
0
> 0, the asymptotic representation of the Bessel

functions. The conditions for resonances is

(L0 − iM0)(L∗ + iM∗)ei(Ψ∗−Ψ0) − (L0 + iM0)(L∗ − iM∗)e−i(Ψ∗−Ψ0) = 0,

which is equivalent to

[L0L∗ + M0M∗] sin(Ψ∗ − Ψ0) + (L0M∗ − L∗M0] cos(Ψ∗ − Ψ0) = 0,

that is
tan(Ψ∗ − Ψ0) = −

L0M∗ − L∗M0

L0L∗ + M0M∗
. (57)

One considers the case where p
ωR = θ is independent on ω. Equation (57) rewrites

tan(θR(φ∗ − φ0)ω) = −
1

θRω
p(L0M∗ − L∗M0)

L0L∗ + M0M∗
. (58)
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It is equivalent to (55). By inspection of the behavior of the function p(L0 M∗−L∗M0)
L0L∗+M0 M∗

, which is uniformly
bounded in ω thanks to the uniform expansions of L∗,M∗, L0,M0, one obtains existence and uniqueness of
each term of the sequence ωn(θ, η, r0,R) ∈ (

π
2 +(n−1)π
θR(φ∗−φ0) ,

nπ
θR(φ∗−φ0) ) of solutions of (56). These points are close

to the intersections of the graph of the tangent function and the graph of C
ω .

We are now ready to express, for ω < ωn(θ, η, r0,R), the Dirichlet to Neumann operator and its leading
order term.

Proof. We use
C(p, kz) = −ik3

(L0−iM0)(N∗−iO∗)ei(Ψ∗−Ψ0)+(L0+iM0)(N∗+iO∗)e−i(Ψ∗−Ψ0)

2i(L0L∗+M0 M∗) sin(Ψ∗−Ψ0)+2i(L0 M∗−L∗M0) cos(Ψ∗−Ψ0)
= −k3

(L0N∗−M0O∗) cos(Ψ∗−Ψ0)+(M0N∗+O∗L0) sin(Ψ∗−Ψ0)
(L0L∗+M0 M∗) sin(Ψ∗−Ψ0)+(L0 M∗−L∗M0) cos(Ψ∗−Ψ0)

= −k3
L0N∗−M0O∗
L0L∗+M0 M∗

cos(Ψ∗−Ψ0)+ M0N∗+O∗L0
L0N∗−M0O∗

sin(Ψ∗−Ψ0)

sin(Ψ∗−Ψ0)+ L0 M∗−L∗M0
L0L∗+M0 M∗

cos(Ψ∗−Ψ0)
.

If one wants to have a leading order term in ω of this symbol, it is necessary at the same time to avoid
sin(Ψ∗−Ψ0) = 0 and sin(Ψ∗−Ψ0) +

L0 M∗−L∗M0
L0L∗+M0 M∗

cos(Ψ∗−Ψ0). The latter condition writes ω , ωn(θ, η, r0,R),
hence we have thus to ensure that ω satisfies an inequality of the type |ω − ωn(θ, η, r0,R)| ≥ c∗ (c∗ to be
determined) in order to avoid sin(Ψ∗ − Ψ0) +

L0 M∗−L∗M0
L0L∗+M0 M∗

cos(Ψ∗ − Ψ0) AND sin(Ψ∗ − Ψ0) different from 0.
For this purpose, denote by φ∗ such that

tan φ∗ =
L0M∗ − L∗M0

L0L∗ + M0M∗
.

One observes that | tan φ∗| ≤ C
θωR with C independent on ω. Hence there exists a constant c′, and a unique

φ∗ such that |φ∗| ≤ c′
ω . If one assumes |ω − ωn(θ, η, r0,R)| ≤ 2c′

ωn(θ,η,r0,R) for all n ≥ 1, then | sin(Ψ∗ − Ψ0)| ≥
c′

ωn(θ,η,r0,R) , and one can expand the expression. One obtains, observing that L0N∗−M0O∗
L0L∗+M0 M∗

= 1 + O(p−2),

( L0 M∗−L∗M0
L0L∗+M0 M∗

)2 = O(p−2), p(L0N∗ − M0O∗) = c∗ − b0 + O(p−1), p(M0N∗ + O∗L0) = d∗ + b0 + O(p−1),

|C(p, kz)+ω

√
εµ − η2

tan(Ψ∗ − Ψ0)
+

√
εµ − η2 (b0 + d∗) sin2(Ψ∗ − Ψ0) − (c∗ − d0) cos2(Ψ∗ − Ψ0)

sin2(Ψ∗ − Ψ0)
| ≤

D

ω| sin3(Ψ∗ − Ψ0)|
.

One can link this result with the result stated in Theorem 2, through

Remark 6. Assume =εµ < 0, independent on ω, and assume lω is a constant, independent on ω. Then

C(p, kz) =

√
εµω2 − k2

z − k2
l

tan lk⊥
+

1
R

(a∗ − a0) cos2 lk⊥ − (a0 + b∗) sin2 lk⊥
sin2 lk⊥

k⊥
kl

+ O(ω−1)

Proof. We obtained dΨ
dr = k3 sin β(r), from which, for r = R, one deduces Ψ′(R) = k⊥. Hence, for l small,

Ψ∗ − Ψ0 = lk⊥ = lω k⊥
ω . One checks, in addition, that lk⊥ =

√
(<εµω2 − k2

z − k2
l )l + i=εµlω, hence lk⊥ is a

complex number which distance from the real axis is strictly positive, hence tan lk⊥ is not zero.
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One has

C(p, kz) = k⊥
cos lk⊥ −

a0+b
p sin lk⊥

sin lk⊥ −
a∗−a0

p cos lk⊥
=

k⊥
tan lk⊥

+
1
R

(a∗ − a0) cos2 lk⊥ − (a0 + b∗) sin2 lk⊥
sin2 lk⊥

k⊥
kl

+ O(ω−1).

5.4. High frequency expansion of the DTN Fourier multiplier for a fixed mode
In this section, for p fixed, we describe a high frequency equivalent (ω → +∞, or |k3| → +∞) of each

mode of the Dirichlet to Neumann operator.
As it is easier to manipulate the oscillating phases e±iΨ hence we shall use (H(1)

p ,H(2)
p ) as the suitable

pair of independent solutions for this analysis and use the equality (33) of Section 4.3. One gets

Proposition 12. Let C > 0 and |p| ≤ M is fixed. Assume |kz |

ω < <εµ.

• The leading order term, for ω → +∞ of the Fourier multiplier for the Dirichlet to Neumann oper-
ator is C(p, kz) ' k3

cos k3l
sin k3l . Note that the influence of the Fourier mode has just disappeared in this

equivalent; it gives rise to a lower order term.

• One has the estimate

C(p, kz) = k3
cos k3l + 1

8k3
( 4p2−1

r0
−

4p2+3
R ) sin k3l

sin k3l − 1
8k3

( 4p2−1
r0
−

4p2−1
R ) cos k3l

(1 + O(ω−2)).

• In the case =εµ , 0, (=k3 → −∞ when ω→ +∞),

C(p, kz) = (ik3 −
1

2R
+ O(ω−1))(1 + O(e2=k3l)).

Remark 7. Note that the Item 2 of Proposition 12 shows the dependency of the Fourier multiplier in terms
of the radius of curvature. This dependency is not uniform in p because the remainder term is not.

Proof. Let us prove first the last item. Using the equivalence cos k3l ' 1
2 e−ik3l, sin k3l ' i

2 e−ik3l, thanks to
<k3 > 0,=k3 < 0, one gets

C(p, kz) ' k3
1 + i

8k3
( 4p2−1

r0
+

4p2+3
R )

−i + 1
8k3

( 4p2−1
r0
−

4p2−1
R )

' ik3(1 +
i

8k3
(
4p2 − 1

r0
+

4p2 + 3
R

) −
i

8k3
(
4p2 − 1

r0
−

4p2 − 1
R

)),

hence the result.
For proving the first item, it is enough to replace P by 1 and Q by 0. In this case H(1)

p (z) ' 2
πz eiχp(z), (H(1)

p )′(z) '
2
πz ieiχp(z), and one has thus

C(p, kz) ' k3
eiχp(k3r0)(−ie−iχp(k3R)) − e−iχp(k3r0)ieiχp(k3R)

eiχp(k3r0)ie−iχp(k3R) − e−iχp(k3r0)eiχp(k3R) ,

that is
C(p, kz) ' k3

cos k3(R − r0)
sin k3(R − r0)

= ik3
cos k3l
sin k3l

, l = R − r0.
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The expansion at a higher order yields the following term of the expansion in k3, it depends on p. One uses

H(1)
p (kr0)(H(2)

p )′(kR) = 2
π
√

r0R
eiχp(r0)−iχp(R)(1 + i 4p2−1

8k3r0
)(−i − 4p2+3

8k3R )(1 + O(k−2
3 ))

= 2
π
√

r0R
eiχp(r0)−iχp(R)(−i + 1

8k3
( 4p2−1

r0
−

4p2+3
R ) + O(k−2

3 )),

as well as the conjugate term H(2)
p (kr0)(H(1)

p )′(kR), and

H(1)
p (kr0)H(2)

p (kR) = 2
π
√

r0R
eiχp(r0)−iχp(R)(1 + i 4p2−1

8k3r0
)(1 − i 4p2−1

8k3R )(1 + O(k−2
3 ))

= 2
π
√

r0R
eiχp(r0)−iχp(R)(1 + i (4p2−1)

8k3
( 1

r0
− 1

R ) + O(k−2
3 )),

and its conjugate expression H(2)
p (kr0)H(1)

p (kR).
Collecting, one deduces

C(p, kz) = k3
eiχp(r0)−iχp(R)(−i+ 1

8k3
( 4p2−1

r0
−

4p2+3
R ))−e−iχp(r0)+iχp(R)(i+ 1

8k3
( 4p2−1

r0
−

4p2+3
R ))+O(k−2

3 )

eiχp(r0)−iχp(R)(1+
i(4p2−1)

8k3
( 1

r0
− 1

R ))−e−iχp(r0)+iχp(R)(1− i(4p2−1)
8k3

( 1
r0
− 1

R ))+O(k−2
3 )

= k3
−2i cos k3(r0−R)+ 1

8k3
( 4p2−1

r0
−

4p2+3
R )(2i sin k3(r0−R))+O(k−2

3 )

2i sin k3(r0−R)+2i cos k3(r0−R) (4p2−1)
8k3

( 1
r0
− 1

R )+O(k−2
3 )

= k3
cos k3l+ 1

8k3
( 4p2−1

r0
−

4p2+3
R ) sin k3l+O(k−2

3 )

sin k3l− (4p2−1)
8k3

( 1
r0
− 1

R ) cos k3l+O(k−2
3 )

.

