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Abstract

This paper presents methodological investigations performed in research activi-
ties in the field of Multi-disciplinary Design and Optimization (MDO) for overall
aircraft design in the EU funded research project AGILE (2015-2018). In the
AGILE project a team of 19 industrial, research and academic partners from
Europe, Canada and Russia are working together to develop the next generation
of MDO environment that targets significant reductions in aircraft development
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costs and time to market, leading to cheaper and greener aircraft. The paper in-
troduces the AGILE project structure and describes the achievements of the 1st

year that led to a reference distributed MDO system. A focus is then made on
different novel optimization techniques studied during the 2nd year, all aiming
at easing the optimization of complex workflows that are characterized by a high
number of discipline interdependencies and a large number of design variables
in the context of multi-level processes and multi-partner collaborative engineer-
ing projects. Three optimization strategies are introduced and validated for a
conventional aircraft. First, a multi-objective technique based on Nash Games
and Genetic Algorithm is used on a wing design problem. Then a zoom is made
on the nacelle design where a surrogate-based optimizer is used to solve a mono-
objective problem. Finally a robust approach is adopted to study the effects of
uncertainty in parameters on the nacelle design process. These new capabilities
have been integrated in the AGILE collaborative framework that in the future
will be used to study and optimize novel unconventional aircraft configurations.

Keywords: MDO, Optimization, Aircraft design, mono and multi-objective
optimization, robust design
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Nomenclature

ADOE = Adaptive Design of Experiments
AGILE = Aircraft 3rd Generation MDO for Innovative Collaboration

of Heterogeneous Teams of Experts
BPR = Bypass Ratio
CFD = Computational Fluid Dynamics
CPACS = Common Parametric Aircraft Configuration Schema
DC = Design Campaign
DOE = Design Of Experiments
ED = Engine Deck
EGO = Efficient Global Optimization
FORM = First Order Reliability Method
FOSM = First Order Second Moment
GA = Genetic Algorithm
IT = Information Technology
MDA = Multi-Disciplinary Analysis
MDO = Multidisciplinary Design Optimization
MUSCL = Monotonic Upwind Scheme for Conservation Laws
MTOM = Maximum Take-Off Mass
NGA = Nash Genetic Algorithm
OBS = On-Board-Systems
pdf = probability density function
PIDO = Process Integration and Design Optimization
RANS = Reynolds-Averaged NavierStokes
RCE = Remote Component Environment
RSM = Response Surface Model
SEGOMOE = Super Efficient Global Optimization

based on Mixture Of Experts
SM = Surrogate Model
SORM = Second Order Reliability Method
SOTA = State Of The Art
TLAR = Top Level Aircraft Requirements
TVD = Total Variation Diminishing
UQ = Uncertainty Quantification
SORM = Second Order Reliability Method
SOTA = State Of The Art
TLAR = Top Level Aircraft Requirements
TVD = Total Variation Diminishing
UQ = Uncertainty Quantification

1. Introduction

Over the past century, the aircraft design and development process has5

evolved from pioneering - one or few people building a simple and small
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aircraft in a shed - into a highly complex but well-established engineering pro-
cess. Today, aircraft are highly advanced technological and competitive prod-
ucts that are developed by multidisciplinary teams of experts. To keep up
with the growing demand for more complex and innovative products in shorter10

time and in higher volumes, the aircraft industry digitizes rapidly. Innova-
tive design approaches based on digital modelling, simulation and optimization
technologies are more and more used to take major design decisions as early
as possible in order to develop state-of-the-art aircraft quicker and more cost
efficient. In addition, the exploration of unconventional aircraft configurations15

that might include disruptive technologies is a major challenge, and will not
be achieved without the integration on system-level of physics-based simulation
and optimization using the appropriate level of fidelity. With the large amount
of computational power that is available today, there remains the challenge to
master the complexity of the multidisciplinary design workflow and all its cor-20

responding variables. High-dimensional data sets resulting from various design
competences need to be handled in an efficient way.

Over the last three decades, there has been a growing interest in improving
the efficiency of the aircraft design process through the use of multidisciplinary
design and optimization (MDO) numerical tools and techniques. In the early25

2000’s very successful MDO applications were made for a subset of disciplines,
but it was at that time already acknowledged that the ultimate value of MDO
would be in its ability to optimize the aircraft as a system [1]. Today the
exploitation of the full potential of MDO for the design and optimization of
a complete aircraft is still an open challenge mainly due to the technical and30

management issues encountered during the set up and the operations of such
a complex optimization work flow. More recently a novel methodology that
encapsulates both knowledge and skills was identified [2] to be able to manage
the increasing design complexities. The normalization towards modeling knowl-
edge was mentioned [3] as the next required step for the evolution of complex35

aeronautical systems. One of the major obstacles in the current generation of
MDO systems is the effort needed to set up complex collaborative frameworks,
and between 60 to 80 % of the project time is spend in this phase [4].

Since 2015 the EU funded Horizon2020 AGILE project [5] is developing the
next generation of aircraft Multidisciplinary Design and Optimization environ-40

ment that focuses on reducing the set up time for multi-level and multi-partner
collaborative workflows, with the aim to reduce the aircraft development time
and costs.

The paper is organized as follows. Section 2 provides an overview of the
EU H2020 AGILE project and presents the state-of-the-art distributed MDO45

system that has been formulated in the first year of the project as well as the
main investigations that were performed in the second year. Section 3 discusses
improvements made to different optimization strategies aiming at handling the
increased complexity of workflows characterized by a large number of design
variables and a high degree of multidisciplinary dependency. Section 4 describes50

the scenarios on which three optimization techniques are applied focusing on
wing design and nacelle design activities and a detailed analysis of the results
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obtained for both problems is presented.

2. AGILE Overview

AGILE [5] (Aircraft 3rd Generation MDO for Innovative Collaboration of55

Heterogeneous Teams of Experts) is an EU funded H2020 project coordinated
by the German Aerospace Center (DLR). The AGILE project is developing
the next generation of aircraft Multidisciplinary Design and Optimization en-
vironment, which targets significant reductions in aircraft development costs
and time to market, leading to cheaper and greener aircraft solutions [4]. The60

evolution of MDO environments can be classified in three generations, evolving
from the 1st generation, a monolithic environment still being used today (e.g.
for dedicated high-fidelity applications), to the 3rd generation, consisting of a
system of distributed competences across different organizations that might be
located in different countries. The developed AGILE Paradigm [6] will enable65

the 3rd generation of multidisciplinary design and optimization through efficient
collaboration among international multi-site aircraft design teams. The AGILE
project is structured into three sequential phases, carrying out design campaigns
with increasing levels of complexity, addressing different aircraft configurations
and dedicated MDO techniques. The overall structure is shown in Fig. 1. In the

Figure 1: AGILE project structure.

70

1st phase (Initialization), a reference aircraft configuration is optimized using
state-of-the-art techniques. The reference MDO problem is then used to inves-
tigate and benchmark novel optimization techniques, first individually and later
in smart combinations (MDO test bench). Finally, the most successful MDO
strategies are applied to significantly different aircraft configurations (Novel75

Configurations). The three sequential work packages are embedded within two
enabling layers. The first enabling layer (Collaboration techniques) targets the
development of the technologies enabling distributed collaboration, comprising
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the processes of collaboration between the specialists involved, collaborative pre-
and post-processing, visualization and the enhancement of the existing frame-80

work. The second enabling layer (Knowledge enabled technologies) provides the
information technologies that support the management and the formalization of
knowledge within an MDO process. The parallel activities are clustered in three
phases (or periods) called Design Campaign (DC), each lasting one year. Each
of the sequential design campaigns focuses on the solution of the use cases that85

are setup to develop specific collaborative and knowledge based technologies.
These use cases progress from a conventional regional aircraft optimized using
the state-of-the-art MDO to several novel configurations investigated with the
3rd MDO generation system.

