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A story of diameter, radius and (almost) Helly property *

We present new algorithmic results for the class of Helly graphs, i.e., for the discrete analogues of hyperconvex metric spaces. Specifically, an undirected unweighted graph is Helly if every family of pairwise intersecting balls has a nonempty common intersection. It is known that every graph isometrically embeds into a Helly graph, that makes of the latter an important class of graphs in Metric Graph Theory. We study diameter and radius computations within the Helly graphs, and related graph classes. This is in part motivated by a conjecture on the finegrained complexity of these two distance problems within the graph classes of bounded fractional Helly number -that contain as particular cases the proper minor-closed graph classes and the bounded clique-width graphs. Note that under plausible complexity assumptions, neither the diameter nor the radius can be computed in truly subquadratic time on general graphs.

• In contrast to these negative results, we first present algorithms which given an n-vertex m-edge Helly graph G as input, compute with high probability (w.h.p.) its radius and its diameter in Õ(m √ n) time (i.e., subquadratic in n + m). Our algorithms are based on the Helly property and on the unimodality of the eccentricity function in Helly graphs: every vertex of locally minimum eccentricity is a central vertex.

• Then, we improve our results for the C 4 -free Helly graphs, that are exactly the Helly graphs whose balls are convex. For this subclass, we present linear-time algorithms for computing the eccentricity of all vertices. Doing so, we generalize previous results on strongly chordal graphs to a much larger subclass, that includes, among others, all the bridged Helly graphs and the hereditary Helly graphs. • Lastly, we derive approximate versions of our results for the class of chordal graphs: with the latter satisfying an almost-Helly-type property, and a stronger (induced-path) convexity property than the C 4 -free Helly graphs. For the chordal graphs, we can compute in quasi linear time the eccentricity of all vertices with an additive one-sided error of at most one, which is best possible under the Strong Exponential-Time Hypothesis (SETH). This answers an open question of [Dragan, IPL 2019]. In fact, we obtain this last result as a byproduct from a more general reduction: from diameter computation on chordal graphs to the Disjoint Sets problem. Roughly, it implies that the split graphs are the only hard instances for diameter computation on chordal graphs. We also get from our reduction that on any subclass of chordal graphs with constant VC-dimension(and so, for undirected path graphs), the diameter can be computed in truly subquadratic time.

Introduction

For any undefined graph terminology, see [START_REF] Bondy | Graph theory[END_REF]. Given an undirected unweighted graph G, the distance dist G (u, v) between two vertices u and v is the minimum number of edges on a uv-path. The eccentricity e G (u) of a vertex u is the maximum distance from u to every other vertex. The radius and the diameter of G, denoted rad(G) and diam(G), respectively, are the smallest and the largest eccentricities of a vertex in G, respectively. We study the fundamental problems of computing the diameter and the radius. There is a textbook algorithm for both problems, running in O(nm) time on n-vertex m-edge graphs. However, it is a direct reduction to All-Pairs Shortest-Paths (APSP), that is a seemingly more complex problem with a much larger (quadratic-size) output than for the diameter and radius problems. As a continuous attempt to break this quadratic barrier (in the size n + m of the input), there has been a long line of work presenting more efficient algorithms for computing the diameter and/or the radius on some special graph classes, by exploiting their geometric representations and/or some forbidden pattern (e.g., excluding a minor, or a family of induced subgraphs). A typical such example is the class of interval graphs, a.k.a. the intersection graphs of intervals on the real line [START_REF] Dragan | LexBFS-orderings and powers of graphs[END_REF][START_REF] Olariu | A simple linear-time algorithm for computing the center of an interval graph[END_REF]. See [START_REF] Brandstädt | The algorithmic use of hypertree structure and maximum neighbourhood orderings[END_REF][START_REF] Chepoi | Center and diameter problems in plane triangulations and quadrangulations[END_REF][START_REF] Coudert | Fully polynomial FPT algorithms for some classes of bounded clique-width graphs[END_REF][START_REF] Ducoffe | Fast diameter computation within split graphs[END_REF][START_REF] Eppstein | Diameter and treewidth in minor-closed graph families[END_REF][START_REF] Farley | Computation of the center and diameter of outerplanar graphs[END_REF] for other examples. We here study the Helly graphs as a broad generalization of interval graphs. Recall that a graph is Helly if every family of pairwise intersecting balls has a non-empty common intersection. This latter property on the balls will be simply referred as the Helly property in what follows. We believe that studying which of the many nice properties of the interval graphs leads to fast diameter and radius computations is an interesting research topic on its own. This is especially so because the interval graphs are less structured than most "easy" graph classes for diameter and radius computations (i.e., they have unbounded treewidth and clique-width, and they do not exclude any fixed minor). The Helly graphs, sometimes called absolute retracts or disk-Helly graphs (by opposition to other Helly-type properties on graphs [START_REF] Dourado | Complexity aspects of the Helly property: Graphs and hypergraphs[END_REF]) are well studied in Metric Graph Theory. E.g., see the survey [START_REF] Bandelt | Metric graph theory and geometry: a survey[END_REF] and the papers cited therein. This is partly because every graph is an isometric subgraph of some Helly graph, thereby making of the latter the discrete equivalent of hyperconvex metric spaces [START_REF] Dress | Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces[END_REF][START_REF] Isbell | Six theorems about injective metric spaces[END_REF]. In particular, let us consider the family of cycles. We denote by C k the cycle of length k. Although there are very simple graphs that are not Helly, such as (to be provoking) C 6 , every graph that contains a C 6 is a distance-preserving subgraph of some Helly graph. It implies that the Helly graphs cannot be characterized via some forbidden structureunlike the subclass of the interval graphs, that do exclude some infinite family of induced subgraphs. Polynomial-time recognition algorithms for the Helly graphs were presented in [START_REF] Bandelt | Dismantling absolute retracts of reflexive graphs[END_REF][START_REF] Dragan | Centers of graphs and the Helly property[END_REF][START_REF] Lin | Faster recognition of clique-Helly and hereditary clique-Helly graphs[END_REF], as well as several structural properties of these graphs in [START_REF] Bandelt | Dismantling absolute retracts of reflexive graphs[END_REF][START_REF] Bandelt | A Radon theorem for Helly graphs[END_REF][START_REF] Bandelt | Clique graphs and Helly graphs[END_REF][START_REF] Chastand | On constructible graphs, infinite bridged graphs and weakly cop-win graphs[END_REF][START_REF] Dragan | Centers of graphs and the Helly property[END_REF][START_REF] Dragan | Domination in quadrangle-free Helly graphs[END_REF][START_REF] Dragan | r-dominating cliques in graphs with hypertree structure[END_REF][START_REF] Polat | Convexity and fixed-point properties in Helly graphs[END_REF][START_REF] Polat | On constructible graphs, locally Helly graphs, and convexity[END_REF]. The dually chordal graphs are exactly the Helly graphs in which the intersection graph of balls is chordal, and they were studied independently from the general Helly graphs [START_REF] Brandstädt | The algorithmic use of hypertree structure and maximum neighbourhood orderings[END_REF][START_REF] Brandstädt | Dually chordal graphs[END_REF][START_REF] Dragan | The location problem on graphs and the Helly problem[END_REF][START_REF] Dragan | HT-graphs: centers, connected r-domination and Steiner trees[END_REF][START_REF] Dragan | r-dominating cliques in graphs with hypertree structure[END_REF]. In particular, the diameter and the radius of a dually chordal graph can be computed in linear time, that is optimal. However, to the best of our knowledge it was open until this paper whether there are truly subquadratic-time algorithms for these two problems on Helly graphs.

Related work

Chordal graphs (graphs with no induced cycles of length > 3) are another important generalization of interval graphs, with several nice geometric characterizations. E.g., they are exactly the graphs whose balls are m-convex, i.e., such that every induced path between two vertices in a ball is fully contained in this ball [START_REF] Farber | Convexity in graphs and hypergraphs[END_REF]. Furthermore, while not all chordal graphs are Helly, they satisfy a very similar property: for any family of pairwise intersecting balls in a chordal graph, there exists a vertex at distance at most some constant to all balls in the family (this result holds, more generally, for every class of graphs with bounded hyperbolicity [START_REF] Chepoi | Packing and covering δ-hyperbolic spaces by balls[END_REF]). Chepoi and Dragan proposed an elegant linear-time algorithm for computing a central vertex in a chordal graph [START_REF] Chepoi | A linear-time algorithm for finding a central vertex of a chordal graph[END_REF]. However, they observed that already for split graphs (a subclass of chordal graphs), computing the diameter is roughly equivalent to Disjoint Sets, a.k.a., the monochromatic Orthogonal Vector problem [START_REF] Chepoi | Disjoint sets problem[END_REF]. Under the Strong Exponential-Time Hypothesis (SETH), we cannot solve Disjoint Sets in truly subquadratic time [START_REF] Williams | A new algorithm for optimal 2-constraint satisfaction and its implications[END_REF], and so neither we can compute the diameter of split graphs [START_REF] Borassi | Into the square: On the complexity of some quadratictime solvable problems[END_REF] (see also [START_REF] Roditty | Fast approximation algorithms for the diameter and radius of sparse graphs[END_REF] whose authors were the first to prove such a SETH-hardness result for general graphs). It was also observed in [START_REF] Chepoi | Fast approximation of eccentricities and distances in hyperbolic graphs[END_REF] that assuming the so-called Hitting Set Conjecture (HS), the reduction from [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF] implies that the radius of a 2-hyperbolic graph cannot be computed in truly subquadratic time. Therefore, the naive algorithm for radius and diameter computations is conditionally optimal already for very simple graph classes from a metric point of view. On the positive side, there exist linear-time algorithms for computing the diameter on various subclasses of chordal graphs, e.g., interval graphs, directed path graphs and strongly chordal graphs [START_REF] Brandstädt | The algorithmic use of hypertree structure and maximum neighbourhood orderings[END_REF][START_REF] Corneil | Diameter determination on restricted graph families[END_REF][START_REF] Dragan | LexBFS-orderings and powers of graphs[END_REF]. Most of these special cases, including the three aforementioned examples, are strict subclasses of chordal Helly graphs. As a result, our work pushes forward the tractability border for diameter computation on chordal graphs and beyond.