This proves the second Item of Proposition 12 when p is fixed andω goes to +∞ (including the case kz = ηω,
η ∈ R).

Finally cos k3l
sin k3l = i eik3l+e−ik3l

eik3l−e−ik3l = i e−2ik3l+1
1−e−2ik3l → i, ω→ +∞.

We shall now study a complete asymptotic regime (p, kz, ω going to∞).

5.5. High frequency analysis for the exact solution in cylindrical coordinates in the high frequency regime
in (kz, p): the hyperbolic region.

The case studied in this section is

<εµω2 − k2
z −

p2

R2 > <εµω
2 − k2

z −
p2

r2
0

> 0.

In the totally high frequency regime we are able to find the analogous of Proposition 12.

Proposition 13. Assume kz
ω = η, |η| <

√
<εµ and ω2<εµ − k2

z −
p2

r2
0
> 0. Let β∗, β0 be given by cos β∗ =

k3√
εµω2−k2

z−
p2

R2

=

√
εµω2−k2

z√
εµω2−k2

z−
p2

R2

(and a similar definition for β0). Denote by Ψ∗ = p(tan β∗ − β∗), Ψ0 =

p(tan β0 − β0). When Jp(k3r0)Yp(k3R)−YP(k3r0)Jp(k3R) , 0, the Dirichlet to Neumann operator is equal to

C(p, kz) = −ik3 sin β∗
(L0 − iM0)(N∗ − iO∗) + (L0 + iM0)(N∗ + iO∗)e−2i(Ψ∗−Ψ0)

(L0 − iM0)(L∗ + iM∗) − (L0 + iM0)(L∗ − iM∗)e−2i(Ψ∗−Ψ0) .

Let θ =
p
ωR . Define in addition k⊥ =

√
εµω2 − k2

z − ω2θ2 as the (complex) normal transmitted wave
number, the tangent waves vectors are (ωθ, kz), and β∗ is an angle of incidence.
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Proposition 14. Assume =εµ < 0 independent on ω. The following asymptotic expansion holds:

C(p, kz) = [i
√
εµω2 − k2

z −
p2

R2 −
1
R

√
εµω2−k2

z−
p2

R2
p
R

(a∗ + b∗) + O(ω−1)](1 + O(e−2=(Ψ∗−Ψ0)))

= [ik⊥ − 1
2R

k2
3

k2
⊥

+ O(ω−1)](1 + O(e−2ωδ∗))

Proof. Using Bessel functions toolbox, one obtains

C(p, kz) = k3
(H(2)

p )′( p
cos β∗

)H(1)
p ( p

cos β0
) − (H(1)

p )′( p
cos β∗

)H(2)
p ( p

cos β0
)

H(2)
p ( p

cos β∗
)H(1)

p ( p
cos β0

) − H(1)
p ( p

cos β∗
)H(2)

p ( p
cos β0

)
,

C(p, kz) = −ik3

√
sin 2β∗
πp

√
2

πp tan β0
(eiΨ0−iΨ∗(L0 − iM0)(N∗ − iO∗) + (N∗ + iO∗)(L0 + iM0)eiΨ∗−iΨ0)√

2
πp tan β0

√
2

πp tan β∗
(eiΨ0−iΨ∗(L0 − iM0)(L∗ + iM∗) − (L0 + iM0)(L∗ − iM∗)eiΨ∗−iΨ0)

.

The expansion in inverse powers of ω is given through

C(p, kz) = −ik3 sin β∗
eiΨ0−iΨ∗ (1−i a0

p )(1−i b∗
p )+(1+i b∗

p )(1+i a0
p )eiΨ∗−iΨ0

eiΨ0−iΨ(1−i a0
p )(1+i a∗

p )−(1+i a0
p )(1−i a∗

p )eiΨ∗−iΨ0

= k3 sin β∗
cos(Ψ∗−Ψ0)− a0+b∗

p sin(Ψ∗−Ψ0)

sin(Ψ∗−Ψ0)− a∗−a0
p cos(Ψ∗−Ψ0)

(1 + O(p−2)).

Lemma 14 shows that <i(Ψ(β∗) − Ψ(β0)) > 0, hence there exists δ0 such that e−2i(Ψ(β∗)−Ψ(β0)) =

O(e−2δ0ω). Using

C(p, kz) = −ik3 sin β∗
eiΨ0−iΨ∗(L0 − iM0)(N∗ − iO∗) + (N∗ + iO∗)(L0 + iM0)eiΨ∗−iΨ0

eiΨ0−iΨ∗(L0 − iM0)(L∗ + iM∗) − (L0 + iM0)(L∗ − iM∗)eiΨ∗−iΨ0
,

one obtains
C(p, kz) = ik3 sin β∗

N∗ + iO∗
L∗ − iM∗

(1 + O(e−2=(Ψ∗−Ψ0))),

from which one deduces

C(p, kz) = (ik3 sin β∗ − k3 sin β∗
a(β∗) + b(β∗)

p
+ O(ω−1))(1 + O(e−2=(Ψ∗−Ψ0))).

As
k3 sin β∗

a(β∗) + b(β∗)
p

= pR
1

2p tan β∗
(1 +

1
tan2 β∗

) =
1

2R sin2 β∗
,

we get that the leading order term of the Dirichlet to Neumann operator is

iω

√
εµ −

k2
z

ω2 −
p2

ω2R2 = ik⊥

and that the lower order term is

−
1

2R sin2 β∗
= −

1
2R

εµω2 − k2
z

εµω2 − k2
z −

p2

R2

= −
1

2R

k2
3

k2
⊥

.

Note that this result can also be obtained as a consequence of the limit

cos(Ψ∗ − Ψ0)
sin(Ψ∗ − Ψ0)

= −i
1 + e2i(Ψ∗−Ψ0)

1 + e2i(Ψ∗−Ψ0) → −i.
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5.6. Dirichlet to Neumann operator for the mixed- hyperbolic-elliptic case

We are in the case

<εµω2 − k2
z −

p2

R2 > 0 > <εµω2 − k2
z −

p2

r2
0

.

Note that, contrary to the hyperbolic regime, an exponentially growing term appears both in H(1)
p (k3r0) and

in H(2)
p (k3r0). This corresponds to the branchs identified in [17] for the decomposition near a turning point

of the solution of a second order ODE.

Proposition 15. Assume =εµ < 0, independent on ω and<εµω2 − k2
z −

p2

R2 > 0 > <εµω2 − k2
z −

p2

r2
0
.

The Dirichlet to Neumann operator is given by

C(p, kz) = ik3 sin β∗ N∗+iO∗
L∗−iM∗

(1 + O(e−2<(iΨ∗)))(1 + O(e
4
3 p<ζ

3
2

0 ))

= (ik⊥ −
k2

3
2Rk2

⊥

+ O(p−2))(1 + O(e
4
3 p<ζ

3
2

0 ))(1 + O(e−2<(iΨ∗))).

Proof. Use

C(p, kz) = k3
(H(1)

p )′(k3R)H(2)
p (k3r0) − (H(2)

p )′(k3R)H(1)
p (k3r0)

(H(1)
p )′(k3R)H(2)

p (k3r0) − (H(2)
p )′(k3R)H(1)

p (k3r0)
= k3

(H(1)
p )′(k3R) H(2)

p (pz0)

H(1)
p (pz0)

− (H(2)
p )′(k3R)

(H(1)
p )′(k3R) H(2)

p (pz0)

H(1)
p (pz0)

− (H(2)
p )′(k3R)

.

We use the expressions (39) which are more convenient. We assume that .

Assume first that<ζ
3
2
0 < 0. In this case, Ai(p

2
3 ζ) is exponentially growing and Bi(p

2
3 ζ) is exponentially

decaying. Through
H(2)

p (pz0)

H(1)
p (pz0)

=
Jp(pz0) − iYp(pz0)
Jp(pz0) + iYp(pz0)

one observes that this term is of order of magnitude 1. Indeed, one observes first that

A(p, ζ0)Ai(p
2
3 ζ0) − ζ

− 1
2

0 p−
4
3 B(p, ζ0)Ai′(p

2
3 ζ0) = A(p, ζ0)Ai(p

2
3 ζ0)[1 −

Ai′

Ai
(p

2
3 ζ0)p−

4
3 ζ−

1
2

B
A

(p, ζ0)],

and one has B
A (p, ζ0) = 1 + O(p−2) and Ai′

Ai (p
2
3 ζ0)p−

4
3 ζ−

1
2 = −p−1(1 + O(p−1)) (the last estimate coming from

the expansion of the Airy function with terms of order X−
3n
2 ).

Hence

A(p, ζ0)Ai(p
2
3 ζ0) − ζ

− 1
2

0 p−
4
3 B(p, ζ0)Ai′(p

2
3 ζ0) = A(p, ζ0)Ai(p

2
3 ζ0)[1 +

1
p

+ O(p−2)]. (59)

In a similar fashion, thanks to Bi′
Bi (p

2
3 ζ0)p−

4
3 ζ−

1
2 = p−1(1 + O(p−1)),

A(p, ζ0)Bi(p
2
3 ζ0) − ζ

− 1
2

0 p−
4
3 B(p, ζ0)Bi′(p

2
3 ζ0) = A(p, ζ0)Bi(p

2
3 ζ0)[1 −

1
p

+ O(p−2)]. (60)

39



One deduces, thanks to Bi
Ai (p

2
3 ζ0) = O(e

4
3 p<ζ

3
2

0 ),

H(2)
p (pz0)

H(1)
p (pz0)

=
Jp(pz0) − iYp(pz0)
Jp(pz0) + iYp(pz0)

=
1 + 1

p + O(p−2) − iO(e
4
3 p<ζ

3
2

0 )

1 + 1
p + O(p−2) + iO(e

4
3 p<ζ

3
2

0 )
= 1 + O(e

4
3 p<ζ

3
2

0 ).