2.1. Design Campaign 190

The DC-1 is the first use case in the project that has been formulated and
collaboratively solved by the AGILE team. This case consisted in the design
and optimization of a large regional jet, with Entry Into Service (EIS) in 2020.
Starting from the specification of the Top Level Aircraft Requirements (TLAR)
provided by the aircraft manufacturer partner (Bombardier), an Overall Air-95

craft Design (OAD) task targeting conceptual and preliminary development
design stages was implemented in DC-1. The initial TLAR, as well as the main
architectural choices are summarized in Table 1.

Description Value

Range 3600 km

Cruise Mach number 0.78

Initial Climb altitude 11 000 m

Number of passengers 90 pax

Take-off field length 1500 m

Approach speed 130 kts

A/C configuration Low-wing, wing-mounted engines

Table 1: Top level aircraft requirements.

Figure 2 shows a representation of the DC-1 distributed OAD process. The
Figure indicates the domains of the specialists’ competences that have been in-100

tegrated into the process, the location where such simulation competences are
hosted, and the specific partners providing such a competence within their IT
networks. The corresponding collaborative MDO workflow is shown in Fig. 3.
A design exploration method was “calling” the OAD process (here labelled as
MDA) as a remote service, which integrated all the distributed disciplinary105

competences that in turn are called as remote services (deployed as disciplinary
workflows) within the MDA process. All competences communicated via a
CPACS10 model corresponding to the AGILE aircraft product model. They

10http://www.cpacs.de – A Common Language for Aircraft Design, accessed: August 28th
2017
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Figure 2: AGILE Collaborative design process: individual competences are distributed multi-
site, and hosted at the different partners’ networks.

Figure 3: AGILE DC-1 workflow. Partner 1 deploys a Design Of Experiment requesting as
remote service the cross-organizational MDA workflow, deployed at Partner 2. The MDA is
composed by disciplinary competences provided as remote services to Partner 2 by Partners
4 to N.
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were deployed as disciplinary workflows and provided as remote services. Fur-
thermore, the deployed “workflow of workflows” has been provided as “service110

of services” and coupled to a surrogate based optimization strategy, named
SEGOMOE, developed by ONERA and ISAE-SUPAERO [7]. This approach
was retained for the State-of-the-Art (SOTA) distributed MDO system as it
combines the advantage of a MultiDisciplinary Feasible formulation (no modi-
fication of the MDA process, consistency of the design at each iteration of the115

optimization [8]) and of the use of surrogate models that permits to reduce
the number of calls to the MDA. The optimization problem can be defined as
follows:  min Direct Operating Cost: DOC

w. r. t. 7 wing shape variables
s. t. 2.2− CLmax < 0.

(1)

Only a few iterations were made during DC-1, resulting in an improved
configuration that was selected as the DC-2 reference aircraft [9].120

2.2. Design Campaign 2

The DC-2 activities were based on the outcome of the DC-1 work, and were
implemented during the second year of the project. The number of use cases
was expanded to five parallel ones. For each use case, a novel MDO strategy
(addressing a specific collaborative scenario) was investigated and assessed for125

the resolution of the design of the reference aircraft. Depending on the use
case, classical MDO formulations (such as MDF, IDF [8] or Analytical Target
Cascading [10]) or more adapted ones were used. The five use cases were:

1. Use case focused on the improvement of MDO strategies with the develop-
ment and integration of new design competences in terms of optimization130

algorithms and surrogates modelling. This use case and the results are
presented in [11, 12].

2. The implementation of Uncertainty Quantification (UQ) methods and ro-
bust based design optimization in complex, variable fidelity optimization
was the objective of the second use case [11].135

3. The development of a mixed-fidelity MDO strategy was tackled with the
integration of high-fidelity design competences and its combination with
Overall Aircraft Design (OAD) level. The process is presented in [13] and
illustrated in Fig. 4.

4. A multi-scale application is described in [14] aiming at investigating the140

improvement of involving an aircraft component supplier (aircraft rud-
der) in the overall aircraft optimization process while keeping its specific
framework. The coupled optimization problem is shown in Fig. 5.

5. A large-scale system-of-systems application was studied, coupling Aircraft
- Engine - On-board systems (OBS) - Emissions in a distributed frame-145

work approach with the involvement of disciplinary services from different
partners [15].
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Figure 4: DC-2 - Multi-level optimization formulation.

Figure 5: DC-2 - Rudder optimization.

Based on best practices developed in DC-1, the overall AGILE framework
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was during DC-2 enhanced by knowledge-based technologies [16] and IT solu-
tions [17], which contributed to an acceleration of the deployment of the complex150

MDO processes addressed by the DC-2 use cases.
Among the methodological improvements, most investigations were focused

on the capabilities and differences among all the optimization approaches con-
sidered, all aiming at converging the process more rapidly to the best solutions.
The following section will discuss the results of the research of three partners155

carried out during DC-2 in order to enhance the MDO capabilities of the AGILE
process.

3. Optimization Methods

3.1. Deterministic Optimization algorithms

In the field of aircraft design, optimization problems to be solved might160

be challenging as they can combine a multi-modality, high-dimensional design
space with conflicting constraints. In addition, in particular for multidisci-
plinary studies, gradient information of the disciplines is not always available
to ease the optimization process. Therefore efficient gradient-based algorithms
[18, 19, 20] cannot be selected because finite-differences or complex step meth-165

ods require a too large number of evaluations to approximate the gradient for
use in an optimization process. On the other hand, industrial-standard black-
box optimizers as the global Genetic Algorithms (GAs) and Covariance Matrix
Adaptation (CMA) require a large numbers of function evaluations and might
become unusable for high-dimensional design spaces [21, 20].170

An alternative consists of using an Surrogate-Based Optimization (SBO)
approach in which some inexpensive approximations of the objective and the
constraints are build [22, 23] and a good balance between global and local search
is performed [24, 25]. Such algorithm is considered here to perform a mono-
objective constrained optimization.175

Extensions of SBO to multiple objectives are still under investigation in
order to get an infill sampling criterion easy to evaluate [22, 26, 27]. One could
generate Pareto-Fronts that involve the solution of the optimization problem
multiple times to assess a weighted sum of the individual objectives. However,
this method like the Normal-Boundary Intersection [28] or the multi-Objective180

Particle Swarm Optimization (mPSO) [29] would lead to an impractical number
of analyses to be performed. Here we consider an alternative that consists of
coupling the Nash game theory (N) to a typical genetic evolutionary algorithm
(GA), that starting from specific design variables permits to reduce the number
of analysis [30].185