More generally, this paper is part of a recent series of articles, with co-authors, where we try to understand the role of abstract geometric properties, and of tools and concepts from Computational Geometry, in the fast computation of metric graph invariants [START_REF] Ducoffe | A New Application of Orthogonal Range Searching for Computing Giant Graph Diameters[END_REF][START_REF] Ducoffe | Fast diameter computation within split graphs[END_REF][START_REF] Ducoffe | Diameter computation on H-minor free graphs and graphs of bounded (distance) VC-dimension[END_REF]. In this respect, Cabello and Knauer showed in [START_REF] Cabello | Algorithms for graphs of bounded treewidth via orthogonal range searching[END_REF] how to use a standard data-structure for orthogonal range searching in order to compactly represent the distances in a bounded-treewidth graph. Their approach became the cornerstone of conditionally optimal algorithms for diameter computation on boundedtreewidth graphs and other graph classes [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF][START_REF] Bringmann | Multivariate analysis of orthogonal range searching and graph distances parameterized by treewidth[END_REF][START_REF] Ducoffe | A New Application of Orthogonal Range Searching for Computing Giant Graph Diameters[END_REF][START_REF] Ducoffe | Diameter computation on H-minor free graphs and graphs of bounded (distance) VC-dimension[END_REF]. Then in another seminal paper [START_REF] Cabello | Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs[END_REF], Cabello introduced a new framework based on abstract Voronoi diagrams in order to compute the diameter of planar graphs in truly subquadratic time. See also [START_REF] Gawrychowski | Voronoi diagrams on planar graphs, and computing the diameter in deterministic Õ(n 5/3 ) time[END_REF] for improvements upon his work. Perhaps surprisingly, both planar graphs and bounded-treewidth graphs are particular cases of a large family of geometric graph classes, namely the graphs of bounded distance VC-dimension (with the latter parameter being defined, for any graph G, as the VC-dimension of its ball hypergraph). This was first proved by Chepoi et al. for the superclass of K h -minor free graphs, which combined with a fractional Helly property of all spaces of constant VC-dimension [START_REF] Matousek | Bounded VC-dimension implies a fractional Helly theorem[END_REF], allowed them to cover any planar graph of diameter 2R with a constant number of balls of radius R [START_REF] Chepoi | Covering planar graphs with a fixed number of balls[END_REF]. -Recall that a class H of hypergraphs has fractional Helly number at most k if for any positive α there is some positive β such that, in any subfamily of hyperedges in a hypergraph of H, if there is at least a fraction α of all the k-tuples of hyperedges with a non-empty common intersection, then there exists an element that is contained in a fraction at least β of all hyperedges in this subfamily. Then, the fractional Helly number of a graph class G is the fractional Helly number of the family of the ball hypergraphs of all graphs in G. -Later the results of Chepoi et al. were extended to all hereditary graph classes of constant distance VC-dimension [START_REF] Borradaile | Covering nearly surface-embedded graphs with a fixed number of balls[END_REF][START_REF] Bousquet | VC-dimension and Erdős-Pósa property[END_REF]. From the algorithmic side, it was proved in [START_REF] Ducoffe | Diameter computation on H-minor free graphs and graphs of bounded (distance) VC-dimension[END_REF] that on all proper minor-closed graph classes, and several other classes of bounded distance VC-dimension, the diameter can be computed in truly subquadratic time. Seeking for a common property of these graphs and of dually chordal graphs, we ask whether the diameter can be computed in truly subquadratic time on every graph class with a fractional Helly property. As a first step toward resolving this difficult question, our current research focuses on the simpler class of Helly graphs.

Our Contributions We present truly subquadratic-time algorithms for computing both the radius and the diameter of Helly graphs (Theorem 4). In fact, for the Helly graphs, it is sufficient to compute the diameter in order to derive the radius [START_REF] Dragan | Centers of graphs and the Helly property[END_REF]. Note that such a property is not known to hold for general graphs. Nevertheless, we present separate algorithms for diameter and radius computations. Indeed, our approach for computing the radius can be applied to a broader class than the Helly graphs, both as an exact and approximation algorithm. Our algorithms run in time Õ(m √ n) w.h.p., and they use as their main ingredients several consequences of the unimodality of the eccentricity function in Helly graphs [START_REF] Dragan | Centers of graphs and the Helly property[END_REF]: every local minimum of the eccentricity function in a Helly graph is a global minimum.

Then, in light of the gap between our running times and the known linear-time algorithms for the dually chordal graphs, we studied whether stronger complexity results could hold true on more restricted subclasses, such as chordal Helly graphs or, more generally, C 4 -free Helly graphs. This latter choice was also partly motivated by a nice characterization of hereditary Helly graphs: indeed, they are exactly the 3-sun-free chordal graphs [START_REF] Dragan | Centers of graphs and the Helly property[END_REF]. We stress that the C 4 -free Helly graphs have been studied on their own and that they have more interesting convexity properties than general Helly graphs [START_REF] Dragan | Centers of graphs and the Helly property[END_REF][START_REF] Dragan | Domination in quadrangle-free Helly graphs[END_REF]. In particular, the center C(G) of a C 4 -free Helly graph G is convex and it has diameter at most 3 and radius at most 2 [START_REF] Dragan | Centers of graphs and the Helly property[END_REF][START_REF] Dragan | Domination in quadrangle-free Helly graphs[END_REF]. In contrast, the center C(G) of a general Helly graph G is isometric but it can have arbitrarily large diameter; in fact, any Helly graph H is the center of some other Helly graph G [START_REF] Dragan | Centers of graphs and the Helly property[END_REF]. For the C 4 -free Helly graphs, we are able to compute the eccentricity of all vertices in linear time (Theorem 7), which for Helly graphs can be reduced to computing the graph center. Our starting point for that is the well-known multi-sweep heuristic of Corneil et al. [START_REF] Corneil | Diameter determination on restricted graph families[END_REF], in order to compute vertices of provably large eccentricity. -As notified to us by Chepoi (private communication), this heuristic can be arbitrarily bad for general Helly graphs, that can be deduced from a careful analysis of the embedding method of arbitrary graphs into Helly graphs [START_REF] Dress | Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces[END_REF][START_REF] Isbell | Six theorems about injective metric spaces[END_REF]. -Our approach is partly inspired by the algorithms of Chepoi and Dragan [START_REF] Chepoi | A linear-time algorithm for finding a central vertex of a chordal graph[END_REF] and Dragan and Nicolai [START_REF] Dragan | LexBFS-orderings of distance-hereditary graphs with application to the diametral pair problem[END_REF], in order to compute a central vertex in chordal graphs and a diametral pair in distance-hereditary graphs, respectively. Nevertheless, extending such ideas to the C 4 -free Helly graphs required us to prove several new nontrivial properties for this class. In particular, it led us to a reduction from finding a diametral pair under some technical assumptions to the same problem on split Helly graphs.

Finally, in light of this above reduction, we studied whether there are other graph classes where the diameter can be efficiently computed from a subfamily of split graphs. In particular, can we reduce diameter computation on general chordal graphs to the same problem on split graphs? This would imply that the subclass of split graphs is, in some sense, the sole hard case for diameter computation on chordal graphs. Furthermore, beyond the case of chordal Helly graphs, this could help in finding new subclasses of chordal graphs for which we can compute the diameter faster than in O(nm) time. We prove a slightly weaker result, namely, a reduction from diameter computation on chordal graphs to Disjoint Sets (Theorem 8). As a byproduct of our reduction, we prove that the diameter can be computed in truly subquadratic time on any subclass of chordal graphs with constant VC-dimension (Theorem 10). This nicely complements the results from [START_REF] Ducoffe | Diameter computation on H-minor free graphs and graphs of bounded (distance) VC-dimension[END_REF], which mostly apply to sparse graph classes of constant distance VC-dimension or assuming a bounded (sublinear) diameter. In particular, our result in this paper can be applied to undirected path graphs since they have VC-dimension at most 3 [START_REF] Bousquet | Identifying codes in hereditary classes of graphs and VC-dimension[END_REF]. Before our work, only a linear-time algorithm for the subclass of directed path graphs was known [START_REF] Corneil | Diameter determination on restricted graph families[END_REF]. Another application of our reduction is the approximate computation in quasi linear time of the eccentricity of all vertices in a chordal graph with an additive one-sided error of at most 1. The latter result answers an open question from [START_REF] Dragan | An eccentricity 2-approximating spanning tree of a chordal graph is computable in linear time[END_REF].

Notations. We recall that we denote by dist G (u, v) the distance between vertices u and v. The metric interval I G (u, v) between u and v is defined as {w

∈ V | dist G (u, w) + dist G (w, v) = dist G (u, v)}. For any k ≤ dist G (u, v), we can also define the slice L(u, k, v) := {w ∈ I G (u, v) | dist G (u, w) = k}. The ball of radius r and center v is defined as {u ∈ V | dist G (u, v) ≤ r}, and denoted N r G [v]. In particular, N G [v] := N 1 G [v] and N G (v) := N G [v]
\ {v} denote the closed and open neighbourhoods of a vertex v, respectively. More generally, for any vertex-subset S we define dist G (u, S)

:= min v∈S dist G (u, v), N r G [S] := v∈S N r G [v], N G [S] := N 1 G [S] and N G (S) := N G [S]\S. The metric projection of a vertex u on S, denoted P r G (u, S), is defined as {v ∈ S | dist G (u, v) = dist G (u, S)}.
Recall that the eccentricity of a vertex u is defined as max v∈V dist G (u, v) and denoted by e G (u). We define the set 

F G (u) := {v ∈ V | dist G (u, v) = e G (u

Fast Computations within Helly graphs

The main result in this section is a truly subquadratic algorithm for computing the diameter of a Helly graph (Theorem 4). By the following Lemma 1, it can be easily turned into a subquadratic algorithm for radius computation:

Lemma 1 ([34]). If G is a Helly graph then 2rad(G) ≥ diam(G) ≥ 2rad(G) -1. In particular, rad(G) = diam(G)/2 .
Section 2.1 is devoted to a subquadratic-time randomized algorithm for radius computation, that can be turned to an exact or approximation algorithm for larger classes than the Helly graphs (namely, in every class where the diameter equals twice the radius, up to some additive constant). Then, we combine this approach with several other technical arguments in order to prove our Theorem 4 (cf. Section 2.2).

Radius computation

We start this section with a simple randomized test, which is inspired from previous works on adaptive greedy set cover algorithms [START_REF] Sen | The covert set-cover problem with application to Network Discovery[END_REF].

Lemma 2. Let G = (V, E) be a graph, let r be a positive integer and let ε ∈ (0; 1). There is an algorithm that w.h.p. computes a set D G; r; ε in Õ(m/ε) time with the following two properties:

• if e(v) ≤ r then v ∈ D G; r; ε ; • conversely, if v ∈ D G; r; ε then |N r [v]| ≥ (1 -ε) • n. Proof. Let p = c • log n
εn for some arbitrary large constant c. If p ≥ 1 then n ≤ c log n ε , and so we can compute the set of all the vertices of eccentricity at most r in time Õ(m/ε) by running a BFS from every vertex. From now on we assume that p < 1. By U (p) we mean a subset in which every vertex was added independently at random with probability p. Observe that we have

E[|U (p)|] = c log n ε > c • log n. By Chernoff bounds we get |U (p)| = Õ(ε -1 ) with probability ≥ 1 -n -c . Then, for every v ∈ V , we compute N r [v] ∩ U (p).
For that, we run a BFS from every vertex of U (p), that takes total time Õ(m/ε). We divide our analysis in two cases. First let us assume that e(v) ≤ r. Then, with probability 1 we have

U (p) ⊆ N r [v]. Second, let us assume that |N r [v]| < (1 -ε) • n. We get P rob[U (p) ⊆ N r [v]] < (1 -p) εn = (1 -p) 1 p •c log n ≤ n -c . Overall, let D G; r; ε contain all the vertices v such that U (p) ⊆ N r [v]
. By a union bound over at most n vertices, the set D G; r; ε satisfies our two above-stated properties with probability ≥ 1n -(c-1) .

We derive from this simple test above an approximation algorithm for computing the radius and the diameter, namely: Lemma 3. Let G = (V, E) be a graph and r be a positive integer. There is an algorithm that w.h.p. runs in Õ(m √ n) time and such that:

• If the algorithm accepts then diam(G) ≤ 2r;

• If the algorithm rejects then rad(G) > r.