As

C(p, kz) = −ik3 sin β∗
(N∗ − iO∗)e−iΨ∗ + (N∗ + iO∗)eiΨ∗ H(2)

p (pz0)

H(1)
p (pz0)

(L∗ + iM∗)e−iΨ∗ − (L∗ − iM∗)e−iΨ∗ H(2)
p (pz0)

H(1)
p (pz0)

,

one obtains the same estimate as before in the case =εµ < 0 independent on ω, which is the estimate based
on<(iΨ∗) > 0:

ik3 sin β∗
N∗ + iO∗
L∗ − iM∗

(1+O(e−2<(iΨ∗)))(1+O(e
4
3 p<ζ

3
2

0 )) = ik3 sin β∗(1+i
a(β∗) + b(β∗)

p
+O(p−2))(1+O(e−2<(iΨ∗)))(1+O(e

4
3 p<ζ

3
2

0 )).

This ends the proof of Proposition 15.

5.7. Dirichlet to Neumann operator in the elliptic region

The case studied in this Section is

<εµω2 − k2
z −

p2

R2 < <εµω
2 − k2

z −
p2

r2
0

< 0.

One introduces, according to the Bessel functions toolbox:

z0 =
k3r0

p
, z∗ =

k3R
p
, ζ∗, ζ0.

Denote by A0, B0 the quantities A(ζ0, p), B(ζ0, p), and A∗, B∗,C∗,D∗ the quantities A(ζ∗, p), B(ζ∗, p),C(ζ∗, p),D(ζ∗, p).

Proposition 16. 1. The Dirichlet to Neumann operator is

C(p, kz) = k3
2
z∗

√
1 − z2

∗

4ζ∗
p−

1
3

A0D∗(1 + τ∗)(1 + k̃0)Ai′(p
2
3 ζ∗)Bi(p

2
3 ζ0) − A0D∗(1 + τ̃∗)(1 + k0)Bi′(p

2
3 ζ∗)Ai(p

2
3 ζ0)

A0A∗(1 + k∗)(1 + k̃0)Ai(p
2
3 ζ∗)Bi(p

2
3 ζ0) − A0D∗(1 + k̃∗)(1 + k0)Bi(p

2
3 ζ∗)Ai(p

2
3 ζ0)

.

2. Assume =εµ < 0, independent on ω and assume<εµω2 − k2
z −

p2

r2
0
< 0. One has

C(p, kz) = [

√
k2

z +
p2

R2 − εµω
2 −

1
R

√
k2

z +
p2

R2 − εµω2

p
R

ζ
− 3

2
∗ (d1 − c1) + O(p−1)](1 + O(e−

4
3 p<(ζ

3
2

0 −ζ
3
2
∗ ))).

Proof. Instead of using the Hankel functions in this case, we use the expressions (39). Indeed, the behavior
in the elliptic case is rather an exponentially growing or decaying solution instead of oscillatory representa-
tions. One has
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C(p, kz) = k3
J′p(pz∗)Yp(pz0) − Y ′p(pz∗)Jp(pz0)

Jp(pz∗)Yp(pz0) − Yp(pz∗)Jp(pz0)
.

Assume =εµ < 0 independent on ω. We use Lemma 13.

One has 2
3 p<(ζ

3
2
0 − ζ

3
2
∗ ) > 0 hence Ai(p

2
3 ζ∗)Bi(p

2
3 ζ0) is the leading term in these equalities, hence

Jp(pz∗)Yp(pz0) and J′p(pz∗)Yp(pz0) are the two dominant terms, hence

C(p, kz) = k3
J′p(pz∗)Yp(pz0)

Jp(pz∗)Yp(pz0)

1 −
Y′p(pz∗)Jp(pz0)
J′p(pz∗)Yp(pz0)

1 − Yp(pz∗)Jp(pz0)
Jp(pz∗)Yp(pz0)

= k3
J′p(pz∗)

Jp(pz∗)
(1 + O(e−

4
3 p<(ζ

3
2

0 −ζ
3
2
∗ ))).

One has
J′p(pz∗)

Jp(pz∗)
= −

2
z∗

(
1 − z2

∗

4ζ∗
)

1
2 p−

1
3

D(ζ∗, p)
A(ζ∗, p)

Ai′(p
2
3 ζ∗)

Ai(p
2
3 ζ∗)

1 − p−
2
3 ζ

1
2
∗

C
D

Ai
Ai′ (p

2
3 ζ∗)

1 − p−
4
3 ζ
− 1

2
∗

B
A

Ai′
Ai (p

2
3 ζ∗)

.

We observe that
−p−

2
3 ζ

1
2
∗

C
D

Ai
Ai′

(p
2
3 ζ∗) =

C
D

p−1(−(p
2
3 ζ∗)

1
2

Ai
Ai′

(p
2
3 ζ∗)) ' p−1,

−p−
4
3 ζ
− 1

2
∗

B
A

Ai′

Ai
(p

2
3 ζ∗) =

B
A

p−1(−(p
2
3 ζ∗)−

1
2

Ai′

Ai
(p

2
3 ζ∗)) ' p−1,

hence
1 − p−

2
3 ζ

1
2
∗

C
D

Ai
Ai′ (p

2
3 ζ∗)

1 − p−
4
3 ζ
− 1

2
∗

B
A

Ai′
Ai (p

2
3 ζ∗)

= 1 + O(p−2).

One has also D
A (ζ∗, p) = 1 +

D1(ζ∗)−A1(ζ∗)
p2 + O(p−4) = 1 + O(p−2). One is thus left with the estimate of

Ai
Ai′ (p

2
3 ζ∗), where we use 10.4.59 of [1], which yields

−(p
2
3 ζ∗)−

1
2

Ai′

Ai
(p

2
3 ζ∗) = 1 −

d1 − c1

(p
2
3 ζ∗)

3
2

+ O(p−2) = 1 −
d1 − c1

p
ζ
− 3

2
∗ + O(p−2),

hence
J′p(pz∗)

Jp(pz∗)
= (

1 − z2
∗

z∗
)

1
2 (1 −

d1 − c1

p
ζ
− 3

2
∗ )(1 + O(p−2)).

One has k3

√
1−z2

∗

z∗
=

√
k2

z +
p2

R2 − εµω2, hence the result of the proposition.

Remark 8. Surprisingly, the expression of the lower order term in 1
R is not the same for the hyperbolic and

the elliptic regime.
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6. Dirichlet to Neumann operator for elliptic layers

6.1. The Dirichlet to Neumann operator

Thanks to the representation with Mathieu and modified Mathieu functions, one can solve (rather ex-
plicitely) the Dirichlet problem with homogeneous Dirichlet condition on { x2

a2 +
y2

b2 = 1} := ∂Ω. Using the
notation ρ, u0 as above, one gets

Lemma 18. Let C be a bounded open set of R2. Assume that { x2

a2 +
y2

b2 = 1} ⊂ C, with d(∂Ω, ∂C) > 0. Define

ρ =
√

a2 − b2 and u0 such that tanh u0 = b
a . Define u1 such that C ⊂ {(x, y), x2

cosh2 u1
+

y2

sinh2 u1
≤ 1}. The

function U is a C2(C) solution of the Helmholtz equation which is equal to 0 on the ellipse if and only if
there exists αn, n ∈ Z such that

U(x, y) =
∑
n∈Z

αn(C|n|(u)S |n|(u0) −C|n|(u0)S |n|(u))gn(v),

provided that γn : U → 1
2π

∫ 2π
0 U(x, y)gn(v)dv is continuous for each n. Note that eikzzu is NOT the Fourier

transform of a solution of (∆ +ω2εµ)U = 0 because one cannot assert, for the moment, that each term in in
S′ as estimates on αn are not provided.

The first item is a consequence of the continuity (note that the space where U lives is not given here,
and such equalities are only formal if the sum is infinite) of the application γn for calculation the Dirichlet
boundary condition.

Once all these results are proven, we are ready to study two cases for evaluating the Dirichlet to Neu-
mann multiplier, the first subsection below deals with the case of the cofocal ellipses (where the parameter
ρ is the same for both ellipses) and the second subsection deals with the case of homothetic ellipses.

6.2. Dirichlet to Neumann operator for an elliptic-type layer with same focal points for the two boundaries

B. Stupfel [28] already used such an approach to study the following problem: Ω is as usual a perfectly
conducting body, supplemented with a layer which is also with an elliptic boundary Γ1 = {(x, y), x2

a1
1
+

y2

b2
1

= 1},

under the assumption that a2
1 − b2

1 = a2 − b2, a1 ≥ a, b1 ≥ b. This means that the two elliptic boundaries
∂Ω and Γ − 1 are ellipses sharing the same focal points. In this set-up, if one denotes by u1 such that
tanh u1 =

b1
a1

, then {(x, y), x2

a1
1

+
y2

b2
1
≤ 1} − Ω = {u0 ≤ u ≤ u1, v ∈ [0, 2π]}. In this case, the result reads

exactly as in the case of the cylinder. It is stated in Section 6 of [28], using expressions (67), (70) and all
expressions that follow. The coefficients of the Calderòn operator are given by the results of [28], but we
rephrase it in the language of operators.

Lemma 19. The Dirichlet to Neumann multiplier acts on the orthonormal Hilbert base of L2([0, 2π]) {gm}

as:
C(kz)(U) =

∑
n

C′
|n|(u1)S |n|(u0)−C|n|(u0)S ′

|n|(u1)
C|n|(u1)S |n|(u0)−C|n|(u0)S |n|(u1)

gn(v)

ρ
√

cosh2 u1 sin2 v+sinh2 u1 cos2 v
Un

=
∑

n,m
C′
|n|(u1)S |n|(u0)−C|n|(u0)S ′

|n|(u1)
C|n|(u1)S |n|(u0)−C|n|(u0)S |n|(u1)ρ

−1KnmUngm(v)

for U =
∑

n Ungn(v), or∫ 2π

0
C(kz)(U)(w)gm(w)dw =

∑
n,m

C′
|n|(u1)S |n|(u0) −C|n|(u0)S ′

|n|(u1)

C|n|(u1)S |n|(u0) −C|n|(u0)S |n|(u1)
Knm

∫ 2π

0
U(v′)gn(v′)dv′.
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It is a discrete pseudo-differential operator.5

Remark 9. This result is easier to obtain, when one considers the Dirichlet boundary condition on the
inner boundary, when one is able to decompose the solution on periodic modes.

Proof. Let us start by identifying the normal derivative, which is the crucial point of this first result. A
tangent vector to the boundary is ~t = (−ρ cosh u sin v, ρ sinh u cos v), hence

~n =
1√

cosh2 u sin2 v + sinh2 u cos2 v
(sinh u cos v, cosh u sin v),

hence
∂n f =

1

ρ
√

cosh2 u1 sin2 v + sinh2 u1 cos2 v
∂u f .