3.1.1. Mono objective optimization through the use of metamodels

In order to handle constrained optimization problems with a large number of
design variables, a surrogate based optimizer called SEGOMOE [31] for Super
Efficient Global Optimization coupled with Mixture Of Experts has been de-
veloped by ONERA and ISAE-SUPAERO. This approach focuses on sequential190
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enrichment using adaptive surrogate models and is based on four main pillars.
The first one concerns the Efficient Global Optimization (EGO) approach [24].
In this approach the objective function is replaced by a Gaussian process (GP)
(also known as Kriging [32, 33]) defined initially from an initial design of exper-
iments (DOE) of a few points. The EGO algorithm [24] iteratively adds points195

to the DOE to increase the accuracy of the GP in areas where the minimum is
likely to be. The position of the added points is obtained by maximizing the
expected improvement (EI) criterion using two key information outputs from
GP: the mean and the variance of the objective function, providing a trade-off
between exploration and exploitation. The second pillar concerns the evolu-200

tion of EGO to handle mixed constraints (equality and inequality) using the
SuperEGO algorithm [25]. The third pillar concerns the large number of de-
sign variables with the introduction of KPLS and KPLS+K surrogate models
[34, 35], combinations between the Partial Least Squares (PLS) method and the
Kriging model in order to reduce the number of kriging hyper-parameters that205

are costly to determine. The coupling between SuperEGO and KPLS models
has been discussed in [36] leading to the SEGOKPLS algorithm. The last pil-
lar concerns the introduction of Mixture of Experts surrogate models within
SEGOKPLS. To better approximate a strongly non linear and/or discontinuous
function (objective function or constraint), mixture of experts (MOE) mod-210

els have been proposed in [37, 38]. The idea is to build local approximations
(experts) in subsets of the design space and to recombine them in a global sur-
rogate model. Here the local experts are kriging based models (including KPLS
and KPLS+K models) for the objective function and the key contribution is
the adaptation of the EI criterion to these local experts. For the constraints215

approximation, no restriction is made for the approximation and all of the avail-
able surrogates (polynomial regression models, Radial Basis Function, Kriging,
KPLS, KPLS+K...) can be used as local experts. In addition, different criteria
are used for selecting infill sample points like the Watson and Barnes criterion
(WB2, see [39]) to give slightly more merit to local search. Finally, the search of220

the optimum is carried out using different optimizers capable of considering non
linear constraints based either on a derivative free optimizer (such as COBYLA
-Constrained Optimization BY Linear Approximation- see [40]) or based on gra-
dient method as SLSQP (for Sequential Least Squares Programming [18]) using
the Jacobian calculation of the mixture of experts (for the objective and the225

constraints functions). The resulting SEGOMOE algorithm has been validated
on different aerodynamic use cases [41, 7, 31].

This algorithm was provided for the AGILE DC-1 (see Section 2) and was
also used for DC-2.

3.1.2. Multi objective optimization through the use of Game Theory230

One drawback of the approach presented in the preceding paragraph is that
it can only be applied for single objective function (even though the extension
of the EGO algorithm to multiple design objectives has been studied [22]).

As the aircraft design optimization field can involve multiple and often con-
flicting objectives, a multi-objective optimization approach [42] that permits to235
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consider many different parameters that could be a constraint or an objective
function for a specific investigation. The design methodologies that allow to
perform optimization studies during the aircraft preliminary design phase are
already implemented in a software package, as shown in [43] and can also be
built up using surrogate models [44, 45, 46].240

The approach developed by the UniNa research group couples the Nash
game theory (N) to a typical genetic evolutionary algorithm GA, reducing com-
putational time and allowing a more realistic association among variables and
objective functions [47]. A detailed description of NGA optimization used in245

the AGILE project is given in [12].
In the game theory approach, a multi-objective problem is considered as a game
with n players, each one characterized by a pay-off. Each player wants to maxi-
mize his profit and will try to find an optimal game strategy. If each player has
selected a strategy and no player can benefit from changing strategies while the250

other players keep theirs unchanged, then the current set of strategy choices and
the corresponding payoffs constitute a Nash equilibrium; other feasible possibil-
ities are either to merge the advantages of Nash game and Genetic Algorithms
(Nash-GAs) strategy [30] or to use evolutionary optimization algorithms. In
frame of AGILE DC-2, this multi-objective approach has been applied to the255

common test case (described in Section 4.1) in order to benchmark it against
the mono-objective approach relying on a composite objective function.

3.2. Robust optimization approach

Standard optimization approaches rely on the implicit assumption that the
underlying system is deterministic, i.e., that the knowledge associated with the260

design variables and with the system dynamics is not characterized by uncer-
tainty. However, in real conditions randomness impacts the formulation of the
design process in multiple ways. Typical examples of such random factors in-
clude (a) environmental and operative conditions that cannot be quantified a
priori with a sufficient level of accuracy, (b) intrinsic fluctuations impacting the265

outcome of the manufacturing processes, (c) economical and financial trends.
An effective way to model these uncertainties consists in adopting a proba-

bilistic approach, according to which probability distributions are used to model
the random nature of the stochastic variables involved in the design process. In
the following, the input random variables are concatenated into the random270

vector X. Moreover it is assumed that this random vector is absolutely con-
tinuous and can thus be characterized by its probability density function (pdf),
fX . Several approaches [48] can be adopted to address the following aspects of
an uncertainty quantification (UQ) study:

• Characterization of the uncertainty associated with the system outputs275

(e.g., uncertainty propagation, variance estimation);

• Sensitivity analysis and quantification of the contributions of the input
variables’ variance on the outputs variance;
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• Robustness and reliability design optimization, where objectives and con-
straints can be posed in terms of output variances and probabilities of280

failure rather than deterministic equality or inequality constraints.

Among the available numerical techniques, the current work considers the
Monte Carlo (MC) and the First Order Second Moment (FOSM) methods [48].
The MC method requires generating a number of random samples distributed
according to the pdf fX of the random vector X used to model the input design285

variables. For each of these samples, a system evaluation is performed to obtain
a collection of results that are used to approximate the target pdf of the outputs
of interest. The FOSM method approximates the system dynamics with a first-
order Taylor expansion evaluated at the mean value of the input variables.
The main advantage of MC is that it provides an estimation of the entire pdf290

associated with the system outputs, enabling the possibility to infer the shape of
the pdf and a set of key indicators like the quantile values or the probability of
failure. All these quantities can be directly inferred from the collection of system
evaluation results. On the other hand, MC typically requires a large number of
system evaluations to obtain an accurate estimation of the quantities of interest,295

and the rate of convergence with respect to the size of the population, NMC , is
typically low (the variance of the MC estimator is proportional to 1/

√
NMC).

The main advantage of FOSM resides in its computational efficiency, i.e., only a
limited number of system evaluations is required to compute the variance of the
target outputs. On the other hand, the accuracy of FOSM strongly deteriorates300

when the system dynamics is highly non-linear. The use of a probabilistic
approach opens the road to the possibility of defining the design optimization
problem not only in terms of deterministic quantities but also by considering
robustness and/or reliability constraints. The robustness of the system is in
this study assessed by analyzing the value of the standard deviation associated305

with the output quantities of interest. In terms of reliability, both the First
Order Reliability Method (FORM) and the Second Order Reliability Method
(SORM) [48] are considered. A reliability problem is defined by the presence of
one or more design constraints that can be expressed as g(X) ≤ 0 identifying a
failure region Ωf in the design space. The probability of failure, pf , describing310

the probability for a design to fall within the failure region is defined as:

pf = P
[
g(X) ≤ 0

]
=

∫
Ωf

fX(x)dX . (2)

Equation (2) is in general estimated numerically. Monte Carlo simulation is
generally not affordable for the estimation of pf as this one is usually small
(less than 10−3). To access this problem Hasofer and Lind [49] introduced
the reliability index, β, which is the smallest distance in the standard normal
space, between the mean values of the random variables and the limit state
function (LSF) (i.e g(X) = 0 in the standard normal space). Numerically, β is
computed by identifying the closest point on the LSF, named Most Probable
Point (MPP), through a gradient-based optimization algorithm. Once the MPP
and β have been identified, pf can be estimated by computing a first-order
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(FORM) approximation of the limit state surface centered at the MPP. It can
be shown that the FORM approximation of pf reads,

pf ≈ pFORMf = Φ(−β)

where Φ is the cumulative distribution function of the standard normal prob-
ability distribution. The numerical cost of the FORM approximation is then
only linked to the numerical resolution of the determination of β (gradient based
optimization problem). The SORM approach consists in improving the FORM315

estimation of pf using a second order approximation of the LSF at the MPP.
However this improvement involves higher computational costs.

