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Introduction

The simulation of complex multiphysical phenomena often requires the coupling of several dedicated solvers. As an example, the phenomenon of icing on aircrafts involves many physical aspects such as aerodynamics, droplet trajectories and heat and mass transfer [START_REF] Trontin | Description and assessment of the new onera 2d icing suite igloo2d[END_REF]. A typical simulation thus requires the use of several solvers which pass information to each other. The unsteady simulation of thermal de-icing systems requires the coupling between an unsteady thermal model of the de-icing system and an unsteady thermal model of the ice accretion and melting process. As the physical properties of ice and the airfoil are different, the union of these domains is heterogenous. The heat equation is a central element of these models.

It is therefore of great interest to conduct an analysis of coupling methods between two domains where the heat equation is to be solved in unsteady (parabolic) or steady (elliptic) form. Also, icing being a complex phenomenon involving for example evaporation or sublimation, the ability to deal with generic boundary conditions is also required. The general context of this work is therefore the coupled solution of the steady or unsteady heat equation on bounded non-overlapping domains with general non-linear boundary conditions.

The coupling of models and codes is an active area of research. Domain decomposition methods form a large family of coupling techniques [START_REF] Valli | Domain decomposition methods for partial differential equations[END_REF][START_REF] Toselli | Domain decomposition methods-algorithms and theory[END_REF][START_REF] Victorita Dolean | An introduction to domain decomposition methods: algorithms, theory, and parallel implementation[END_REF]. Schwarz pioneered this area of research when, in 1870, he showed the existence of the solution of the heat equation on a domain consisting of the overlapping of a rectangle and a disk [START_REF] Hermann | über einen grenzübergang durch alternierendes verfahren[END_REF]. The idea is to first solve the heat equation in the disk. Then the resulting solution is used to impose a Dirichlet boundary condition on the rectangle. In turn, the heat equation on the rectangle is solved and provides Dirichlet boundary conditions for the disk. The process is repeated thus generating a sequence of solutions to the heat equation in each domain. Schwarz proved that the sequence converges which shows the existence of a solution of the heat equation on the union of the disk and the rectangle. This idea has since then be improved and revisited over time [START_REF] Martin | Schwarz methods over the course of time[END_REF].

The Schwarz method has been applied to many problems, with and without overlapping [START_REF] Martin | Overlapping schwarz waveform relaxation for the heat equation in n dimensions[END_REF][START_REF] Gosselet | Non-overlapping domain decomposition methods in structural mechanics[END_REF][START_REF] Clark R Dohrmann | An overlapping schwarz algorithm for almost incompressible elasticity[END_REF][START_REF] Hubert Alcin | Efficiency and scalability of a two-level schwarz algorithm for incompressible and compressible flows[END_REF].

The issue of obtaining optimal coefficients has also been addressed in many different contexts [START_REF] Martin | Optimized schwarz methods without overlap for the helmholtz equation[END_REF][START_REF] Martin | Optimized schwarz methods[END_REF][START_REF] Bennequin | Optimized schwarz waveform relaxation for advection reaction diffusion equations in two dimensions[END_REF].

The general approach is to study the problem on an unbounded domain and use Fourier analysis to derive the conditions and coefficients that guarantee optimal convergence. For elliptic problems on bounded non-overlapping domains, Lions proposed to use Robin transmission conditions instead of Dirichlet transmission conditions and proved general convergence results [START_REF] Lions | On the schwarz alternating method. iii: a variant for nonoverlapping subdomains[END_REF]. On the outer boundaries Lions considered homogeneous Dirichlet boundary conditions. He noted that the effective choice of the coupling coefficient is not trivial and provided some example for simple geometries. Errera et al. derived schemes for the numerical solution of two coupled heat conduction problems [START_REF] Errera | Optimal solutions of numerical interface conditions in fluid-structure thermal analysis[END_REF]. In particular, they studied non-overlapping Robin-Robin transmission conditions and analysed the stability and convergence properties of their approach. Later, Gander et al. studied an optimized Schwarz method for the diffusion problem on non-overlapping heterogeneous media [START_REF] Martin | Optimized schwarz methods for a diffusion problem with discontinuous coefficient[END_REF]. After deriving optimal coefficients using Fourier analysis, they performed numerical tests to demonstrate the efficiency of the method. More recently, Meng et al. developed the Conjugate Heat transfer Advanced Multi-domain Partitioned scheme [START_REF] Meng | A stable and accurate partitioned algorithm for conjugate heat transfer[END_REF]. To do so they use elements of optimal overlapping Schwarz methods with Robin transmission conditions combined with interface jump conditions. The method is demonstrated to be stable for a large range of heat transfer problems. Concerning the external boundary, the previous studies all used linear Dirichlet, Neumann or mixed boundary conditions.

In typical of icing simulations, the evaporative term induces non-linear boundary conditions. Moreover, when simulating the formation or melting of ice, the shape of the different layers, and hence the mesh, changes with time. Moreover, in an industrial context, it is highly desirable that the code simulating the ice protection system and the one simulating the ice accretion and melting be separate. Therefore the goal of this work is to construct a non-overlapping Robin-Robin Schwarz method suited for icing simulation, building upon previous research and the authors' previous work [START_REF] Chauvin | A robust coupling algorithm applied to thermal ice protection system unsteady modeling[END_REF].

The article is organized as follows. The idea is to first study and derive coupling coefficients for a one dimensional unsteady heat conduction problem with linear boundary conditions. The next step is to consider a steady state problem with non-linear boundary conditions. The convergence of the method is proved in both of these cases. The two previous steps are then used to propose an extension for the unsteady case with non-linear boundary conditions. Numerical tests are performed to assess the performance of the method.

Finally an application to the simulation of electro-thermal de-icing is performed to illustrate the method in more complex situations.

The general setting for the derivation of the method is given by problem [START_REF] Hubert Alcin | Efficiency and scalability of a two-level schwarz algorithm for incompressible and compressible flows[END_REF]. It consists of an unsteady coupled heat conduction problem in two domains of different physical properties (see Figure 1) and generic boundary conditions.