We thus deduce

∂nU = 1

ρ
√

cosh2 u1 sin2 v+sinh2 u1 cos2 v

∑
n∈Z αn(C′

|n|(u1)S |n|(u0) −C|n|(u0)S ′
|n|(u1))gn(v)

= ρ−1 ∑
n∈Z αn(C′

|n|(u1)S |n|(u0) −C|n|(u0)S ′
|n|(u1)) gn(v)

√
cosh2 u1 sin2 v+sinh2 u1 cos2 v

We then define the matrix

Kmn =
1

2π

∫ 2π

0

gn(v)gm(v)√
cosh2 u1 sin2 v + sinh2 u1 cos2 v

dv

and use
gn(v)√

cosh2 u1 sin2 v + sinh2 u1 cos2 v
=

∑
m

Knmgm(v)

to obtain the result of Lemma 19.

As in the case of the Bessel functions, we have a classification of the regions to be studied. The following
classification applies:

1. totally elliptic region if<an(k3ρ) − <εµω
2−k2

z
2 cosh 2u0 > <an(k3ρ) − <εµω

2−k2
z

2 cosh 2u1 > 0,

2. mixed elliptic-hyperbolic region if<an(k3ρ)−<εµω
2−k2

z
2 cosh 2u0 > 0 > <an(k3ρ)−<εµω

2−k2
z

2 cosh 2u1,

3. hyperbolic region if 0 > <an(k3ρ) − <εµω
2−k2

z
2 cosh 2u0 > <an(k3ρ) − <εµω

2−k2
z

2 cosh 2u1,

4. top glancing region if<an(k3ρ) − <εµω
2−k2

z
2 cosh 2u0 ' 0.

Proposition 17. The asymptotics of the coefficient Mn =
C′
|n|(u1)S |n|(u0)−C|n|(u0)S ′

|n|(u1)
C|n|(u1)S |n|(u0)−C|n|(u0)S |n|(u1) is, in the hyperbolic

regime (and ωη = kz <
√
<εµω)

Mn = ±i
√

an(k3ρ)

√
k2

3ρ
2

2an(k3ρ)
cosh 2u1 − 1(1 + O(ω−2)) = ±ωρ

√
εµ − η2

2
cosh 2u1 −

an(k3ρ)
ρ2ω2 (1 + O(ω−2)).

5The action of a discrete pseudo-differential operator expresses as Op(a(v, n))(U)(v) =
∑

n a(v, n)gn(v)Un, by comparison with
Op(a(v, ξ)) f (x) = 1

2π

∫
eix.ξa(v, ξ) f̂ (ξ)dξ.
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Remark 10. We notice that the Helmholtz equation (after Fourier transform in z) writes

[
∂2

∂u2 +
∂2

∂v2 +
1
2

(εµω2 − k2
z )ρ2(cosh 2u − cos 2v)]u = 0,

and the mode analysis of this equation yields

[
∂2

∂u2 +
1
2

(εµω2 − k2
z )ρ2 cosh 2u − an(k3ρ)]u = 0,

which principal symbol leads exactly to ±iωρ
√

1
2 (εµ − η2) cosh 2u − an(k3ρ)

ρ2ω2 .

Remark 11. The coefficient obtained is thus

±i

√
εµ−η2

2 cosh 2u1 −
an(k3ρ)
ρ2ω2√

cosh2 u1 sin2 v + sinh2 u1 cos2 v
= ±i

√
εµ−η2

2 cosh2 u1 + ( εµ−η
2

2 −
an(k3ρ)
ρ2ω2 ) sinh2 u1√

cosh2 u1 sin2 v + sinh2 u1 cos2 v
,

which shows the influence of the radius of curvature at each point of the boundary (characterized by v).

Proof. We use the asymptotic expansions of the modified Mathieu functions described in Sharples [26],
namely the following UNIFORM asymptotic expansion of

W j(u, θ, x),
dW j

dx
(u, θ, x)

where u, θ, x are defined in [26], and will be recalled here. They are obtained through the modified Mathieu
functions M( j)

p ((z, h) described in [8]. Of use will be also the seminal paper of Olver [20], where uniform
asymptotic expressions for solution of ordinary differential equations with a large parameter are discussed
in the elliptic, hyperbolic or glancing zones.

Collecting the notations of Sharple, the equation (4) is y′′ = (λ − 2h2 cosh 2z)y, which yields u = z,

λ = an(k3ρ), h2 =
k2

3ρ
2

4 , that is h =
k3ρ
2 .

6.3. Behavior of the solutions of the modified Mathieu equation

The modified Mathieu equation is thus y′′(z) = [an(k3ρ)(1− 2h2

an(k3ρ) cosh 2z)]y. Recall that k2
3 = εµω2−k2

z ,
which means that

2h2

an(k3ρ)
=

k2
3ρ

2

an(k3ρ)
=
εµω2 − k2

z
an(k3ρ)
ρ2

.

The case εµ ∈ R is easy to treat, Proposition 4 allows to treat the case where q(u) = 1
2ρ

2(εµω2 −

k2
z ) cosh 2u−an(k3ρ) when an(k3ρ) < 1

2ρ
2(εµω2 − k2

z ) cosh 2u0 (where the result is identical to (28)), and the
case where an(k3ρ) > 1

2ρ
2(εµω2 − k2

z ) cosh 2u1 for k2
z < εµω2 and also, regardless of the value of an(k3ρ)

when k2
z ≥ εµω

2, where the result is identical to (29). All the Lemmas of Subsection 4.1 stay true and one
states the results in Subsection 6.4.

Let us treat now the case εµ < R+.
Sharples treats the case h < R as well, hence the case h =

k3ρ√
an(k3ρ)

is covered. The angle θ is defined by

h = |h|eiθ, hence k2
z < <εµω

2 allows to follow the branch associated with θ ∈] − π
4 , 0]. One notes that k3ρ

n
corresponds exactly to 1

sin β introduced for the hyperbolic region for the cylinder.
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In the elliptic case, we define the variable ξ such that

(
dξ
du

)2 = 1 −
2h2

an(k3ρ)
cosh 2u, (61)

for an asymptotic representation with exponentials e±
√

an(k3ρ)ξ, where
√

an(k3ρ)ξ represents the phase solu-
tion of the reduced eikonal equation.

In the hyperbolic case, we define the variable Ξ such that

(
dΞ

du
)2 =

2h2

an(k3ρ)
cosh 2u − 1, (62)

In the glancing case, we define ζ such that

ζ(
dζ
du

)2 = 1 −
2h2

an(k3ρ)
cosh 2u, (63)

for an asymptotic representation with Airy functions, where (an(k3ρ))
1
3 ζ is the argument of the Airy func-

tions considered.
We denote, for simplification, by N =

√
an(k3ρ). It is NOT an approximation of n, and, in the high

frequency regime, N ' ω
√

(2n+1)ρ
ω

√
εµ − η2 (dimension of the inverse of a velocity?or dimensioness?).

In the hyperbolic case, we check that the modified Mathieu equation becomes (18)

y′′ = (iN)2(
dΞ

dz
)2y,

which corresponds in Sharples’analysis to the case h = iN, |h| = |N|, and h = |h|ei π2 +θ, which yields the
change of variable u = xe−i π2−θ, leading to hu = iNu = ieiθ|h|u = |h|x.

In the case of the Airy function analysis, W = ( dζ
dz )−

1
2 y solves the equation d2W

dζ2 = (N2ζ + f (ζ))W, which
yields solutions as

W j(N, θ, u) = P j(N
2
3 ζ))P j(N, u) + P′j(N

2
3 ζ))Q j(N, u)

d
dζ

W j(N, θ, u) = N
2
3 P′j(n

2
3 ζ))R j(N, u) + P j(N

2
3 ζ))S j(N, u)

where P1(X) = Ai(X), P2(X) = Ai(e−
2iπ
3 X, P3(X) = Ai(e

2iπ
3 X), P4(X) = Bi(X).

The analysis of the conditions on which one can apply the method of Olver [20] and the results of
Sharples [26], relies on the inequality, for the ODE d2F

dz2 = (h2 + f (θ, z, u))F is essentially | f (θ, z, u)| ≤ C
1+|z|1+σ

and additional conditions under the hypothesis that f has an expansion in u−1. This is the case when one
introduces kz, n of order ω, and we transform the modified Mathieu ODE (18) by using Ξ as new variable.
Indeed it writes

dΞ

du
d

dΞ
(
dΞ

du
dy
dΞ

) = (iN)2(
dΞ

dz
)2y,

hence
d

dΞ
(
dΞ

du
)

dy
dΞ

+
dΞ

du
d2y
dΞ2 = (iN)2 dΞ

dz
y.

Introducing W = ( dΞ
du )

1
2 y, one deduces

d2W
dΞ2 = [(iN)2 + (

dΞ

du
)−

1
2

d2

dΞ2 ((
dΞ

du
)

1
2 )]W,
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where the bound on ( dΞ
du )−

1
2 d2

dΞ2 (( dΞ
du )

1
2 ) is fulfilled (we are on compact sets).

Application of Theorem A of [20] leads to

W±(Ξ, n) = e±iNΞ(
∑

s

(±)sA±s (ξ)
N s ),

d
dΞ

W±(Ξ,N) = ±iNe±inΞ(
∑

s

(±)sB±s (ξ)
N s ),

and we deduce in this case that, with y±(u,N) = ( dΞ
du )−

1
2 W±(Ξ(u),N),

d
du

(y±)(u,N) = (
dΞ

du
)−

1
2
[dΞ

du
dW±
dΞ

+ (
dΞ

du
)

1
2

d
du

((
dΞ

du
)−

1
2 )W±

]
,

which becomes

d
du

(y±)(u,N) = (
dΞ

du
)−

1
2 eiNΞ[ ± dΞ

du
iNB±(Ξ,N) + (

dΞ

du
)

1
2

d
du

((
dΞ

du
)−

1
2 )A±(Ξ,N)

]
,

where A± and B± are the coefficients whose expansion in inverse powers of n is uniform for n large enough.
Note that A± = 1 ± A1

iN + O(N−2), B± = 1 ± B1
iN + O(N−2), A1 and B1 are given by the expressions of [25].

The evaluation of the Dirichlet to Nemann passes through the computation

y′+(u1)y−(u0) − y′−(u1)y+(u0)
y+(u1)y−(u0) − y−(u1)y+(u0)

which amounts to, after all the needed simplifications

iN
dΞ

du
(u1)

eiN(Ξ(u1)−Ξ(u0))B+(u1)A−(u0) + e−iN(Ξ(u1)−Ξ(u0))B−(u1)A+(u0)
eiN(Ξ(u1)−Ξ(u0))A+(u1)A−(u0) − e−iN(Ξ(u1)−Ξ(u0))A−(u1)A+(u0)

.