To deal with the complex, large scale and distributed design problems faced
in the context of the AGILE project, a three-step approach is employed. First,
a smart and efficient Adaptive Design of Experiments (ADOE) technique [50] is320

applied to the remote analyses tools in order to explore the design space under
study. The results obtained during these DOE campaigns are then employed
to build Response Surface Models (RSM) that accurately mimic the dynam-
ics of the considered systems. Finally, different aspects related to uncertainty
quantification are addressed by taking advantage of the use of these RSMs.325

4. Application to conventional aircraft

One of the objectives of DC-2 was to investigate the capabilities of partner’s
optimization approaches to converge more rapidly and more efficiently the com-
plex workflows considered in the AGILE project, characterized by a high degree
of discipline interdependencies and a large number of design variables.330

A typical application of these investigations is the MDA workflow defined
and implemented during DC-1 activities, but taking into account extensions
towards multi-level and/or multi-component approaches.

4.1. DC-1 derived scenario

During DC-2 the objective is to apply these novel optimization techniques on335

the reference MDO problem that is based on the MDA of DC-1 and, assess their
impact on the overall MDO problem. Among the different use cases considered
in DC-2 two different improvements of the MDA are discussed here:

• When considering the wing structural sizing competence, the DC-1 design
process was performed through a specific approach aiming at optimizing340

the internal structure of the wing under loads constraints, thus decoupled
from the aerodynamic optimization. The introduction of a multi-objective
optimization competence was investigated to improve the capabilities of
the AGILE system. The use of the NGA optimization process was applied
to the wing design and permitted to consider both aerodynamic (including345

low-speed performance) and structural objectives in a single step (see Fig.
6).
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• During DC-1, the engine and nacelle competences were only considered
as input parameters for the overall aircraft design process. This con-
sisted in using a pre-calculated engine performance map as well as using350

pre-computed engine and nacelle drag and weights. During DC-2, both
engine and nacelle design competences were introduced to improve the ca-
pabilities of the AGILE framework. TsAGI provided the knowledge and
competence to study the Nacelle impact using CFD, see Fig. 7. This per-
mitted a stronger coupling between nacelle sizing and aircraft sizing tak-355

ing into account the pylon design and the wing/pylon/nacelle interaction.
Drawbacks of the implementation are that the nacelle shape optimization
process might take as long as a week, and that the uncertainty of the
operational conditions might degrade the performance of the optimized
design around nominal cruise conditions. The use of ONERA and Noe-360

sis Solutions optimization competences were investigated to solve these
issues.

Figure 6: Wing design test case.

These two uses cases, built on the DC1 workflow, ensure that a common part
is shared between the partners investigating the enhancements of the AGILE
framework. In addition, these use cases are in line with the other use cases of365

DC-2, all increasing its complexity with extension to multi-fidelity, multi-level
and multi-component considerations.

4.2. Wing Optimization

This use case focuses on the optimization of the wing shape both from the
structural and aerodynamic point of view. The improvement brought by the370

use of UniNa NGA optimizer will be evaluated in this section to assess the
impact of a multi-objective optimization approach. As the target workflow is
characterized by both a high degree of discipline interdependency and a large
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Figure 7: Nacelle design test case.

number of design variables, one of the most straightforward solutions is the
use of surrogate models. A surrogate model (SM) is an analytical formulation375

that replaces a complex model, or even a design analysis workflow, by means
of data fitting. As a results a surrogate model requires only little computation
time, which is in particular useful for capturing complex analysis methods and
applying them multiple times as part of a global optimization process.

In the MDA workflow of DC-1, more than 2000 connections were identified380

between design competences; to reduce the complexity of the problem while
keeping as much as possible its similarity with respect to the aircraft design
process, several modifications were made and four clusters were built using a
selection of design competences (see [51] for a complete description):

Aerodynamic Cluster This cluster gathers a morphing tool (that enables the385

modification of the full wing geometry from a set of design parameters)
and aerodynamic performance computations including low-speed configu-
rations. It takes as input the wing design parameters and provides lookup
tables for aerodynamic coefficients, related to the specified wing design.

On-board systems Cluster This cluster aims at providing the On Board sys-390

tems performance in terms of weights and power, using the wing design
parameters and other inputs such as the Fuel Weight and operational
weights such as MTOM (Maximum Take-Off Mass).

Structural sizing and Weight Cluster This cluster provides the weight break-
down of the entire aircraft using as inputs the wing design parameters, the395

fuel weight and the systems weight. It also contains the load and struc-
tural sizing competence that sizes the wing structure and computes its
weight.
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Mission performance Cluster This cluster contains the Mission performance
tool and uses as inputs the wing design parameters, the operational weights400

and the Aerodynamic look up tables to run the full mission and provides
the fuel weight.

Figure 8 provides the enriched graph [17, 52] of the four clusters. One can
observe that each cluster contains design competences of different partners that
will be called using the AGILE framework.405

2048 inputs 1 input 429 inputs

AEROMAP Init 4 connections 3 connections 4 connections

DLR Morphing 1948 connections 1561 connections

DLR Aero Performance 8 connections

2 outputs UNINA[High Lift]

8 outputs AeroToRSM

(a) Graph of Aero Cluster

240 inputs 7 inputs

DLR Morphing 1 connection

24 outputs ASTRID

(b) Graph of System Cluster

2099 inputs 212 inputs

DLR Morphing 2078 connections

759 outputs DLR AERO SIZE

(c) Graph of Weight Cluster

2167 inputs 8 inputs 83 inputs

DLR Morphing 2150 connections

RSMToAero 6 connections

69 outputs DLR FSMS

(d) Graph of Mission Cluster

Figure 8: Graphs of the 4 retained clusters.

The design competence clusters were then implemented as collaborative ser-
vice oriented workflows, and executed within Design of Experiments (DOE)
studies in order to generate the databases for the clusters’ surrogate models.