                                       ρ 1 (x)c 1 (x) ∂T 1 ∂t (t, x) = ∂ ∂x λ 1 (x) ∂T 1 ∂x (t, x) ∀(t, x) ∈ R + × Ω 1 ρ 2 (x)c 2 (x) ∂T 2 ∂t (t, x) = ∂ ∂x λ 2 (x) ∂T 2 ∂x (t, x) ∀(t, x) ∈ R + × Ω 2 λ 1 (-l 1 ) ∂T 1 ∂x (t, -l 1 ) = f 1 (T 1 (t, -l 1 )) ∀t ∈ R + λ 2 (l 2 ) ∂T 2 ∂x (t, l 2 ) = -f 2 (T 2 (t, l 2 )) ∀t ∈ R + T 1 (t, 0) = T 2 (t, 0) ∀t ∈ R + λ 1 (0) ∂T 1 ∂x (t, 0) = λ 2 (0) ∂T 2 ∂x (t, 0) ∀t ∈ R + (1a) (1b) (1c) (1d) (1e) (1f)
where t, x and T stand respectively for time, position and temperature. For each domain i = 1, 2 ρ i is the density, c i the specific heat, λ i the thermal conductivity, and f 1 and f 2 are increasing and regular enough functions. The goal is to solve each heat conduction problem in its respective domain Ω i . The domains are coupled through the relations (1e) (continuity of temperature) and (1f) (continuity of heat flux). In the following, this problem is studied by considering two specific problems for which an optimized coupling procedure is derived:

x l 2 0 -l 1 T 1 (t, x) T 2 (t, x) ρ 1 (x), c 1 (x), λ 1 (x) ρ 2 (x), c 2 (x), λ 2 (x) Ω 1 = ]-l 1 ; 0[ Ω 2 = ]0; l 2 [ f 2 (T 2 (t, l 2 )) f 1 (T 1 (t, -l 1 ))
• Unsteady heat conduction with linear boundary conditions.

• Steady heat conduction with general boundary conditions. These analyses are then used to provide a coupling procedure for the general problem of unsteady heat conduction with general boundary conditions.

Unsteady case with linear boundary conditions

In this case, the problem (1) is considered with constant physical properties over each domain and with linear external boundary conditions. More precisely, the functions f i are assumed to be linear functions of T i . In order to proceed the time derivative is discretized using an implicit Euler scheme. Discretization is performed using a time step ∆t. At the n-th step (where n ∈ (N )) the time is given by t n = n∆t. The set of equations hence becomes:

Semi-discrete heat equation in each domain:

ρ 1 c 1 T n+1 1 -T n 1 ∆t = λ 1 d 2 T n+1 1 dx 2 ∀x ∈ Ω 1 (2a) ρ 2 c 2 T n+1 2 -T n 2 ∆t = λ 2 d 2 T n+1 2 dx 2 ∀x ∈ Ω 2 (2b)
where T n j is the temperature field at time step n. Note that the unknown of each equation is T n+1 j .

External boundary conditions:

-λ 1 dT n+1 1 dx (-l 1 ) = h 1 T r,1 -T n+1 1 (-l 1 ) (2c) λ 2 dT n+1 2 dx (l 2 ) = h 2 T r,2 -T n+1 2 (l 2 ) (2d)
where the constants h i are heat transfer coefficients and the T r,i represent cooling/heating temperatures.

Interfacial conditions:

T n+1 1 (0) = T n+1 2 (0) (2e) λ 1 dT n+1 1 dx (0) = λ 2 dT n+1 2 dx (0) (2f)
where n e,j is the unit normal vector of the external boundary.

By linearity it suffices to consider only the associated homogeneous problems in each domain. To avoid cumbersome notations, T n+1 j is now written simply T j . The homogeneous problems are defined by: Semi-discrete homogeneous heat equation in each domain:

- d 2 T 1 dx 2 + µ 2 1 T 1 = 0 ∀x ∈ Ω 1 (3a) - d 2 T 2 dx 2 + µ 2 2 T 2 = 0 ∀x ∈ Ω 2 (3b) 
External boundary conditions:

-λ 1 dT 1 dx (-l 1 ) = -h 1 T 1 (-l 1 ) (3c) λ 2 dT 2 dx (l 2 ) = -h 2 T 2 (l 2 ) (3d)
Interfacial conditions:

T 1 (0) = T 2 (0) (3e) λ 1 dT 1 dx (0) = λ 2 dT 2 dx (0) (3f)
where

µ 2 j = ρj cj ∆tλj (j = 1, 2).
This coupled problem can be solved using a Schwarz algorithm. It defines the sequences (T

2 ) k∈N as solutions (in respectively H 1 (Ω 1 ) and H 1 (Ω 2 )) to the following problems (see for example [START_REF] Lions | On the schwarz alternating method. iii: a variant for nonoverlapping subdomains[END_REF]):

                   - d 2 T (k+1) 1 dx 2 + µ 2 1 T (k+1) 1 = 0 ∀x ∈ Ω 1 -λ 1 dT (k+1) 1 dx (-l 1 ) = -h 1 T (k+1) 1 (-l 1 ) λ 1 dT (k+1) 1 dx (0) = λ 2 dT (k) 2 dx (0) + ω 1 T (k) 2 (0) -T (k+1) 1 (0) (4a) (4b) (4c)                    - d 2 T (k+1) 2 dx 2 + µ 2 2 T (k+1) 2 = 0 ∀x ∈ Ω 2 λ 2 dT (k+1) 2 dx (l 2 ) = -h 2 T (k+1) 1 (l 2 ) -λ 2 dT (k+1) 2 dx (0) = -λ 1 dT (k) 1 dx (0) + ω 2 T (k+1) 1 (0) -T (k+1) 2 (0) (5a) (5b) (5c) 
where ω 1 and ω 2 are two strictly positive real numbers (the coupling coefficients). The algorithm is initialized with an arbitrary guess of the temperature fields given by T 0 1 and T 0 2 . In practice, the temperature field at time t n can be used as an initializing guess of the solution. One now has to determine whether this algorithm converges or not.

However, by applying the Lax-Milgram theorem [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF], it can be shown that in H 1 (]l 1 , l 2 [) problem (3) has a unique solution given by:

T 1 (x) = 0 ∀x ∈ Ω 1 (6a) T 2 (x) = 0 ∀x ∈ Ω 2 (6b)
Given the solution (6), the goal is now to determine for which conditions the sequences (T

(k) 1 ) k∈N and (T (k)
2 ) k∈N converge to 0. Before doing so, let us first introduce some notations. For i ∈ 1, 2, let

χ i = exp(-2µ i l i ) λiµi hi -1 λiµi hi + 1 (7) 
ξ i = λ i µ i (1 -χ i ) 1 + χ i (8) 
Note that as λ i , µ i , h i , l i > 0:

-1 < χ i < 1 i = 1, 2 (9) 
ξ i > 0 i = 1, 2 (10) 
The following proposition now provides a criterion to chose the coupling coefficients ω 1 and ω 2 .