In the case =(Ξ(u1) − Ξ(u0)) > 0, one has the estimate

y′+(u1)y−(u0) − y′−(u1)y+(u0)
y+(u1)y−(u0) − y−(u1)y+(u0)

= −iN
dΞ

du
(u1)(1 +

A1 − B1

iN
+ O(N−2))(1 + e−2N=(Ξ(u1)−Ξ(u0))),

and in the case =(Ξ(u1) − Ξ(u0)) < 0

y′+(u1)y−(u0) − y′−(u1)y+(u0)
y+(u1)y−(u0) − y−(u1)y+(u0)

= iN
dΞ

du
(u1)(1 −

A1 − B1

iN
+ O(N−2))(1 + e−2N=(Ξ(u1)−Ξ(u0))).

Using A1 = B1, one gets the estimate.

The second case of interest is the case called above mixed-eliiptic-hyperbolic. In this case, the previous
analysis is used at u = u1, while new uniform expansions are used at u = u0.

Proposition 18. The asymptotics of the coefficient Mn =
C′
|n|(u1)S |n|(u0)−C|n|(u0)S ′

|n|(u1)
C|n|(u1)S |n|(u0)−C|n|(u0)S |n|(u1) is, in the mixed elliptic-

hyperbolic regime (and ωη = kz <
√
<εµω)

Mn = ±iN

√
k2

3ρ
2

2an(k3ρ)
cosh 2u1 − 1(1 + O(N−2)) = ±ωρ

√
εµ − η2

2
cosh 2u1 −

N2

ρ2ω2 (1 + O(N−2)).
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Proof. One begins with the analysis of the solutions near u = u0.
In this case, one recalls that one introduced ξ above, and there exists two solutions, respectively denoted

by E±(u), such that

E±(ξ) = (
dξ
du

)
1
2 y±(u)

solution of
d2E±
dξ2 = (N2 + τ(ξ,N))E±,

such that

E±(ξ) = e±Nξ(1 +
∑
j≥1

A j(ξ)
N

),

as well as dE±
dξ = ±Ne±Nξ(1 +

∑
j≥1

B j(ξ)
N ).

However, the relation between the solutions denoted by W± in the proof of the previous proposition and
the solutions described above has to be carefully deduced from the branch cuts analysis of the solutions.
The situation was different in the case of the Bessel functions, where the phase analysis either for the Hankel
solutions and for the Bessel solution has been studied before.

6.4. The case εµ ∈ R+
∗ : bounds of the solution and DTN

Consider εµ ∈ R+
∗ .

The equation on G, in the case k2
z > εµω

2, is

−ω−2G′′(v) − (
a
ω2 +

η2 − εµ

2
ρ2 cos 2v)G = 0

that is

−ω−2G′′(v) + (
η2 − εµ

2
ρ2(1 − cos 2v))G = (

a
ω2 +

η2 − εµ

2
ρ2)G.

The minimum of the potential is 0, which means that a
ω2 +

η2−εµ
2 ρ2 > 0.

The equation on F is thus

F′′(u) = (a +
k2

z − εµω
2

2
cosh 2u)F.

The inequality a
ω2 +

η2−εµ
2 ρ2 > 0 yields

k(u) := a +
k2

z − εµω
2

2
cosh 2u >

k2
z − εµω

2

2
(cosh 2u − 1),

hence u → k(u) has the same properties as k introduced in (29). This implies that there exists a unique
solution of the equation (18) satisfying F(u0) = 0, F(u1) = 0, which indeeds satisfies 0 ≤ F(u) ≤ 1 for all
u ∈ [u0, u1].

Lemma 20. Let a be a Floquet mode for Equation (19). When εµω2−k2
z

2 ρ2 cosh 2u1 − a < 0, there exists a
unique solution w of (18) such that w(u0) = 0 and w(u1) = 1. The function w satisfies

|w(u)| ≤ M, u ∈ [u0, u1].
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Proof. In the case k2
z < εµω

2, two cases are discussed:
• the case where the Floquet mode a satisfies

a >
ω2εµ − k2

z

2
ρ2 cosh 2u1

where one is in the elliptic case and u → k(u) := a − ω2εµ−k2
z

2 ρ2 cosh 2u is strictly positive on [u0, u1] hence
one has again (29) and the property 0 = F(u0) ≤ F(u) ≤ F(u1) = 1 for all u ∈ [u0, u1].
• the case where the Floquet mode a satisfies

a <
ω2εµ − k2

z

2
ρ2 cosh 2u0

where one is in the hyperbolic case and we introduce q(u) := ω2εµ−k2
z

2 ρ2 cosh 2u − a, which is positive, it is
q introduced in (28). The same result holds (with a representation of w solution of w′′(u) + q(u)w(u) = 0 by
√
εµωw(u) = ρ(u) sin θ(u),w′(u) = ρ(u) cos θ(u)), that is sin(θ(u)) has O(ω) roots on [u0, u1] as well.

Finally consider the last case

ω2εµ − k2
z

2
ρ2 cosh 2u0 < a <

ω2εµ − k2
z

2
ρ2 cosh 2u1.

There exists ue such that ω2εµ−k2
z

2 ρ2 cosh 2ue = a. Three cases are available:
w(re) = 0 and (without loss of generality),w′(re) > 0,
w(re) > 0 and w′(re) ≥ 0,
w(re) > 0 and w′(re) < 0.
In the two first cases, w > 0 on (re,R) hence 1

w(R) w satisfies 1
w(R) w(r0) = 0, 1

w(R) w(R) = 1 and 1
w(R) w(r) ∈

[0, 1] fpr r ∈ [re,R]. Similarly, this holds also in the third case and w > 0 on [re,R].
In the third case and there is a root of w larger than re, denote by r∗e this root. If w′(r∗e) < 0, one deduces

0 ≤ 1
w(R) w ≤ 1 for r ∈ [r∗e ,R].

6.5. Elliptical cylinder with homothetic boundaries
We concentrate in this Section on a slightly different problem, where the two ellipses ∂Ω and Γ1, instead

of having the same focal points, are homothetic: one considers Ω as a perfectly conducting body, γ = ∂Ω

and Γ := {(x, y), x2

A2 +
y2

B2 = 1}, where B
A = b

a . We are able to prove a more explicit result than the general
theorem of this Section, but however less explicit than the results stated by Stupfel [28]:

Proposition 19. Assume that {(x, y, z), 1 ≤ x2

a2 +
y2

b2 ≤
A2

a2 , z ∈ R} is a dielectric material, of dielec-
tric constants ε and µ. Let kz be a wave number, with the assumption <(εµω2) − k2

z > 0. Denote by

k3 =

√
εµω2 − k2

z . We call gm the family of periodic solutions of the Mathieu equation, and (Cm, S m) the
associated solutions of the modified Mathieu equation.

If εµ < R, k3 is not a resonance of (10), the Dirichlet to Neumann multiplier is well defined as an oper-
ator on l2({gm,m ∈ Z}) where this space is the set of limits of

∑
m∈K αmgm,

∑
m∈K |αm|

2 < C, C independent
on K. Its matrix (infinite) is given using (67) below by

Cml =
∑
n∈Z

rnl[DnmS n(u0) − EnmCn(u0)].

where (rnl)n,l(InmS n(u0) − JnmCn(u0))n,m = δnm.
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Proof. Assume in this proof that ρ =
√

a2 − b2, which fixes the system of variables (u, v). The same formal
analysis as before yields U =

∑
n αn(C|n|(u)S |n|(u0) − S |n|(u)C|n|(u0))gn(v), where the Mathieu and modified

Mathieu functions are associated with k3ρ. In order to obtain the Dirichlet to Neumann operator, it is needed
to find (αn)n in terms of U |Γ, more precisely its expansion on (gn)n. Let us call K the application which
yields ( 1

2π

∫ 2π
0 U |Γ(v)gn(v)dv)n in terms of αn. One needs to invert K. As we are in an Hilbert separable

space of infinite dimension, it is sufficient to be able to write K (or any operator deduced from K as Id − T ,
where T satisfies ||T || < 1. This can be achieved if one can prove sup

|T (α)|l2
|α|l2

< 1. Hence the choice of
coefficients (αn)n is not the best choice.

Note that, for (x, y) ∈ Γ, ρ
2 cosh2 u cos2 v

A2 +
ρ2 sinh2 u sin2 v

B2 = 1, which is equivalent to sinh2 u =
1− ρ2

A2 cos2 v

ρ2

A2 cos2 v+
ρ2

B2 sin2 v
,

or

tanh2 u =
1 − ρ2

A2 cos2 v

1 +
ρ2

B2 sin2 v
.

It is easy to see that

tanh2 u0 <
1

1 +
ρ2

B2

≤ tanh2 u ≤ 1 −
ρ2

A2 ,∀v ∈ [0, 2π].

We denote by u1 and u2 such that tanh2 u1 = 1

1+
ρ2

B2

, tanh2 u2 = 1 − ρ2

A2 , such that u0 < u1 < u2. Use then the

estimate (??) and choose u3 > u2. Denote by

βn = αnκn, κn = (C′n(u0)S n(u0) − S ′n(u0)Cn(u0))
sinh(kn(u0)(u3 − u0))

kn(u0)
. (64)

One has
U(ρ cosh u cos v, ρ sinh u sin v) =

∑
n

βn
Cn(u)S n(u0) − S n(u)Cn(u0)

κn
gn(v).

Define

T ((βn)n) = (
1

2π

∫ 2π

0

∑
n

βn(1 −
Cn(u)S n(u0) − S n(u)Cn(u0)

κn
)gn(v)gm(v)dv)m.

One checks that
U |Γ =

∑
n

βn
Cn(ψ(v))S n(u0) − S n(ψ(v))Cn(u0)

κn
gn(v),

and that, denoting by T the operator

T (
∑

n

βngn) =
∑

n

βngn − U |Γ,

the coefficients of T (
∑

n βngn) on the Mathieu complete orthonormal family (gn) of L2([0, 2π]) is T ((βn)n).
In addition, estimate (??) proves that∫ 2π

0
(
∑

n

βngn − U |Γ)2dv ≤ |1 −
Cn(u)S n(u0) − S n(u)Cn(u0)

κn
|∞

∑
β2

n.