Note that since diam(G) ≤ 2rad(G), this algorithm rejects any graph G with diam(G) > 2r. However, it might also reject some graphs G such that diam(G) ≤ 2r but rad(G) > r.

Proof. For some ε to be defined later, we construct a set D G; r; ε as in Lemma 2. W.h.p. it takes time Õ(m/ε). There are two cases. If D G; r; ε = ∅ then we know that rad(G) > r and we stop. Otherwise, we pick any vertex c ∈ D G; r; ε and we compute N r [c]. Here it is important to observe that all the vertices of N r [c] are pairwise at a distance ≤ 2r. Furthermore, w.h.p. we have

|V \ N r [c]| ≤ ε • n. We end up computing a BFS from every vertex of V \ N r [c],
accepting in the end if and only if all these vertices have eccentricity ≤ 2r. By setting ε = n -1/2 , the total running time is w.h.p. in Õ(m √ n).

An important consequence of Lemma 3 is that the hard instances for diameter and radius approximations are those for which the difference 2rad(G)diam(G) is large, namely:

Corollary 1. If 2rad(G) -diam(G) ≤ k then, w.h.p., we can compute an additive + k/2 - approximation of rad(G) and an additive +k-approximation of diam(G) in total Õ(m √ n) time.
Proof. We compute by dichotomic search the smallest r such that the algorithm of Lemma 3 accepts. Note that w.h.p. r ≥ diam(G)/2 , and so r ≥ 2rad(G)-k 2 = rad(G)k/2 . Furthermore, we have w.h.p. r ≤ rad(G), and so, 2r ≤ diam(G) + k. We output r and 2r as approximations of rad(G) and diam(G), respectively.

Application to Helly graphs. By combining Lemma 1 with Corollary 1, we finally obtain the main result of this section, namely: Theorem 1. If G is a Helly graph then, w.h.p., we can compute rad(G) and an additive +1-

approximation of diam(G) in time Õ(m √ n).
We observe that one cannot compute a central vertex in a Helly graph by using our approach in this section. This issue is resolved, in Sec. 3.1, for the subclass of C 4 -free Helly graphs.

Diameter computation

We continue with a parameterized algorithm for computing all eccentricities up to some threshold value in a Helly graph G. We recall that we denote by N r G [v] the ball of radius r and center v.

Problem 1 (Small Eccentricities).

Input: a graph G = (V, E); a vertex-subset A; a positive integer k.

Output: the set B k := {b ∈ V | A ⊆ N k [b]}.
We note that already for k = 2, Problem 1 is unlikely to be solvable in truly subquadratic time. Indeed, this special case is somewhat related to the Hitting Set problem [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF]. We explain next how to solve this problem in parameterized linear time when G is a Helly graph.

Theorem 2. If G is Helly then, for every subset A and every positive integer k, we can solve Small Eccentricities in O(km) time.

Proof. We reduce the problem to the construction of a partition

P k A = (A k 1 , A k 2 , . . . , A k p k ) of A, for some arbitrary p k = def |P k A | ≤ |A|,
with the following two properties:

• for every 1 ≤ j ≤ p k , we have ∩{N k [a] | a ∈ A k j } = V k j = ∅; • furthermore, the sets V k 1 , V k 2 , . . . , V k p k are pairwise disjoint.
Indeed, observe that we have B k = ∅ if and only if p k = 1, and in such a case

B k = V k 1 .
It now remains to prove that we can construct the partition P k A , and the associated sets V k j , in O(km) time. If k = 0, then we set P 0 A = A and we are done (notice that for every a j ∈ A, the corresponding set V 0 j is exactly the singleton {a j }). Otherwise, we show how to construct P k A and its associated sets from P k-1 A and the V k-1 j 's, in linear time. For that, let us define for every j the new subset

W k j := N [V k-1 j
]. Notice that constructing the sets W k j takes total linear time as by the hypothesis, the sets V k-1 j are pairwise disjoint. However, we may have

W k j ∩ W k j = ∅ for some j = j . Claim 1. W k j = {N k [a] | a ∈ A k-1 j }. Proof. Since V k-1 j = {N k-1 [a] | a ∈ A k-1 j }, W k j ⊆ {N k [a] | a ∈ A k-1 j }. Conversely, let v ∈ {N k [a] | a ∈ A k-1 j } be arbitrary. Since N [v] and N k-1 [a], ∀a ∈ A k-1 j pairwise intersect, by the Helly property, N [v] ∩ V k-1 j = ∅, proving that v ∈ W k j .
We are left with computing the V k j 's from the W k j 's. For that, we need the following additional result:

Claim 2. Let v ∈ V be such that #{j | v ∈ W k j } is maximized. For any j such that v / ∈ W k j , we have W k j ∩ {W k j | v ∈ W k j } = ∅. Proof. Suppose by contradiction that there is a vertex u ∈ W k j ∩ {W k j | v ∈ W k j }. Then, {j | v ∈ W k j } ⊂ {j | u ∈ W k j }.
However, this contradicts the maximality of vertex v. We now proceed as follows in order to compute P k A and the V k j 's. Let F k be an empty family of sets (we shall get

F k = (V k 1 , V k 2 , . . . , V k p k
) at the end of this sub-procedure below). While

P k-1 A = ∅ we pick a vertex v ∈ V such that #{j | v ∈ W k j } is maximized. We add the new sets A v := {A k-1 j | v ∈ W k j } and {W k j | v ∈ W k j }, in the families P k A and F k , respectively. Indeed, by Claim 1, {N k [a] | a ∈ A v } = {W k j | v ∈ W k j }. Then, we remove from P k-1 A every A k-1 j such that v ∈ W k j .
By Claim 2, the sets in F k are pairwise disjoint. Finally, in order to construct F k efficiently, during a pre-processing step we compute #{j | v ∈ W k j } for every vertex v. Since the W k j 's can be constructed in total linear time, this pre-processing also takes linear time. We create an array of |P k-1 A | lists, where ∀i the i th list contains all the vertices that are in exactly i subsets W k j (these lists are dynamically updated throughout the algorithm). We also need that, for every vertex v, we can enumerate all the subsets W k j such that v ∈ W k j in time linear in the size of the output (i.e., in

O( {|W k j | | v ∈ W k j }) time).
For that, it suffices to maintain the incidence graph between V and the groups W k j . Then, starting from i = |P k-1 A |, if the i th list is empty then i := i-1. Otherwise, we can pick any vertex v of this list as it maximizes #{j | v ∈ W k j }. In this latter case the total running time of the step (including the lists updates

) is in O( j|v∈W k j |A k-1 j | + |W k j |). Since all the subsets A k-1 j , such that v ∈ W k j , are subsequently removed from P k-1 A , after this step v is no more contained in a group W k j , for any A k-1 j ∈ P k-1 A
and so it will never be used again during the sub-procedure. Overall, the running time is in

O( j |A k-1 j | + |W k j |) = O(n + m).
Corollary 2. For any Helly graph G and positive integer k, we can compute the set of all the vertices of eccentricity at most k in O(km) time.

Proof. It suffices to apply Theorem 2 with A = V .

If the diameter of a Helly graph is sublinear in the number of nodes, then by the above the eccentricity of all vertices can be computed in subquadratic time. However, there exist very simple Helly graphs, such as paths, for which the diameter is linear in the number of nodes. For such "giantdiameter" Helly graphs, we next adapt a well-known sampling technique for distance oracles [START_REF] Bollobás | Sparse distance preservers and additive spanners[END_REF]. Recall that a function is called unimodal if every its local minimum is global. It was proved in [START_REF] Dragan | Centers of graphs and the Helly property[END_REF] that the eccentricity function in Helly graphs is unimodal, and that the latter implies the following interesting property:

Lemma 4 ([34]). If G is Helly then, for every vertex v, e(v) = dist(v, C(G)) + rad(G).
Theorem 3. Let G be a Helly graph such that rad(G) > 3k = ω(log n). Then w.h.p. in Õ(mn/k) time, we can compute a diametral pair for G.

Proof. Let p = c log n k for some sufficiently large constant c. Since we assume k = ω(log n), for sufficiently large n we have p < 1. We construct a subset U (p) where every vertex is included independently with probability p. By Chernoff bounds we have |U (p)| = Õ(n/k) w.h.p., and we assume from now on that it is indeed the case. We perform a BFS from every vertex in U (p), in total Õ(mn/k) time. Then, we define for every vertex v ∈ V : ē(v) := min u∈U (p)|dist(u,v)≤k dist(u, v)+e(u) (by convention, ē(v) = 0 if every vertex of U (p) is at distance > k from v). We now divide our analysis in two cases:

• Case e(v) < rad(G) + k. Then, for any u ∈ U (p) such that dist(u, v) ≤ k, we get e(u) ≤ e(v) + k < rad(G) + 2k. Hence, ē(v) < rad(G) + 3k ≤ 2 • rad(G) -1.
By Lemma 1, we get that ē(v) < diam(G) with probability 1.

• Case e(v) ≥ rad(G) + k. Note that in particular, we always fall in this case if v is an end of a diametral path. Let us consider the set S v of the k first vertices on a fixed shortest path between v and a closest vertex of C(G). By Lemma 4, e(v) = dist(v, C(G)) + rad(G). In particular, for every u ∈ S v we have e

(v) = dist(u, v) + e(u). If U (p) ∩ S v = ∅, then this implies ē(v) = e(v)
. Therefore, we are left proving that w.h.p.,

U (p) ∩ S v = ∅. That is indeed the case since P rob[U (p) ∩ S v = ∅] = (1 -p) |Sv| = (1 -p) k = (1 -p) c log n p ≤ n -c .
Altogether combined, w.h.p., a vertex v maximizing ē(v) is an end of a diametral path.

Combining Theorem 2 and Theorem 3, we finally obtain our main result, namely: 

Theorem 4. A diametral
(md) = O(m √ n) time. Otherwise, B k = V , and so, diam(G) > k. Note that it implies rad(G) > k/2 ≥ 3 √ n. By Theorem 3, we can compute a diametral pair of G w.h.p. in time Õ(mn/ √ n) = Õ(m √ n).
3 Journey to the Center of C 4 -free Helly graphs

We now improve our results from Sec. 2, for the class of C 4 -free Helly graphs.

Computing a central vertex

We start with general properties of Helly graphs and C 4 -free Helly graphs which we will then use in our analysis. The first such property is a consequence of the unimodality of the eccentricity function in Helly graphs (see [START_REF] Dragan | Centers of graphs and the Helly property[END_REF]). In what follows, recall that the metric interval

I G (u, v) between u and v is defined as {w ∈ V | dist G (u, w) + dist G (w, v) = dist G (u, v)}. For any k ≤ dist G (u, v), let L(u, k, v) := {w ∈ I G (u, v) | dist G (u, w) = k}. Finally, let F G (u) := {v ∈ V | dist G (u, v) = e G (u)
} contain all the farthest vertices from vertex u.

Lemma 5 ([34]

). Let G be a Helly graph. Then, for any vertex v of G and any farthest vertex

u ∈ F (v) we have L(u, rad(G), v) ∩ C(G) = ∅.
Pseudo-modular graphs are exactly the graphs where each family of three pairwise intersecting balls has a common intersection [START_REF] Bandelt | Pseudo-modular graphs[END_REF]. Clearly, Helly graphs is a subclass of pseudo-modular graphs.