Proposition 1. If:

(ω 1 -ξ 2 )(ω 2 -ξ 1 ) (ω 1 + ξ 1 )(ω 2 + ξ 2 ) < 1 ( 11 
)
and

T (0) 1
and

T (0) 2
are arbitrary initial guesses for the temperature field then:

lim k→∞ T (k) 1 = 0 lim k→∞ T (k) 2 = 0 (12) 
Proof. The solutions T

2 , for k ≥ 1, to the constant coefficient homogeneous ODEs (4a) and (5a) are:

T (k) 1 = A (k) 1 e µ1x + B (k) 1 e -µ1x (13) 
T (k) 2 = A (k) 2 e µ2x + B (k) 2 e -µ2x (14) 
Inserting [START_REF] Martin | Schwarz methods over the course of time[END_REF] into boundary condition (4b) yields:

B (k) 1 = χ 1 A (k) 1 (15) 
Moreover, inserting [START_REF] Martin | Optimized schwarz methods for a diffusion problem with discontinuous coefficient[END_REF] into boundary condition (5b) yields:

A (k) 2 = χ 2 B (k) 2 (16) 
First, if k = 1 then the coupling boundary conditions (4c) and (5c) give the relations:

λ 1 µ 1 A (1) 1 -B (1) 1 = λ 2 dT (0) 2 dx (0) + ω 1 T (0) 2 -ω 1 A (1) 1 + B (1) 1 (17) -λ 2 µ 2 A (1) 2 -B (1) 2 = -λ 1 dT (0) 1 dx (0) + ω 2 A (1) 1 + B (1) 1 -A (1) 2 + B (1) 2 (18) 
In combination with [START_REF] Martin | Optimized schwarz methods without overlap for the helmholtz equation[END_REF] and [START_REF] Martin | Overlapping schwarz waveform relaxation for the heat equation in n dimensions[END_REF], relations [START_REF] Gosselet | Non-overlapping domain decomposition methods in structural mechanics[END_REF] and [START_REF] Lions | On the schwarz alternating method. iii: a variant for nonoverlapping subdomains[END_REF] completely determine A

(1)

1 , B (1) 
1 , A

On the other hand for k ≥ 1, combining [START_REF] Martin | Schwarz methods over the course of time[END_REF] with the Fourier-Robin coupling boundary condition (4c), one obtains:

λ 1 µ 1 A (k+1) 1 -B (k+1) 1 = λ 2 µ 2 A (k) 2 -B (k) 2 + ω 1 A (k) 2 + B (k) 2 -A (k+1) 1 + B (k+1) 1 (19)
Using relations [START_REF] Martin | Optimized schwarz methods without overlap for the helmholtz equation[END_REF] and ( 16) the previous equation yields:

A (k+1) 1 = ω 1 -ξ 2 ω 1 1+χ1 1+χ2 + λ 1 µ 1 1-χ1 1+χ2 B (k) 2 (20)
Proceeding the same way with solution ( 14), the Fourier-Robin coupling boundary condition (5c) and relations [START_REF] Martin | Optimized schwarz methods without overlap for the helmholtz equation[END_REF] and ( 16) one also obtains:

B (k) 2 = ω 2 -ξ 1 ω 2 1+χ2 1+χ1 + λ 2 µ 2 1-χ2 1+χ1 A (k) 1 (21)
Combining the two previous relations [START_REF] Meng | A stable and accurate partitioned algorithm for conjugate heat transfer[END_REF] and ( 21) yields:

A (k+1) 1 = (ω 1 -ξ 2 )(ω 2 -ξ 1 ) (ω 1 + ξ 1 )(ω 2 + ξ 2 ) A (k) 1 (22) 
Hypothesis [START_REF] Errera | Optimal solutions of numerical interface conditions in fluid-structure thermal analysis[END_REF] implies that:

A (k+1) 1 A (k) 1 = B (k+1) 1 B (k) 1 < 1 (23) 
Therefore the sequences A also tend to zero as k tends to infinity. Therefore:

lim k→∞ T (k) 2 = 0 (25) 
An immediate corrolary of the previous proof is that if one choses ω 1 = ξ 2 and/or ω 2 = ξ 1 then the algorithm converges in one iteration. This hence provides optimal coupling coefficients for the linear unsteady case:

ω † 1 = ξ 2 (26a) ω † 2 = ξ 1 (26b)

The steady non-linear problem

The steady version of Eq. ( 1) is now studied. Contrary to the previous section, no simplifying assumptions are made about the boundary conditions and about the distribution of the thermal conductivity λ. T 1 and T 2 are supposed to be functions of the single variable x.

In each domain Ω i (i ∈ {1, 2}), Eq. (1a) can be rewritten:

∂ ∂x λ i (x) ∂T i ∂x (x) = 0 ∀x ∈ Ω i (27)
For the sake of clarity, the non-linear boundary conditions computed at the outer boundary conditions (Eqs. (1c) and (1d) are reminded:

       λ 1 (-l 1 ) ∂T 1 ∂x (-l 1 ) = f 1 (T 1 (-l 1 )) λ 2 (l 2 ) ∂T 2 ∂x (l 2 ) = -f 2 (T 2 (l 2 )) (28a) (28b) 
The same applies to the boundary conditions between the domains Ω 1 and Ω 2 (Eqs. (1e) and (1f):

   T 1 (0) = T 2 (0) λ 1 (0) ∂T 1 ∂x (0) = λ 2 (0) ∂T 2 ∂x (0) (29a) (29b) 
To begin with, a usefull result for the remainder of the paper is established:

Proposition 2.        f 1 (T 1 (-l 1 )) = λ 1 (-l 1 ) ∂T 1 ∂x (-l 1 ) = λ 1 (0) ∂T 1 ∂x (0) -f 2 (T 2 (l 2 )) = λ 2 (l 2 ) ∂T 2 ∂x (l 2 ) = λ 2 (0) ∂T 2 ∂x (0) (30a) (30b) 
Proof. The first equality in Eqs. (30a) and (30b) is derived from Eq. ( 28). Regarding the second equality,

λ i (x) ∂Ti ∂x (x) is constant ∀x ∈ Ω i (Eq. (27). Therefore, λ 1 (-l 1 ) ∂T1 ∂x (-l 1 ) = λ 1 (0) ∂T1 ∂x (0) and λ 2 (l 2 ) ∂T2 ∂x (l 2 ) = λ 2 (0) ∂T2 ∂x ( 
0) which justifies the second equality.