As one has 1 − Cn(u)S n(u0)−S n(u)Cn(u0)
κn

≤ 1 − sinh kn(u0)(u2−u0)
sinh kn(u0)(u3−u0) , one deduces that T satisfies ||T || < 1, hence its

inverse is
∑

p≥0(T )p. This proof relies only on modes |n| ≥ n0, hence on a subspace of L2([0, 2π]) of finite
codimension.
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We thus proved that (βn)n is known when U |Γ is known. This yields

βn =
∑

m

Gnmµm,U |Γ =
∑

n

µngn. (65)

Note that one can compute Gnm for each n by considering the problem (∆ + k2
3)U = 0,U |∂Ω = 0,U |Γ = gn,

which has a unique solution in H1(C −Ω).

Assume for now on that k3 does not lead to a resonance of the problem (10). Assume that, on the surface
Γ (concentric ellipse), we impose UΓ ∈ L2([0, 2π]), as a function of φ such that x = A cos φ, y = B sin φ.
This surface has not a simple expression in terms of u, v. The equation of Γ is u = Ψ(v) such that

sinh u =

√√√√
1 − ρ2

A2 cos2 v
ρ2

B2 − ( 1
B2 −

1
A2 )ρ2 cos2 v

⇔ u = ψ(v). (66)

The trace of u on Γ is

U |Γ = UΓ =
∑
n∈Z

αn(C|n|(ψ(v))S |n|(u0) −C|n|(u0)S |n|(ψ(v)))gn(v),

where the variable v describes [0, 2π]. Two equivalent possibilities are thus available:
• assume that the expansion of u|Γ uses Fourier series expansions,
• assume that the expansion of u|Γ follows Mathieu series expansion.
The normal derivative on Γ is ~n.∇, and as the equation of Γ writes sinh2 u = f (cos2 v), where f (X) =

A2−ρ2X
e2ρ2−ρ2(e2−1)X , e = b

a = B
A , a normal vector is given through sinh 2udu = − sin 2v f ′(cos2 v)dv, that is N =

(sinh 2u, sin 2v f ′(cos2 v)), hence the normal outgoing unit vector is n = (sin2 2u+( f ′(cos2 v) sin2 2v)−
1
2 N |u=ψ(v).

One then uses the following coefficients, from which one deduces a linear transform in l2([0, 2π]), using
the orthogonality of the Mathieu functions:

Inm = 1
2π

∫ 2π
0 C|n|(ψ(v))gn(v)gm(v)dv,

Jnm = 1
2π

∫ 2π
0 S |n|(ψ(v))gn(v)gm(v)dv,

Dnm = 1
2π

∫ 2π
0 ~n(v).[C′

|n|(ψ(v))gn(v),C|n|(ψ(v))g′n(v)]gm(v)dv,

Enm = 1
2π

∫ 2π
0 ~n(v).[S ′

|n|(ψ(v))gn(v), S |n|(ψ(v))g′n(v)]gm(v)dv.

(67)

These quantities are just diagonal matrices when we have the Bessel functions and the usual Fourier modes
because in this case ψ(v) does not depend on v (for the cylinder).

Let U be the unique solution of the problem (apart for k3 in the set of resonances of the Dirichlet
problem) 

(∆ + k2
3)U = 0, 1 < x2

a2 +
y2

b2 <
A2

a2 ,

U | x2

a2 +
y2

b2 =1
= 0,

U | x2

a2 +
y2

b2 = A
( a

= F ∈ L2([0, 2π]).(x, y) = A
a (c cos θ, b sin θ).

One has (denoting C−n = Cn and S −n = S n for all n ∈ N),

U =
∑
n∈Z

αn(Cn(u)S n(u0) − S n(u)Cn(u0))gn(v),
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which imply that
1

2π

∫ 2π

0
U |Γg−m(v)dv =

∑
n∈Z

αn(InmS n(u0) − JnmCn(u0)).

Let F ∈ L2([0, 2π]). As the family gn is a complete family of L2(Γ), there exists a sequence Fn such that
F =

∑
n∈Z Fmgm. As this system has a unique solution there exists (rnm)n,m such that

αn =
∑
m∈Z

rnmFm.

On the other side,

∂nU = ~n.∇U |Γ =
∑
n∈Z

αn~n.[(C′n(u)S n(u0) − S ′n(u)Cn(u0))gn(v),Cn(u)S n(u0) − S n(u)Cn(u0))g′n(v)]|u=ψ(v)

which imply
1

2π

∫ 2π

0
∂nUg−m(v)dv =

∑
n∈Z

αn[DnmS n(u0) − EnmCn(u0)].

Finally, one has
1

2π

∫ 2π

0
∂nUg−m(v)dv =

∑
n∈Z,l∈Z

rnlFl[DnmS n(u0) − EnmCn(u0)],

which imply that, in the basis (gn), the Dirichlet to Neumann multiplier is characterized by the matrix

Cml =
∑
n∈Z

rnl[DnmS n(u0) − EnmCn(u0)].

7. The Calderòn operator for a cylindrical layer in 3D for the Maxwell equations

This section is a follow-up of one of the chapters of the thesis of Pierre Payen [22]. Indeed, in Stupfel
[28] the case of a 2D cylindrical layer is thouroughly described, with exact solutions. But, as this was a
2D problem, the case of oblique incidence (id est a wave vector with a non zero z component) was not
accounted for. In Payen [22] a procedure for constructing the Calderòn operator is described, but an explicit
formula for this operator has to be deduced from the expressions therein. This is the aim of this Section.
We use there the same set-up as the set-up used in [16]. Denote by

K(r, n, kz) =

 kzn
r εµω2 − k2

z

−(εµω2 − k2
z ) −

kzn
r

 .
Lemma 21. The system of Maxwell equations is equivalent to

{ in
r Ez − ikzEθ = iωµHr
in
r Hz − ikzHθ = −iωεEr( dHz

dr
1
r

d
dr (rHθ)

)
= i

µωK
(

Ez

Eθ

)
,

( dEz
dr

1
r

d
dr (rEθ)

)
= − i

εωK
(

Hz

Hθ

)
.

The functions Ez and Hz are solution of the Bessel equation (15).
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Proof. The system of Maxwell equations writes

in
r Ez − ikzEθ = iωµHr
in
r Hz − ikzHθ = −iωεEr

ikzEr −
dEz
dr = iωµHθ

1
r [ d

dr (rEθ) − inEr] = iωµHz

ikzHr −
dHz
dr = −iωεEθ

1
r [ d

dr (rHθ) − inHr] = −iωεEz

(68)

The two first equations yield Hr in terms of (Eθ, Ez) and Er in terms of (Hθ,Hz), hence the first result
of Lemma 21. Note that this result decouples the ODE system, allowing it to be written with a matrix(

0 i
µωK

− i
εωK 0

)
. Note also that, if one introduces η = k

ω and δ(r) = n
rω , one has

1
ω2 K =

(
ηδ(r) εµ − η2

−(εµ − η2) −ηδ(r)

)
.

As for the Bessel equations on (Ez,Hz), it comes from the vectorial Helmholtz equation that E and H
solve, and we observe that, while the equations on (Eθ, Er) on one side and on (Hθ,Hr) are coupled, the
equation on Ez or on Hz is a scalar equation.

The Calderòn operator given by what follows (C(r0,R) × R denoting the infinite cylindrical annulus
between r = r0 and r = R, S (r) denoting the surface of the infinite cylinder of radius r, er is the normal unit
outgoing vector to a point of the boundary S (r) or S (R)):

Theorem 5. If there is no resonance, the problem of Maxwell equations in C(r0,R) × R, supplemented
with E|S (r0) = 0 on S (r0) and with −(E ∧ er) ∧ er |S (R) = ~E0 ∈ L2(S (R),T (S (R)) has a unique solution in
C(r0,R)×R, denoted by ~E(~E0). One has thus er∧ ~HS (R) = C(E0), where C is the interior Calderòn operator.

This Theorem is a theorem of [5].

Lemma 22. 1. If the domain is C(r0,R) × R and if εµ < R∗+, there is no resonance.
2. If the domain is C(r0,R) × [0, L], and dn(k3R)(ddn)′(k3R) , 0, there is no resonance.

Introduce now, in the case dn(k3R)ddn(k3R) , 0, the functions

S n(k3r) =
J′n(k3r0)Yn(k3r)−Y′n(k3r0)Jn(k3r)
J′n(k3r0)Y′n(k3R)−Y′n(k3r0)J′n(k3R) ,

Tn(k3r) =
Jn(k3r0)Y′n(k3r)−Yn(k3r0)J′n(k3r)
Jn(k3r0)Yn(k3R)−Yn(k3r0)Jn(k3R) ,

Qn(k3r) =
Jn(k3r0)Yn(k3r)−Yn(k3r0)Jn(k3r)
Jn(k3r0)Yn(k3R)−Yn(k3r0)Jn(k3R) ,

Rn(k3r) =
J′n(k3r0)Y′n(k3r)−Y′n(k3r0)J′n(k3r)
J′n(k3r0)Y′n(k3R)−Y′n(k3r0)J′n(k3R) .

(69)

We notice that these functions do not depend on the choice of the pair of fundamental solutions of the Bessel
equation considered.
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Lemma 23. The Calderòn operator for the cylindrical annulus is given by(
−Hθ

Hz

)
=

 − iωε
k3

[Tn(k3R) − ik2
z n2

k2
3R2ω2εµ

S n(k3R)] ikzn
k3RωµS n(k3R)

ikzn
k3RωµS n(k3R) ik3

ωµS n(k3R)


(

Ez

Eθ

)
.

Remark 12. One hoped that the leading order term of this operator is
√

ε
µ , at the first order, which is the

case because the approximation of S n(k3R) is − i
sin β∗

while the approximation of Tn(k3R) is i sin β∗ as it is
stated in Lemma 24.

Remark 13. The impedance operator, which expresses n ∧ E in terms of −n ∧ n ∧ H, is(
−Eθ

Ez

)
=

 iωµ
k3

[(S n(k3R))−1 −
ik2

z n2

k2
3R2ω2εµ

(Tn(k3R))−1] − ikzn
k3Rωε (Tn(k3R))−1

−
ikzn

k3Rωε (Tn(k3R))−1 −
ik3
ωε (Tn(k3R))−1


(

Hz

Hθ

)
.

At normal incidence it is diagonal and equal to√
µ

ε

(
i(S n(

√
εµωR))−1 0
0 −i(Tn(

√
εµωR))−1

)
For n = 0 it is also diagonal and equal to

i√
µ
ε −

k2
z
ω2

(S 0(k3R))−1 0

0 −i
√

µ
ε −

k2
z
ω2 (T0(k3R))−1

 .
One recognizes a classical form for the impedance matrix.