Lemma 6 ([3]

). For every three vertices x, y, z of a pseudo-modular graph G there exist three shortest paths P (x, y), P (x, z), P (y, z) connecting them such that either (1) there is a common vertex v in P (z, y) ∩ P (x, z) ∩ P (x, y) or (2) there is a triangle (x , y , z ) in G with edge z y on P (z, y), edge x z on P (x, z) and edge x y on P (x, y) (see Fig. 1). Furthermore, (1) is true if and only if d(x, y) = p + q, d(x, z) = p + k and d(y, z) = q + k, for some k, p, q ∈ N, and (2) is true if and only if d(x, y) = p + q + 1, d(x, z) = p + k + 1 and d(y, z) = q + k + 1, for some k, p, q ∈ N. Proof. Consider any two vertices x, y ∈ L(u, k, v) and assume that they are not adjacent. Let = dist(x, y) ≥ 2. Consider balls

N 1 [x], N -1 [y] and N k-1 [u] in G. Since we have dist(x, y) = = 1 + ( -1), dist(x, u) = k = 1 + (k -1) and dist(y, u) = k ≤ ( -1) + (k -1) (i.
e., because we assume ≥ 2), these balls pairwise intersect. By the Helly property, there must exist a vertex z on a shortest path from x to y which is at distance at most k -1 from u. As by Lemma 7 the ball

N dist(v,x) [v] is convex, z must belong to N dist(v,x) [v]. Thus, dist(u, v) ≤ dist(u, z) + dist(z, v) ≤ k -1 + dist(v, x) = dist(u, v) -1,

and a contradiction arises.

The multi-sweep heuristic consists in performing a BFS [START_REF] Corneil | On the power of BFS to determine a graph's diameter[END_REF] from an arbitrary vertex v, then from a farthest vertex u from v, and finally to output e(u) as an estimate of diam(G). On many graph classes it gives us a constant additive approximation of the diameter [START_REF] Chepoi | Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs[END_REF][START_REF] Corneil | Diameter determination on restricted graph families[END_REF][START_REF] Corneil | On the power of BFS to determine a graph's diameter[END_REF][START_REF] Dragan | Centers of graphs and the Helly property[END_REF]. We prove that it is the case for C 4 -free Helly graphs. Proof. By Lemma 1, d is either 2r or 2r -1. Let = e(s) = dist(s, v). For vertices s, v, x, y of G, we have dist(x, y) = d, dist(s, x) ≤ dist(s, v) = , dist(s, y) ≤ dist(s, v) = . Furthermore, the three of dist(v, x), dist(v, y) and dist(s, v) = are at most e(v).

First we show that, if max{dist(v, y), dist(v, x)} ≤ 2k for some integer k, then d ≤ 2k + 1. By the triangular inequality, we may assume that we have 2k ≤ 2e(s) = 2 . Consider balls In what follows, we consider this case, when e(v) = 2k + 1 = max{dist(v, y), dist(v, x)}, in more details. If d is even (i.e., d = 2r), then d ≤ 2k + 2 and therefore d ≤ e(v) + 1. Assume now that d is odd (i.e., d = 2r -1) and that d = e(v) + 2 = 2k + 3 = 2r -1. That is, r = k + 2. We will show that, under these conditions, dist(v, y) = dist(v, x) = 2k + 1 must hold. For that assume w.l.o.g. that dist(v, y) = max{dist(v, y), dist(v, x)} = 2k + 1. Since v ∈ F (s), we have that dist(s, y) ≤ = dist(s, v). Furthermore, by the triangular inequality, we have 2k + 1 = dist(v, y) ≤ dist(v, s)+dist(s, y) ≤ 2e(s) = 2 , and so ≥ k +1. We shall use the following intermediate results:

N -k [s], N k [v], N k [y] in G. As dist(v,
• If dist(s, y) = then, by Lemma 6, there is a triangle (v , s , y

) in G such that dist(s, s ) = -k -1, dist(v , v) = dist(y, y ) = k. Necessarily, v ∈ L(v, k, s) and s ∈ L(v, k + 1, s). • If dist(s, y) ≤ -1, consider balls N -k-1 [s], N k+1 [v], N k [y] in G.
As these balls pairwise intersect, by the Helly property, there is a vertex a in G with dist(a, s)

= -k -1, dist(a, v) = k + 1 and dist(a, y) = k. That is, a ∈ L(v, k + 1, s). • If dist(v, x) ≤ 2k then, as before, we can get a vertex b in G with dist(b, s) = -k, dist(b, v) = k and dist(b, x) ≤ k. Necessarily, b ∈ L(v, k, s).
Summarizing, we get the following combinations.

If dist(v, y) = 2k + 1, dist(v, x) ≤ 2k and dist(s, y) = , then d = dist(x, y) ≤ dist(x, b) + dist(b, v ) + dist(v , y ) + dist(y , y) ≤ k + 1 + 1 + k = 2k+2 (notice that, by Lemma 8, dist(b, v ) ≤ 1), contradicting with d = 2k+3. If dist(v, y) = 2k+1, dist(v, x) ≤ 2k and dist(s, y) ≤ -1, then d = dist(x, y) ≤ dist(x, b) + dist(b, a) + dist(a, y) ≤ k + 2 + k = 2k + 2 (notice that, by Lemma 8, dist(b, a) ≤ 2 as a ∈ L(v, k + 1, s) and b ∈ L(v, k, s)), contradicting with d = 2k + 3. Hence, dist(v, x) = 2k + 1 = dist(v, y) must hold.
We left open whether the lower-bound of Lemma 9 can be refined to e(v) ≥ d -1. Note that this would be best possible. Indeed, although in some cases of interest, e.g., interval graphs, the output of the multi-sweep heuristic always equals the diameter [START_REF] Dragan | LexBFS-orderings and powers of graphs[END_REF], this nice property does not hold for strongly chordal graphs and so for C 4 -free Helly graphs [START_REF] Corneil | Diameter determination on restricted graph families[END_REF].

Then, before finally proving the main result of this subsection, we need the following gated property of Helly graphs. The (weak) diameter of a set S is equal to diam(S) := max x,y∈S dist(x, y). We recall that the metric projection of a vertex u on S, denoted P r(u, S), is defined as {v ∈ S | dist(u, v) = dist(u, S)}.

Lemma 10. Let G be a Helly graph and S be a subset of weak diameter at most two. Then, for any v / ∈ S there exists a vertex g S (v)

∈ N dist(v,S)-1 [v] ∩ {N (x) | x ∈ P r(v, S)}.
Proof. Since S has weak diameter at most two the balls N dist(v,S)-1 [v] and N [x], ∀x ∈ P r(v, S) pairwise intersect. Therefore, the result follows from the Helly property.

As it is standard [START_REF] Chepoi | A linear-time algorithm for finding a central vertex of a chordal graph[END_REF] we call such a vertex a gate of v, and we denote it by g S (v).

Remark 1. A variant of Maximum Cardinality Search was proposed in [START_REF] Chepoi | A linear-time algorithm for finding a central vertex of a chordal graph[END_REF][START_REF] Chepoi | Finding a central vertex in an HHD-free graph[END_REF] in order to compute all the gates in linear time. For that we first run a breadth-first search from S. Then, we recursively assign a gate to every vertex of V \ S, as follows. If v ∈ N (S), then v is its own gate and we set p(v) = |N (v) ∩ S|. Otherwise, we choose for every vertex v a father u, one step closer to S, that maximizes p(u). Indeed, by induction, p(u) = |P r(u, S)|. Then, we choose for v the same gate as for its father u, and we set p(v) = p(u).

We observe that, more generally, if S is an arbitrary vertex-subset (possibly, of weak diameter larger than two), then for every vertex v with a gate in N (S) this above procedure correctly computes such a gate. Indeed, let us define I(v, S) := {I(v, s) | s ∈ P r(v, S)}. This above procedure associates to every vertex v a vertex v * ∈ N (S) ∩ I(v, S) which maximizes |N (v * ) ∩ S|. If v has a gate with respect to S (w.r.t.), then it follows that g S (v) := v * must be a gate of v. This observation is crucial in our proof of Theorem 7.

Theorem 5. If G is a C 4 -free Helly graph then we can compute a central vertex and so rad(G) in linear time.

Proof. Let v be an arbitrary vertex, let u ∈ F (v) and let w ∈ F (u). By Lemma 9, e(u) = dist(u, w) ≥ diam(G) -2. Therefore, by Lemma 1, rad(G) ∈ { e(u)/2 , (e(u) + 1)/2 , 1 + e(u)/2 } (two of these numbers being equal, it gives us two possibilities). In order to decide in which case we are, we use the following result from [START_REF] Dragan | Centers of graphs and the Helly property[END_REF]: if rad(G) = r, then L(w, r, u) ∩ C(G) = ∅. By Lemma 8, for any r the set C = L(w, r, u) is a clique. We compute, for every x / ∈ C, its distance dist(x, C) and a corresponding gate g(x) -which exists by Lemma 10. It takes linear time. Then, rad(G) = r implies max x∈V dist(x, C) = r. If so then note that a vertex of C has eccentricity r if and only if it is adjacent to the gate of every vertex at a distance exactly r from C. Overall, in order to compute rad(G) we pick the smallest r such that a vertex of eccentricity r can be extracted from L(w, r, u).

Computing a diametral pair

We base on the results from Section 3.1 so as to prove the following theorem: Theorem 6. If G is a C 4 -free Helly graph then we can compute a diametral pair and so diam(G) in linear time.

Digression: an application to chordal Helly graphs

Our results in the paper are proved valid assuming the input graph to be Helly. However, the bestknown recognition algorithms for this class of graphs run in quadratic time [START_REF] Lin | Faster recognition of clique-Helly and hereditary clique-Helly graphs[END_REF]. In what follows, we first explain an interesting application of Theorem 6 to general chordal graphs. We recall that it can be decided in linear time whether a given graph is chordal [START_REF] Rose | Algorithmic aspects of vertex elimination on graphs[END_REF].

The Lexicographic Breadth-First-Search (LexBFS) [START_REF] Rose | Algorithmic aspects of vertex elimination on graphs[END_REF], of which a description can be found in Fig. 2, is a standard algorithmic procedure that runs in linear time [START_REF] Habib | Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing[END_REF].

We use the following results on LexBFS in our analysis: [START_REF] Dragan | LexBFS-orderings and powers of graphs[END_REF]). Let v be the vertex visited last by an arbitrary LexBFS. If the graph is chordal, then the eccentricity of v is within 1 of the diameter.

Lemma 11 ([

Lemma 12 ([30]

). If the vertex u of a chordal graph G last visited by a LexBFS has odd eccentricity, then e(u) = diam(G).

Altogether combined with Theorem 6 we obtain that:

Remark 2. Consider an arbitrary chordal graph G. If we assume G to be Helly then, by Theorem 6, there exists a linear-time algorithm for computing a diametral pair of G. Note that, we can apply this algorithm to G without the knowledge that it is Helly, and either the algorithm will detect that G is not Helly (e.g., because some property of Helly graphs does not hold for G) or it will output some pair of vertices (x, y). Furthermore, if G is chordal Helly, then (x, y) is a diametral pair. Let d = dist(x, y).We can check for a chordal graph G whether diam(G) = d, or G is not Helly, as follows:

• Let u be the vertex visited last by a LexBFS. We may assume, by Lemma 11, that e(u) ∈ {d -1, d} (otherwise, d = diam(G), and so G is not Helly) and, by Lemma 12, that e(u) is even. Then, we compute rad(G), which takes linear time [START_REF] Chepoi | A linear-time algorithm for finding a central vertex of a chordal graph[END_REF]. By Lemma 11, diam(G) ∈ {e(u), e(u) + 1}, and so either G is not Helly or, by Lemma 1, rad(G) ∈ {e(u)/2, e(u)/2 + 1}.