Using Eq. (29b), a direct consequence of Eqs. (30) from Prop. ( 2) is:

f 1 (T 1 (-l 1 )) = -f 2 (T 2 (l 2 )) (31) 
The following proposition is a key step in the demonstration process: T 1 (-l 1 ) and T 2 (l 2 ) are the solutions of the system made of the following non linear equations:

T 1 (-l 1 ) + (l 1 r 1 + l 2 r 2 ) f 1 (T 1 (-l 1 )) = T 2 (l 2 ) T 2 (l 2 ) + (l 1 r 1 + l 2 r 2 ) f 2 (T 2 (l 2 )) = T 1 (-l 1 ) (32a) (32b) 
where the thermal resistances r i (i ∈ {1, 2}) for the domain Ω i are defined by:

r i 1 l i Ωi dx λ i (x) (33) 
Proof. The solution of the problem ( 27) and ( 28) is obviously given by:

         T 1 (x) = T 1 (-l 1 ) + f 1 (T 1 (-l 1 )) Ω1(x) dx λ 1 (x ) ∀x ∈ Ω 1 T 2 (x) = T 2 (l 2 ) + f 2 (T 2 (l 2 )) Ω2(x) dx λ 2 (x ) ∀x ∈ Ω 2 (34a) (34b) 
where

Ω 1 (x) =] -l 1 ; x[ and Ω 2 (x) =]x; l 2 [. Note that Ω 1 (0) = Ω 1 and Ω 2 (0) = Ω 2 .
Therefore, from Eq. ( 34), the only unknowns to be computed to determine the fields T 1 and T 2 in the whole computational domain Ω 1 and Ω 2 respectively are T 1 (-l 1 ) and T 2 (l 2 ). If Eq. ( 34) is written for x = 0, it provides: 31), Eq. ( 32) is derived from Eq. ( 35).

T 1 (0) = T 1 (-l 1 ) + l 1 r 1 f 1 (T 1 (-l 1 )) T 2 (0) = T 2 (l 2 ) + l 2 r 2 f 2 (T 2 (l 2 )) (35a) (35b) i)=>ii) Since T 1 (0) = T 2 (0) (Eq. (29a) and -f 1 (T 1 (-l 1 )) = f 2 (T 2 (l 2 )) (Eq. (
ii)=>i) Using Eq. ( 31), Eq. ( 35) may be rewritten:

T 1 (0) -T 2 (0) = T 1 (-l 1 ) -T 2 (l 2 ) + (l 1 r 1 + l 2 r 2 ) f 1 (T 1 (-l 1 )) (36) 
Therefore, from Eq. ( 32), it provides T 1 (0) = T 2 (0). A direct consequence of Eqs. ( 30) and ( 31) is

λ 1 (0) ∂T1 ∂x (0) = λ 2 (0) ∂T2 ∂x (0).
The following Schwarz algorithm is proposed between the domains Ω 1 and Ω 2 to find a solution of the system made of Eqs. ( 27), ( 28) and (29). Let T two sequences of functions defined iteratively by Eq. ( 37) and (38).

                     ∂ ∂x λ1(x) ∂T (k+1) 1 ∂x (x) = 0 ∀x ∈ Ω1 λ1 (-l1) ∂T (k+1) 1 ∂x (-l1) = f1 T (k+1) 1 (-l1) λ1(0) ∂T (k+1) 1 ∂x (0) = λ2(0) ∂T (k) 2 ∂x (0) + ω1 T (k) 2 (0) -T (k+1) 1 (0) (37a) (37b) (37c)                      ∂ ∂x λ2(x) ∂T (k+1) 2 ∂x (x) = 0 ∀x ∈ Ω2 λ2 (l2) ∂T (k+1) 2 ∂x (l2) = -f2 T (k+1) 2 (l2) λ2(0) ∂T (k+1) 2 ∂x (0) = λ1(0) ∂T (k+1) 1 ∂x (0) -ω2 T (k+1) 1 (0) -T (k+1) 2 (0) (38a) (38b) (38c)
with ω 1 and ω 2 in R + .

Proposition 4. Given the following hypothesis:

           ω 1 = 1/ (r 2 l 2 ) ω 2 = 1/ (r 1 l 1 ) ∃κ 1 ∈ R + , ∀x ∈ R, f 1 (x) ≥ κ 1 ∃κ 2 ∈ R + , ∀x ∈ R, f 2 (x) ≥ κ 2 (39a) (39b) (39c) (39d)
the sequences T Proof. From Prop. (2) the previous algorithm can be rewritten:

                   ∂ ∂x λ1(x) ∂T (k+1) 1 ∂x (x) = 0 ∀x ∈ Ω1 λ1 (-l1) ∂T (k+1) 1 ∂x (-l1) = f1 T (k+1) 1 (-l1) f1 T (k+1) 1 (-l1) = -f2 T (k) 2 (l2) + ω1 T (k) 2 (0) -T (k+1) 1 (0) (40a) (40b) (40c)                    ∂ ∂x λ2(x) ∂T (k+1) 2 ∂x (x) = 0 ∀x ∈ Ω2 λ2 (l2) ∂T (k+1) 2 ∂x (l2) = -f2 T (k+1) 2 (l2) -f2 T (k+1) 2 (l2) = f1 T (k+1) 1 (-l1) -ω2 T (k+1) 1 (0) -T (k+1) 2 (0) (41a) (41b) (41c)
We focus now on the sequences

T (k) 1 (-l 1 ) and T (k)
2 (l 2 ). Using Eq. ( 35), the equations (40c) and (41c) may be written:

               f 1 T (k+1) 1 (-l 1 ) = -f 2 T (k) 2 (l 2 ) + ω 1 T (k) 2 (l 2 ) + l 2 r 2 f 2 T (k) 2 (l 2 ) -T (k+1) 1 (-l 1 ) -l 1 r 1 f 1 T (k+1) 1 (-l 1 ) -f 2 T (k+1) 2 (l 2 ) = f 1 T (k+1) 1 (-l 1 )
ω 2 T (k+1) 1

(-l 1 ) + l 1 r 1 f 1 T (k+1) 1 (-l 1 ) -T (k+1) 2 (l 2 ) -l 2 r 2 f 2 T (k+1) 2 (l 2 )
(42) which may be rewritten using hypothesis (39a) and (39b):

     G 1 T (k+1) 1 (-l 1 ) = T (k) 2 (l 2 ) + (l 2 r 2 -1/ω 1 ) f 2 T (k) 2 (l 2 ) G 2 T (k+1) 2 (l 2 ) = T (k+1) 1 (-l 1 ) + (l 1 r 1 -1/ω 2 ) f 1 T (k+1) 1 (-l 1 ) (43a) (43b)
where G 1 and G 2 are defined as:

         G 1 (x) x + l 1 r 1 + 1 ω 1 f 1 (x) G 2 (x) x + l 2 r 2 + 1 ω 2 f 2 (x) (44a) (44b) 
From hypothesis (39c) and (39d), it can be written:

         G 1 (x) > 1 + l 1 r 1 + 1 ω 1 κ 1 ∀x ∈ R G 2 (x) > 1 + l 2 r 2 + 1 ω 2 κ 2 ∀x ∈ R (45a) (45b) 
which means that G 1 and G 2 are invertible functions. Equation (45) allows to limit the derivatives of the inverse functions

g 1 = G -1 1 and g 2 = G -1 2 :          0 < g 1 (x) ≤ 1 1 + (l 1 r 1 + 1/ω 1 ) κ 1 < 1 ∀x ∈ R 0 < g 2 (x) ≤ 1 1 + (l 2 r 2 + 1/ω 2 ) κ 2 < 1 ∀x ∈ R (46a) (46b) 
Equation ( 43) may be rewritten:

     T (k+1) 1 (-l 1 ) = g 1 • p 1 T (k) 2 (l 2 ) T (k+1) 2 (l 2 ) = g 2 • p 2 T (k+1) 1 (-l 1 ) (47a) (47b)
where the functions p 1 and p 2 are given by:

p 1 (x) x + (l 2 r 2 -1/ω 1 ) f 2 (x) ∀x p 2 (x) x + (l 1 r 1 -1/ω 2 ) f 1 (x) ∀x (48a) (48b) 
Therefore Eq. ( 47) can be written:

T (k+1) 2 (l 2 ) = g 2 • p 2 • g 1 • p 1 T (k) 2 (l 2 ) (49) 
From hypothesis (39a) and (39b),the functions p 1 and p 2 are the function identity and

T (k+1) 2 (l 2 ) = g 2 • g 1 T (k) 2 (l 2 ) . Let A ∈ R + * and (x, y) ∈ [-A; A].
According to the mean value equality on [-A; A]:

|g 2 • g 1 (x) -g 2 • g 1 (y)| ≤ sup z∈[-A;A] |(g 2 • g 1 ) (z)| • |x -y| (50) 
where sup

z∈[-A;A] |(g 2 • g 1 ) (z)| < sup z∈R + |(g 2 • g 1 ) (z)| < 1 from Eq. ( 46 
). Therefore, the function g 2 • g 1 is a contractant function, has a single fixed point T 1 (-l 1 ) and

T (k) 1 (-l 1 ) -→ k→+∞ T 1 (-l 1 )
. By analogous reasoning, it can be shown that g 1 • g 2 is a contractant function, has a single fixed point T 2 (l 2 ) and

T (k) 2 (l 2 ) -→ k→+∞ T 2 (l 2
). After a passage to the limit in Eq. ( 43), T 1 (-l 1 ) and T 2 (l 2 ) are the solution of Eqs.

(32). Therefore, from Prop. (3), the limit functions T 1 and T 2 of the sequences T An optimized version of the presented Schwarz algorithm is now presented. To do this, another definition for the coefficients ω 1 and ω 2 is proposed so as to define a "more contractant" function

g 2 • p 2 • g 1 • p 1 (Eq. ( 49 
)). One way to proceed is to cancel the derivative p 1 T (k) 2 (l 2 ) :

p 1 T (k) 2 (l 2 ) = 0 ⇐⇒ ω (k+1) 1 † † = l 2 r 2 + 1 f 2 (x (k) 2 ) -1 (51) 
ω 1 changes over iterations k. Similarly, it is shown that:

ω (k+1) 2 † † = l 1 r 1 + 1 f 1 (x (k+1) 1 ) -1 (52) 
Note that chosing the coefficients ω

(k+1) 1 † † and ω (k+1) 2 † †
allows to increase the convergence speed.

However, the convergence of the Schwarz algorithm is not ensured since the condition (32) is not verified.

Unsteady case with general boundary conditions

The two previous sections dealt with:

• the coupling between two unsteady problems with linear boundary conditions and constant physical properties in each domain.

• the coupling between two steady problems with generic boundary conditions and non constant physical properties in each domain.

The goal is now to combine the results of these two previous sections to construct a coupling algorithm for the generic unsteady problem (1). To do so, the coefficients (26a) and (26b) are extended using mean values of physical properties over each domain. As in section (1), the starting is the time discrete heat equation:

Semi-discrete heat equation in each domain:

L 1 T n+1 1 = µ 2 1 T n 1 ∀x ∈ Ω 1 (53a) L 2 T n+1 2 = µ 2 2 T n 2 ∀x ∈ Ω 2 (53b) 
External boundary conditions:

-λ 1 (-l 1 ) dT n+1 1 dx (-l 1 ) = -f 1 T n+1 1 (-l 1 ) (53c) 
λ 2 (l 2 ) dT n+1 2 dx (l 2 ) = -f 2 T n+1 2 (l 2 ) (53d) 
Interfacial conditions:

T n+1 1 (0) = T n+1 2 (0) (53e) λ 1 (0) dT n+1 1 dx (0) = λ 2 (0) dT n+1 2 dx (0) (53f)
where µ j (x) = ρj (x)cj (x) ∆tλj (x) is now not necessarily uniform and the operator L j is defined as:

L j T = - 1 λ j d dx λ j dT dx + µ 2 j T (54) 
In addition, the mean values of the parameters are introduced:

ρ j c j = 1 l j Ωj ρ j c j dx (55a) r j = 1 l j Ωj dx λ j (55b) µ j = ρ j c j r j ∆t (55c) 
The Schwarz coupling algorithm to solve this problem is given by:

               L 1 T (k+1) 1 = µ 2 1 T n 1 ∀x ∈ ]-l 1 , 0[ -λ 1 dT (k+1) 1 dx (-l 1 ) = -f 1 T (k+1) 1 (-l 1 ) λ 1 dT (k+1) 1 dx (0) = λ 2 dT (k) 2 dx (0) + ω 1 T (k) 2 (0) -T (k+1) 1 (0) (56a) (56b) (56c)                L 2 T (k+1) 2 = µ 2 2 T n 2 ∀x ∈ ]0, l 2 [ λ 2 dT (k+1) 2 dx (l 2 ) = -f 2 T (k+1) 1 (l 2 ) -λ 2 dT (k+1) 2 dx (0) = -λ 1 dT (k) 1 dx (0) + ω 2 T (k+1) 1 (0) -T (k+1) 2 (0) (57a) (57b) (57c) 
In order to define the coupling coefficients at iteration k+1, the idea is to linearise the boundary conditions (56b) and (57b) around the solution at iteration k. For example, noting ∆ T,k = T (k+1) 1

(-l 1 ) -T (k) 1 (-l 1 ),
the right hand side of (56b) may be written:

-f 1 T (k+1) 1 (-l 1 ) = -f 1 T (k) 1 (-l 1 ) + ∆ T,k f 1 T (k) 1 (-l 1 ) + O(∆ 2 T,k ) (58) 
By analogy with section 1 the coefficients η (k+1) j