Proof. Consider for the moment formal solutions of the Helmholtz equations obtained on Ez,Hz. After
Fourier transform in z and expanding in Fourier series in θ, one has, for k3 , 0{

Ez = aJn(k3r) + bYn(k3r)
Hz = cJn(k3r) + dYn(k3r).

We now deduce Hθ and Eθ through the equalities 3 and 5 of (68), after replacing Er,Hr using the equalities
1 and 2 of (68) for k3 , 0:  Hθ = iωε

k2
3

[ dEz
dr +

ikzn
ωεr Hz] = iωε

k2
3

dEz
dr −

kzn
k2

3r
Hz

Eθ = −
iωµ
k2

3
[ dHz

dr −
inkz
ωµr Ez] = −

iωµ
k2

3

dHz
dr −

nkz

k2
3r

Ez

that is  Hθ = iωε
k3

(aJ′n + bY ′n) − kzn
k2

3r
(cJn + dYn)

Eθ = −
iωµ
k3

(cJ′n + dY ′n) − kzn
k2

3r
(aJn + bYn).

(70)

Any solution of the Cauchy problem on (Ez, Eθ,Hz,Hθ) stated in Lemma 21, in the case k3 , 0 can be
written

Ez

Eθ

Hz =
ik3
ωµ (E0

θ +
kzn
k2

3R
E0

z )S n(R) dn(r)
dn(R)

Hθ

 = a


Jn(k3r)
−

nkz

k2
3r

Jn(k3r)

0
iωε
k3

J′n(k3r)

+b


Yn(k3r)
−

nkz

k2
3r

Yn(k3r)

0
iωε
k3

Y ′n(k3r)

+c


0

−
iωµ
k3

J′n(k3r)
Jn(k3r)
−

kzn
k2

3r
Jn(k3r)

+d


0

−
iωµ
k3

Y ′n(k3r)
Yn(k3r)
−

kzn
k2

3r
Yn(k3r)

 ,
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which defines a fundamental basis of the Cauchy problem.
For one annulus, the boundary conditions Eθ(r0) = 0, Ez(r0) = 0 yield{

aJn(k3r0) + bYn(k3r0) = 0
cJ′n(k3r0) + dY ′n(k3r0) = 0.

The boundary conditions at r = R yield aJn(k3R) + bYn(k3R) = E0
z

cJ′n(k3R) + dY ′n(k3R) =
ikzn

k3RωµE0
z +

ik3
ωµE0

θ =
ik3
ωµ [E0

θ +
kzn
k2

3R
E0

z ].

Collecting, we have 
aJn(k3r0) + bYn(k3r0) = 0
aJn(k3R) + bYn(k3R) = E0

z
cJ′n(k3r0) + dY ′n(k3r0) = 0
cJ′n(k3R) + dY ′n(k3R) =

ik3
ωµ [E0

θ +
kzn
k2

3R
E0

z ],

which gives two decoupled systems. Hence, under dn(k3R)(ddn)′(k3R) , 0 there is existence and unique-
ness of a solution of this system. Note that the condition dn(k3R)(ddn)′(k3R) , 0 do not depend on the
pair of independent solutions of the Bessel equation chosen because there exists, for any pair { f , g} of in-
dependent solutions of Equation (15), a constant C( f , g) such that f (r0)g(R) − f (R)g(r0) = C( f , g)dn. The
condition dn(R)(ddn)′(R) = 0 was obtained in Pierre Payen’s thesis, as well as the Fourier multiplier (with
an equivalent method).

The solution of the system on (a, b, c, d) is:

a = −
Yn(k3r0)
dn(k3R) E0

z

b =
Jn(k3r0)
dn(k3R) E0

z

c = −
Y′n(k3r0)
Dn(k3R)

ik3
ωµ [E0

θ +
kzn
k2

3R
E0

z ]

d =
J′n(k3r0)
Dn(k3R)

ik3
ωµ [E0

θ +
kzn
k2

3R
E0

z ].

(71)

One deduces
Ez(r) = E0

z S n(k3r),Hz(r) =
ik3

ωµ
[

kzn
k2

3R
E0

z + E0
θ ]S n(k3r).

We use then (70) to deduce the two other components. In particular

dEz

dr
(r) = k3E0

z Tn(k3r),
dHz

dr
(r) =

ik2
3

ωµ
[E0

θ +
ikzn
k2

3R
E0

z ]Rn(k3r),

which yields  Hθ = iωε
k3

E0
z Tn(k3r) − ikzn

k3rωµ [E0
θ +

ikzn
k2

3R
E0

z ]S n(k3r),

Eθ = [E0
θ +

ikzn
k2

3R
E0

z ]Rn(k3r) − kzn
k2

3r
E0

z Qn(k3r).

Collecting, the electromagnetic fields that were obtained here are

Ez(r) = Qn(k3r)E0
z ,

Eθ(r) = [E0
θ +

kzn
k2

3R
E0

z ]Rn(k3r) − nkz

k2
3r

Qn(k3r)E0
z

Hz(r) =
ik3
ωµ [E0

θ +
kzn
k2

3R
E0

z ]S n(k3r)

Hθ(r) = −
ikzn

k3ωµr [E0
θ +

kzn
k2

3R
E0

z ]S n(k3r) + iωε
k3

E0
z Tn(k3r)

(72)
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As before, these expressions do not depend on the pair of independent solutions of the Bessel equation
chosen.

Finally,
Hz(R) =

ik3
ωµ [E0

θ +
kzn
k2

3R
E0

z ]S n(R)

Hθ(R) = −
ikzn

k3ωµR [E0
θ +

kzn
k2

3R
E0

z ]S n(R) + iωε
k3

E0
z Tn(R) = iωε

k3
E0

z [Tn(R) − k2
z n2

k2
3R2ω2εµ

S n(R)] − ikzn
k3ωµR E0

θ ,

which yields the Calderòn operator and ends the proof of Lemma 23.

Lemma 24. Let
F = Ψ − Ψ0 = p(tan β∗ − β∗ − tan β0 + β0).

The following asymptotic expansions hold, under the hypotheses described in Proposition 14 and the nota-
tion F = Ψ − Ψ0

Tn(k3R) = −i sin β∗
(L0 − iM0)(N − iO)e−iF + (L0 + iM0)(N + iO)eiF

(L0 − iM0)(L + iM)e−iF − (L0 + iM0)(L − iM)eiF ,

or

Tn(k3R) = sin β∗
cos F − a0+b

p sin F

sin F − a−a0
p cos F

(1 + O(p−2).

Similarly,

S n(k3R) =
i

sin β∗

(N0 + iO0)(L∗ + iM∗)e−iF + (N0 − iO0)(L∗ − iM∗)e−iF

(N0 + iO0)(N∗ − iO∗)e−iF − (N0 − iO0)(N∗ + iO∗)eiF ,

which yields

S n(k3R) = −
1

sin β∗

cos F +
b0+a∗

p sin F

sin F +
b∗−b0

p cos F
(1 + O(p−2).

and its counterpart when =εµ does not depend on ω:

Lemma 25. Assume that =εµ < 0 is a constant independent on ω. Depending on the sign of =F, one
obtains, up to terms which are O(e−2|=F|):

S n(k3R) = ±
i

sin β∗
− (b + a)

k3

p sin β∗
+ O(ω−1),

Tn(k3R) = ±i sin β∗ + (b + a)
k3 sin β∗

p
+ O(ω−1).

Remark 14. The conditions for existence and uniqueness of a solution for a multi-layer annulus is not the
intersection of the conditions for each layer. It is, for example, for a double layer (detME)(detMH) , 0,
where ME , MH are given by (73), (74). This condition does not depend, again, on the choice of the pair of
independent solutions of the Bessel equation chosen in each layer.
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For example, for two layers of dielectric materials, of dielectric constants (ε, µ), r0 < r < r1 and

(ε1, µ1), r1 < r < R, introduce k1
3 =

√
ε1µ1ω2 − k2

z . The condition detME , 0 rewrites

(k1
3)−1(Jn(k3r0)Yn(k3r1) − Jn(k3r1)Yn(k3r0))[Jn(k1

3R)Y ′n(k1
3r1) − Yn(k1

3R)J′n(k1
3r1)]

,

(k3)−1(Jn(k3r0)Y ′n(k3r1) − J′n(k3r1)Yn(k3r0))[Jn(k1
3R)Yn(k1

3r1) − Y ′n(k1
3R)(k1

3r1)].

The proof of Remark 14 comes from the expression of the continuity at the interface r = r1 of the fields
(Ez,Hθ), that is the continuity of (Ez,

dEz
dr ), and the Dirichlet boundary conditions on Ez at r = r0 and r = R,

leading to the determinant of the matrix M:

ME :=


Jn(k3r0) Yn(k3r0) 0 0
Jn(k3r1) Yn(k3r1) −Jn(k1

3r1) −Yn(k1
3r1)

(k3)−1J′n(k3r1) (k3)−1Y ′n(k3r1) −(k1
3)−1J′n(k1

3r1) (k1
3)−1Y ′n(k3r1)

0 0 Jn(k1
3R) Yn(k1

3R)

 , (73)

the system to be solved being

ME


a
b
a1
b1

 = E0
z


0
0
0
1

 .
In a similar fashion, the system on (c, d, c1, d1) reads

MH


c
d
c1
d1

 = (
(k1

3)2

iωµ1
E0
θ+

ikn
iωµ1R

E0
z )


0
0
0
1

+kzn
r1

[
1

(k1
3)2

(a1J′n(k1
3r1)+b1Y ′n(k1

3r1))−
1
k2

3

(aJ′n(k3r1)+bY ′n(k3r1))


0
0
1
0

 ,
where

MH :=


J′n(k3r0) Y ′n(k3r0) 0 0
Jn(k3r1) Yn(k3r1) −Jn(k1

3r1) −Yn(k1
3r1)

iωµ
k2

3
J′n(k3r1) iωµ

k2
3

Y ′n(k3r1) iωµ1

(k1
3)2 J′n(k1

3r1) iωµ1

(k1
3)2 Y ′n(k3r1)

0 0 J′n(k1
3R) Y ′n(k1

3R)

 . (74)

No attempt to solve these systems is to be done here. See [22] for a procedure leading in most cases to the
values of the traces on r = R, even if it does not rely on the global system.