• 

Proof of Theorem 6

The remainder of this subsection is devoted to the proof of Theorem 6. We first compute r = rad(G), which by Theorem 5 can be done in linear time. We also apply the multi-sweep heuristic, i.e., we pick an arbitrary vertex v and we perform a BFS from a vertex u ∈ F (v). There are two main cases depending on the parity of e(u). Case e(u) is even. By Lemma 9, e(u) ≥ diam(G) -1. Since by Lemma 1 we have diam(G) ≥ 2r -1, it follows that e(u) ∈ {2r -2, 2r}. In particular, if e(u) = 2r -2 then diam(G) = 2r -1, otherwise diam(G) = e(u) = 2r. Therefore, the difficulty here is not to compute the diameter, but rather to compute a diametral pair. Let us assume that we have diam(G) = e(u) + 1 = 2r -1 (else, e(u) = 2r = diam(G), and we are done). Let w ∈ F (u). W.l.o.g., e(w) = 2r -2 (else, e(w) = diam(G) and we are done). Therefore, dist(u, w) = 2r -2 and u, w are mutually far apart. The next result is a cornerstone of our algorithm: Lemma 13. Let u, w be mutually far apart vertices in a C 4 -free Helly graph G such that dist(u, w) = diam(G) -1 = 2r -2 is even, and let C = L(u, r -1, w). Then, (x, y) is a diametral pair of G if and only if dist(x, C) = dist(y, C) = r -1 and P r(x, C) ∩ P r(y, C) = ∅.

Proof. Since e(u) = e(w) = 2r -2, for any x ∈ V , the balls of radius r -1 and with centers u, w, x, respectively, pairwise intersect. The Helly property implies the existence of a vertex c ∈ V such that max{dist(u, c), dist(w, c), dist(x, c)} ≤ r -1. Since we also have dist(u, w) = 2r -2, we conclude that c ∈ L(u, r -1, w) = C and dist(x, C) ≤ dist(x, c) ≤ r -1. Now on one direction, let (x, y) be a diametral pair. By Lemma 8, C is a clique, implying dist(x, y) ≤ dist(x, C) + 1 + dist(y, C) ≤ 2r -1 = diam(G). Therefore, dist(x, C) = dist(y, C) = r -1. For similar reasons, we must have P r(x, C) ∩ P r(y, C) = ∅ (otherwise, dist(x, y) ≤ dist(x, C) + dist(y, C) ≤ 2r -2 < diam(G), a contradiction). Conversely, let (x, y) be such that dist(x, C) = dist(y, C) = r -1 and P r(x, C) ∩ P r(y, C) = ∅. Suppose by contradiction dist(x, y) < diam(G). In particular, the balls of radius r -1 and respective centers u, v, x, y pairwise intersect. By the Helly property, there exists a c ∈ C such that max{dist(x, c), dist(y, c)} ≤ r -1 = dist(x, C) = dist(y, C). But then, c ∈ P r(x, C) ∩ P r(y, C) = ∅, a contradiction. Hence, (x, y) is a diametral pair.

Our strategy now consists in computing a pair (x, y) that satisfies the condition of this above Lemma 13. We do so by using the "gated property" of Lemma 10. Indeed, let C = L(u, r -1, w) be as above defined, and let

S = {x * | ∃x ∈ V such that g C (x) = x * ∧ dist(x, C) = r -1}.
Since by Lemma 8 C is a clique, this set S is well-defined, and it can be computed in linear time. In order to compute a diametral pair of G, by Lemma 13 it is sufficient to compute a pair x * , y * ∈ S such that N (x * ) ∩ N (y * ) ∩ C = ∅. At first glance this approach does not look that promising since it is a particular case of the Disjoint Sets problem (sometimes called the monochromatic Orthogonal Vector), that cannot be solved in truly subquadratic time under SETH [START_REF] Williams | A new algorithm for optimal 2-constraint satisfaction and its implications[END_REF]. Before presenting our solution to this special Disjoint Sets problem (i.e., Lemma 16) we introduce a pruning rule in order to discard some vertices from S: Lemma 14. In a C 4 -free Helly graph G, for any clique C and adjacent vertices s, t ∈ N (C), the metric projections P r(s, C) and P r(t, C) are comparable, i.e., either P r(s, C) ⊆ P r(t, C) or P r(t, C) ⊆ P r(s, C). Proof. Let s, t ∈ N (C) be adjacent and suppose for the sake of contradiction that there exist s * ∈ P r(s, C) \ P r(t, C) and t * ∈ P r(t, C) \ P r(s, C). Then, (s, t, t * , s * , s) induces a Proof. By Lemma 8, the subset C is a clique, hence H is a split graph. Furthermore, let us consider a family of pairwise intersecting balls in H. We may assume w.l.o.g. that no such a ball is contained in

F = {N H [c] | c ∈ C} ∪ {N 2 H [z] | z ∈ C ∪ S}.
Indeed, all of these balls fully contain C, and so, there is a common intersection for all the balls in a family if and only if there is a common intersection for the sub-family of all these balls that are not in F. In particular, we may consider the family of pairwise intersecting balls to be a collection of closed neighbourhoods N H [z], for all z ∈ S , where S is a subset of S. Since S (and so, S ) is a stable set, the subsets N G (z) ∩ C, z ∈ S pairwise intersect. Then, we have that the balls of radius r -1 and with centers in u, w and the balls of radius 1 and with centers in the vertices of S pairwise intersect in G. By the Helly property (applied to G), there exists a vertex c at a distance ≤ r -1 from both u and w, and at a distance ≤ 1 from all of S . Since dist(u, w) = 2r -2, we get c ∈ L(u, r -1, w) = C and so, c ∈ {N G (z) ∩ C | z ∈ S }. Consequently, H is Helly.

Since every split graph has constant diameter (at most three), then by Corollary 2 the eccentricity of all vertices in a split Helly graph can be computed in total linear time. Nevertheless, in what follows, we propose a different approach for computing the diameter of a split Helly graph than the one we presented in Corollary 2. Interestingly, this approach also works for other Helly-type properties, e.g. for split open-neighbourhood-Helly graphs [START_REF] Le | A unified approach to recognize squares of split graphs[END_REF]. Lemma 16. A diametral pair in a split Helly graph can be computed in linear time.

Proof. Let G = (C ∪ S, E) be a split Helly graph with clique C and stable set S (note that if C and S are not given then they can be computed in linear time [START_REF] Golumbic | Algorithmic graph theory and perfect graphs[END_REF]). Assume G to be connected and diam(G) > 1 (otherwise, we are done). By the Helly property, diam(G) = 2 if and only if G contains a universal vertex. Furthermore, if it is the case then any pair x, y of non-adjacent vertices is diametral. Hence, from now on we assume that diam(G) = 3. Let G 0 := G and let (x 1 , x 2 , . . . , x |S| ) be an arbitrary total order of S. For every 1 ≤ i ≤ |S|, we define

G i := G[ {N G (x j ) | 1 ≤ j ≤ i} ∪ S].
Our algorithm proceeds the vertices x i ∈ S sequentially, for i = 1 . . . |S|, and does the following: If x i has eccentricity 3 in G i-1 , then we compute a diametral pair in this subgraph which contains x i and we stop.

We claim that our algorithm above is correct. For that we prove by finite induction that for any i ≥ 0, if the algorithm did not stop in less than i steps then: (i) G i is connected; and (ii) (x p , x q ) is a diametral pair of G i if and only if it is a diametral pair of G. Since G 0 = G, this is true for i = 0. From now on we assume i > 0. If the algorithm did not stop at step i then (since in addition G i-1 is connected by the induction hypothesis), x i has eccentricity two in G i-1 . In particular, every vertex has a common neighbour with x i , implying that there can be no isolated vertex in G i . We so obtain that G i is connected. Furthermore, if (x p , x q ) is a diametral pair of G then, necessarily, it is also a diametral pair of the connected subgraph G i (i.e., because x p and x q have no common neighbour in this subgraph, and so they are at distance 3 to each other). Conversely, let (x p , x q ) be a diametral pair of G i . Suppose, by contradiction, that (x p , x q ) is not a diametral pair of G, or equivalently N G (x p ) ∩ N G (x q ) = ∅. Since the neighbour sets N G (x j ), j ∈ {1, 2, . . . , i} ∪ {p, q} pairwise intersect, by the Helly property, there exists a vertex w ∈ {N G (x j ) | j ∈ {1, 2, . . . , i} ∪ {p, q}}. But then, (x p , x q ) is not a diametral pair of G i (as diam(G i ) ≥ diam(G) = 3), a contradiction. As a result, our above algorithm for computing a diametral pair of G is correct.

We still have to explain how to execute this algorithm in linear time. For that, we maintain a partition of the clique, initialized to P 0 := (C). At step i we refine the former partition

P i-1 = (C i-1 1 , C i-1 2 , . . . , C i-1 k i-1 ) into a new partition P i = (C i-1 1 ∩ N G (x i ), C i-1 1 \ N G (x i ), C i-1 2 ∩ N G (x i ), C i-1 2 \ N G (x i ), . . . , C i-1 k i-1 ∩ N G (x i ), C i-1 k i-1 \ N G (x i ))
. This partition refinement can be done in time O(N G (x i )) (up to some initial pre-processing in O(|C|) time) [START_REF] Habib | Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing[END_REF]. Furthermore, an easy induction proves that for any i ≥ 0 the first group of P i is exactly

C i 1 = {N G (x j ) | 1 ≤ j ≤ i} i.e
., the clique of G i . We finally explain how we use this partition in order to decide, at step i, whether x i has eccentricity equal to 3 in G i-1 . At the beginning of the algorithm we compute the degree of every vertex in S. Then, at step i we consider all the vertices in

C i 2 = {N G (x j ) | 1 ≤ j < i} \ N G (x i
) sequentially (second group of the partition P i ). For every w ∈ C i 2 we enumerate all its neighbours in S and we decrease their respective degrees by one. In particular, if during step i the degree of some vertex x p ∈ S falls to 0, then x p has no common neighbour with x i in G i-1 . Equivalently, (x i , x p ) is a diametral pair of G i-1 and the eccentricity of x i , x p in this subgraph is 3. We observe that the sets C i 2 on which we iterate are pairwise disjoint. As a result, the total complexity of the algorithm is linear. This above Lemma 16 achieves proving Theorem 6 in the case when e(u) is even. Case e(u) is odd. By Lemma 9, e(u) ≥ diam(G) -2. Therefore, by Lemma 1, e(u) ∈ {2r -3, 2r -1}. In the first subcase, we deduce from Lemma 1 that diam(G) = 2r -1. Let w ∈ F (u), and assume e(w) = e(u) = dist(u, w) = 2r -3 (otherwise, either e(w) = 2r -2 is even and we are back to the former case, or e(w) = 2r -1 and then we are done since w is an end of a diametral path).

Lemma 17. Let u, w be mutually far apart vertices in a C 4 -free Helly graph G such that dist(u, w) = diam(G) -2 = 2r -3 is odd, and let A = L(w, r -2, u). Then, (x, y) is a diametral pair of G if and only if dist(x, A) = dist(y, A) = r -1, P r(x, A) ∩ P r(y, A) = ∅, and in addition dist(y, u) = dist(y, w) = dist(x, u) = dist(x, w) = 2r -3.

Proof. We first prove that for every vertex x we have dist(x, A) ≤ r -1. Indeed, since w, u are mutually far apart, we have dist(x, u) ≤ dist(w, u) = 2r -3 and dist(x, w) ≤ dist(w, u) = 2r -3. Hence, balls N r-1 [u], N r-2 [w] and N r-1 [x] pairwise intersect. By the Helly property, there is a vertex z ∈ A with dist(x, z) ≤ r -1.

For any pair (x, y) we have dist(x, y) ≤ dist(x, A) + dist(P r(x, A), P r(y, A)) + dist(y, A) ≤ 2r -2 + dist(P r(x, A), P r(y, A)). By Lemma 8, A is a clique, which implies that we have dist(P r(x, A), P r(y, A)) ≤ 1. As a result, if (x, y) is diametral, we get dist(x, A) = dist(y, A) = r-1 and P r(x, A) ∩ P r(y, A) = ∅. We also get dist(y, u) = dist(y, w) = dist(x, u) = dist(x, w) = 2r -3 by Lemma 9. Conversely let (x, y) be any pair that satisfies all these above properties, and suppose for the sake of contradiction that we have dist(x, y

) ≤ 2r -2. Consider balls N r-1 [x], N r-1 [y], N r-1 [u] and N r-2 [w]
. By distance requirements, these balls pairwise intersect. The Helly property implies that a vertex z ∈ A exists such that dist(x, z) = r -1 and dist(y, z) = r -1. However, the latter contradicts with P r(x, A) ∩ P r(y, A) = ∅.

Overall, we can apply the same approach as in Lemma 13 in order to compute a diametral pair in this subcase.

The most difficult subcase is when e(u) = 2r -1. By Lemma 1, either diam(G) = 2r -1 or diam(G) = 2r. We explain below how, assuming diam(G) = 2r, we can compute in linear time all central vertices. Then, if diam(G) = 2r, by Lemma 4, a pair (x, y) is diametral if and only if both x and y are at a distance exactly r from all central vertices. We test a posteriori whether dist(x, y) = 2r, and if not diam(G) = e(u) = 2r -1. W.l.o.g. r ≥ 2.

Lemma 18. If G is a C 4 -free Helly graph of diameter 2r ≥ 4, then C(G) is a clique.
Proof. Every central vertex is at a distance exactly r from both ends x, y of any diametral path. In particular, C(G) ⊆ L(x, r, y), which is a clique by Lemma 8. Therefore, if diam(G) = 2r, by Lemma 18, for any central vertex c, we have

C(G) ⊆ N [c] = S.
Note that, by Theorem 5, we can compute such a central vertex c in linear time. Furthermore, diam(S) ≤ 2. For every x / ∈ S, we compute dist(x, S) and a corresponding gate g(x), which exists by Lemma 10. By construction, max x dist(x, S) ≤ max x dist(x, c) ≤ r. Furthermore, every vertex at a distance ≤ r -2 from S is at a distance ≤ r from every vertex of S. As a result, we only need to consider the vertices at a distance ≥ r -1 from S.

In fact, and as already observed in the proof of Theorem 5, for a vertex of S to be central it needs to be adjacent to the gates of all the vertices at a distance exactly r from S. All the vertices which satisfy this necessary condition can be computed in linear time. Hence, we can restrict ourselves to the vertices that are at distance exactly r -1 from S.

Lemma 19. Let G be a C 4 -free Helly graph and let S be such that diam(S) ≤ 2. If dist(x, S) = r-1, then there exists a vertex pg S (x) ∈ N r-1 [x] such that S ∩ N r [x] ⊆ N [pg S (x)]. Moreover, pg S (x) is in the closed neighbourhood of some gate of x.

We call such a vertex a pseudo-gate of x.

Proof. The existence of such a pseudo-gate follows from the fact that the balls N r-1 [x] and N [s], s ∈ S ∩ N r [x] pairwise intersect, and from the Helly property. Now, let pg(x) and g(x) be arbitrary pseudo-gate and gate of x, respectively, and assume pg(x) = g(x) and pg(x)g(x) / ∈ E (else, we are done). In particular, pg(x) / ∈ P r(x, S). Note that, since we have P r(x, S) ⊆ N (g(x)) ∩ N (pg(x)), dist(g(x), pg(x)) = 2. Then, the balls N r-2 [x], N [g(x)] and N [pg(x)] pairwise intersect. By the Helly property, there exists a vertex x * in their common intersection. We claim that x * is a gate of x, that will prove the lemma. Indeed, for every s ∈ P r(x, S) we get a cycle (s, pg(x), x * , g(x), s). Since G is C 4 -free, this implies sx * ∈ E.

By taking advantage of the property that pg(x) is either equal or adjacent to some gate g(x), we next explain how we can adapt the technique from [START_REF] Chepoi | A linear-time algorithm for finding a central vertex of a chordal graph[END_REF][START_REF] Chepoi | Finding a central vertex in an HHD-free graph[END_REF] in order to compute all pseudo-gates in total linear time.

Remark 3. For every x ∈ N (S), we can choose as its pseudo-gate any vertex of N [x] that maximizes the intersection of S with its closed neighbourhood (possibly, x itself ). Then, when we compute a gate for every vertex, we break ties by choosing one such a gate whose pseudo-gate maximizes its intersection with S. In doing so, we can compute a pseudo-gate for every vertex at distance r -1 from S, in total linear time.

Finally, if diam(G) = 2r, then the central vertices are exactly those adjacent to the gates of all the vertices at distance r from S and either equal or adjacent to the pseudo-gates of all the vertices at distance r -1 from S.

Computing all eccentricities

We are now ready to present the main result of this section, namely: Theorem 7. If G is a C 4 -free Helly graph then we can compute the eccentricity of all vertices in linear time.

Proof. By Lemma 4, we only need to compute C(G). Our main tool for that is our parameterized linear-time algorithm for Small Eccentricities, for k = 2 (Theorem 2). In particular, by Corollary 2, we may assume that rad(G) = r ≥ 3. Let diam(G) = d and let (x, y) be a diametral pair. By Theorem 6, it can be computed in linear time. We assume in what follows d = 2r -1 (else, by Lemma 1, d = 2r, and we already explained in Sec. 

More reductions to split graphs

We conclude by considering diameter computation within another class than Helly graphs, namely chordal graphs. This is motivated by our results in Section 3.2 where we reduced the problem of computing a diametral pair on C 4 -free Helly graphs (and so, on chordal Helly graphs) to the same problem on split Helly graphs. We prove next that there exists a (randomized) reduction from diameter computation on general chordal graphs to the same problem on split graphs. Specifically, a sparse representation of a split graph is the list of the closed neighbourhoods of vertices in its stable set [START_REF] Ducoffe | Fast diameter computation within split graphs[END_REF]. -Such a representation may not be unique, since it depends on a specific bipartition of the split graph into a clique and a stable set. -Then, the Disjoint Sets problem consists in computing the diameter of a split graph given by one of its sparse representations. For a split graph H with stable set U we define (H) := u∈U deg H (u), a.k.a. the size of its sparse representation.

Theorem 8. For any chordal graph G, we can compute in Õ(m)-time the sparse representations of a family (H i ) of split graphs such that, if for every i we can compute diam

(H i ) in time O( (H i ) • |V (H i )| b ), then we can compute diam(G) in time Õ(mn b ).
The OV problem is given as inputs the sparse representation of a split graph G and two subsets A, B in its stable set, and it asks what the largest distance in G is between a vertex of A and a vertex of B. We highlight the following variant of our Theorem 8. Although it is not clear whether the two statements are equivalent, our proofs for both results are nearly identical. 

Preliminaries

We shall use the following metric properties of chordal graphs. We stress that these are quite similar to some metric properties of C 4 -free Helly graphs that we proved in Section 3.

Lemma 20 ([23]). For any clique C in a chordal graph G, we can compute in linear time the distance dist(x, C) and a gate g(x) ∈ {I(x, w) | w ∈ P r(x, C)} adjacent to all vertices from P r(x, C), for all vertices x. Lemma 21 ([23]). In a chordal graph G, for any clique C and adjacent vertices s, t / ∈ C the metric projections P r(s, C) and P r(t, C) are comparable, i.e., either P r(s, C) ⊆ P r(t, C) or P r(t, C) ⊆ P r(s, C).

The reduction

Our reduction is one-to-many. We recall that a clique-tree of a graph G is a tree T of which the nodes are the maximal cliques of G, and such that for every vertex v the set of all the maximal cliques that contain v induces a connected subtree. It is known that G is chordal if and only if it has a clique-tree [START_REF] Buneman | A characterisation of rigid circuit graphs[END_REF][START_REF] Gavril | The intersection graphs of subtrees in trees are exactly the chordal graphs[END_REF][START_REF] Walter | Representations of rigid cycle graphs[END_REF] and, furthermore, a clique-tree can be computed in linear time [START_REF] Tarjan | Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs[END_REF]. -See also [START_REF] Blair | An introduction to chordal graphs and clique trees[END_REF][START_REF] Brandstädt | Tree-structured graphs[END_REF] and the references therein -. We may see a clique-tree T as a node-weighted tree where, for any maximal clique C, w(C) = |C|. Then, let w(T ) := C w(C). For a chordal graph, w(T ) = O(n + m) [START_REF] Blair | An introduction to chordal graphs and clique trees[END_REF]. We will use a standard result on weighted centroids in trees, namely: Lemma 22 ([51]). Every node-weighted tree T has at least one weighted centroid, that is, a node v whose removal leaves components of maximum weight ≤ w(T )/2. Moreover, a weighted centroid can be computed in linear time.

Let T be a fixed clique-tree of G. If T is reduced to a single node, or to exactly two nodes, respectively (equivalently, either G is a complete graph or it is the union of two crossing complete subgraphs), then we output diam(G) = 1, or diam(G) = 2, respectively (base case of our reduction). Otherwise, let S ∈ V (T ) be a weighted centroid of T . By Lemma 22, the clique S can be computed in O(|V (T )|) = O(n) time if we are given T in advance. Furthermore, let T 1 , T 2 , . . . , T be the components of T \ {S}, and for every 1

≤ i ≤ let V i := ( V (T i )) \ S. Since ∀i, N G (V i ) ⊆ S is a clique, the closed neighbourhoods N G [V i ], 1 ≤ i ≤ induce distance-preserving subgraphs of G,
which we denote by G 1 , G 2 , . . . , G . We apply our reduction recursively on each of these subgraphs

G i . Then, let d S := max v i ∈V i ,v j ∈V j |i =j dist(v i , v j ). We have: diam(G) = max{d S , max{diam(G i ) | 1 ≤ i ≤ }}.
So, we are left with computing d S . For that, we define ∀i, d i := max v i ∈V i dist(v i , S). We order the sets V i by non-increasing value of d i . Since S is a clique, we get

d 1 + d 2 ≤ d S ≤ d 1 + d 2 + 1.
In order to decide in which case we are, we proceed as follows:

• We discard all sets V i s.t. d i < d 2 . Doing so we are left with sets V 1 , V 2 , . . . , V k , k ≤ .