, χ j and ω (k+1) j are defined by:

             η (k+1) 1 = µ 1 r 1 f 1 T (k) 1 (-l 1 ) η (k+1) 2 = µ 2 r 2 f 2 T (k) 2 (l 2 ) (59a) (59b) 
χ j = exp(-2 µ j l j ) η (k+1) j -1 η (k+1) j + 1 (60) 
             ω (k+1) 1 = µ 2 r 2 1 -χ (k+1) 2 1 + χ (k+1) 2 ω (k+1) 2 = µ 1 r 1 1 -χ (k+1) 1 1 + χ (k+1) 1 (61a) (61b) 
As stated previously, this definition is made by analogy with the unsteady linear problem and there is no apriori guarantee that the algorithm will converge with this choice of coupling coefficients. However, as will be shown in the following section, the algorithm performs well in generic conditions such as those encountered in icing applications. Moreover, one has the following interesting property: Proposition 5. In the limit ∆t → ∞, the coupling coefficients (61) are given by ( 51) and (52), that is to say the optimized values derived for the steady state case.

Proof. An asymptotic analysis is required in order to obtain the behaviour of the coupling coefficients when ∆t → ∞. First note that lim ∆t→∞ µ j = 0 (j = 1, 2). Also, the coupling coefficients are of the form:

ω = X r 1 -e -2lX aX-1 aX+1 1 + e -2lX aX-1 aX+1 (62) 
with the following generic notations:

• X: µ 1 or µ 2 • l: l 1 or l 2 • r: r 1 or r 2 • a: r 1 f 1 T (k) 1 (-l 1 ) -1 or r 2 f 2 T (k) 2 (l 2 ) -1
Given the following Taylor expansions:

aX -1 aX + 1 = -1 + 2aX + O(X 2 ) (63) exp(-2lX) = 1 -2lX + O(X 2 ) ( 64 
)
one obtains:

exp(-2lX) aX -1 aX + 1 = -1 + 2(a + l)X + O(X 2 ) (65) 
Hence:

1 -exp(-2lX) aX -1 aX + 1 = 2 -2(a + l)X + O(X 2 ) (66a) 1 + exp(-2lX) aX -1 aX + 1 = 2(a + l)X + O(X 2 ) (66b) 
Therefore:

ω = X r 1 -e -2lX aX-1 aX+1 1 + e -2lX aX-1 aX+1 (67a) = X r 2 -2(a + l)X + O(X 2 ) 2(a + l)X + O(X 2 ) (67b) = 2X + O(X 2 ) 2 (ra + rl) X + O(X 2 ) (67c)
Therefore, in the limit ∆t → ∞, hence X → 0, the coupling coefficients reduce to:

ω 1 =   l 2 r 2 + 1 f 2 T (k) 2 (l 2 )   -1 (68a 
)

ω 2 =   l 1 r 1 + 1 f 1 T (k) 1 (-l 1 )   -1 (68b) 
where the values of a, l and r have been replace by their respective counterparts. Therefore, when ∆t → ∞, the coupling coefficients reduce to the steady-state values given by (51) and (52).

Numerical examples

In this section, the algorithm is illustrated by considering two test cases. Each test case consists in solving problem (1), illustrated in Figure 1, with a specific set of material parameters and boundary conditions.

The numerical implementation is based on an implicit finite difference scheme using classical Euler time discretization and second order spatial finite difference scheme for the diffusion term.

Linear case

Consider the problem as illustrated in Figure 2. A block of a given material of length 2l = 0.02m is initially at T (x, 0) T i = 300K. Here the block is homogeneous and split only for the purpose of the test case into two subdomains of length l 1 = 0.005m and l 2 = 0.015m. The physical properties are uniform and given in Table 1. The block is subjected to convective heat transfer on both boundaries. The boundary heat transfer characteristics are given in Table 1. In this case the functions f 1 and f 2 are given by: This problem has an analytical solution given by [START_REF] James | Conduction heat transfer solutions[END_REF][START_REF] Luikov | Analytical heat diffusion theory[END_REF]:

f 1 (T 1 (-l)) = h tc (T 1 (-l) -T r ) (69a) f 2 (T 2 (l)) = h tc (T 2 (l) -T r ) (69b) ρ (kg.m -3 ) c p (J.kg -1 .K -1 ) λ (W.m -1 .K -1 ) h tc (W.m -2 .K -1 ) T r (K
T -T r T i -T r = ∞ n=1 A n cos(k n x l )e -k 2 n Fo (70) 
where

F o = αt l 2 (71a) α = λ ρc p (71b) 
and

A n = sin(k n ) k n + sin(k n ) cos(k n ) (72)
and the k n 's are solutions of the equation:

k n tan(k n ) = B i (73)
where B i is the Biot number defined by: B i = htcl λ .

In order to test the performance of the algorithm, the domain is split at x = -0.005m. The solution can then be obtained by solving the heat equation on each sub-domain and using the unsteady coupling procedure previously defined (56 and 57). The computation is run with a time step of 0.1s and optimized coupling coefficients (given by equations (61a) and (61b)). At every time step, the coupling procedure is performed until the relative temperature difference and relative difference of heat flux at the interface both have values below 10 -6 .

As shown in Figure 3, the numerical solution is in excellent agreement with the analytical one (given by equation ( 70)). The convergence criterion was met within two coupling iterations over the whole simulation. In addition, one may also evaluate the numerical convergence properties of the algorithm over one time step. Figure 4 shows the relative differences in temperature and heat flux at the interface, at each iteration of the Schwarz algorithm and at t = 1s. In order to perform a comparative study the simulation is also run with non optimal coefficients. The coupling coefficients given by (39a) and (39b) are chosen as the nonoptimal ones. When using optimal coefficients, the rate of convergence is much higher. After two iterations the differences is well below the acceptable tolerance for practical applications.This is coherent with the fact that in the semi-discrete case, these optimal coefficients guarantee convergence in one iteration (as discussed at the end of section 1). On the other hand, the use of non-optimal coupling coefficients induces a lagrer amount of iterations to satisfy the convergence criterion. 

Non-linear case

The case considered in this section, illustrated by Figure 1, consists of two different materials in contact each with uniform physical properties given in Table 2. One of them is only subjected to convective heat transfer while the other is also subject to evaporation. In this case, the function f 1 and f 2 are given by:

f 1 (T 1 (-l 1 )) = ṁev (T 1 (-l 1 )) (c p,1 T 1 (-l 1 ) + L v (T 1 (-l 1 ))) + h tc,1 (T 1 (-l 1 ) -T r,1 ) (74a) f 2 (T 2 (l 2 )) = h tc,2 (T 2 (l 2 ) -T r,2 ) ( 74b 
)
where ṁev is the evaporation rate and L v is the latent heat of vaporisation (see Appendix A for further details. For this case T ∞ = 280K, p ∞ = 98000P a and p e = 98000P a). Note that the evaporation rate is a non linear function of temperature. In this case, f 1 is non-linear. Figure 5 shows the numerical solution at t = 1s, t = 5s and t = 10s.