The multi-objective optimization approach used at UniNa is based on the
NGA optimizer and was used for the abovementioned clusters’ surrogate mod-410

els. They were translated in executable blocks that could be easily queried, as
examples the executable version of the Aerodynamic Cluster was used to evalu-
ate the zero-lift drag coefficient and the maximum achievable lift coefficient, and
the Structural sizing and Weight Cluster was employed to calculate the wing
weight.415

4.2.1. Wing optimization problem

The main objective of this use case is the wing optimization in terms of
weight, zero-lift drag coefficient and maximum achievable lift coefficient using
the NGA algorithm and then comparing the results obtained to a classical Pareto
front and single objective scalarization (GA). The TLAR of the aircraft are420

given in Table 1, and the resulting wing design from DC-1 is characterized by a
reference area equal to 82.7 square meters and a sweep angle at the quarter of
the chord equal to 30 degrees.
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The idea to apply NGA equilibrium solutions to the aircraft design and opti-
mization leads to the chance to avoid a more arbitrary and less physically based425

variables association among the different objective functions, using, instead, a
more engineering reliable variables assignment based on well-known parameter
association [47, 12]. In the NGA optimization approach, variables cards can
be assigned to players (objective functions) in a unique case, assigning in a
static manner these variables, or in multiples combinations, choosing cases to430

be optimized (until to the maximum number of possible combinations).
The DC-1 main wing parameters are summarized in Table 2 and the wing is

shown in Fig. 9. A multi-objective optimization was performed involving five
design variables: the taper ratio (λ), the maximum mean thickness percentage
(t/c), the aspect ratio (AR), the leading edge sweep angle (ΛLE) and the wing435

area (Sw). The three objective functions (players) are the wing drag coefficient
(computed according the Aerodynamic Cluster), the wing weight (computer ac-
cording to the Structural sizing and Weight Cluster) and the wing maximum lift
coefficient in clean configuration (computed again according the Aerodynamic
Cluster), as shown in Fig. 8. During each loop the five design variables and the440

resulting objective functions change.
Formally, the game can be written as shown in Eq. (3) where the first number

represents the number of players involved, inside the curly brackets the upper
and lower values of the five cards of the game (AR, t/c, Sw(m2), ΛLE(deg), λ
respectively) and finally the specific players (objectives). The 3 players could445

play with these 5 cards, with player 1 optimizing the wing drag coefficient,
player 2 optimizing the wing weight and player 3 optimizing the maximum lift
coefficient in clean configuration.

Γ = 〈3; {9− 10.5}, {0.125− 0.138}, {75− 95}, {30− 34}, {0.12− 0.17};
CDw,Ww, CLmaxw

〉
(3)

b(m) Croot(m) ΛLE(deg) Taper Ratio t/c Sw(m2)

Reference Wing 28.01 6.39 30 0.164 0.13 82.7

CDw - Wing Weight
@ CL = 0.49

0.0254 - 4887kg

Table 2: Reference wing characteristics.

The design variables are assigned among the players in all possible combi-
nations, leading to n games among players. In this specific case, considering 5450

design variables and 3 players, there are six way of assigning these variables:

− [3, 1, 1], that means 3 parameters to Player 1, 1 to Player 2, 1 to Player 3

− [1, 1, 3], that means 1 parameters to Player 1, 1 to Player 2, 3 to Player 3

− [1, 3, 1], that means 1 parameters to Player 1, 3 to Player 2, 1 to Player 3

− [2, 2, 1], that means 2 parameters to Player 1, 2 to Player 2, 1 to Player 3455
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Figure 9: Reference wing planform.

− [1, 2, 2], that means 1 parameters to Player 1, 2 to Player 2, 2 to Player 3

− [2, 1, 2], that means 2 parameters to Player 1, 1 to Player 2, 2 to Player 3

Each of these assignments leads to 10 possible combinations, and so 60 games
in total.

The NGA optimization has been compared with a GA scalarization and a460

multi-objective GA (Pareto front). In the scalarization optimization the GA
algorithm was used and the objective function was simply defined as an average
weighted function as shown in Eq. (4).

Fobj = Fobj 1 · kCDw · sCDw + Fobj 2 · kw − Fobj 3 · kCL (4)

where:
Fobj 1 = CDw (5)

Fobj 2 =
Wwing

Wwing initial
(6)

Fobj 3 = CLmaxw
(7)

and465

− kw is the weight which represents the importance of the wing weight in
the optimization process.
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− kCD is the weight which represents the importance of the wing drag coef-
ficient in the optimization process.

− sCDw is the scale factor useful to keep the same order of magnitude be-470

tween the objective functions. It was set equal to 10 to work with objective
functions characterized by the same order of magnitude.

− kCL is the weight which represents the importance of the wing maximum
lift coefficient in the optimization process.

The k weights take values within the range [0, 1] so that the sum of them is475

equal to 1.

4.2.2. Results for multi objective optimization

The NGA algorithm scans 60 possible solutions, selecting only those for
which the values of the objective functions are simultaneously better than the
references wing weight and drag coefficient and greater than maximum lift co-480

efficient. Between them the algorithm will select the wing characterized by the
maximum lift coefficient.

Figure 10 shows the best solution in terms of wing planform compared with
the reference wing planform (red line).

Figure 10: Wing planform (Game 35) three players’ optimization for reference wing (blue)
and optimized wing (red).

Table 3 provides the comparison between the reference wing planform, the485

best solution chosen at the end of the NGA optimization and the best solution
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obtained through GA scalarization. The latter solution was obtained by associ-
ating AR and ΛLE to Fobj 1, Sw and (t/c) to Fobj 2, λ to Fobj 3. As can be seen,
the optimum solution simultaneously improves the drag coefficient (reduction of
about 14 drag counts), the wing weight (reduction of about 40 kg) and increases490

the maximum achievable lift coefficient (increase with 0.12). Although the best
solution obtained using the GA scalarization approach is similar to the one ob-
tained using NGA, the solution obtained using the scalarization approach is
largely dependent on the values of the k weigths and does not take into account
the association among variables and objective functions.495

AR ΛLE(deg) b(m) λ t/c Sw(m2)

Reference Wing 9.43 30 28.01 0.164 0.13 82.7

CDw - Wing Weight
- CLmaxw

0.0254 - 4887 (kg) - 1.39

Game 35 (NGA) 10.5 33.69 28.05 0.17 0.138 75

CDw - Wing Weight
- CLmaxw

0.0240 - 4837 (kg) - 1.53

GA best solution 10.5 33.69 28.05 0.17 0.138 75

CDw - Wing Weight
- CLmaxw

0.0240 - 4837 (kg) - 1.53

Table 3: Comparison between AGILE DC-1 wing and the best solution of NGA and GA
applications with 3 players.

Figure 11 shows a comparison of all the NGA points (60 games) with a
typical Pareto frontier and scalarization optimization approach. One can see
that the NGA points are characterized by a better spread compared to the GA
scalarization points which are only located in a specific portion of the feasi-
ble area bounded by the Pareto front. It is useful to underline that Fig. 11500

shows only a cutting plane of the multi-objective optimization among the three
players/variables involved.

Figure 11: Results comparison among the three optimization approaches (data referred to
the equivalent wing); on the left (CLmaxw - CDw), on the right (CLmaxw - Ww/Ww ref ).
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This application showed that the Nash game theory coupled with a typical
genetic evolutionary algorithm (NGA) is a viable approach to use in the opti-
mization field since firstly it permits a more realistic association among variables505

and objective functions and secondly it reduces the computational time. More-
over, the reduced distance between NGA solution points and the Pareto front
demonstrates the reasonableness and the feasibility of the results obtained. Fi-
nally, a verification of the computational time between the Pareto front, a single
game of the NGA, and the GA scalarization approach has been performed on510

a laptop equipped with a single CPU (2.0 GHz). The elapsed time for a single
NGA solution point for the 3 players application is equal to 50 seconds, for a
single scalarization GA solution point it equals 59 seconds, and for the Pareto
front it is 76 seconds. The larger the number of variables or objective functions,
the larger the computational time that can be saved using the NGA approach.515

These results show the benefits of introducing this new feature in the en-
hanced AGILE framework in order to apply it to multidisciplinary wing design
optimization. This new capability will be used during Design Campaign 3 where
the AGILE environment will be applied to different novel aircraft configurations.