• Then, for every 1 ≤ i ≤ k and v ∈ V i , if dist(v, S) = d i then we compute a gate for vertex v, which exists by Lemma 20. Furthermore, if two such gate vertices are adjacent then they must be in the same connected component of G \ S, and by Lemma 21 their respective metric projections on S are comparable. It implies that we can remove any of these two vertices with largest metric projection on S. Thus, from now on, we assume all selected gate vertices to be pairwise non-adjacent.

• Finally, let a, b / ∈ V be fresh new vertices which we make adjacent to each other and to all vertices of S. There are two subcases:

-Case d 1 = d 2 . We make vertex a adjacent to all gates of the vertices in V 1 , while we make vertex b adjacent to all gates of the vertices in k i=2 V i . -Case d 1 = d 2 . For every 1 ≤ i ≤ k, with probability 1/2 we make vertex a adjacent to all gates of the vertices in V i (otherwise, we do so with vertex b).

Doing as above we get a split graph H whose clique and stable set are S ∪ {a, b} and the selected gate vertices, respectively. We stress that deciding whether diam(H) = 3 is here equivalent to deciding whether the largest distance in H \ {a, b} between a vertex of A = N H (a) \ (S ∪ {b}) and a vertex of

B = N H (b) \ (S ∪ {a}) is equal to 3. Furthermore, H \ {a, b} is an induced split subgraph of G by construction. Claim 7. If diam(H) = 3 then d S = d 1 + d 2 + 1. Conversely, if d S = d 1 + d 2 + 1 then diam(H) = 3 with probability ≥ 1/2.
Proof 

(α), ∀α ∈ V (J)\N 2 J [x S ] as follows (recall that N 2 J [x S ] = S ∪{x C | C ∩ S = ∅}): if α ∈ V and α ∈ N G (S) (equivalently, dist J (x S , α) = 3), then g(α) = α; otherwise, g(α) ∈ {g(β) | β ∈ N J (α) ∩ I J (x S , α) ∧ p(α) = p(β)}.
Again, we can compute all those values g(α) during a BFS with no significant computational overhead. Furthermore, it also follows from our above characterization of shortest vS-paths in J that we have, ∀v / ∈ S, g(v) is a gate of v.

Lemma 24. For a clique-tree T of a given chordal graph G, let H be the split graph constructed as in Section 4.2. A sparse representation of the split graph H can be computed in

O(w(T )) time. Furthermore, if U ⊆ V (H) is the stable set of H, then |U | = O(|V (T )|).
Proof. After Lemma 23, we need to select a subset of pairwise non-adjacent gates in order to construct U . For that, we consider all the maximal cliques C sequentially. If C contains at least two gates, then we suppress all the gates in C but one with minimum metric projection on S.

Overall, this post-processing also takes time O(w(T )). Doing so there is at most one gate selected per maximal clique, i. Finally, in order to complete the proof of Theorem 8, let (H i ) be the family of split graphs considered for a given recursive step of the reduction. Let us assume that for every i, we can compute diam(H i ) in O( (H i ) • |V (H i )| b ) time. By Lemma 24, i (H i ) = O(w(T )) = O(n + m). Furthermore, max i |V (H i )| ≤ n. As a result, computing diam(H i ) for all i takes total time O(mn b ). In the same way, if we can solve diam(H i ) in O( (H i ) b ) time, for some b ≥ 1, then computing diam(H i ) for all i takes total time O(m b ) (as explained in Sec. 4.2, the latter reduces to OV on a H i ⊆ H i , where H i is an induced split subgraph of G). Note that we need to repeat our probabilistic construction of the H i 's at most O(log n) times for each step, and that there are O(log n) steps in total. As a result, the running time is in O(m b log 2 n).

Applications

It was proved in [START_REF] Dragan | An eccentricity 2-approximating spanning tree of a chordal graph is computable in linear time[END_REF] that for all chordal graphs, an additive +2-approximation of all eccentricities can be computed in total linear time. Using our previous reduction from Section 4.2, we improve this result to an additive +1-approximation, but at the price of a logarithmic overhead in the running time.

Theorem 9. For every n-vertex m-edge chordal graph, we can compute an additive +1-approximation of all eccentricities in total O(m log n) time.

Roughly, Theorem 9 follows from the observation that, in a split graph, if we set e(v) = 2 for every vertex v, then we get an additive +1-approximation of all the eccentricities.

Proof. In what follows, let G be chordal and let T be a fixed clique-tree of G. We can assume that G has at least two vertices.

• If T is reduced to a single node, or equivalently, G is a complete graph, every vertex has eccentricity equal to 1. In the same way if T is reduced to exactly two nodes, then G is the union of two crossing complete subgraphs C 1 and C 2 . Furthermore, every vertex of C 1 ∩ C 2 has eccentricity equal to 1, whereas every vertex of the symmetric difference C 1 ∆C 2 has eccentricity equal to 2.

• Otherwise, let S ∈ V (T ) be a weighted centroid of T . By Lemma 22, the clique S can be computed in time O(|V (T )|) = O(w(T )) if we are given T in advance.

-Let T 1 , T 2 , . . . , T be the components of T \ {S}, and for every 1 ≤ i ≤ let V i := ( V (T i )) \ S. We recall that the closed neighbourhoods N G [V i ], 1 ≤ i ≤ induce distance-preserving subgraphs of G. As in Section 4.2, we denote these subgraphs by G 1 , G 2 , . . . , G . We apply our reduction recursively on each of the G i 's. Doing so, for every i and every vertex v i ∈ V i we get an additive +1-approximation of e G i (v i ). -Then, for every vertex v / ∈ S, we compute dist G (v, S) and a gate g S (v). By Lemma 23 this can be done in total O(w(T )) time if T is given in advance. Furthermore, notice that since S is a clique, for every s ∈ S we have that max v∈V dist G (v, S) is an additive +1-approximation of e G (s).

-Finally, we observe that for every i and every vertex v i ∈ V i we have:

e G (v i ) = max{e G i (v i ), max u / ∈V i dist G (v i , u)}.
As in Section 4.2 we define ∀i, d i := max v i ∈V i dist(v i , S). If we compute the two largest values amongst the d i 's, then we can compute ∀i, e i := max j =i d j . We are done as for every v i ∈ V i , dist G (v i , S) + e i is an additive +1-approximation of max u / ∈V i dist G (v i , u).

As already observed in Section 4.3, there are O(log w(T )) = O(log n) recursion levels. Since at any level, the clique-trees of all the subgraphs considered form a family of pairwise disjoint subtrees of T , each step can be done in O(w(T )) time. Therefore, the total running time is in O(w(T ) log n) = O(m log n) [START_REF] Blair | An introduction to chordal graphs and clique trees[END_REF].

Finally, the VC-dimension of a graph G is the largest cardinality of a subset S such that {N [v] ∩ S | v ∈ V } = 2 S (we say that S is shattered by G). For instance, interval graphs have VC-dimension at most two [START_REF] Bousquet | Identifying codes in hereditary classes of graphs and VC-dimension[END_REF]. Theorem 10. For every d > 0, there exists a constant η d ∈ (0; 1) such that in O(mn 1-η d ) time, we can compute the diameter of any chordal graph of VC-dimension at most d.

Proof. If a split graph H has VC-dimension at most d , then we can compute its diameter in truly subquadratic time O( (H) • |V (H)| 1-ε d ), for some ε d ∈ (0; 1) [45, Theorem 1]. As a result, it is sufficient to prove that all the split graphs H i , which are output by the reduction of Theorem 8, have a VC-dimension upper bounded by a function of d. We observe that every such H i is obtained from an induced subgraph H i of G by adding two new vertices a and b (see Section 4.2). Since G has VC-dimension at most d, so does H i . Then, let S be a largest subset shattered by H i . We can extract from S a maximal shattered subset S ⊆ V (H i ) (i.e., not containing a and b). In particular, |S | ≥ |S| -2. Furthermore, since S is shattered by An undirected path graph is the intersection graphs of paths in a tree. Since the undirected path graphs have VC-dimension at most 3 [START_REF] Bousquet | Identifying codes in hereditary classes of graphs and VC-dimension[END_REF], the following result is a direct consequence of our Theorem 10: Corollary 3. There is a truly subquadratic-time algorithm for computing the diameter of undirected path graphs.

H i , {N [v] ∩ S | v ∈ V (H i )} = 2 S holds. It implies that |{N [v] ∩ S | v ∈ V (H i ) = V (H i ) \

  )} of all the farthest vertices from vertex u. -Note that we will omit the subscript if the graph G is clear from the context. -The radius and the diameter of a graph G are denoted by rad(G) and diam(G), respectively. Finally, C(G) := {v ∈ V | e(v) = rad(G)} is the center of G, a.k.a. the set of all the central vertices of G.
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 18 Figure 1: Vertices x, y, z and three shortest paths connecting them in pseudo-modular graphs. The next properties are specific to C 4 -free Helly graphs. A set S ⊆ V of a graph G = (V, E) is called convex if for every x, y ∈ S, I(x, y) ⊆ S holds. Lemma 7 ([35]). Every ball of a C 4 -free Helly graph is convex. Lemma 8. For every vertices v and u of a C 4 -free Helly graph G and any integer k ≤ dist(u, v), the set L(u, k, v) is a clique.
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 9 Let G be a C 4 -free Helly graph with diameter d and radius r. Let s be an arbitrary vertex, v be a vertex most distant from s, and (x, y) be a diametral pair of G. Then, e(v) ≥ d -2. Furthermore, if e(v) = d -2, then e(v) = 2r -3 = dist(v, x) = dist(v, y) and d = 2r -1. So, in particular, if e(v) is even, then e(v) ≥ d -1.

  y) ≤ 2k and dist(s, y) ≤ , those balls pairwise intersect. By the Helly property, there is a vertex a in G belonging to all three balls. Necessarily, dist(a, s)=k, dist(a, v) = k and dist(a, y) ≤ k. Similarly, we can get a vertex b in G such that dist(b, s) =k, dist(b, v) = k and dist(b, x) ≤ k. As both a and b are in L(v, k, s), by Lemma 8, dist(a, b) ≤ 1. Thus, d = dist(x, y) ≤ dist(x, b) + dist(b, a) + dist(a, y) ≤ 2k + 1.Now, if e(v) = 2k for some integer k, then max{dist(v, y), dist(v, x)} ≤ e(v) = 2k and, therefore, d ≤ 2k + 1 = e(v) + 1. If e(v) = 2k + 1 for some integer k, then either max{dist(v, y), dist(v, x)} < e(v) = 2k + 1 and hence d ≤ 2k + 1 = e(v) or max{dist(v, y), dist(v, x)} = e(v) = 2k + 1. As in the latter case max{dist(v, y), dist(v, x)} < 2k + 2, we also get d ≤ 2k + 3 = e(v) + 2.
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 2 Figure 2: Algorithm LexBFS [62].

  If e(u) = d, d is even and rad(G) = d/2, then this certifies that diam(G) = e(u). Else, either G is not Helly or we have e(u) = d -1, d is odd and rad(G) = e(u)/2 + 1. Since dist(x, y) = d = e(u) + 1, we get diam(G) = d by Lemma 11.

C 4 .

 4 If x * , y * ∈ S are adjacent, then by Lemma 14 either N (x * ) ∩ C ⊆ N (y * ) ∩ C or N (y * ) ∩ C ⊆ N (x * ) ∩ C. Therefore, we can discard a vertex of {x * , y * } with maximum number of neighbours in C from S. Doing so, we only need to consider a subset of gates that are pairwise non-adjacent. Lemma 15. Let u, w be two vertices in a C 4 -free Helly graph G such that dist(u, w) = 2r -2, let C = L(u, r -1, w) and let S ⊆ N (C) be a stable set. Then, H = G[C ∪ S] is a split Helly graph.

  3.2 how to compute C(G)). Obviously,C(G) ⊆ N r [x]∩N r [y]. Since dist(x, y) = 2r-1 we get N r [x]∩N r [y] = L(x, r-1, y)∪L(y, r-1, x)∪Z, where Z := {z ∈ V | dist(z, x) = dist(z, y) = r}.Furthermore, for a C 4 -free Helly graph, by Lemma 8 the slices L(x, r -1, y) and L(y, r -1, x) are cliques; we can reuse the same idea as for Theorem 5 in order to compute C(G) ∩ (L(x, r -1, y) ∪ L(y, r -1, x)) in linear time. From now on we focus on Z. Claim 3. Every z ∈ Z has adjacent neighbours in L(x, r -1, y) and L(y, r -1, x), resp.

Theorem 8 .

 8 For a subclass C of chordal graphs, let S contain all split graphs that are induced subgraphs of a graph in C. If for every G ∈ S, for every bipartition A, B of its stable set, we can solve OV in O( b ) time, for some b ≥ 1, then there is a randomized O(m b log 2 n)-time algorithm for computing w.h.p. the diameter of chordal graphs in C.

  e., |U | ≤ |V (T )|. Furthermore, we have (H) = u∈U deg H (u) ≤ C |C| = w(T ). We end up adding a, b and the edges incident to these two vertices and the stable set U , that takes total time O(|U |) = O(|V (T )|).

  {a, b}}| ≥ 2 |S | -2. By the Sauer-Shelah-Perles Lemma[START_REF] Sauer | On the density of families of sets[END_REF][START_REF] Shelah | A combinatorial problem; stability and order for models and theories in infinitary languages[END_REF], we also have|{N [v] ∩ S | v ∈ V (H i )}| = O(|S | d ), which implies |S | = O(d log d).Consequently, every H i has VC-dimension in O(d log d).

  pair in a Helly graph can be computed w.h.p. in Õ(m √ n) time. Proof. Let k = 6 √ n . By Corollary 2 we can compute the set B k of all the vertices of eccentricity at most k in O(mk) = O(m √ n) time. There are now two cases. First assume that B k = V . We can compute by dichotomic search the smallest d ≤ k such that B d = V , which is exactly the diameter, in Õ(m √ n) time. Then, a vertex is an end of a diametral path if and only if it is in V \ B d-1 , and by Corollary 2 we can enumerate all such vertices in O

  . Let x * and y * be two gates such that dist H (x * , y * ) = 3. By construction of H, x * , y * are the respective gates of two vertices x, y such that min{dist G (x, S), dist G (y, S)} ≥ d 2 . Furthermore, since {a, b} ∩ (N H (x * ) ∩ N H (y * )) = ∅, we get that x, y are in different components of G \ S, and {dist and of the shortest vS-paths in J as those obtained from the shortest vS-paths in G by adding a maximal clique between every two consecutive vertices. It implies that for every clique C such that x C ∈ X C ∩ I J (v, S), we have C ∩ S ⊆ P r G (v, S). In particular, if we start from a shortest vS-path in G that contains a gate g S (v), there is a corresponding vS-path in J that contains a clique C ⊇ P r(v, S) ∪ {g S (v)}. As a result, p(v) is exactly |P r G (v, S)|.Finally, we recursively define g

G (x, S), dist G (y, S)} = {d 1 , d 2 }. Hence, d S ≥ dist(x, y) ≥ d 1 + d 2 + 1.

Conversely, let us assume the existence of a pair (x, y) such that: x and y are in different components of G \ S,

* This work was supported by project PN 19 37 04 01 "New solutions for complex problems in current ICT research fields based on modelling and optimization", funded by the Romanian Core Program of the Ministry of Research and Innovation (MCI) 2019-2022, and by a grant of Romanian Ministry of Research and Innovation CCCDI-UEFISCDI. project no. 17PCCDI/2018.
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Proof. Let p = q = r-1 and k = 0. We have dist(x, y) = p+q+1, dist(x, z) = p+k+1, dist(y, z) = q + k + 1. Since G is pseudo-modular, by Lemma 6, z is adjacent to the two ends of an edge in the middle of some shortest xy-path.

Since both L(x, r -1, y) and L(y, r -1, x) are cliques, the above implies that Z has weak diameter at most 3 ≤ r. More generally, every vertex at a distance ≤ r -2 from L(x, r -1, y) ∪ L(y, r -1, x) is at a distance ≤ r from every vertex of Z. Therefore, we further restrict our study to the vertices w such that dist(w, L(x, r -1, y) ∪ L(y, r -1, x)) ≥ r -1.

Subcase dist(w, L(x, r -1, y) ∪ L(y, r -1, x)) = r -1. Let C := L(x, r -1, y) and consider the set W x of all vertices w such that dist(w, L(x, r -1, y) ∪ L(y, r -1, x)) = dist(w, C) = r -1. Let A x contain a gate g C (w) for every w ∈ W x , which exists by Lemma 10.

Claim 4. For every z ∈ Z, we have max w∈Wx dist(z, w) ≤ r if and only if

Conversely, let us assume max w∈Wx dist(z, w) ≤ r, and let w ∈ W x be arbitrary. The balls

pairwise intersect. Therefore, by the Helly property, N [z]∩P r(w, C) = ∅. For any gate g C (w

Overall with this above claim we are reduced to Small Eccentricities, with k = 2, which by Theorem 2 can be solved in linear time. Our approach also works for C := L(y, r -1, x), up to reversing the respective roles of x and y.

Subcase

Proof. We first prove that dist(x, w) = dist(y, w) = 2r -1. Indeed, suppose for the sake of contradiction that dist(x, w) ≤ 2r -2. Since the balls N r-1 [x], N r-1 [w], N r [y] pairwise intersect, by the Helly property, we get dist(w, L(x, r -1, y)) ≤ r -1, a contradiction. Hence, the balls N r-1 [w], N r [x], N r [y] pairwise intersect, which implies, by the Helly property, dist(w, Z) = r -1. In this situation, we have P r(w, Z) = L(w, r -1, x) ∩ L(w, r -1, y). By Lemma 8, we get that P r(w, Z) is a clique.

The combination of this above claim with Lemma 10 implies the existence of a gate g Z (w) ∈ N r-2 [w] ∩ {N (v) | v ∈ P r(w, Z)} for every vertex w ∈ W * . Note that we can compute the gate of all such vertices w in linear time, by adapting the techniques from [START_REF] Chepoi | A linear-time algorithm for finding a central vertex of a chordal graph[END_REF][START_REF] Chepoi | Finding a central vertex in an HHD-free graph[END_REF]. So, let A * contain a gate g Z (w) for every vertex w ∈ W * . We prove as before:

Proof. We can prove this above condition to be sufficient for having max w∈W * dist(z, w) ≤ r in the exact same way as we did for Claim 4. Conversely, let us assume that we have max w∈W * dist(z, w) ≤ r, and let w ∈ W * be arbitrary. The balls N [z], N r-1 [w], N r [x], N r [y] pairwise intersect, and so, by the Helly property,

We are done by reducing a final time to Small Eccentricities, with k = 2, which by Theorem 2 can be solved in linear time.

dist(x, y) = d 1 + d 2 + 1. W.l.o.g., let dist(x, S) = d 1 and dist(y, S) = d 2 . Let also x * , y * be the two gates computed for x and y, respectively (we may assume, w.l.o.g., that x * , y * are indeed in the stable set of H). We must have N H (x * ) ∩ N H (y * ) ⊆ {a, b}. In particular, if

Overall, we may repeat the construction of this above split graph H up to O(log n) times in order to compute d S with high probability.

Analysis

Since at every step of our reduction we pick a weighted centroid in the clique-tree of every subgraph G i considered, there are O(log w(T )) = O(log n) recursion levels. Therefore, up to polylogarithmic factors, the total running-time of the reduction is of the same order of magnitude as the worst-case running time of a single step. Furthermore, it is not hard to prove that the first step, when we only consider the full input graph G, runs in linear time (i.e., omitting the computation of the diameter for the related split graph H). However, during the next steps of our reduction we may need to consider pairwise overlapping subgraphs G i , thereby making the analysis more delicate. The key insight here is that the clique-trees of all these subgraphs form a family of pairwise disjoint subtrees of T . We next explain how to perform the first step, and so all subsequent ones, in time O(w(T )). Since w(T ) = O(n + m) [START_REF] Blair | An introduction to chordal graphs and clique trees[END_REF], doing so we can compute all the desired split graphs H throughout our reduction in total quasi linear time Õ(n + m).

Lemma 23. Let S be any clique of a chordal graph G. If a clique-tree T is given, then in time O(w(T )) we can compute ∀v / ∈ S, dist(v, S) and a corresponding gate g(v).

Proof. Let C := V (T ) ∪ {S} be the set of all maximal cliques of G, to which we also add the clique S if it is not maximal. We define a set of fresh new vertices indexed by C, namely let

Then, let J := (V ∪ X C , {vx C | v ∈ C}) be the vertex-clique incidence graph of G. Note that we can construct J by scanning once the clique S and all the maximal cliques of the graph G.

We prove as a subclaim that for every vertex v we have dist J (v, x S ) = 2•dist G (v, S)+1. Indeed, since by construction N J (x S ) = S, we get dist J (v, x S ) = 1 + min u∈S dist J (v, u) = 1 + dist J (v, S). Furthermore, in every vS-path of J, that is in every path between v and a closest vertex of S, half of the internal vertices must be in X C . Since in addition two vertices that are adjacent to a same maximal clique in J are adjacent in G, it allows us to transform such a path in J to a vS-path in G that is twice shorter. Conversely, any vS-path of G can be transformed into a vS-path of J that is twice longer, simply by adding between every two consecutive vertices a maximal clique which contains both of them. -Note that combining the two constructions, the latter exactly characterizes the shortest vS-paths in J. -As a result, we proved as claimed that dist J (v, S) = 2 • dist G (v, S). It implies that after a BFS in J rooted at x S we get dist G (v, S), ∀v / ∈ S. Then, we recursively define p(α), ∀α ∈ V (J) \ N J [x S ] as follows (recall that N J [x S ] = {x S } ∪ S): if α = x C for some C ∈ C \ {S}, and C ∩ S = ∅ (equivalently, dist J (x S , α) = 2), then p(α) = |C ∩ S| (number of neighbours at distance one from x S ); otherwise, p(α) = max{p(β) | β ∈ N J (α) ∩ I J (x S , α)}. Note that, we can compute all those values p(α) during a BFS with no significant computational overhead. Furthermore, we claim that ∀v ∈ V, p(v) = |P r G (v, S)|. Indeed, by induction, p(v) = max{|C ∩S| | x C ∈ X C ∩I J (v, x S ), C = S}. We recall our earlier characterization