8. Annex

8.1. Pseudodifferential discrete operators

We define in this Section what is a pseudodifferential operator acting on R× [0, 2π]. Consider the usual
algebra of symbols on T ∗(R2), and assume this symbol is periodic in θ, of period 2π, satisfying the classical
estimates in S m

1,0. The action of such a symbol a(z, θ, ξ, η) is, as usual

Op(a) f (z, θ) =
1

(2π)2

∫ ∫
a(z, θ, ξ, η) f̂ (ξ, η)eixξ+iθηdηdξ
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If F is a function in L2(R × [0, 2π]), periodic in θ, consider the associated function on R2 where F̃(z, θ) :=
F(z, θ − 2π[ θ

2π ]). Using the Fourier series of F:

F(z, θ) =
∑

n

Fn(z)einθ

one defines directly F̃(z, θ) =
∑

n Fn(z)einθ, and F̃ ∈ S′(R2), and

F (F̃)(ξ, η) = 2π
∑

n

F̂n(ξ)δn.

One has thus
Op(a)F̃(z, θ) = 1

2π <
∑

n F̂n(ξ)δn, a(z, θ, ξ, η)eizξ+iθη >

=
∑

n
1

2π < F̂n(ξ), a(z, θ, ξ, n)eizξeinθ >

=
∑

n einθ( 1
2π

∫
a(z, θ, ξ, n)eizξ F̂n(ξ)dξ).

If, in addition, the symbol does not depend on z (that is the operator does not depend on z, as it will be the
case here)

Op(a)F̃(z, θ) =
∑

n

einθ(
1

2π

∫
a(θ, ξ, n)eizξ F̂n(ξ)dξ),

and
1

2π

∫ 2π
0 e−imθOp(a)F̃(z, θ)dθ =

∑
n

1
2π

∫
( 1

2π

∫ 2π
0 a(θ, ξ, n)ei(n−m)θdθ)eizξ F̂n(ξ)dξ

=
∑

n
1

2π

∫
am−n(ξ, n)eizξ F̂n(ξ)dξ

where ap(ξ, n) is the p−th Fourier coefficient of a(θ, ξ, n). As this definition comes from the classical
definition of pseudodifferential calculus, the pseudodifferential calculus extends to this case.

8.2. Proof of Lemma 3

Proof. Begin by a necessary condition. For this purpose, consider the partial Fourier transform in (x1, x2)
of u ∈ S′(R2,C2([−l, 0])). One has the following ODE problem on û ∈ S′(R2,C2([−l, 0]))

( d2

dx2
3

+ ω2εµ − k2
1 − k2

2)û = 0

û(−l) = 0
û(0) = û0(k1, k2).

(75)

All solutions in C∞(R) of this problem read

û(x3) = aeik⊥x3 + be−ik⊥x3 .

It is important to check that, for all K > 0, one has the implication

∀(k1, k2) ∈ R2, |a| ≤ K|eilk⊥ |, |b| ≤ K ⇒ |û(x3)| ≤ 2K,−l ≤ x3 ≤ 0

ensuring that the conditions on a and b are sufficient conditions for u being in L∞(R2×[−l, 0]) ⊂ S′(R2, L∞([−l, 0])),
which is a sufficient condition for showing that û is the Fourier transform of a tempered distribution.

Under such conditions, one gets a + b = û0, ae−ik⊥l + beik⊥l = 0, from which one gets

a =
û0

1 − e−2ik⊥l , b = −
û0e−2ik⊥l

1 − e−2ik⊥l .
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The solution, if it belongs to S′(R2,C2([−l, 0])) is then

û(x3) = û0[
eik⊥x3

1 − e−2ik⊥l −
e−ik⊥x3−2ik⊥l

1 − e−2ik⊥l ] = û0
sin(k⊥(x3 + l))

sin(k⊥l)
.

As =k⊥ ≤ −α0ω, we have

sin(k⊥(x3 + l))
sin(k⊥l)

= e−=k⊥x3
eik0
⊥(x+l) − e−ik0

⊥(x3+l)+2k1
⊥(x3+l)

eik0
⊥v − e−ik0

⊥l+2k1
⊥l

hence, as −l ≤ x3 ≤ 0, this expression satisfies the estimate

|
sin(k⊥(x3 + l))

sin(k⊥l)
| ≤

2
1 − e−2=k⊥l

≤
2

1 − e−2α0ωl , (76)

and similar estimates hold for û′ and û′′, hence û(x3) belongs to S′(R2,C2([−l0, 0])) for all a0 ∈ S(R2).

Assume now that εµ ∈ IR.

Proof. Two cases occur only: k⊥ ∈ R∗ (when εµω2 − k2
1 − k2

2 > 0) or<k⊥ = 0 (otherwise).
In the first case, that is for k2

1 + k2
2 < ω

2εµ, the system on (a, b) is a + b = û0, ae−ik⊥l + beik⊥l = 0, which
yields a(1 − e−2ik⊥l) = û0. The condition (1 − e−2ik⊥l) , 0 grants uniqueness of the solution. If there exists n
such that ω2εµ = k2

1 + k2
2 + n2π2

l2 , the function A sin nπ
l x3 is a non zero solution of the system (75) for û0 = 0.

This yields the resonances of the problem. However, this only ensures that the distribution A sin nπ
l x3 in

S′(R2,C2([−l, 0])) where Â is supported on k2
1 + k2

2 = ω2εµ− n2π2

l2 , is a nonzero solution of (75) with u0 = 0.

If (k1, k2) is such that ω2εµ − k2
1 − k2

2 ,
n2π2

l2 , the notation s0 imply that

n0 ∈ {
l
π

√
εµω2 − k2

1 − k2
2,

l
π

√
εµω2 − k2

1 − k2
2 + 1}.

In this case, for n0 even, l
√
εµω2 − k2

1 − k2
2 − n0π ≥ s0π or (n0 + 1)π − l

√
εµω2 − k2

1 − k2
2 ≥ s0π, hence

sin(l
√
εµω2 − k2

1 − k2
2) ≥ sin πs0 (and similar inequalites for n0 odd). This means that

|

sin(l + x3)
√
εµω2 − k2

1 − k2
2

sin l
√
εµω2 − k2

1 − k2
2

| ≤
1

sin πs0
.

In the case k⊥ = 0, the equation reads (û)′′ = 0, hence û(x3) = a(k1, k2)x3 + b(k1, k2), the Dirichlet
boundary conditions yields û(x3) = a(k1, k2)(x3 + l), and ∂x3 û(0) = a(k1, k2), hence û(x3) = û0

x3+l
l .

In the second case, that is for k2
1 + k2

2 > ω
2εµ, =k⊥ =

√
−εµω2 + k2

1 + k2
2 and the formal6 solution is

û(k1, k2, x3) = a(k)[e=k⊥(x3+l) − e−=k⊥(x3+l)],

6because this is not an element of S′(R2) because of the exponential growth in
√

k2
1 + k2

2 for at least one term
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and if one computes the value at x3 = 0, one finds a(k)(2 sinh l=k⊥) = û(k1, k2, 0). One then deduces

û(k1, k2, x3) = û(k1, k2, 0)
sinh(x3 + l)=k⊥

sinh l=k⊥
,

and sinh(x3+l)=k⊥
sinh l=k⊥

is increasing, hence the estimate |û(k1, k2, x3)| ≤ |û(k1, k2, 0)|, ∀(k1, k2), k2
1 + k2

2 > ω2εµ.
This shows that this formal solution belongs to C2(S′(R2), [−l, 0]) hence it was possible to use the Fourier
transform.

This proves the first item of Lemma 3 and explains the term resonance for values of (k1, k2) associated
with n through Lemma 1.

8.3. Radius of curvature of an ellipse

The normal derivative and the radius of curvature for the ellipse are expressed as follows

Lemma 26. The normal unit vector to the ellipse at the point ρ(cosh u1 cos v, sinh u1 sin v) is

~n =
1√

sinh2 u1 cos2 v + cosh2 u1 sin2 v
(sinh u1 cos v, cosh u1 sin v)

and the radius of curvature of the ellipse at this point is

ρ(s) = ρ
(cosh2 u1 cos2 v + sinh2 u1 sin2 v)

3
2

cosh u1 sinh u1
.

Proof. A tangent vector to the boundary u = u1 is (cosh u1 sin v,− sinh u1 cos v). The curvilinear absciss
is given through ρ|| d

ds ((cosh u1 cos v, sinh u1 sin v))|| = 1, that is dv
ds

√
cosh2 u1 cos2 v + sinh2 u1 sin2 v = ρ−1.

The normal unit vector is

1√
sinh2 u1 cos2 v + cosh2 u1 sin2 v

(sinh u1 cos v, cosh u1 sin v).

One knows that, for a unit tangent vector 1√
a2+b2

(a(s), b(s)), its derivative being a′b−ab′

(a2+b2)
3
2

(b,−a), the radius

of curvature is a2+b2

a′b−ab′ . With dv
ds = (ρ

√
cosh2 u1 cos2 v + sinh2 u1 sin2 v)−1, along with

a′b − ab′ =
dv
ds

(
da
dv

b −
db
dv

a) =
dv
ds

(− cosh u1 sinh u1 cos2 v − sinh u1 cosh u1 sin2 v) = −
dv
ds

cosh u1 sinh u1,

one gets

ρ(s) =
ρ

cosh u1 sinh u1
(cosh2 u1 cos2 v + sinh2 u1 sin2 v)

3
2

which ends the proof.

[1] M.A. Abramovitz, I.A. Stegun: Handbook of Mathematical Functions, 10th printing, 1972 (National Bureau of Standards)
[2] Bates R.H.T.: Global solution to the scalar inverse scattering problem J. Physics A8 (1975) 8
[3] D. Bouche, O. Lafitte: Simultaneous study of the diffraction by a 2D-convex obstacle through boundary layer method and

microlocal analysis. Asymptot. Anal. 79 (2012), no. 3-4, 347–378.
[4] Boumaza, H., Lafitte, O. The band spectrum of the periodic Airy-Schrödinger operator on the real line. J. Differential Equa-

tions 264 (2018), no. 1, 455–505

59



[5] Cessenat, Michel Mathematical methods in electromagnetism. Linear theory and applications. Series on Advances in Mathe-
matics for Applied Sciences, 41. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.

[6] David Colton and Peter Monk: The Scattering of Electromagnetic Waves by a Perfectly Conducting Infinite Cylinder Math-
ematical Methods in the Applied Sciences, Vol. 12, 503-518 (1990)

[7] Coddington, E. and Levinson, N.: Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York-
Toronto-London, 1955. xii+429 pp

[8] Digital Library of Mathematical Functions: https://dlmf.nist.gov
[9] B. Engquist-J.C. Nedelec Effective boundary conditions for Electromagnetic scattering in thin layers 1993, unpublished
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