4.3. Nacelle Optimization520

4.3.1. Nacelle optimization problem

This use case focuses on improvements of the nacelle shape optimization
process that were investigated during DC-2 in order to reduce both the over-
all optimization time and the robustness of the optimal design around nominal
cruise conditions. The nacelle shape optimization process focuses on the follow-525

ing two issues:

• One of the objectives in optimizing the geometry of a turbofan nozzle is
to reproduce the mass flow rate through the core (hot) and bypass (cold)
nozzles specified in the engine technical specification. The standard prac-
tice when designing the nozzle is to fix the value of the cross-sectional area530

of the nozzle exit during optimization. The disadvantage of this approach
is that the nozzle mass flow rate depends on the entire geometry of the
nacelle that is changing during the optimization, even for a fixed value of
the exit section area. As a result the optimal shape of the nacelle does not
necessarily fulfill the requirement in terms of operating conditions. For535

this reason one should add to the optimization process the constraint that
the required mass flow rate is satisfied.

• Although the aforementioned approach improves the nacelle design, only
cruise conditions are considered whereas the nacelle design should also
ensure acceptable behaviour (in terms of engine intake flow conditions)540

in take-off configuration. This constraint can be taken into account by
limiting the range of variation of the inlet geometrical parameters within
known bounds — mainly by expert judgment — to ensure that they are in
the region that satisfies the take-off configuration performance. However,
improvements can be expected by considering both the cruise and take-off545
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configurations in the same optimization problem. The second problem
therefore considers the robust optimization of the inlet geometry shape
taking into account the impact of four random input variables: ambient
temperature and ambient pressure both evaluated at cruise and take-off
conditions. As a consequence, both engine and nacelle modules have to550

be considered in this approach.

The deterministic optimization problem deals with the entire nacelle geom-
etry. Following the parametric model described in [53] the input parameters of
the problem are 17 geometrical parameters as illustrated in Fig. 12:

• 7 variables concern the inlet geometry555

• 10 variables are concerned with the nozzle.

Figure 12: Nacelle geometrical description.

The value of the effective thrust in cruise regime has been used as the objec-
tive function for the nacelle optimization. This value depends on the difference
between the ideal and the real engine thrust obtained during the calculation:

dPeff = 1− Peff

Pid
(8)

with560

• Pid the ideal engine trust,

• Peff = P − FX the effective engine thrust (thrust-minus-drag),

• P the engine thrust determined with the use of the internal parameters,

• FX the projection of the external drag force on the engine axis.

To solve the problem of optimal nacelle design with the constraints of pro-565

viding the required mass flow rates, it is necessary to change the formulation of
the initial optimization problem [54]: the areas of the exit sections are no longer
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fixed, but varied among the 17 geometrical parameters mentioned above. There
are two equality type constraints in the optimization problem:

Gcore −Gtarget
core = 0 (9)

Gbypass −Gtarget
bypass = 0 (10)

These two equality constraints are transformed into two inequality constraints570

as follows: ∣∣∣∣1− Gcore

Gtarget
core

∣∣∣∣ < εcore (11)∣∣∣∣∣1− Gbypass

Gtarget
bypass

∣∣∣∣∣ < εbypass (12)

where the two thresholds εcore and εbypass are set equal to 10−2 and 2.5 10−3 re-
spectively based on the required accuracy. These constraints ensure that, within
the required accuracy, the equality of core and bypass mass flow rates (Gcore

and Gbypass) to the target values (see Fig. 13). The values of the thresholds575

are based on the requirements of aircraft engine manufacturers for the accuracy
of determining the air flow for the nozzle design phase. For example, for the
engines under consideration, the values 10−2 and 2.5 10−3 approximately corre-
spond to the physical air flow of 100 grams for the hot nozzle and 300 grams for
the cold one. The target values are determined by the engine regime parameters580

and are specified in the engine deck definition. After optimization, the nacelle
geometry suitable for installation on the aircraft is obtained. All the neces-
sary airflows values are computed by the nacelle design tool code developed by
TsAGI described in Section 4.3.2.

Figure 13: Core and bypass mass flow rates of the engine.

The nacelle shape optimization case presents two aspects that have been585

improved through the application of novel techniques that were made available
by the AGILE partners:

• a reduction of the number of function evaluations for the shape optimiza-
tion process, compared to the original optimizer (EGO by DAKOTA [55]).
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For this the SEGOMOE approach [31] provided by ONERA and described590

in Section 3.1.1 was used and results obtained are presented in Section
4.3.3,

• assessment of the performance of the optimal nacelle shape around nomi-
nal aerodynamic conditions. The uncertainty analyses approach available
in the Optimus framework (see Section 3.2) was evaluated and the results595

are discussed in Section 4.3.4.

4.3.2. Description of the design tools

Nacelle Hi-Fi tool. The introduction of this design competence is based on the
method of nacelle aerodynamic design and optimization described in [56] and
[57]. It is a fully automated tool chain composed of four blocks: geometry600

builder, grid generator, CFD solver and post-processor (see Fig. 14). The
output of the geometry builder block is an IGES file containing the geometrical
model with specified values of input parameters (i.e. nacelle geometry variables).
This file is then used to build the computational grid. CFD calculations are then
carried out using the TsAGI in-house code Electronic Wind Tunnel (EWT-605

TsAGI [58]). The steady RANS equations are solved using a finite-volume
numerical solver that employs a second-order approximation in space for all
variables and is based on the Godunov-type TVD scheme for the approximation
of the convective fluxes (MUSCL). For the results presented here the Spalart-
Allmaras turbulence model has been used. The calculations are performed on610

a multiblock structured grid with hexahedral cells. The axisymmetric grid used
for this study has approximately 60000 cells. The CFD calculations were made
for cruise (M = 0.78, H = 11 km) and take-off (M = 0, H = 0 km) conditions.
In the post-processing block the following parameters are extracted from the
computed solution:615

• the effective thrust losses at cruise as a measure of aerodynamic efficiency;

• the total pressure losses at the fan face at take-off as a measure of flow
distortion.

Figure 14: Nacelle CFD analysis tool chain.
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Engine tool. The engine simulation provides the engine parameters and engine
performance map for different engine design cycle parameters and size. A steady620

state engine performance is represented by an engine deck (ED). The ED pro-
vides the engine performance for the engine operating envelope. The ED can be
presented in table format or as a computer program providing a limited number
of required engine parameters. An Extended Engine Deck (EED) has been made
to provide the engine parameters and performance maps of the different engines625

required by the AGILE partners. The technical specifications of the EED were
agreed by the AGILE partners to fix adoptions and constraints for the engine
simulations. To generate the EED, commercial software tools level 1 (L1) for
engine modeling were used. A L1 entire engine simulation tool corresponds to an
engine simulation using 0-level simulation of engine components (compressors,630

turbines, combustor, etc.), i.e. black boxes without detailed (1D-3D) modeling.
The commercial software GasTurb v12 [59, 60] L1 was employed to evaluate the
on-design and off-design engine parameters and to generate the performance
map. The program scope has different degrees of simulation detail. The engine
component maps can be presented in the engine tools in different ways from635

generalizations up to approximations of rig test data. Engine model technology
constraints and design rules are used in engine cycle design, off-design simu-
lation, engine overall geometry and mass assessments. Technology constraints
and design rules were applied to generate an EED consistent with the specified
engine technology level. The engine analysis module evaluation is based on the640

following inputs: operational assumptions, Entry into Service time, engine con-
figuration, power offtake/overboard bleed. The set of output variables delivered
by the tool consists of: engine installation losses, engine flight envelope (see for
example Fig. 15), intake pressure recovery description, thrust specifications and
engine sizing, thrust reverser ability, engine technical deliveries, engine perfor-645

mance for different operating conditions, engine dimensions description, engine
sizing rules and automatic handling of air bleed. In this study the engine perfor-
mance characteristics for the target operating envelope are calculated according
to a steady state engine performance simulation for an unmixed Geared Turbo
Fan with high By-Pass Ratio.650

4.3.3. Results for Deterministic Optimization

Two test problems are considered: nacelle design optimization of engines
with BPR = 9 and BPR = 12. Both problems are solved in the same setting
by two optimizers — EGO-DAKOTA (Sandia National Laboratories) [55] and
SEGOMOE [31] described in Section 3.1.1.655

As for the wing design test case all processes are integrated into one analysis
workflow with the help of the RCE framework (see Fig. 16). The aerodynamic
analysis block includes geometry construction, meshing, CFD calculation and
post-processing.