Material ρ i (kg.m -3 ) c p,i (J.kg -1 .K -1 ) λ i (W.m -1 .K -1 ) h tc,i (W.m -2 .K -1 ) T r,i ( 
Due to the evaporative cooling, the temperature at the left boundary decreases rapidly. At every time step, the coupling procedure is performed until the relative temperature difference and relative difference of heat flux at the interface both have values below 10 -6 . The convergence criterion was met within two coupling iterations over the whole simulation.

-0.001 0.000 0.001 0.002 0.003 0.004 0.005 x (m) 294 295 296 297 298 299 300 In order to evaluate the convergence properties in this case, the procedure of the previous section is repeated (for t = 5s). The results are shown in Figure 6. As in the previous case, the optimized set of coefficients yields a much higher rate of convergence. Note that in this case, the theoretical background regarding the convergence properties is much weaker than in the linear case. Therefore, this test case also serves as a numerical investigation of the convergence properties of the methodology in a general setting. 6: Relative differences in temperature and flux and the interface using optimal and non-optimal coupling coefficients (at t = 5s). The superscript ci means that the values are taken at the coupling interface.

T (K) Subdomain 1 -t = 1s Subdomain 2 -t = 1s Subdomain 1 -t = 5s Subdomain 2 -t = 5s Subdomain 1 -t = 10s Subdomain 2 -t = 10s

Application to Electrothermal De-Icing

An application to the phenomenon of aircraft icing and ice protection is now considered. Icing is due to the presence in clouds of supercooled water droplets. Upon impacting an aircrafts surface, the metastable supercooled state of the droplets is broken. At that point, the droplets undergo a liquid-solid phase change, leading to ice bluid-up on the impinged surface. This phenomenon has many undesirable consequences and manufacturers must therefore equip their aircraft with ice protection systems. This case deals with the simulation of electrothermal de-icing. First, let's recall the typical operating of an electro-thermal de-icing system. Consider the case where an airfoil has to be protected from the build up of ice on its surface. To do so, one may place several heater mats within the thickness of the airfoil and activate them according to a given power cycle. During this power cycle ice may build up or melt and liquid water may run downstream under the effect of the aerodynamic forces. This may lead to several possible states as illustrated in Figure 7b [START_REF] Chauvin | An implicit time marching galerkin method for the simulation of icing phenomena with a triple layer model[END_REF].

The simulation of the thermal behaviour of an electro-thermal de-icing system therefore requires two solvers. One that solves the heat conduction problem in the skin of the airfoil, composed of several layers of materials and electrical heaters. Another that solves the unsteady phase change problems of ice accretion and melting. In this work, a finite volume solver called ETIPS2D is used to simulate the electro-thermal system (see [START_REF] Bennani | Two dimensional model of an electro-thermal ice protection system[END_REF] for a description). Concerning the unsteady ice accretion and melting problem, an unsteady mixed finite volume-Galerkin solver called MiLeS2D is used (see [START_REF] Chauvin | An implicit time marching galerkin method for the simulation of icing phenomena with a triple layer model[END_REF] for a detailled description). A global illustration is shown in Figure 7b.

In order to perform the simulation of the electro-thermal de-icer in icing conditions, the two previously mentionned solvers are coupled using the Schwarz method presented in section 3. Here the simulation is two dimensional and both meshes are coincident. The coupling method is extended by performing a locally one dimensional coupling. More precisely, for each interfacial edge only the normal cells to that edge are used to compute the coupling coefficients (see Figure 7a).

De-icer mesh

Icing mesh

Coupling at the interfacial edge only takes into account information from the cells normal to that edge (dashed line) (b) Global illustration of the case. Several states are possible for the icing process leading to different mass and energy transfer terms (see [START_REF] Chauvin | An implicit time marching galerkin method for the simulation of icing phenomena with a triple layer model[END_REF] for details) Before moving to the test case, note that MiLeS2D has a complex algorithmic structure, the explicit tracking of phase change fronts requiring to take into account several possible states and possible shifts between these states. The six possible states, illustrated in Figure 7b, are defined as:

1. Full evaporative: the whole mass of impacting droplets is evaporated (for example, due to heat provided by an ice protection system).

2. Running wet: only a liquid water film is present. Under the action of the aerodynamic forces, the liquid film runs back along the surface.

3. Rime accretion: the droplets freeze almost instantaneously leading to ice build up with no liquid water. 4. Glaze accretion: the droplets freeze, but at a slower rate than in the rime case. Therefore, a running liquid water film is present on top of the ice layer.

5. Rime accretion with melting at the surface (due to heat provided by an ice protection system for example).

6. Glaze accretion with melting at the surface (due to heat provided by an ice protection system for example). So as to illustrate the complexity of the algorithm, suppose for example that an ice layer is present (rime ice state). If the heater mat is activated, this will lead to the melting of the ice. This means that at that point in time, the state must be switched from rime ice to rime ice with static film. More precisely, at each time step, the algorithm will first start by assuming the same state as in the previous time step. If this yields a result compatible with the current state, the solution is conserved and the algorithm proceeds. However, if an incompatibility is detected (for example the temperature of the ice is greater than the melting temperature), the algorithm switches to another mode. As will be discussed later, this can lead to jumps in the Schwarz coupling procedure. Indeed, switching from one state to another changes the flux at the interface and hence directly impacts the coupling algorithm. Figure 8 illustrates the general architecture for the simulation. Two variants of this configuration are simulated. The differences are in the heater mat power cycles.

They are therefore refered to as "activation cycle 1" and "activation cycle 2". In both cases, during the first five seconds of simulation the mat PS is activated with no droplet impact. The cases are symmetric with respect to the x-axis and therefore the results are presented only at the upper part of the airfoil.

Activation cycle 1

This activation power cycle (t = 0s corresponds to the beginning of the cycle and the whole cycle lasts for 80s) is given by:

• PS activated at t = 0s with a power density of 50kW.m -2 . Activation lasts 80s.

• HM1 activated at t = 40s with a power density of 25kW.m -2 . Activation lasts 40s.

• HM2 activated at t = 40s with a power density of 25kW.m -2 . Activation lasts 40s.

Figure 10 shows the resulting temperature field at t = 5s, just before droplets start to impact. The region where the heater mat's power is applied is clearly visible. At t = 5s, droplets start to impact the airfoil and ice starts to build-up beyond the region heated by PS.