Results for the BPR=9 nacelle optimization. The convergence curves for the660

nacelle optimization of the engine with BPR = 9 are shown in Fig. 17. The
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Figure 15: Engine operating envelope spot points agreed for aircraft mission calculation.

Figure 16: Nacelle design analysis workflow.

two optimal solutions of EGO-DAKOTA and SEGOMOE are compared in Ta-
ble 4. The number of function evaluations to reach the optimal value of the
objective function is the most common criterion to compare two optimization
algorithms. Here we compare also the error with to respect the two inequality665

constraints (Eq. (11) and Eq. (12)) according to the two thresholds εcore and
εbypass fixed at 1% and 0.25% respectively. Compared to DAKOTA, SEGO-
MOE converges to an optimal design not only with a lower objective value for
which the two constraints are respected, but also involving a smaller number of
function evaluations.670
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Figure 17: Convergence History of EGO-DAKOTA and SEGOMOE, case BPR=9. The red
line is associated to the best found point with SEGOMOE, the blue line refers to the solution
of EGO-DAKOTA.

Size of the Number of function Core mass Bypass mass Objective
initial DOE evaluations flow error, % flow error, % value

EGO-DAKOTA 171 224 -0.21 -0.24 6.30

SEGOMOE 30 215 +0.64 +0.15 5.59

Table 4: Comparisons between EGO-DAKOTA and SEGOMOE in terms of function evalu-
ations and objective value case; case BPR=9.

(a) EGO-DAKOTA (b) SEGOMOE

Figure 18: Mach number distribution at the optimal design with EGO-DAKOTA (a), or
SEGOMOE (b); case BPR=9.

Results for the BPR=12 nacelle optimization. The convergence curves for the
nacelle optimization of the engine with BPR = 12 are given in Fig. 19.

The two optimal solutions of EGO-DAKOTA and SEGOMOE are compared
in Table 5 in terms of number of function evaluations and in Fig. 20 in terms
of Mach number distribution. The good performance of SEGOMOE is also675

demonstrated for this test case in terms of objective value, constraints respected
and the number of function evaluations.

The EGO-DAKOTA algorithm imposes an initial DOE of size equal to (d+
1)(d+2)/2, with d the dimension of the design variables. So in this case (d = 17)
a minimum of 171 points is required. A sequential enrichment process such as680

SEGOMOE would be preferred over an approach with a minimum number of
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Figure 19: Convergence History of EGO-DAKOTA and SEGOMOE, case BPR=12. The red
line is associated to the best found point with SEGOMOE, the blue line refers to the solution
of EGO-DAKOTA.

Size of the Number of function Core mass , % Bypass mass Objective
initial DOE evaluations flow error, % flow error, % value

EGO-DAKOTA 171 343 +0.04 -0.17 7.97

SEGOMOE 30 227 +0.68 +0.04 7.36

Table 5: Comparisons between EGO-DAKOTA and SEGOMOE in terms of function evalu-
ations and objective value; case BPR=12.

(a) EGO-DAKOTA (b) SEGOMOE

Figure 20: Mach number distribution at the optimal design with EGO-DAKOTA (a), or
SEGOMOE (b); case BPR=12.

points required (such as EGO-DAKOTA) if the objective is to minimize the
number of function evaluations.

Another aspect concerns the constraint handling for EGO-DAKOTA; Figs.
17 and 19 show that the best objective value when using EGO-DAKOTA (blue685

curve) is quite constant for both the test cases because the successive enrichment
points proposed at each iteration do not respect the two constraints, and the
best value is not updated. For instance, for the test case BPR=12 over the
400 iterations (see Fig. 21), only ten points were in the feasible domain. These
investigations demonstrate the interest of the optimization method provided by690

ONERA that has been implemented as a new capability in the enhanced AGILE
framework.
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Figure 21: Convergence History and Iterative Process of EGO-DAKOTA and SEGOMOE,
case BPR=12. The red line is associated to the best found point with SEGOMOE, the blue
line refers to the solution of EGO-DAKOTA and the black curve represents all the evaluations
done during the EGO-DAKOTA optimization process.

In conclusion the preliminary optimal design of the engine nacelle has been
solved, the mass flow rate requirements are met with the required accuracy, and
the outcome is an optimized inlet and nozzle geometry. Further improvements695

in the intake geometry can be carried out only when constraints on the level
of flow distortion at the fan face are taken into account. This requires that
it is necessary to consider at least a take-off condition characterized by the
maximum air flow rate through the intake. Moreover, considering the possible
uncertainties regarding operational conditions is of major interest.700

4.3.4. Results for robust design optimization

The use case adopted to perform the robust optimization of the engine na-
celle is built starting from the results discussed in the previous section for the
engine with BPR = 12. To cope with the complexity arising when uncertainty
is considered, only 2 design variables are taken into account out of the 17 han-705

dled before. The remaining 15 variables are considered as static parameters
and set to their optimal values found before. In this study, randomness will be
associated with a set of ambient parameters (i.e., temperatures and pressures)
characterizing the operational conditions of the engine. Two disciplinary mod-
ules (i.e., the engine module provided by CIAM and the nacelle aerodynamic710

module provided by TsAGI, both described in Section 4.3.2) will be taken into
account to better characterize the statistical dependence of the engine parame-
ters and improve the technical soundness of the overall approach.

Problem definition. A sketch representing the dependencies between the disci-
plines and the variables involved is shown in Fig. 22.715

The workflow described in Fig. 22 has been implemented in the process inte-
gration and design optimization platform Noesis Optimus [61, 62]. The built-in
capabilities of Optimus are also used to (a) run the machine-learning based
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Figure 22: Graphical depiction of the use case workflow and of the dependencies between the
involved variables.

ADOE [50] plan with the automatic submission of the CFD simulations to a
supercomputer hosted at the TsAGI facilities, (b) build the required surrogate720

models and (c) run all the required uncertainty quantification analyses and relia-
bility / robust optimization algorithms. The corresponding simulation workflow
is displayed in Fig. 23.

Figure 23: Optimus workflow used to integrate the two analysis tools and to automate the
CFD analyses.

Table 6 lists the four random input variables considered in this use case,
consisting off ambient temperature and ambient pressure evaluated at cruise725

and take-off conditions.
The input variables listed in Table 6 are associated with low and high bound-

aries defined as their reference values ± 3% respectively. Their probability den-
sity functions are of Gaussian type and are defined in such a way that the values
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Variable name Description Reference value

1 T0,takeoff Ambient temperature at takeoff condition 288.15 K

2 P0,takeoff Ambient pressure at takeoff condition 98960 Pa

3 T0,cruise Ambient temperature at cruise condition 243.07 K

4 P0,ruise Ambient pressure at cruise condition 33685 Pa

Table 6: Input variables considered in the use case and corresponding reference values.

corresponding to the mean ± 3 standard deviations are equal to the higher /730

lower bounds. A set of variables are calculated from the engine discipline and
are used as inputs by the nacelle aerodynamic discipline. These variables are
considered as ”intermediate variables” and consist of engine core and bypass
temperature and pressure evaluated at takeoff and cruise regimes, for a total of
8 variables. As mentioned above, the number of variable geometrical parameters735

has been reduced to a minimum. The two parameters that the most influence
the shape of the inlet duct (and thus the inlet flow distortion) are varied: (a) the
leading edge curvature radius, Rcurv, and (b) the ratio of highlight diameter to
throat diameter, K = dh/dt (see Fig. 24). The dimensionless lower and upper
boundaries for Rcurv and K were defined as [0, 1].740

Figure 24: Inlet geometrical parameters.

The output variables are calculated by the nacelle aerodynamic discipline
and consist of (a) the engine effective thrust loss evaluated at cruise regime,
dPeff , and (b) the total pressure recovery ratio at engine intake section, δ. The
latter is a feasibility variable evaluated at takeoff condition and associated with
an upper constraint equal to 1. The variable δ is used to indicate the appearance745

of flow separation at the engine intake section during takeoff conditions.
The optimization problem has been set up by considering the value of dPeff

as the objective to be minimized subject to the reliability constraint

δ + 6σδ < 1. (13)

The design variables are the geometrical parameters of the nacelle, Rcurv and K.
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Results analysis. First, an uncertainty quantification study was performed using750

the First Order Second Moment (FOSM) as well as the Monte Carlo (MC). The
FOSM approach was coupled with a forward finite difference scheme to compute
the required derivatives and therefore only 5 system evaluations (i.e., one plus
the number of random variables) are needed to evaluate σδ at a given point
of the design space. The MC-based approach requires a number of evaluations755

equal to NMC. The uncertainty associated with dPeff was always very small
in magnitude (not shown) and was therefore considered negligible. Figure 25
displays the contour plots of σδ as a function of Rcurv and K and shows that
the FOSM- and MC-based results are in good agreement with each other. The
largest discrepancies are observed for small values of K and values of Rcurv close760

to 0 and 1, where the values of σδ obtained by FOSM are overestimated by about
10% with respect to their MC counterparts. As expected, the MC-based results
are affected by random noise and tend to converge to a smooth solution as NMC

approaches the value of 10,000.

Figure 25: Variation of σδ with K and Rcurv evaluated with FOSM and MC for different
values of NMC. The dashed line identifies the boundary of the feasible region (δ = 1).

The contour plots presented in Fig. 25 show that the areas located near the765

boundary of the feasibility region (i.e., where δ is close to 1) are associated with
relatively large values of σδ whose magnitude is close to the values of δ itself.
For this reason, the design optimization problem cannot be defined adopting
a traditional deterministic approach where (a) the operating conditions are set
equal to their reference values and (b) the constraint is defined by imposing the770

inequality δ < 1. An effective approach consists in introducing a constraint in
order to enforce the system reliability within an appropriate confidence interval.
Figure 26 illustrates the behavior of the variable equal to δ + 6σδ within the
design space and the effect of adopting the reliability constraint defined by Eq.
(13) on the position of the boundary of the feasible region. Clearly, the adoption775

of this constraint reduces the area of the feasibility region
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Figure 26: Contour plots showing the dependency of σ+6σδ (left) and dPeff (right) on K and
Rcurv. The dashed lines on the right plot denote the boundary of the feasible region obtained
by setting δ = 1 (a) and σ + 6σδ=1 (b).

A robust design optimization strategy has been defined in order to identify
the most efficient design subject to the reliability constraint defined by Eq. (13).
The optimal values of the design variables are found on the basis of a gradient-
based algorithm and correspond to K = 0.72 and Rcurv=0.19. The histograms780

representing the pdfs of the estimated geometrical parameters and a summary
of their key statistical characteristics are shown in Fig. 27.

Figure 27: Histograms of dPeff (left) and δ (right) obtained on the basis of a MC analysis
with NMC = 10, 000 and by setting K and Rcurv to their optimal values.

A conclusive analysis is performed through the First Order Reliability Method
(FORM) and Second Order Reliability Method (SORM) in order to compute
the reliability index β, and the probability of failure pf , associated with the op-785

timized design. The two approaches required an additional number of 146 and
156 system evaluations, respectively. The output values of the FORM analysis
are given by β = 3.96 and pf = 3.8 10−5 while the estimates obtained through
SORM are β = 4.44 and pf = 4.5 10−6. Regarding β, the two results are in
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good agreement with each other. The discrepancies observed for the estimated790

probability of failures can be attributed to the different levels of the approxi-
mation of the limit state function adopted by the two approaches. Given the
relatively small number of additional system evaluations used by SORM com-
pared to FORM (for this test case) it can be concluded that the second-order
based approach should be preferred over the first-order one for the assessment795

of the target system reliability.

5. Conclusion and Future work

During the first year of AGILE project (Design Campaign 1), a reference dis-
tributed MDO problem was selected and implemented, taking advantage of both
the design competences and methodologies available in the AGILE consortium.800

During DC-1 this MDO process was successfully applied to the optimization of
a large regional jet aircraft. In the second year of the project (Design Campaign
2), novel optimization techniques developed by the AGILE partners were inves-
tigated for different MDO problems, all based on the evolution of the MDA of
Design Campaign 1. These techniques were selected for their expected capabil-805

ities to converge more rapidly and more efficiently for the distributed complex
workflows characterized by a high degree of discipline interdependencies and a
high number of design variables that are considered in the AGILE project. The
results presented in this paper confirm that the selected optimization techniques
were successful to handle the increasing complexity of the workflows.810

For the wing optimization process the innovative multi-optimization ap-
proach combining Nash Games and Genetic Algorithm was investigated and
demonstrated its capabilities to handle a three objectives problem aiming at
increasing both the aerodynamic performance (at high speed and low-speed
conditions) and structural objectives. For this case the optimal design using815

the assignment of the NGA variables to the players led to a reduction of more
than 30% in terms of computational time compared to the Pareto front approach

The approaches selected for the nacelle design optimization problem were
shown to be effective. The use of the SEGOMOE optimizer permitted to reach
a better solution using less computational resources than a classical EGO ap-820

proach. Moreover, the optimum is reached using a budget reduced by a factor
8. Considering the effect of random fluctuations around operating conditions,
Optimus’ UQ strategy allowed characterizing the uncertainty of the system out-
puts and successfully found an optimal design for the geometry of the engine
nacelle subject to the target reliability constraint. The multiple techniques that825

were selected during DC-2 (including the optimization methods presented in the
paper) have been implemented as new competences in the AGILE framework
and are accessible by other partners for collaborative use cases. Some of these
features, such as the SEGOMOE and Noesis’ robust optimization capabilities
were already used in the System of System use case [15]. The smart combina-830

tion of the MDO enhancements, knowledge based technologies [63, 64] and IT
solutions provide a powerful approach for handling the challenges of the reduc-
tion of the aircraft development time at the early stages of the design process.
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In the frame of Design campaign 3, these developments will be used to seven
novel configurations of aircraft. The main results of the different test cases are835

available in a dissemination package on the AGILE web portal [5].
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