This can be observed in Figure 11 which shows the temperature field in the airfoil, the ice shape and the dynamic liquid film (height scaled by a factor 500 for visualisation purposes) at t = 40s. At t = 40s the heaters HM1 and HM2 are activated. The heat melts the ice layer above those mats.

Therefore, a static film layer is created underneath the ice, as shown in Figure 12. The activation of HM1 and HM2 eventually melts all the ice layer in their respective heated regions. At the end of the simulation (t = 80s) water has now runback and frozen beyond the protected region (see Figure 13). As stated earlier, the ice accretion model is complex and non-linear. Moreover, the heater mats are taken into account thanks to a source term which was not accounted for in the theoretical derivation of the Schwarz coupling method. There is no theoretical guarantee of the convergence of the coupling procedure.

Nevertheless, the situation is close enough to those of sections 1 and 2 for the method to exhibit globally good convergence properties in practice. To illustrate this point let's consider two extreme convergence cases.

Figure 14 shows the convergence curve for the absolute difference in temperature and relative difference in flux at the interface at t = 39.1s. At that time step, the coupling procedure converges rapidly. The values fall below the given tolerance of 0.001 after five iterations. On the other hand, certain time steps may require more iterations to converge. As discussed previously (see Fig. 8), depending on the thermal state of the system the ice accretion solver may be required to switch modes in order to obtain the solution at a given time step. As this changes the fluxes at the coupling interface, this can induce convergence issues as shown in Figure 15. Nevertheless, convergence is still reached. One may ask which behaviour is most frequently observed in practice. Figure 16 is a histogram representing, over the whole simulation, the number of times a given amount of Schwarz iterations was required for convergence. The average number of Schwarz iterations was 17. Moreover, Figure 16 shows that the most frequent behaviour is a number of Schwarz iterations less than 20. Hence, the cases where convergence is highly slowed down by mode switching remain reasonable. 

Activation cycle 2

In second activation power cycle HM1 and HM2 are deactivated then reactived during the cycle. The cycle is given by:

• PS activated at t = 0s with a power density of 50kW.m -2 . Activation lasts 80s.

• HM1 activated from t = 40s to t = 50s and reactivated from t = 60s to t = 70s with a power density of 25kW.m -2 .

• HM2 activated from t = 40s to t = 50s and reactivated from t = 60s to t = 70s with a power density of 25kW.m -2 .

Up to t = 50s this case is identical to the previous one. At t = 50s heaters HM1 and HM2 are deactivated.

Ice is able to continue to build up while the skin temperature decreases. Figure 18 shows that at t = 60s, just before the reactivation of HM1 and HM2, a small layer of ice is still present. This layer of ice is progressively melted by the heat provided by HM1 and HM2 after their reactivation.

Figure 19 shows the result at t = 72s. Even though HM1 and HM2 are now deactivated again, the thin ice layer continues to melt due to thermal inertia. At t = 80s the area where the heater mats are located is completely free of ice. However, the running back liquid film generates ice build up beyond the protected area. Finally, Figure 22 shows the number of coupling iterations required to reach the convergence criterion at every time step. The spikes reflect the fact that for some time steps the convergence of the coupling procedure is slow. Nevertheless, in most cases, 25 iterations are sufficient. 

Conclusion

This paper focuses on a Schwarz coupling methodology. The goal was to obtain coupling coefficients which could be used to solve coupled heat transfer problems in generic settings. To do so, two cases where theoretical derivations are possible were presented: the unsteady case with linear boundary conditions and the steady case with general boundary conditions. The coefficients obtained with these derivations guarantee the convergence of the algorithm. Moreover, the theoretical derivation also provided the framework to obtain optimized coupling coefficients. In order to treat unsteady cases with generic boundary conditions, the coefficients obtained for linear boundary conditions are extended using a linearisation of the boundary conditions.

Two numerical test cases are then performed in order to assess the effective convergence properties of the coupling algorithm. The results for the first test case showed an excellent agreement with the analytical solution. Moreover, for both test cases, the algorithm was shown to efficiently converge. In addition, the numerical investigation also showed that using the optimal set of coefficients yielded a much higher rate of convergence.

Finally, an electro-thermal de-icing case was simulated using this method to couple two unsteady solvers.

Although in some occurences convergence was slowed down by the mode switching of the ice accretion solver, the method performed well. Some improvements, such as accounting for the heater mat source terms in the derivation of the coupling coefficients, are possible and are part of ongoing work.

The perspectives of this work is to be able to fully simulate the behaviour of an electrothermal ice protection system. One of the last elements to be added is the modelling, simulation and understanding of the ice shedding phenomenon. This requires a mechanical model of the ice blocks and poses the problem of characterizing the physical properties of atmospheric ice. Some work in this direction has already been performed [START_REF] Bennani | Numerical simulation and modeling of ice shedding: Process initiation[END_REF][START_REF] Bennani | A mixed adhesion-brittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]. The next step is to integrate this model into the present coupling procedure.
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 2 Material properties and heat transfer characteristics for the second test case (i = 1, 2)
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Description of the case

This illustrative test case consists of a de-iced NACA0012 airfoil in icing conditions. The droplets start impacting after 5s of activation of the system. The aerodynamic and icing conditions are given in Table 3. The airfoil is made out of a multi-layered material whose properties are provided in Table 4. The layers are numbered from outer to inner as shown in Figure 9.

Layer no c p (J.kg -1 .K -1 ) ρ (kg.m -3 ) λ (W.m -1 .K Heater mats are embedded into the stack of materials between layers 4 and 5. They are shown in Figure 9 and are labelled PS, HM1 and HM2. The heater mat located at the leading edge is comonly refered to as the parting strip (hence the label PS). The locations of the heater mats (in terms of curvilinear abscissa, where s = 0 at the leading edge) are given by:

• PS located between s 1 = -0.015625 m and s 2 = 0.015625 m.

• HM1 located between s 1 = -0.048875 m and s 2 = -0.017625 m.

• HM2 located between s 1 = 0.017625 m and s 2 = 0.048875 m.

Appendix A. -Evaporative boundary condition

In sections 4.2 and 5 an evaporative boundary condition is used. It involves two functions ṁev (T ) and L v (T ) representing respectively the rate of evaporation and the latent heat of vaporization which are defined as:

where

3)

The Lewis number is defines as the ratio of the Schmidt and Prandtl numbers.

where the Schmidt number is set to S c = 0.67 and the Prandtl number to P r = 0.7.

The vapour mass fraction is linked to the mole fraction and molar masses using:

and the mole fraction is given by:

Finally, the vapour pressure is given by Sonntag's law: